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Abstract. Simon and Speck are families of lightweight block ciphers
designed by the U.S. National Security Agency and published in 2013.
Each of the families contains 10 variants, supporting a wide range of block
and key sizes. Since the publication of Simon and Speck, several research
papers analyzed their security using various cryptanalytic techniques.
The best previously published attacks on all the 20 round-reduced ciphers
are differential attacks, and are described in two papers (presented at
FSE 2014) by Abed et al. and Biryukov et al.

In this paper, we focus on the software-optimized block cipher family
Speck, and describe significantly improved attacks on all of its 10 vari-
ants. In particular, we increase the number of rounds which can be at-
tacked by 1, 2, or 3, for 9 out of 10 round-reduced members of the family,
while significantly improving the complexity of the previous best attack
on the remaining round-reduced member. Our attacks use an untradi-
tional key recovery technique for differential attacks, whose main ideas
were published by Albrecht and Cid at FSE 2009 in the cryptanalysis of
the block cipher PRESENT.

Despite our improved attacks, they do not seem to threaten the security
of any member of Speck.

Keywords: Lightweight block cipher, Speck, cryptanalysis, differential attack,
key recovery.

1 Introduction

In 2013 the U.S. National Security Agency published the Simon and Speck fami-
lies of lightweight block ciphers [7]. Each block cipher family contains 10 variants
and supports block sizes ranging from 32 to 128 and key sizes ranging from 64 to
256 bits. Both families of block ciphers have a simple and compact Feistel-like!
design, but are optimized for different applications, where Simon is optimized
for hardware and Speck is optimized for software implementations. Thus, Simon
uses the basic hardware-friendly arithmetic operations of XOR, bitwise AND and
bit rotation, whereas Speck is a pure ARX cipher (i.e., it uses modular addition,
bit rotation and XOR operations).

! Simon is a Feistel structure, while Speck can be represented as a composition of two
Feistel maps [7].



Since their publication, Simon and Speck received significant media attention,
and were also subjects of extensive research in the cryptographic community, as
several papers analyzed their security and performance [1,4,5,9,21]. In general,
the best published attacks on all 20 round-reduced ciphers are differential at-
tacks, described in the two papers [1,9]. However, despite the extensive analysis,
all 20 variants seem to have a sufficiently large security margin, and the current
attacks do not threaten their security.

In this paper, we present improved attacks on all 10 members of the Speck
family of block ciphers. In particular, we increase the number of rounds which can
be attacked by 1, 2, or 3, for 9 out of 10 members of the family, while significantly
improving the complexity of the previous attack on the remaining member. More
specifically, we increase the number of rounds which can be attacked by 1 for
4 members, by 2 for 2 members, and by 3 for 3 members. In 3 of these cases,
not only do we attack more rounds, but we also improve the complexity of the
best previous attacks, which were applied to a weaker cipher. Moreover, in all
of these cases, our attacks use less data than the previous attacks, and all of
them require only a few megabytes of memory (typically improving the previous
attack with respect to this parameter as well).

Surprisingly, our attacks do not exploit any newly found differential charac-
teristic of Speck. In fact, our attacks completely reuse the characteristics pre-
sented in [1,9], but are based on a significantly improved key recovery frame-
work. As the basic idea behind this framework in very simple, at first, it seems
quite strange that it was missed by the previous analysis. However, a closer look
reveals that our key recovery technique is quite different from traditional tech-
niques used in differential cryptanalysis. These key recovery techniques (called
counting techniques) were published with the introduction of differential crypt-
analysis [8]. Counting techniques remain, by far, the most common techniques
to recover the key in differential attacks, and were thus naturally applied in the
previous differential attacks on Speck [1,9].

One of the main features of counting techniques in differential attacks is
that the key material is typically recovered in chunks (i.e., in a divide-and-
conquer manner) using statistical analysis. In order to recover a chunk of key
material (e.g., some bits of the first and last round-keys), we analyze encrypted
input pairs, each pair suggesting a value (or a few values) for this chunk. Right
pairs (conforming to the characteristic) always suggest the correct value for the
chunk, while wrong pairs suggest an arbitrary value. In order to be able to
distinguish the correct suggestions from the incorrect ones, we require strong
filtering which eliminates a large fraction of the wrong pairs (and the arbitrary
key suggestions). Such a strong filtering requirement places a restriction on the
number of rounds of the iterated block cipher which we can attack with a given
differential characteristic. Namely, in order to attack an (r + a)-round cipher
with an r-round characteristic, ¢ needs to be sufficiently small such that the
characteristic can be extended to deduce some linear constraints on the output
of the cipher (e.g., some bits of the output difference are zero), allowing us to
filter many of the wrong pairs.



In contrast to standard key recovery techniques (in particular, the ones used
in previous attacks on Speck), in this paper we extend a differential character-
istic by a (relatively) large number of rounds, and thus simple linear filtering
can eliminate only a small fraction of the data. Consequently, we remain with
too many suggestions for the key to mount an efficient attack using counting.
On the other hand, this situation resembles some self-similarity attacks (such as
reflection-based attacks [12-14]), in which the attacker does not have any char-
acteristic that allows simple filtering. In such self-similarity attacks, the attacker
encrypts multiple plaintexts and awaits a special event to occur (such as a reflec-
tion). The internal properties of the cipher assure that once this event occurs, the
problem of attacking the full cipher is reduced to a simpler problem of attacking
a sub-cipher with fewer rounds. The sub-cipher attack calculates suggestions for
the full secret key, which the attacker tests using trial encryptions on the full
cipher.? Since the attacker cannot detect the occurrence of the special event, the
sub-cipher attack is executed for each plaintext (or plaintext structure). Thus,
the complexity of the full attack is determined by the probability of the awaited
event (which determines how many sub-cipher attacks we need to execute), and
the average complexity of the sub-cipher attack.

In the scenario presented above for self-similarity attacks, the key is recovered
in one chunk by a sub-cipher attack. However, there is nothing that prevents us
from applying similar techniques in differential attacks. In fact, the last a rounds
of the cipher in differential attacks can be viewed as a sub-cipher, and assuming
the event that an encrypted pair conforms to the r-round characteristic (i.e.,
it is a right pair), we can mount a sub-cipher attack to obtain key suggestions
for each encrypted pair, and enumerate each one of them, testing it using trial
encryptions. As a right pair will always suggest the correct key value, the attack
succeeds as soon as we finish executing the sub-cipher attack on this pair.

This generic key recovery framework for differential cryptanalysis was first
proposed by Albrecht and Cid in [2], where it was applied to the block cipher
PRESENT (and was further used in followup publications such as [3,22]). Al-
brecht and Cid used algebraic techniques to enhance differential cryptanalysis,
and specifically, devised Attack-C which formulates the sub-cipher as a system
of non-linear equations, and solves it using algebraic tools (e.g., SAGE [20]).
On the other hand, the sub-cipher attack can use various methods which do
not necessarily exploit algebraic tools. Indeed, while we use the same framework
as [2], our sub-cipher attack on Speck applies guess-and-determine techniques,
and does not directly solve any system of non-linear equations. Furthermore,
in [6] the generic framework was (implicitly) applied to the block cipher Zorro
using a complex two-phase sub-cipher attack (in which the only equation systems
directly solved are linear).

We stress that the only difference between our approach and the algebraic
approach of Attack-C [2], is in the details of the sub-cipher attack. While this
is a subtle difference, we believe that part of the reason that Attack-C was not

2 Examples of sub-cipher attacks include the meet-in-the-middle and guess-and-
determine attacks on round-reduced GOST, described in [12,13].



considered in the previous attacks on Speck [1,9], is that it promoted the use of
black-box algebraic tools to perform the sub-cipher attack. As such black-box
algorithms are often highly heuristic, and their running time is not very well
understood, they have not become mainstream analysis tools. In this paper, we
show that the sub-cipher attack can sometimes be performed by a simple algo-
rithm with a better understood running time, and we hope that cryptanalysts
will consider similar attacks in the future.

In order to generalize Attack-C of [2] to a broader key recovery framework
for differential attacks, we call it an enumeration framework, as it enumerates
suggestions for the full key proposed by a sub-cipher attack. This should be
contrasted with counting techniques which extract partial key material from a
few rounds of the cipher using statistical analysis (e.g., the 1, 2 and 3-round
attacks of [8]).

In most cases, counting techniques for differential attacks seem to give the
best results. This is perhaps due to the reason that when we extend the char-
acteristic beyond the reach of these techniques, the sub-cipher attack becomes
too expensive (as it needs to analyze dependent round-keys according to the key
schedule), making the full differential attack inefficient.?> However, as we show
in this paper, in the case of Speck, the sub-cipher attack can be performed very
efficiently, and results in significantly improved differential attacks (as in the
case of Zorro [6]).

As previously mentioned, our sub-cipher attack on Speck is a guess-and-
determine attack, and it is related to the similar attack of [12]. Furthermore, since
Speck is an ARX cipher, we use techniques that were developed in the analysis
of ARX cryptosystems and similar designs. In particular, our tools are related
to several search algorithms for differential characteristics on these designs, such
as [10, 15,16, 18, 24].

The rest of this paper is organized as follows. We introduce our notation in
Section 2, and provide a brief description of Speck in Section 3. The previous
and our new results on the 10 Speck variants are summarized in Section 4.
In Section 5, we describe the auxiliary algorithms used in our attacks (and
in particular, overview the specific sub-cipher attack on Speck), while our full
differential attacks in the enumeration framework are described in Section 6.
Finally, we give the details of the sub-cipher attack in Section 7, and conclude
the paper in Section 8.

2 Notations and Conventions

In this section, we describe the notations and conventions used in the rest of the
paper.

Given a positive integer r, we denote by x >> i the n-bit word obtained by
rotating = by ¢ bits to the right, and by z << ¢ the word obtained by rotating x
by i bits to the left. Similarly, z > ¢ and = < ¢ denote a bitwise shift of = by i

3 We note that analysis of dependent round-keys can sometimes be performed effi-
ciently using algebraic tools, as claimed in [2].



bits to the right and left, respectively. We denote by —x the bitwise negation of
T

Given two n-bit words x and y, we denote by = @y their n-bit XOR, by zHy
their n-bit addition over GF(2"), and by z By their difference over GF(2™). We
further denote by = A y the bitwise AND of x and y.

Given an n-bit word z, we denote its i’th bit for ¢ € {0,1,...n — 1} by

z[. We note that operations on the bit indexes are performed modulo 7, e.g.
zn 8] = 5],

Conventions Throughout this paper, we use the standard conventions and
calculate the time complexity of our attacks in terms of evaluations of the full
cipher. The memory complexity of the attacks is calculated in terms of bytes.

3 Description of Speck

In this section, we give a short description of Speck. More details can be found
in [7].

Speck is a family of block ciphers containing 10 variants. The variants are
characterized by a block size of 2n bits (where n is the internal word size), and
a key size of mn bits. The 10 variants are identified with a 2n/mn label, and
defined with rotation constants « and 8 and a number of rounds 7', as shown in
Table 1.

The key schedule of Speck expands the initial m-word master key (€,,,—2, ..., £o, ko)
into T round-key words kg, k1, ..., k7—1 according to the following algorithm:

fori=0...T—2do
Ei-{-m—l — (kz H (fz > Oé)) D
kiv1 < (ki < B) @ Liym-1
end for
The encryption function of Speck encrypts a plaintext of two n-bit words
P = (x0,%0), into a ciphertext C' = (a1, yr), using a sequence of T rounds ac-
cording to the following algorithm (see Figure 1 for the round function):

fori=0...T—-1do
i1 < (2> ) By) @ k;
yir1 — (i K B) ® w1
end for

4 Summary of Previous and New Attacks on Speck

In this section, we summarize the previous and our new attacks on Speck, re-
ferring to Table 2. As the Speck family contains 10 variants, and each variant
was analyzed by several papers, exhaustively listing all the dozens of previous



’Variant 2n/mn‘Word Size n‘Key Words M‘Rounds T‘a‘ﬁ‘

32/64 |16 | 4 | 22 ]7]2)
48/72 24 3 22 [8[3
48/96 24 4 23 [8[3
64/96 32 3 26 [8]3
64/128 32 4 27 [8[3
96/96 48 2 28 [8[3
96/144 48 3 29 [8]3
128/128 64 2 32 [8[3
128/192 64 3 33 [8]3
128/256 64 4 34 [8[3

Table 1. The Speck Family of Block Ciphers
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Fig. 1. The Round-Function of Speck

attacks is too tedious. Instead, for each Speck variant, we first choose the attacks
which break the most number of rounds, and among these, we only refer to the
attack with the best time complexity. As shown in Table 2, all the best previous
attacks were described in the two papers [1, 9], and we additionally note that all
of them are based on differential cryptanalysis and related techniques (such as
rectangle attacks).

For each variant of Speck, Table 2 summarizes our attack which breaks the
most number of rounds. We note that for each variant, we can also use our tech-
niques to attack fewer rounds (using a shorter differential characteristic), but
once again, we do not explicitly refer to these numerous attacks in this paper
(with the exception of the 32/64 variant). As our attacks reuse the differen-
tial characteristics of [1,9], we refer to these characteristics in the table, while
describing them in more detail in Table 3. We note that since the internal differ-
ential transitions in each characteristic are not relevant for our attacks, Table 3
only gives the input and output differences for each characteristic, while their
complete specification is described in [1,9].



We now highlight some interesting features of the attacks summarized in
Table 2. We first look at the 32/64 variant, on which the best previous attack
could break 11 out of its 22 rounds, with data complexity of about a quarter
of the entire code-book. Compared to this attack, our attack on 11 rounds uses
less than a square root of the code-book (24 plaintexts), requires less memory
and has a slightly better time complexity. Furthermore, we can attack up to 13
rounds in time complexity which is significantly faster than exhaustive search,
and up to 14 rounds with a marginal attack. For additional 2 variants (48/96
and 64/128), we can attack 3 more rounds than the best previous attack. For
the 2 variants 48/72 and 48/96, we increase the number of rounds that can be
attacked by 2. For 4 variants (96/96, 96/144, 128/128 and 128/256), we can
attack 1 more round than the best previous attack. Note that for the 3 variants
96/96, 96/144 and 128/128, our attacks are also more efficient than the previous
attacks in all complexity parameters (and particularly use much less memory).
Finally, for the 128/192 variant, we attack the same number of rounds as the best
previous attack, but improve it in all complexity parameters, and in particular
use much less memory.

5 Auxiliary Algorithms Used by Our Attacks

In this section, we describe the two auxiliary algorithms that are used by our
attacks on Speck.

5.1 Key-Schedule Inversion

Given a sequence of m key words k;_,,...,kj_1 forany j € {m,m+1,...,T},
we can efficiently invert the key schedule and calculate the master key: first, we
determine k;_,,—1 using the following key schedule equalities

Uivm—3=kj—1® (kj—2 )]
bi—2 = ((ljrm—3© (1 —2))Bkj2) Ka
kj—m—1= (kj—m @ {j_2) > B.

Next, given k;j_y,—1,...,kj_2, we iteratively continue the inversion of the key
schedule and derive the master key.

5.2 Overview of the 2-Round Attack on Speck

In our basic attacks on Speck, we use an r-round differential characteristic with
an initial difference, denoted by (Axzg, Ayp), and a final difference, denoted by
(Az,., Ay,.). We devise an attack on r + 2 rounds using a 2-round attack.

The enumeration framework poses the following problem: the 2n-bit input
difference (Ax,., Ay,) to the last 2 rounds is fixed by the final difference of the
differential characteristic, and the output difference (Ax,i2, Ay,12) is known



Variant |Rounds Attacked/|Time|Data [Memory| Reference |Characteristic
2n/mn  |Total Rounds (Cp) ID
32/64 11/22 91679301 9371 [1] -
32/64 |11/22 216 | 211 | 922 |This Paper 1
32/64 |12/22 251 | 219 | 222 |This Paper 2
32/64 |(13/22 257 | 225 | 222 |This Paper 3
32/64 |14/22 203 | 231|222 |This Paper 4
48/72  |12/22 213 1 213 | NA [9] -
48/72 |14/22 205 | 241|222 |This Paper 5
48/96  [12/23 28 28 | NA 9] -
48/96 [15/23 289 | 241|222 |This Paper 5
64/96  |16/26 203 1 283 | N A 9] -
64/96 [18/26 293 [ 261 | 222 IThis Paper 6
64/128 [16/27 203 1 283 | N A 9] -
64/128 (19/27 2125 1 961 1 922 |This Paper 6
96/96  [15/28 28911 989 | 048 1] -
96/96 [16/28 285 | 2% | 922 IThis Paper 7
96/144 [16/29 9I35.9]990.9 [ 9945 1] -
96/144 (17/29 2133 1 985 1 922 |This Paper 7
128/128 |16/32 2116 [ M6 [ 964 [1] -
128/128(17/32 2118 [ 9113 1 922 I This Paper 8
128/192 18/33 2182.7 2126A9 2121.9 [1} _
128/192(18/33 2177 1 213 [ 922 |This Paper 8
128/256 18/34 2182,7 21269 2121,9 [1} _
128/256(19/34 9241 | 9l13 1 922 | Thig Paper 8

The “Characteristic ID” column refers to the IDs of the characteristics in Table 3,
which are used in our attacks. The data is given in chosen plaintexts (CP).
Table 2. Previous Attacks and Our New Attacks on Speck

from the output. Furthermore, we are given actual output values (x,12,Yrt2)
and (Zyy2 ® AZria,Yr+2 ® Ayri2). Our objective is to find all the possible
independent round keys k, and k41, under which the difference of the 2-round
partial decryptions of the pair (z,y2,¥yr+2) and (2,42 ® Azpyo, Yrio B Ayrio)
is equal to (Az,, Ay,). In general, we have 2n bits of variables and 2n bits of
constraints (derived from the difference (Ax,, Ay,.)). Thus, the problem can be
formulated using an equation system, which has an average of one solution for
an arbitrary pair of outputs (z,2, Yri+2) and (X,42® Azyia, Yria ® Ayry2). The



’ID‘Variant 2n‘Rounds‘Probability‘Reference‘ Input/Output Differences

1 32 7 2718 1] 211 a04,/850a 9520

2 32 8 2718 1] a60 a205/850a 9520

3 32 9 22 [1] a60 a205/802a d4a8

4 32 10 2730 [9] 8054 2900/40 542
(5] 48 | 11 | 27" [ 9] [ 202040 82921/80a0 208524 |
(6] 64 | 15 | 27 [ 9] [  91000000/40024 4200d01 |

7 96 14 2784 1] 222020080022 322320680801/

1008004c804 c0180228c61
8 128 15 2112 [1]  |144304280c010420 6402400040024/
180208402886884 80248012c96c80

The n-bit halves in each input/ouput difference are separated by a space.
Table 3. Differential Characteristics Used in Our Attacks

goal of the 2-round attack is to enumerate all the possible solutions for each
given output pair as efficiently as possible.*

We note that it is not trivial that the equation system has an average of
one solution, as the pairs of outputs are ciphertexts, whose corresponding plain-
texts have the fixed initial difference (Axzg, Ayp) to the characteristic. If such a
plaintext pair diverges from the characteristic at its later rounds, then the dif-
ference after r rounds can potentially be close to (Az,., Ay, ), which may result
in non-random behavior. In fact, our experiments show that the average num-
ber of solutions is about 4 for characteristic 1 in Table 3, which has a relatively
high probability of 27 3. However, for the lower probability characteristics which
we could test experimentally, the average number of solutions was only slightly
higher than 1 (and lower than 2).

Our 2-round attack is given in Section 7. This attack exploits the (relative)
simplicity of the Speck round function in order to recover the 2 final round
keys of Speck with very low average time complexity. Indeed, our experiments
show that for an output pair (z,42,Yr+2) and (42 ® Axpio, Yrio O Ayria)
(generated by plaintexts with the fixed initial difference (Axzg, Ayp)), the 2-
round attack requires an average time which is smaller than 2 time units (i.e.,
2 full encryptions of round-reduced Speck) for any characteristic that we use in
the full differential attacks on Speck.

 Recall that we have essentially no (linear) filtering conditions, and thus we must
execute the sub-cipher attack for each encrypted input pair. Consequently, we are
interested in the average time complexity of the algorithm.



6 Details of the Full Differential Attacks

In this section, we describe the details of our full differential attacks on Speck
in the enumeration framework. In all the attacks, we assume that we have a
differential characteristic that covers r rounds of the cipher with probability p >
2.272" The attacks recover the mn-bit secret key of a variant with ~+m rounds
using 2 - p~! chosen plaintexts, in expected time complexity of 2 - p~t - 2(m=2)n,
In other words, our attacks are faster than exhaustive search by a factor® of
p - 22771 For example, our attack on 11-round Speck 32/64 (with m = 4) uses
a characteristic for 11 — 4 = 7 rounds with p = 2713, Thus, its time complexity
is 2.218.2(4=2)16 — 946 o it is faster than exhaustive search for the 64-bit key
by a factor of p . 227~ = 2713 . 9231 — 918,

The Full Differential Attack for m = 2 We first present the details of our
attack for the Speck instances with m = 2 key words (and m + 2 rounds), and
then extend the attack to the remaining instances, in which m = 3 or m = 4.
We denote the initial difference of the characteristic (at the input of the cipher)
by (Azg, Ayo), and its final difference (after r rounds) by (Ax,., Ay,.).

1. Request the encryptions of p~! plaintext pairs P and P’ = P @ (Azg, Ayo),

and denote the ciphertexts by C and C’, respectively. For each plaintext pair

P and P":

(a) Execute the 2-round attack of Section 7 using (Az,, Ay, ), C and C’.

(b) For each returned value of k. and k, 1, iteratively calculate k,._1,..., ko
(as described in Section 5.1), and finally recover the master key. Test the
master key using trial encryptions, and return it if the trial encryptions
succeed.b

The attack requires 2 - p~! chosen plaintexts, and given that the r-round
characteristic has probability p, we expect one plaintext pair P, P’ to be a right
pair (i.e., to follow the characteristic, and have a difference of (Ax,., Ay,) after r
rounds). Given the ciphertexts C, C’, corresponding to the right pair, the 2-round
attack will find the correct key, which will be returned by the full attack.

According to the analysis of Section 7, the 2-round attack has an average time
complexity which is smaller than 2 time units, and thus the average processing
time for each analyzed plaintext pair remains about 2. This implies that the
total time complexity of the attack is about 2 - p~—!.

5 Note that information theoretically, without considering the internal transitions of
the differential characteristic, p - 22"~ is the best improvement factor that one can
hope for, given 2 - p~! data.

5 This step can be slightly optimized to replace many of the full trial encryptions by
lighter Speck round evaluations, if we consider the internal transitions of the differ-
ential characteristic: while iteratively calculating k._1,..., ko, we partially decrypt
C and C’, and verify that they satisfy the differential characteristic for each round.
If the verification fails for some round, we discard the key and continue.

10



The Full Differential Attack for m = 3 and m = 4 For m = 3 and m = 4,
we attack variants with r + 3 and r + 4 rounds, respectively. The attacks on
m = 3 and m = 4 are trivial extensions of the attack on the m = 2 variants, and
work by guessing the last 1 and 2 round keys, respectively. Then, for each guess
we apply a similar attack to the one applied for m = 2.

The data complexity of the attacks remain 2-p~!, while the time complexity
increases to 2-p~ - 2" and 2-p~! - 22" for m = 3 and m = 4, respectively.

7 The 2-Round Attack

In this section, we present the details of our 2-round attack on Speck. As de-
scribed in Section 5.2, we have an input difference (Az,., Ay,.) to the two rounds
(which is fixed by a differential characteristic), and we are given the actual
output values (z,42,¥r+2) and (10 O Axpio, Yrio B Ay,io). Our goal is to
enumerate all the possible independent round keys k, and k.11, under which
the difference of the 2-round partial decryptions of the pair (2,42, y,+2) and
(Xpg2 ® AZpyo, Yria B Ayria) is equal to (Az,., Ay,).

The notation we use in our analysis is given in Figure 2, where the XOR
differential notation is given on the left, and the notation of the intermedi-
ate encryption values for (z,y2,¥,+2) is given on the right. We further define
(@i, y;) = (zi @ Azi, y; ® Ays).

Note that Ay, 1 = (A2 42@Ayy42) 3> Band Az, pq = Ay, ©(Ay, <K B)
are independent of the keys and can be calculated immediately. Thus, all the
XOR differences in the scheme are completely determined. Similarly, the value
Yr+1 = (Try2 ® Yry2) >> [ can be calculated from the known (2,42, yrt2),
whereas (z,,y,) and z,41 remain unknown. We further note that deriving the
two round-keys is equivalent to deriving z, and z,41, as their values allow us to
calculate kyy1 = (ypa1 B (zrg1 =>> ) @ g, and as ¥y, = (Tp11 D Yra1) >> 0,
then k. = (y. B (z, >> «)) ® x,41 can be calculated as well. Thus, in the
following, we concentrate on deriving the intermediate values z, and 1.

7.1 A Basic 2-Round Attack

The problem of solving differential equations of addition (DEA) of the form
(z®6)B(y®d2) = (xBy) ® 5 (where d1, d2, I3 are given and x, y are unknown
variables) is a basic problem in the analysis of ARX cryptosystems, and was ex-
tensively studied in several papers. In particular, [19] described an algorithm for
solving such equations in time complexity which is linear in the total number of
solutions. However, the previous algorithm is not directly applicable in our case,
as we actually have two dependant equation systems (generated by two addition
operations), and we want to efficiently solve them simultaneously. Moreover, the
value of y in the DEA is fixed to y,41 for one of the addition operations, and
since the solutions vary according to this fixed value, the second equation system
is of a different type than the one analyzed in [19]. Note that a standard DEA

11
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Our notation of differences is given on the left, whereas our notation of values is given
on the right.

Fig. 2. Two Rounds of Speck

has an average of 2" solutions, whereas our equation system has an average of
only 1 solution.

Given the complications above, it seems difficult to construct a generic al-
gorithm that efficiently solves our type of equation systems for an arbitrarily
large word size n. Thus, we concentrate on the word sizes n € {16, 24, 32,48, 64}
defined by the Speck family, and describe an algorithm whose complexity is esti-
mated by experiments (rather than by a rigorous theoretical proof). As the full
key recovery attack of Section 6 calls the 2-round attack with a fixed value of
(Az,., Ay,) and many values of (z,12,¥r+2), (%) 9, ¥ 2), We are interested in
the average complexity of the 2-round attack, where (z,12,¥r42), (%) 2, 0)
are chosen at random according to the procedure of the full key recovery attack.

In Appendix A, we devise a basic guess-and-determine algorithm which ex-
ploits the limited carry propagation of the addition operation in order to compute
x, and x,41 bit by bit. It is related to several previous guess-and-determine al-
gorithms such as the one of [12]. The analysis described in Appendix A shows
that given some randomness assumptions on the problem, its average execution
time is comparable to the execution time of a full Speck encryption.

The problem with this analysis is that the randomness assumptions do not
hold in our case (as in many cases of DEA). In fact (as we show next), although
we expect one solution on average, for almost any value of (Az,, Ay,), the
distribution of solutions across the various instances is very far from uniform, and
greatly depends on the values of the output pairs (2,42, yr42) and (2] 5,y 12)-
More specifically, the solutions are distributed among a small fraction of the
output pairs, whereas for the remaining output pairs, there are no solutions at

12



all. Such non-randomness properties have a negative effect of the performance
of our basic guess-and-determine algorithm, as it can potentially make a large
number of guesses for some bits of x,11 and z, (i.e., guess partial solutions),
while discarding all (or a large fraction) of them at a later stage.” Nevertheless,
the theoretical analysis based on randomness assumptions strongly indicates that
an optimized variant of the attack can perform very efficiently.

7.2 Optimizing the Basic 2-Round Attack Using Filters

In order to optimize the basic algorithm, we notice that we can filter out very
quickly a large fraction of the non-useful instances (with no solutions). The idea is
to use efficient “look-ahead” (non-linear) filters that try to find a contradiction in
the equation constraints before actually computing the solutions. The techniques
we use to implement the filters are closely related to various search algorithms for
differential characteristics for ARX-based and related cryptosystems (e.g., [10,
15,16, 18, 24]).

These filtering techniques allow us to concentrate our efforts on a small frac-
tion of “interesting” instances, and obtain an algorithm whose average time
complexity is estimated (according to our simulations) to be smaller than 2
encryptions of Speck.®

One-Bit Filter This filter can be applied to any standard DEA (x@® 1) B (y @
d2) = (x By) @ 03. It was first described in [17], and it checks whether

eq(d1 € 1,00 € 1,03 K 1) A (01 @ 2D I3 B (01 < 1)) =0,

where eq(a,b,c) = (-a ® b) A (-a & ¢) equals one at position ¢ if and only if
all = bl = ¢l As shown in [17], a DEA for which the n-bit value of the filter
is non-zero has no solutions and can be filtered out immediately.

This filter is called a 1-bit filter since for each bit position ¢ + 1, it only
depends the single bit position ¢ + 1 of the input words (in addition to a 1-bit
XOR difference §; @ d2 @ d3 at the previous position ). As applying the 1-bit
filter involves only a few simple word operations, it requires much less time than
a full Speck encryption, and given that it immediately filters out a large fraction
of instances with no solutions, it can significantly reduce the running time of the
algorithm.

In order to get an estimation of how the filter performs, we assume that all the
values of 41, 82,03 are chosen at random. In this case, using the formula of [17],

" For example, assume that we want to solve the standard DEA over 16-bit words
(given in hexadecimal) (x @ 0000) B (y & 0000) = (x B y) & 8000. If we solve the
system from the LSB to the MSB, then we consider all 2%° partial solutions to the
15 LSBs of x and y, and then discard all of them at the MSB.

8 We note that after applying the filters, one can try to apply standard counting
techniques to recover some key bits in few first rounds of Speck. However, as we can
solve the full equation system and test each suggested key efficiently, the counting
techniques are not likely to significantly improve the complexity of the attacks.
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an instance of a DEA will have a solution with probability of ¢ = 1/2-(7/8)" L.
Specifically, for n = 16, we have ¢ =~ 2~*, and for n = 24,32,48, 64 we have
g~ 2725 277 9710 9=13 regpectively.

In the case of Speck, we can immediately apply the filter once for round r
and once for round r+1 (since all the XOR differences at the inputs and outputs
of the addition operations are known). However, as there are clear dependencies
between the various input and output XOR differences in 2 rounds of Speck
(in fact, the input differences Az,., Ay, are fixed by the characteristic), the for-
mula does not apply. Nevertheless, our experiments show that for the values
of Az,., Ay, used in our attacks, the filters actually give slightly better results
than expected from a random instance. This can be partially explained since
Ax,, Ay, have a relatively low hamming weight, as they are outputs of a high
probability differential characteristic. As a result, the equality predicate in the
filter of round 7, eq(d; < 1,2 < 1,03 < 1) = 0, holds with a probability which
is lower than the expected 1/4.

As described above, our simulations show that we remain with less than
a 278 2711 9-14 9-20 9-26 fraction of the instances for n = 16,24, 32,38, 64,
respectively, after applying the two 1-bit filters on rounds r and r + 1. Although
the fraction of remaining instances is small, our experiments indicate that when
executing the basic algorithm on this small fraction, there are still instances on
which we waste a lot of time computing partial solutions that are later discarded.
For the smaller values of n = 16 and n = 24, the effect of these wasteful instances
on the average complexity of the algorithm seems to be limited. However, for
n € {32,48,64}, their effect seems to be more significant, and is also more
difficult to predict, as we can sample only a small fraction of the possible output
pairs after r+2 rounds. Consequently, we use additional filters in order to further
reduce the number of wasted partial solutions.

Multiple-Bit Filters These filters are generalizations of the 1-bit filters to
larger blocks. They are built by breaking a system of n constraints into b-bit
blocks of constraints with a relatively small number of parameters (e.g., a few
bits of 41, 02,03 in a standard DEA), and analyzing each block independently.
Obviously, if we encounter an equation system instance for which a block (with
a certain value of the parameters) has no solutions for any possible values of its
variables (e.g., a few bits of 2 and y in a standard DEA), then the full system has
no solutions, and we can stop analyzing it. Given that the number of parameters
that appear in a block is sufficiently small, we can exhaustively precompute and
store for each of their possible values, a bit that specifies whether the block can
potentially have a solution of not (by checking if the equations are satisfied for
all possible values of its variables).

For a general system of equations, each block will contain many parameters
and variables even for a small value of b, and thus the approach is useless.
However, in our case, we can efficiently implement the b-bit filters, as it is easy
to break simple equation systems based on ARX into blocks which are almost
independent (the only dependency between the blocks are a few bits of carry).
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The details of the b-bit filters that we use for our attacks are given in Ap-
pendix B. As described in the appendix , we select b = 6, and constructing the
filters requires negligible precomputation time (compared to the time complexity
of the full differential attacks), while their storage requires only a few megabytes
of memory.

7.3 The Optimized 2-Round Attack

The details of our optimized 2-round attack are given in Appendix C. We im-
plemented the optimized 2-round attack and estimated its average complexity
by running the differential attack of Section 5.2 for all the analyzed 10 Speck
variants. For Speck variants with m > 2, we ran 2 types of tests: one type in
which we arbitrarily guessed the values of round keys k3, kry2 (or only k4o for
m = 3), and one type in which we assumed that their correct value is known. In
each test, we executed the optimized 2-round attack for a few randomly chosen
keys with 239 arbitrary input pairs that have the fixed input difference of the
corresponding characteristic (Axg, Ayp). In all the tests, the average number of
discarded partial solutions for an analyzed pair (which determines the average
running time of the algorithm, as the expected number of solutions is close to
1) was smaller than 4, and we estimate that the average time complexity of the
2-round attack is smaller than 2 full encryptions of Speck. We note that we are
somewhat less confident in the results for Speck instances with larger word sizes
of n € {32,48,64}, as we can only sample a small fraction of the possible input
pairs. However, given the very good results obtained for n € {16,24}, it seems
reasonable to believe that the quality of our approximations does not degrade
significantly, and the performance of the algorithm is close to what is claimed.

8 Conclusions

In this paper, we presented significantly improved attacks on all 10 variants
of the lightweight block cipher Speck, based on an enumeration framework for
differential cryptanalysis. This framework tests suggestions for the key that are
calculated by a sub-cipher attack, generalizing the algebraic-based framework of
Albrecht and Cid [2]. The type of attacks presented in this paper can potentially
break a cipher with many more rounds than the number covered by a differential
characteristic, especially when the cipher uses a secret key which is larger than
the block size (e.g., in our attack on 14-round Speck 32/64, we used a 10-round
characteristic to attack 14 rounds of the cipher). Consequently, such sub-cipher
attacks should be considered by designers when proposing new cryptosystems.
Since the framework is generic, finding any improved differential character-
istic for a Speck variant would (almost) immediately give an improved attack
on the full cipher (without the need to perform the low-level statistical anal-
ysis, typically required in key recovery attacks based on counting techniques).
Furthermore, designing efficient sub-cipher attacks on more rounds of a Speck

15



variant, could also lead to improved attacks. However, such an attack would need
to analyze dependencies in the round keys due to the key schedule.

Additional future work items include applying the enumeration framework
to improve the best known attacks on more ciphers, and perhaps extending it to
other types of attacks, which are different from attacks based on self-similarity
and differential attacks.
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A Details of the Basic 2-Round Attack

In this section, we give the details of our basic 2-round attack, which computes
x, and x,11 bit by bit given (2,42, yr42), (2] 2,y 42), assuming the knowledge
of (Ax,, Ay,).

In general, we have (for any round #)

((z7>> o) Byr) @ (2 >> o) By;) = Azjy,

and we denote by z; the n-bit carry word generated by the addition operation
(7 >> a) By, and by 2/, the carry word generated by (z} >> o) B y..

The basic procedure 1RProcedure(r,i) analyzes round 7 of Speck at bit
index ¢ € {0,1,2,...,n — 1}, and is given below. The procedure assumes that

we know the XOR input/output differences of round # (we actually need only

[¢]

a few bits of these differences), and requires the additional 1-bit value y.", and

,[j],z;[i]. The procedure guesses the value of the
[i+1] )/ [i+1]

7 tats

the values of the 2 carry bits z

bit .13,[,,2 +a], and computes the next 2 carry bits z
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1. For of the 2 possible values of :c[H_O‘}

(a) Compute glitel g ym Bz y and determine the next carry bit z;
lita] _ [z+a] ® Az [H—a]

[i+1]

(b) Compute z,
(c) Compute z, [it+e] m Yp g Bz, 1 and determine the next carry bit z, i
(d) Check whether Z[H_l] @z [H'l G Ax Z+1+O‘] @ Ay [H'l = Ax 2111]7 and if

equality does not hold dlscard the guess Otherw1se output the current
[i+a] [i41] ’[i+1].

and the computed carry bits z;, ', z,

value of x
In order to analyze 2-rounds, we assume the we know the values of the XOR

input/output differences of rounds #,7 — 1, and require the 2 additional 1-bit
[i]  [i+e]

values ¥, ,y; , and the values of the 4 carry bits Zf[ ],zr[ ], zkja B],zr[lta Al
The procedure guesses the value of the bits x[H_a], [H_Qa ﬁ], and computes the

next 4 carry bits Z[ZH],Z;[H”,ZEJLHO‘ 5], ;[H;Ha ﬁ] The 2RProcedure(r,1)
algorithm is given below.
1. Run 1RProcedure(t,i) and for each returned solution:
(a) Compute y[H_a g = 1’[Z+O(] P y[H_a].
(b) Run 1RProcedure(r —li+a—-0)

The guess-and-determine algorithm calls 2RProcedure(f,i) with # = r + 1
for various indexes 7 in order to recover the full values of x,.; 1 and z,.. Note that
all the input/output XOR differences to the last 2 rounds of Speck are known,
and the full y» = y,41 is known as well, and thus we are only missing the value
of the carry bits.

As the carries computed by index j are input to procedure j + 1, we perform
calls to 2RProcedure(r+1,1) with sequential labels i,i+1,...,n—1,0,...,i—1
(from LSB to MSB) in order to recover z,4; and z,. As a result, we only have
to guess the carries required by the initial procedure. Since there is no carry into

the LSB (i.e. zT[OJ_I = ZT[_?_]I = 0), then we start with procedure ¢ = 0 to minimize
the number of carry guesses. Furthermore, the value of z,. @ z/. can be computed
from (Azx, >> a) ® Ay, & Ax,11, and thus we actually need to guess only one
carry bit before executing the first procedure. Finally, after the execution of the
last procedure (with index n — 1), we can derive the actual value of this guessed
carry bit and obtain an additional filtering condition.

As the time complexity of the guess-and-determine algorithm is proportional
to the number of guesses it makes, we need to carefully analyze the ratio be-
tween the number of guessed bits, and the number of filtering conditions used
to filter the guesses. The algorithm 2RProcedure(7,1) guesses the values of the
two bits a:[Ha],x?[fHa Al and uses two filtering conditions (one in each call to
1RProcedure(,4) at Step 1.(d)). Thus, assuming that the analyzed instance be-
haves randomly, we expect the number of guesses at each stage of the execution
of the algorithm to remain constant. Such randomness assumptions lead to the
conclusion that the average execution time of the algorithm is comparable to the
execution time of a full Speck encryption (perhaps even smaller, as we analyze
only 2 rounds). However, as noted in Section 7.1, these randomness assumptions
do not hold in our case.
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B Details of the Implementation of Multi-Bit Filters

In this section, we describe how to construct the b-bit filters for the differential
equations obtained by the system (z B a) ® ((z @ 61) B a’) = 02, where x is
a variable and a,a’, 1,0 are known constants (parameters). This is a general
description of the equation system obtained for round r + 1 of Speck (where
T = (Trp1 3> a),a=yrp1,a" = y§+1a51 = (Azp11 >> @), 00 = Azypyo).

We denote by z the carry generated by xHa, and by 2’ the carry generated by
(x@01)Ba’. We examine the system at indexes ¢ to i +b— 1, with the additional
carry into bit ¢4 b. This system has b+ 2 variables: 2l 21l , gliitb=1] (fori=0
there are only b variables, as the carry bits are 0) and b constraints which depend
on the 4b + 1 parameters qli-i+0=1] a,[i""’”b’”,6£i""’i+b_”,5£i""’i+b_1], (0, ®
8y ® a @ o). However, if we assume that we already executed the 1-bit
filter above on the system, then we know that the XOR of the carries and
differences at bit ¢ is 0. This allows us to remove one parameter, and remain
with 4b parameters.” The general algorithm for calculating the b-bit filter is
given below:

1. Allocate a bit array A of size 24°.
2. For each value of the 4b parameters j = 0,1,...,2% — 1:

(a) For each value of the b+ 2 variables:

i. Check whether all the b constraints are satisfied, and if they are, set
Alj] =1 and increment j by going to Step 2.
(b) Since there is not solution with the current parameters, set A[j] = 0.

Calculating the b-bit filter requires 24° bits of memory and its time complexity
is 2°%%2 in the worst case.

For the specific case of Speck, we have an additional dependency between
the parameters, as Az,11 = Y11 ® 1 © (Ay, K B), and Ay, is a fixed
value. Thus, we can reduce the number parameters to 3d, but as a result, the
filter depends on Ay,, and we need to calculate it separately for each bit index
i €{0,1,...,n— b} for which we want to apply the filter.

In our attacks, we use b = 6, and thus one 6-bit filter requires 2'® bits, or 2!°
bytes. If we want to apply a filter for each index i for Speck with the largest word
size of n = 64, then the memory complexity of the filters is less than 64-2'% = 22!
bytes, and thus the filters require no more than a few megabytes of storage. In
order to get an estimation of how the filters perform, we implemented their
general version (with 4b parameters), and calculated that for a random value
of the 4b parameters, the probability to pass both a 1-bit filter and a 6-bit
filter starting from index ¢ > 0 is about 0.285 (whereas the probability that a
6-bit word passes just a 1-bit filter is (7/8)® ~ 0.45). However, for larger n-
bit words, we will apply the filters to consecutive indexes, resulting in strong

® We can additionally reduce the number of parameters by assuming that the 1-bit
filter passed on the b-bit words, but this is more complicated and we do not elaborate
on this possible optimization in this paper.
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correlations between their applications, and making it more difficult to estimate
the probability of passing the filters.

We note that it is possible to construct b-bit filters that analyze blocks of
the full equation system for 2-round Speck, rather than just for one round.
However, these filters require a larger amount of memory (of about 2%) and can
only be efficiently used for small values of b. Of course, one can try to combine
several filters of different types and sizes, and it is interesting to study how to
construct efficient algorithms to solve a given system of equations using various
combinations of filters. However, in this paper, we are mainly interested in the
equation systems generated by 2-round Speck. For this specific case, we describe
in Appendix C an algorithm which gives very good results in practice.

C Details of the Optimized 2-Round Attack

The details of the optimized 2-round attack are give below. Recall that the
algorithm is given the value of (2,42, ¥r42), (2740, Y)42), while (Az,, Ay,) is a
fixed by a differential characteristic. The algorithm recovers all possible values
of x,, .41, assuming that we calculated during preprocessing, 6-bit filters for
rounds 7 and r + 1 of Speck, for all indexes ¢ € {0,1,...,n — 6}. Additionally,
the attack uses the 1RProcedure(#,i) algorithm of Appendix A.

1. Apply the 1-round filter of Section 7.2 to rounds r + 1 and r, and if a filter
fails, return NULL.
2. For i € {0,1,...,n — 6}, apply the corresponding 6-bit filter at index 4 to
round 7 + 1, and if a filter fails, return NULL.
3. Fori e {0,1,...,n—1}:
(a) Run 1RProcedure(r +1,1), iteratively recovering x,,1. For each partial
solution, compute yL”“‘B] (as in Step 1.(a) of 2RProcedure(r + 1,1)).
(b) If i > 6, apply the 6-bit filter to round r at index i — 6 + o — 3, and if
the filter fails, discard the partial solution.
4. For each solution for x;,41:
(a) Forie{0,1,...,n—1}:
i. Run 1RProcedure(r, i), iteratively recovering .
(b) Output all the solutions for z,, and the current value of z,41.
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