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Abstract

We show a construction of a quantum ramp secret sharing scheme from a
nested pair of linear codes. Necessary and sufficient conditions for qualified
sets and forbidden sets are given in terms of combinatorial properties of
nested linear codes. An algebraic geometric construction for quantum secret
sharing is also given.

1 Introduction

Secret sharing (SS) [12] is a cryptographic scheme to encode a secret to multiple
shares being distributed to participants, so that only qualified sets of participants
can reconstruct the original secret from their shares. Traditionally both secret and
shares were classical information (bits). Several authors [3, 7, 13] extended the
traditional SS to quantum one so that a quantum secret can be encoded to quantum
shares.

When we require unqualified sets of participants to have zero information of
the secret, the size of each share must be larger than or equal to that of secret. By
tolerating partial information leakage to unqualified sets, the size of shares can be
smaller than that of secret. Such an SS is called a ramp SS [1, 15]. The quantum
ramp SS was proposed by Ogawa et al. [11]. In their construction, each share is
a quantum state on a q-dimensional complex linear space, and q has to be larger
than or equal to the number n of participants. When n is large, q also has to be
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large. But it is not clear whether or not such a large dimensional quantum systems
are always readily available. To deal with such a situation, we need a quantum
ramp SS allowing n > q.

It is well-known that classical ramp SS can be constructed from a pair of linear
codes C2 ( C1 ⊆ Fn

q [2, 4], where Fq is the finite field with q elements. We call a
quantum state in a q-dimensional system as a qudit. In this paper we shall show
the following.

Theorem 1 Let J ⊆ {1, . . . , n} and J = {1, . . . , n} \ J. For ~x = (x1, . . . , xn) ∈ Fn
q

define PJ(~x) = (xi)i∈J. A quantum ramp SS can be constructed from any C2 (
C1 ⊆ Fn

q.

1. The constructed quantum SS encodes a quantum secret of (dim C1−dim C2)
qudits to n shares. Each share is a qudit.

2. A set J of participants can reconstruct

dim C1 ∩ ker(PJ) − dim C2 ∩ ker(PJ) (1)

qudits out of (dim C1 − dim C2) qudits of the encoded quantum secret. If

dim C1 ∩ ker(PJ) − dim C2 ∩ ker(PJ) = dim C1 − dim C2 (2)

then the set J of participants can reconstruct the secret perfectly. This
means that J is a qualified set. In this case J has no information of the
secret, which means J is a forbidden set.

3. The conditions (2), (3) and (4) are equivalent to each other:

dim PJ(C1) − dim PJ(C2) = 0, (3)

dim C⊥2 ∩ ker(PJ) − dim C⊥1 ∩ ker(PJ) = 0. (4)

The conditions (2), (3) and (4) imply

dim PJ(C1) − dim PJ(C2) = dim C1 − dim C2. (5)

4. The condition (3) is also a necessary condition for J to be a qualified set.

This paper is organized as follows: Section 2 proposes the encoding of secrets
and shows Item 1 in Theorem 1. Section 3 proposes the decoding of secrets and
it shows Items 2 and 3 in Theorem 1. Section 4 proves Item 4 in Theorem 1 by
computing the Holevo information of the set J. It also computes the coherent
information as a byproduct. Section 5 shows that Theorem 1 completely charac-
terizes the qualified and forbidden sets of the quantum ramp secret sharing scheme
by Ogawa et al. [11]. Section 6 gives an algebraic geometric construction. Section
7 gives concluding discussions.
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2 Encoding Secrets

We shall propose a construction of a quantum ramp SS from a nested pair of
linear codes C2 ( C1 ⊆ Fn

q. Our proposal is a quantum version of classical ramp
SS proposed by Chen et al. [2, Section 4.2]. Let Gi and H j be q-dimensional
complex linear spaces. We also assume that orthonormal bases of Gi and H j

are indexed by Fq as {|s〉}s∈Fq . The quantum secret is dim C1 − dim C2 qudits on⊗dim C1−dim C2

i=1 Gi. Fix an Fq-linear isomorphism f : Fdim C1−dim C2
q → C1/C2. Also,

{|~s〉 | ~s ∈ Fdim C1−dim C2
q } is an orthonormal basis of

⊗dim C1−dim C2

i=1 Gi. We shall
encode a quantum secret to n qudits in

⊗n
j=1H j by a complex linear isometric

embedding. To specify such an embedding, it is enough to specify the image of
each basis state |~s〉 ∈

⊗dim C1−dim C2

i=1 Gi. We encode |~s〉 to

1
√
|C2|

∑
~x∈ f (~s)

|~x〉 ∈
n⊗

j=1

H j. (6)

Recall that by definition of f , f (~s) is a subset of C1, f (~s) ∩ f (~s1) = ∅ if ~s , ~s1,
and f (~s) contains |C2| vectors. From these properties we see that (6) defines a
complex linear isometric embedding. The quantum system H j is distributed to
the j-th participant.

3 Decoding Secrets

3.1 Preliminary Algebra

In this subsection we show Item 3 in Theorem 1 in order to introduce the proposed
decoding procedure. The equivalence between (3) and (4) follows from Forney’s
second duality lemma [6, Lemma 7] and ker(PJ) = {(x1, . . . , xn) ∈ Fn

q | xi = 0
if i ∈ J}. The identities dim C1 = dim PJ(C1) + dim C1 ∩ ker(PJ) and dim C2 =

dim PJ(C2) + dim C2 ∩ ker(PJ) show the equivalence between (2) and (3). The
inclusion C2 ∩ ker(PJ) ⊆ C1 ∩ ker(PJ) ⊆ C1 and the identity dim Fn

q ∩ ker(PJ) =

dim PJ(Fn
q) = |J| show that (5) is implied by (2). This finishes the proof of Item 3

in Theorem 1.

Remark 2 Equation (4) corresponds to [8, Eq. (3)] for classical ramp secret
sharing.
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3.2 Proposed Decoding Procedure

Suppose that the quantum secret is

∑
~s∈F

dim C1−dim C2
q

α(~s)|~s〉 ∈
dim C1−dim C2⊗

i=1

Gi. (7)

It is encoded to n qudits as∑
~s∈F

dim C1−dim C2
q

α(~s)
1
√
|C2|

∑
~x∈ f (~s)

|~x〉 ∈
n⊗

j=1

H j. (8)

Let C(J) = C2 + (C1 ∩ ker(PJ)). Let G(J) to be the complex linear space spanned
by {|~s〉 | f (~s) ⊂ C(J)}. We have dimG(J) = |C(J)/C2|. The space

⊗dim C1−dim C2

i=1 Gi

can be decomposed asG(J)⊗Grest, whereGrest is the complex linear space spanned
by {|~s〉 | ~s ∈ V} for a direct sum decomposition Fdim C1−dim C2

q = f −1(C(J)) ⊕ V , and

|~sJ〉⊗|~sV〉 ∈ G(J)⊗Grest is identified with |~sJ +~sV〉 ∈
⊗dim C1−dim C2

i=1 Gi for ~s = ~sJ +~sV

with ~sJ ∈ f −1(C(J)) and ~sV ∈ V .
In this section we shall prove that a set J of participants can reconstruct the

part of the quantum secret (7) from (8). The reconstructed part is a state in G(J).
By reordering indices we may assume J = {1, . . . , |J|}. We also assume

dim C(J) − dim C2 > 0, (9)

otherwise the set J can reconstruct no part of the secret. We will be able to see
that (9) holds if and only if J is not a forbidden set, because

dim C(J) − dim C2 > 0

⇔ C1 ∩ ker(PJ) , C2 ∩ ker(PJ)

⇔ dim PJ(C1) − dim PJ(C2) < dim C1 − dim C2

⇔ J is not a qualified set by [11, Theorem 2] and Proposition 3

⇔ J is not a forbidden set by [11, Proposition 3].

By substituting C1 by C(J) in Item 3 in Theorem 1 we find

dim C(J) − dim C2 = dim PJ(C(J)) − dim PJ(C2). (10)

Thus, there exists an Fq-linear isomorphism g1 from PJ(C1)/PJ(C2) to Fdim PJ(C1)−dim PJ(C2)
q

with the following condition. When we have a direct sum decomposition as
Fdim C1−dim C2

q = f −1(C(J)) ⊕ V and ~s = ~sJ + ~sV such that ~sJ ∈ f −1(C(J)) and
~sV ∈ V , then g1(PJ( f (~s)) = (~sJ, the rest of g1) ∈ Fdim PJ(C1)−dim PJ(C2)

q and the rest
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of g1 is determined only by ~sV and independent of ~sJ. If (2) holds then we have
C(J) = C1 and we regard ~sV as ~0 and ~sJ as ~s.

On the other hand, there also exists an Fq-linear epimorphism g2 from PJ(C1)

to F
dim PJ(C2∩ker(PJ))
q that is one-to-one on every coset belonging to the factor linear

space PJ(C1)/PJ(C2 ∩ ker(PJ)). Moreover, there also exists an Fq-linear epimor-

phism g3 from PJ(C1)/PJ(C2 ∩ ker(PJ)) to F
dim PJ(C2)−dim PJ(C2∩ker(PJ))
q that is one-to-

one on on every coset belonging to the factor linear space PJ(C1)/PJ(C2).
Consider the Fq-linear map g4 from PJ(C1) to Fdim PJ(C1)

q sending ~v ∈ PJ(C1) to
(g1(~v + PJ(C2)), g2(~v), g3(~v + PJ(C2 ∩ ker(PJ)))). We see that g4 is an Fq-linear
isomorphism because it is surjective and the domain and the image of g4 have the
same dimension.

For ~v ∈ PJ(C1), we can construct a unitary operation sending |~v〉 ∈
⊗|J|

j=1H j to

|g4(~v), ~0〉 ∈
⊗|J|

j=1H j, where ~0 is the zero vector in F|J|−dim PJ(C1)
q . Since this unitary

operation does not change H|J|+1, . . . , Hn, it can be executed only by the first to
the |J|-th participants. Applying the unitary operation to (8) gives∑

~s∈F
dim C1−dim C2
q

α(~s)
1
√
|C2|

∑
~x∈ f (~s)

|~sJ, rest of g1(PJ(~x) + PJ(C2)),

g2(PJ(~x)), g3(PJ(~x) + PJ(C2 ∩ ker(PJ))), ~0, PJ(~x)〉. (11)

The rest of g1(PJ(~x) + PJ(C2)) is determined by ~sV and will be denoted by g5(~sV).
g2(PJ(~x)) can become any vector in F

dim PJ(C2∩ker(PJ))
q independent of ~sJ, g5(~sV) and

PJ(~x). Hereafter we denote g2(PJ(~x)) by ~u1. By (10), PJ(~x) can become any vector
in a coset of PJ(C1)/PJ(C2), and ~sV determines which coset of PJ(C1)/PJ(C2)
contains PJ(~x) independently of both ~sJ and ~u1. Hereafter we denote the coset
PJ(~x) + PJ(C2) by g6(~sV). By the definition of g3, g3(PJ(~x) + PJ(C2 ∩ ker(PJ)))
is determined by only PJ(~x) and is independent of both ~s and ~u1. Hereafter we
denote g3(PJ(~x) + PJ(C2 ∩ ker(PJ))) by g7(PJ(~x)). By using these notations we
can rewrite (11) as∑

~s∈F
dim C1−dim C2
q

α(~s)|~sJ〉
1
√
|C2|

∑
~u1∈F

dim PJ (C2∩ker(P
J

))
q

~u2∈g6(~sV )

|g5(~sV), ~u1, g7(~u2), ~0, ~u2〉, (12)

which means that the part |~sJ〉 of the quantum secret (7) is reconstructed. If (2)
holds then ~sV = ~0, ~sJ = ~s, and the reconstructed part |~sJ〉 is not entangled with the
rest of the quantum system. Observe that the number of qudits in the reconstructed
part is dim C(J) − dim C2 and if (2) holds then the entire secret is reconstructed.

On the other hand, when the quantum secret can be written as a product state
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of G(J) and Grest, then we have

α(~s) =
∑

~sJ+~sV =~s

α(~sJ)α(~sV),

∑
~s∈F

dim C1−dim C2
q

α(~s)|~s〉 =

 ∑
~sJ∈ f −1(C(J))

α(~sJ)|~sJ〉

 ⊗
∑
~sV∈V

α(~sV)|~sV〉

 ,
and (12) can be written as ∑

~sJ∈ f −1(C(J))

α(~sJ)|~sJ〉

∑
~sV∈V

α(~sV)
1
√
|C2|

∑
~u1∈F

dim PJ (C2∩ker(P
J

))
q

~u2∈g6(~sV )

|g5(~sV), ~u1, g7(~u2), ~0, ~u2〉,

and again the reconstructed part |~sJ〉 is not entangled with the rest of the quantum
system.

Because the complement of any qualified set is forbidden by [11, Proposition
3], we see that the set J of participants has no information on the quantum secret
(7) if (2) holds. This finishes the proof of Item 2 in Theorem 1.

4 Holevo Information and Coherent Information of
a Set of Shares

4.1 Holevo Information

In this section we prove that (3) is necessary for J to be a qualified set. We
use the Holevo information [10] defined as follows. Let Sin and Sout be sets of
density matrices, Γ a completely positive trace-preserving map from Sin to Sout,
{ρ1, . . . , ρm} ⊂ Sin, and P a probability distribution on {ρ1, . . . , ρm}. The Holevo
information is defined as

K(P, {ρ1, . . . , ρm},Γ) = H

 m∑
i=1

P(ρi)Γ(ρi)

 − m∑
i=1

P(ρi)H(Γ(ρi)), (13)

where H(·) denotes the von Neumann entropy counted in logq. The Holevo infor-
mation essentially expresses the classical information that can be transferred over
Γ [10].

Let ΓJ be the completely positive trace-preserving map fromS(
⊗dim C1−dim C2

i=1 Gi)
to S(

⊗
j∈JH j) induced by the encoding procedure proposed in Section 2, where

S(·) denotes the set of density matrices on a complex space ·. By KJ we denote

K(uniform distribution, {|~s〉〈~s| | ~s ∈ Fdim C1−dim C2
q },ΓJ). (14)
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The encoding procedure in Section 2 is a pure state scheme [11, Section 2],
that is, the quantum state of all the shares is pure if the encoded quantum secret is
pure. By [11, Proposition 3], if J is not a forbidden set, then J is not a qualified
set. By [11, Theorem 2] if

KJ > 0 (15)

then J is not a forbidden set.
We shall prove the next proposition. By (3) and (15), Proposition 3 implies

that (3) is necessary for J to be a qualified set.

Proposition 3
KJ = dim PJ(C1) − dim PJ(C2). (16)

Proof. ΓJ(|~s〉〈~s|) is the partial trace of (8) over
⊗

j∈JH j. By the definition of
partial trace

ΓJ(|~s〉〈~s|)

=
1
|C2|

∑
~x1,~x2∈ f (~s)

|PJ(~x1)〉〈PJ(~x2)| 〈PJ(~x1)|PJ(~x2)〉︸             ︷︷             ︸
=1⇔~x2∈~x1+ker(PJ)

=
1
|C2|

∑
~u∈PJ( f (~s))

∑
~x1∈ f (~s)∩P−1

J
(~u)

∑
~x2∈ f (~s)∩P−1

J
(~u)

|PJ(~x1)〉〈PJ(~x2)|

=
1
|C2|

∑
~u∈PJ( f (~s))

 ∑
~x1∈ f (~s)∩P−1

J
(~u)

|PJ(~x1)〉


 ∑
~x2∈ f (~s)∩P−1

J
(~u)

〈PJ(~x2)|


=

1
|C2|

∑
~u∈PJ( f (~s))

 ∑
~x1∈ f (~s)∩((~0,~u)+ker(PJ))

|PJ(~x1)〉


 ∑
~x2∈ f (~s)∩((~0,~u)+ker(PJ))

〈PJ(~x2)|

 .(17)

For ~u1, ~u2 ∈ PJ( f (~s)), if f (~s)∩ ((~0, ~u1) + ker(PJ)) = f (~s)∩ ((~0, ~u2) + ker(PJ)) then
~x1 and ~x2 in (17) are taken over the same set PJ(~x) + PJ(C2 ∩ ker(PJ)), where ~x is
any vector in f (~s)∩ ((~0, ~u1) + ker(PJ)). Otherwise ~x1 and ~x2 in (17) are taken over
two disjoint sets in PJ( f (~s)). So (17) is equal to

1
|C2|

∑
A∈PJ( f (~s))/∼

∑
~v∈A

|~v〉


∑
~v∈A

〈~v|

 , (18)

where ∼ is the equivalence relation that defines ~v1, ~v2 ∈ PJ(Fn
q) to be equivalent if

~v1 ∈ ~v2 + PJ(C2 ∩ ker(PJ)). (18) is an equal mixture of |PJ(C2)/PJ(C2 ∩ ker(PJ))|
projection matrices to non-overlapping orthogonal spaces, therefore its von Neu-
mann entropy is dim PJ(C2) − dim PJ(C2 ∩ ker(PJ)), which is the second term in
the right hand side of (13).
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By (18), the density matrix of the first term in RHS of of (13) is

1
qdim C1−dim C2

∑
~s∈F

dim C1−dim C2
q

1
|C2|

∑
A∈PJ( f (~s))/∼

∑
~v∈A

|~v〉


∑
~v∈A

〈~v|


=

1
|C1|

,
∑

A∈PJ(C1)/PJ(C2∩ker(PJ))

∑
~v∈A

|~v〉


∑
~v∈A

〈~v|

 . (19)

The von Neumann entropy of (19) is

dim PJ(C1) − dim PJ(C2 ∩ ker(PJ)) (20)

by the same argument as the last paragraph. By (13) KJ = dim PJ(C1)−dim PJ(C2).

4.2 Coherent Information

We use the same notation as (13). Denote by ΓE the channel to the environment
so that any pure state is mapped to a pure state by Γ ⊗ ΓE. The channel to the
environment for ΓJ is ΓJ. Then the coherent information of the input state ρ and
the channel Γ is defined by [10]

H(Γ(ρ)) − H(ΓE(ρ)). (21)

Equation (21) can become negative. The quantum capacity is expressed by the
maximum of the coherent information over ρ [5].

The coherent information of ΓJ and the completely mixed secret 1
qdim C1−dim C2∑

~s∈F
dim C1−dim C2
q

|~s〉〈~s| is (20) subtracted by (20) with J substituted by J. Therefore
the coherent information is

dim PJ(C1) − dim C2 ∩ ker(PJ) − (dim PJ(C1) − dim C2 ∩ ker(PJ))︸                                     ︷︷                                     ︸
third term

. (22)

We consider to maximize (22) by replacing C1 by D such that C2 ⊂ D ⊂ C1.
This amounts to maximize (21) over the quantum state completely mixed over the
subspace spanned by {|~s〉 | f (~s) ⊂ D}.

Lemma 4 Let D be as above. Define

D′ = C2 + (D ∩ ker(PJ)).

Then we have

dim PJ(D) − dim C2 ∩ ker(PJ) − (dim PJ() − dim C2 ∩ ker(PJ))

= dim PJ(D′) − dim C2 ∩ ker(PJ) − (dim PJ(D′) − dim C2 ∩ ker(PJ)).(23)
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Proof. Let D = D′⊕D′′. Then dim D′′ = dim PJ(D′′) because D′′∩ker(PJ) = {~0}.
Therefore the D′′ component in D does not help to increase the value of (22).
Therefore D′ yields the same value for (22) as D and we have (23).

So we see that D = C2 + (C1∩ker(PJ)) maximizes the coherent information to
its maximum value dim C1 ∩ ker(PJ) − dim C2 ∩ ker(PJ) by letting the third term
of (22) be zero. We remark that the proposed decoding procedure in Section 3
reconstructs precisely that number of qudits in the secret.

5 Analysis of the Conventional Scheme

In this section we show that the conventional quantum ramp secret sharing scheme
[11] can be regarded as a special case of the proposed construction, and its quali-
fied and forbidden sets can be identified by Theorem 1. Let α1, . . . , αn be pairwise
distinct nonzero1 elements in Fq, which correspond to x1, . . . , xn in [11]. Denote
(α1, . . . , αn) by ~α. Let ~v ∈ (Fq \ {0})n. Then the generalized Reed-Solomon code
GRSn,k(~α, ~v) is [9, Section 10.§8]

{(v1 p(α1), . . . , vn p(αn)) | deg p(x) ≤ k − 1}, (24)

where p(x) is a univariate polynomial over Fq. Let ~1 = (1, . . . , 1) ∈ Fn
q and ~αL =

(αL
1 , . . . , αL

n) ∈ Fn
q. The conventional scheme [11] is a special case of the proposed

construction with C1 = GRSn,k(~α, ~1) and C2 = GRSn,k−L(~α, ~αL). Observe that
C2 ( C1, dim C1 = k, and dim C2 = k−L. By the property of the generalized Reed-
Solomon codes (see e.g. [9, Section 11.§4]), any subset J ⊆ {1, . . . , n} satisfies (3)
if |J| ≤ dim C2. Observe that the original restriction n = dim C1 + dim C2 [11] is
removed here.

6 Algebraic Geometric Construction

In this section we give a construction of C1 ⊃ C2 based on algebraic geometry
(AG) codes. For terminology and mathematical notions of AG codes, please refer
to [14]. Let F/Fq be an algebraic function field of one variable over Fq, P1, . . . ,
Pn pairwise distinct places of degree one in F, and G1, G2 divisors of F whose
supports contain none of P1, . . . , Pn. We assume G1 ≥ G2. Denote by L(G1) the
Fq-linear space associated with G1. The functional AG code associated with G1,
P1, . . . , Pn is defined as

C(G1, P1, . . . , Pn) = {( f (P1), . . . , f (Pn)) | f ∈ L(G1)}.

1In [11] αi = 0 was not explicitly prohibited, but an author of [11] informed that αi must be
nonzero for all i = 1, . . . , n.
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Since G1 ≥ G2 we have C(G1, P1, . . . , Pn) ⊇ C(G2, P1, . . . , Pn). We further
assume C(G1, P1, . . . , Pn) , C(G2, P1, . . . , Pn).

Theorem 5 The ramp quantum secret sharing scheme constructed from C(G1, P1,
. . . , Pn) ) C(G2, P1, . . . , Pn) encodes dim C(G1, P1, . . . , Pn) − dim C(G2, P1, . . . ,
Pn) qudits to n shares. We have

dim C(G1, P1, . . . , Pn) − dim C(G2, P1, . . . , Pn)

≥ deg G1 − deg G2 − g(F), (25)

where g(F) denotes the genus of F. A set J ⊆ {1, . . . , n} is a qualified set and its
complement J is a forbidden set if

|J| ≥ n − (deg G2 − 2g(F) + 1). (26)

Proof. Equation (25) follows just from

dim C(G1, P1, . . . , Pn) = dimL(G1) − dimL(G1 − P1 − · · · − Pn), (27)

and the Riemann-Roch theorem [14]

deg G1 − g(F) + 1 ≤ dimL(G1) ≤ max{0, deg G1 + 1}, (28)

where the left inequality of (28) becomes equality if

deg G1 ≥ 2g(F) − 1. (29)

Firstly we claim that (3) holds if

|J| ≤ deg G2 − 2g(F) + 1. (30)

By reordering indices we may assume that J = {1, . . . , |J|}. Observe that

PJ(C(G1, P1, . . . , Pn)) = C(G1, P|J|+1, . . . , Pn). (31)

If (30) holds then

deg(G2 − P|J|+1 − · · · − Pn) ≥ 2g(F) − 1,

which implies by (29)

dimL(G2 − P|J|+1 − · · · − Pn) = deg G2 − |J| − g(F) + 1. (32)

By the same argument

dimL(G2) = deg G2 − g(F) + 1. (33)

Equations (27), (32) and (33) imply dim C(G2, P|J|+1, . . . , Pn) = |J|, which in

turn implies C(G2, P|J|+1, . . . , Pn) = F|J|q . Therefore we see that (30) implies (3).
Finally noting (26)⇒ (30) finishes the proof.

Remark 6 As the generalized Reed-Solomon codes is a special case of AG codes
with g(F) = 0 [14], Section 5 can also be deduced from Theorem 5 instead of
using [9, Section 11.§4].
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7 Conclusion

We have shown that a quantum ramp secret sharing scheme can be constructed
from any nested pair of linear codes, and also shown necessary sufficient condi-
tions for the qualified and the forbidden sets as Theorem 1. A construction of
nested linear codes is given by the algebraic geometry in Theorem 5. The follow-
ing issues are future research agenda.

What is a better construction of C1 ) C2 than Theorem 5 when q < n? In
particular, (30) should use both divisors G1 and G2 because and (3) uses both
of nested linear codes. Also, J corresponds to a set of Fq-rational points on an
algebraic curve when AG codes are used, but only the size of J is taken into
account in (30). The geometry of J should also be taken into account. We shall
investigate it in future.
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