
Some Remarks on Honeyword Based
Password-Cracking Detection

Imran Erguler

TUBITAK BILGEM, Gebze, Kocaeli, Turkey
imran.erguler@tubitak.gov.tr

Abstract. Recently, Juels and Rivest proposed honeywords (decoy pass-
words) to detect attacks against hashed password databases. For each
user account, the legitimate password is stored with several honeywords
in order to sense impersonation. If honeywords are selected properly, an
adversary who steals a file of hashed passwords cannot be sure if it is
the real password or a honeyword for any account. Moreover, entering
with a honeyword to login will trigger an alarm notifying the adminis-
trator about a password file breach. At the expense of increasing storage
requirement by 20 times, the authors introduce a simple and effective
solution to detection of password file disclosure events. In this study, we
scrutinize the honeyword system and present some remarks to highlight
possible weak points. Also, we suggest an alternative approach that se-
lects honeywords from existing user passwords in the system to provide
realistic honeywords – a perfectly flat honeyword generation method –
and also to reduce storage cost of the honeyword scheme.

1 Introduction

Disclosure of password files is a severe security problem that has affected millions
of users and companies like Yahoo, RockYou, LinkedIn, eHarmony and Adobe
[1,2], since leaked passwords make the users target of many possible attacks.
These recent events have demonstrated that weak password storage methods are
currently in place on many web sites. For example, the LinkedIn passwords were
using the SHA-1 algorithm without a salt and similarly the eHarmony passwords
were also stored using unsalted MD5 hashes [3]. Indeed, once a password file is
stolen, by using password cracking techniques like the algorithm of Weir et al.
[4] it is easy to capture most of the plaintext passwords.

In this respect, there are two issues that should be considered to overcome
these security problems: First, passwords must be protected by taking appro-
priate precautions and storing with their hash values computed through salting
or some other complex mechanisms. Hence, for an adversary it must be hard to
invert hashes to acquire plaintext passwords. The second point is that a system
should detect whether a password file disclosure incident happened or not to
take appropriate actions. In this study, we focus on the latter issue and deal
with fake passwords or accounts as simple and cost effective solutions to detect
compromise of passwords. Honeypot is one of the methods to identify occurrence



of password database breach. In this approach, the administrator purposely cre-
ates deceit user accounts to lure adversaries and detects a password disclosure
if any one of the honeypot passwords get used [5,6]. This idea has been modifed
by Herley and Florencio [7] to protect online banking accounts from password
brute-force attacks. According to the study, for each user incorrect login at-
tempts with some passwords lead to honeypot accounts, i.e. malicious behaviour
is recognized. For instance, there are 108 possibilities for a 8-digit password and
let system links 10000 wrong password to honeypot accounts, so the adversary
performing the brute-force attack 10000 times more likely to hit a honeypot
account than the genuine account. Use of decoys for building theft-resistant is
introduced by Bojinov et al. in [8] called as Kamouflage. In this model, fake
password sets are stored with the real user password set to conceal the real
passwords, thereby forcing an adversary to carry out a considerable amount of
online work before getting the correct information. Recently, Juels and Rivest
have presented the honeyword mechanism to detect an adversary who attempts
to login with cracked passwords [9]. Basically, for each username a set of sweet-
words is constructed such that only one element is the correct password and
the others are honeywords (decoy passwords). Hence, when an adversary tries
to enter with a honeyword, an alarm is triggered to notify the system about a
password leakage. The details of the method will be given in the next section.

In this study, we analyze honeyword approach and give some remarks about
security of the system. Furthermore, we point out that the key item for this
method is the generation algorithm of honeywords such that they shall be indis-
tinguishable from the correct passwords. Therefore, we propose a new approach
that uses passwords of other users in the system for honeyword sets, i.e. realis-
tic honeywords are provided. Moreover, this technique also reduces storage cost
compared with the honeyword method in [9]. The rest of this paper is organized
as follows. In Section 2, we review the honeyword approach and discuss hon-
eyword generation procedures. Section 3 examines security of honeywords and
Section 4 gives description of our proposed model. In Section 5 we analyze its
security properties and we demonstrate a comparison between our approach and
the original methods in Section 6. Finally, in Section 7 we conclude this paper.

2 Honeywords

In this section, we first briefly summarize the honeyword password model pro-
posed by the Juels and Rivest in [9]. Then, we overview the methods on gener-
ation of honeywords given in the study and discuss some points that can cause
some security problems.

2.1 Review of Honeywords

Basically, the simple but clever idea behind the study is insertion of false pass-
words – called as honeywords – associated with each user’s account. When an
adversary gets the password list, she recovers many password candidates for each



account and she cannot be sure about which word is genuine. Hence, cracked
password files can be detected by system administrator if a login attempt is
done with a honeyword by the adversary. We use the notations and definitions
depicted in Table 1 to simplify the description of honeyword scheme.

Table 1: Notations.

H() Cryptographic hash function used to compute hash of passwords
ui Username for the ith user.
pi Password of ith user
Wi List of potential passwords for ui

k Number of elements in Wi

ci Index of correct password in list Wi

Gen(k) Procedure used to generate Wi of length k of sweetwords
sweetword: Each element of Wi

sugarword: Correct password in Wi

honeyword: Fake passwords in Wi

The honeyword mechanism works simply as follows: For each user ui, the
sweetword listWi is generated using the honeyword generation algorithm Gen(k).
This procedure takes input k as the number of sweetwords and outputs both the
password list Wi = (wi,1, wi,2, . . . , wi,k) and ci, where ci is the index of the
correct password (sugarword). The username and hashes of the sweetwords as
< ui, (vi,1, vi,2, . . . , vi,k) > tuple is kept in database of the main server, whereas
ci is stored in another server called as honeychecker. By diversifying the secret
information in the system – storing password hashes in one server and ci in the
honeychecker – makes it harder to compromise the system as a whole, i.e. pro-
vides a basic form of distributed security [9]. Notice that in traditional password
technique < ui, H(pi) > pair is stored for each account, while for this system
< ui, Vi > tuple is kept in database, where Vi = (vi,1, vi,2, . . . , vi,k). The login
procedure of the scheme is summarized below:

– User ui enters a password g to login to the system.
– Server firstly checks whether or not H(g) is in list Vi. If not, then login is

denied.
– Otherwise system checks to verify if it is a honeyword or the correct pass-

word.
– Let v(i, j) = H(g). Then j value is delivered to honeychecker in an authen-

ticated secure communication.
– Honeychecker checks j = ci. If the equality holds, it returns a TRUE value,

otherwise it responses FALSE and may raise an alarm depending on security
policy of the system.



Before discussing honeyword generation methods, we want to talk about
honeyword generator algorithm Gen(). Note that strength and effectiveness of
the method indeed is directly related to how the Gen() is constructed. Therefore
the authors introduce a definition as flatness of Gen() such that it measures the
chance of detecting sweetword guessing for an adversary. In other words, if a
honeyword generation method is ε-flat, then she has at least a 1 − ε chance of
picking a honeyword. For example the attacker has a chance of at most 25% of
picking the correct password pi from Wi for ε = 1/4. In short, if the algorithm
is not flat enough, real password stands out from the remaining fake passwords
and an adversary can easily reveal the original one.

2.2 Honeyword Generation Methods and Discussions

The authors in [9] categorize honeyword generation methods into two groups.
The first category is consisted of legacy-UI (user interface) procedures and the
second one includes modified-UI procedures whose password-change UI is mod-
ified to allow for better password/honeyword generation. Take-a-tail method
is given as an example of the second category. According to this approach a
randomly selected tail is produced for user to append this suffix to her entered
password and the result becomes her new password. For instance, let a user enter
password games01, and then system let propose ’413’ as tail. So the password of
the user now becomes games01413. Although this method strengthens the pass-
word, to our point of view it is impractical – users often forget the passwords that
they determined. Therefore in the remaining parts the analysis we conducted is
limited with legacy-UI procedures. Note that some discussed points are indeed
mentioned in [9], but we emphasize those to address paramount importance of
the selected generator algorithm.

Chaffing-by-tweaking In this method, user password seeds the generator algo-
rithm which tweaks selected character positions of the real password to produce
the honeywords. For instance, each character of user password in predetermined
positions is replaced by a randomly chosen character of the same type: digits
are replaced by digits, letters by letters, and special characters by special char-
acters. Number of positions to be tweak, denoted as t should depend on system
policy etc. As an example t = 3 and tweaking last t characters may be a method
for generator algorithm Gen(k, t). Another approach named in the study as
”chaffing-by-tweaking-digits” is executed by tweaking the last t positions that
contain digits. For example, by using last technique for the password 42hungry
and t = 2, the honeywords 12hungry and 58hungry may be generated.

Remark 1. Many users have propensity to choose the numbers included in pass-
words related to a special date, e.g. birthday, anniversary or an important his-
torical event. For example 3.6% of the hacked Adobe password hints are related
to date [10]. In the light of this fact, it is highly possible that such a password
involves a digit sequence like 19xx, 20xx or xx where xx is last two digit of the



date. For those passwords by applying the chaffing-by-tweaking-digits method,
the date digits will be replaced with the randomly selected digits. Hence an ad-
versary who has Wi of a user ui may easily identify honeywords and recover the
correct password. When we examine publicly available leaked passwords hacked
from RockYou website (approximately 32 million entries) [11,12], we observe
that passwords of numerous users include such a pattern, e.g. junexxxx pattern
is selected as a password by 1244 users, where xxxx is a date and starts with
19 or 20. Another example should be the password alex1992 which is seen
47 times in the RockYou password list: Suppose the following honeywords are
generated with t = 4 and k = 9 for this password. Note that the digits in the
honeywords seem not relevant but the correct password alex1992 makes sense
for an adversary.

alex6323 alex9058 alex1992

alex1270 alex0976 alex2785

alex5469 alex8147 alex9705

Apart from use of date in passwords, many users prefer to append consecu-
tive numbers to their password heads, like ’123’, ’1234’, due to tendency of users
to choose rememberable number patterns. By considering the RockYou leaked
password database, we realize that about 0.8% of all user passwords – excluding
the ones in the top 1000– ends with ’123’ or ’1234’ and begins with letters at
least one length. The vulnerability issued with the date patterns described above
is also valid for those passwords, i.e. an adversary may distinguish the correct
password from the sweetwords by just investigating the end digit patterns. In-
deed, chaffing-by-tweaking method suffers from these type of passwords, because
replacing characters of the same type randomly will give the same hint to an
adversary in extracting the correct password. Similar patterns and examples of
user habits in digit selections can be extended. From a broader perspective these
examples show that users mostly do not choose the digits or letters in passwords
randomly, so a randomly replacing technique like this model leads an adversary
to make a natural selection. In particular, we believe that by deploying ”chaffing-
by-tweaking” model, it is hard to fulfill aims of the honeyword scheme, i.e. all
the adversary needs to do is to have a human sense.

Chaffing-with-a-password-model In this approach, the generator algorithm
takes the password from the user and relying on a probabilistic model of real
passwords it produces the honeywords [9]. The authors give the model of [8]
as an example for this method named as modeling syntax. In this model the
password is splitted into character sets. For instance, mice3blind is decomposed
as 4-letters + 1-digit + 5-letters ⇒ L4 + D1 + L5 and replaced with the same
composition like gold5rings.

Another example named as the simple model described in the study gener-
ates honeywords through a password list: Firstly a password list L is built by
combining numerous real passwords and random passwords of varying lengths.



Then a random word is picked from the list with length d. Moreover, with a
probability of 0.8 some honeywords are generated as ”tough nuts” which will be
explained in the next part. As depicted in the algorithm given below, honeyword
characters are created by replacing characters of randomly selected words of L
in a probabilistic manner:

Algorithm 2.1: SimpleModel(L)

w ← random(L)− comment: randomly returns a word from L

d← length(w)− comment: returns length of word w

honeyword(1) = w(1)
for j ← 2 to d

do



comment: Probabilities of mod1, mod2 and else are 0.1, 0.4 and 0.5

if mod1
then w ← random(L), honeyword(j) = w(j)

comment: Add character in same position of new random word

else if mod2
then w ← random(L), honeyword(j) = w(j)

comment: Select a random word such that w(j − 1) = honeyword(j − 1)

else honeyword(j) = w(j)
comment: Proceed with the same word

return (honeyword)

Remark 2. Leaked password databases has showed us that some passwords has
a well known pattern. For example all of the following passwords are involved in
the list of 10000 most common passwords [13].

bond007 james007

007bond 007007

Considering modeling syntax method, one can conclude that the honey-
word system loses its effectiveness against such passwords, i.e. the correct pass-
word has become noticeably recognized by an adversary. In fact this problem
seems an inherent weakness of randomly replacement based honeyword meth-
ods. Since character groups or individual characters are replaced by a picked
character/characters, content integrity of such passwords would be broken and
the correct password become quite salient.

Remark 3. Besides the previous point, we want to discuss another issue: If there
is a correlation between the username and the password, then the password
can be easily distinguished from the honeywords. For example, the password



johndoe123 with a username johndoe can be easily distinguished from corre-
sponding honeywords. The password policy and guidelines should dictate users
not to create passwords that is correlated with the username. Unfortunately,
some correlations are inevitable like username peterparker and the password
spiderman1992.

Chaffing with ”tough nuts” In this method, the system intentionally injects
some special honeywords, named as tough nuts, such that inverting hash val-
ues of those words is computationally infeasible, e.g. fixed length random bit
strings should be set as hash value of a honeyword. Moreover, it is noted that
number and positions of tough nuts are selected randomly. By means of this,
it is expected that the adversary cannot seize whole sweetword set and some
sweetwords will be blank for her, thereby deterring the adversary to realize her
attack. In [9], it is discussed that in such a situation the adversary may pause
before attempting login with cracked passwords.

Remark 4. Tough nuts are recommended to be used together with other meth-
ods to render the adversary’s work more challenging and exhaust the attacker.
Nevertheless, it has remained an open question in [9] what is the optimal strat-
egy for an adversary when tough nuts are experienced. We believe that ”tough
nuts” method is a double-edged-sword: Numerous unknowns in the password
list may discourage an adversary to proceed mounting her attack. On the other
hand, an adversary may suppose that most of the passwords made up of simple
words and digit combinations, not a tough nut. Hence, it is reasonable for this
adversary to conduct her classic attack with skipping tough nuts contrarily to
authors’ expectations. Note that for this attack strategy, entropy contributed by
the honeywords is decreased, because the tough nuts are ignored by the adver-
sary. For example if in average 2% of all honeywords are tough nuts, apparently
this rate will be redundant according to this approach.

Hybrid Method Another method discussed in [9] is combining the strength
of different honeyword generation methods, e.g. chaffing-with-a-password-model
and chaffing-by-tweaking-digits. By using this technique, random password model
will yield seeds for tweaking-digits to generate honeywords. For example let the
correct password be apple1903. Then the honeywords angel2562 and happy9137
should be produced as seeds to chaffing-by-tweaking-digits. For t = 3 and k = 4
for each seed, the sugarword table given below may be attained:

happy9679 apple1422 angel2656

happy9757 apple1903 angel2036

happy9743 apple1172 angel2849

happy9392 apple1792 angel2562



Remark 5. Feeding from the strength of chaffing-with-a-password-model, this
method cuts down chance of adversary in guessing the correct password from
the sugarwords. Nevertheless, previous remarks are also valid for this case, e.g.
in the above example an adversary may make plausible guesses.

3 Security Analysis of Honeywords

In this part, we investigate security of the honeyword system against some pos-
sible scenarios.

3.1 Denial-of-service Attack

In [9], a denial-of-service (DoS) attack is discussed for the following scenario:
Adversary knows the used Gen() procedure and can produce all possible honey-
words for a given a password. For example if chaffing-by-tweaking-digits is em-
ployed in the system and with a small t adversary may generate whole possible
honeywords from a known password. Consider the case, let password of a user be
test42, then for t = 2 she can generate 100 possible honeywords and k of these
honeywords are stored in the system password list. Let Pr(g = wi|pi) denote the
probability of correctly guessing a valid honeyword of Wi, where correct pass-
word pi is available to the adversary. Hence if this probability is a non negligible
value, the adversary may attempt to login with the guessed honeyword to trigger
an alarm condition. In fact, this may be serious, if a strong policy is set by the
administrator e.g. a global password reset in response to a single honeyword hit.
In the above example for k = 20 and t = 2, Pr(g = wi|pi) = (k − 1)/99 = 0.19.
In order to mitigate this risk, the authors suggest to choose a relatively small
set of honeywords randomly from a larger class of possible sweetwords. For the
previous example, success probability of the attacker is about 19% for k = 20,
while this chance is decreased to 2% by only changing t = 3.

Nevertheless, we want to consider the case that an adversary knowsm username–
password pairs. Perhaps, she previously created these accounts in the system to
make a DoS attack. Also suppose that there exists a limit for unsuccessful login
attempts as n and success probability of guessing a valid honeyword for a known
password is Pr(g = wi|pi) = 1

α . Then it is more likely that the adversary can
succeed in DoS attack, if she makes about α trials. Notice that the adversary
can make at most m · n attempts. For the above example Pr(g = wi|pi) = 0.02,
so it is highly possible to raise an alarm condition if an adversary make about
50 trials. That is to say if the false attempt limit n is (say) five, 10 known
account/passwords pairs will be enough to realize the mentioned attack.



Remark 6. In fact, a user should deploy the described attack even she possesses
a single account by following the procedure:

Algorithm 3.1: DosAttack(pi, T (pi), n)

for j ← 1 to |T (pi)|

do


if mod(j, n) = 0

then Login(pi)− comment: To reset unsuccessful login attempts

else Login(Guessj)− comment: Make jth guess; Guessj ∈ T (pi)

In this case, an adversary solely knows a single username and password ui
and pi respectively. Also, we suppose that system limits for unsuccessful login
attempts as n, i.e. after n consecutive wrong password trials the account will be
blocked. Nonetheless, if the correct password is entered before n is reached, then
system resets the wrong password counter. Hence, as illustrated in the procedure,
the adversary logins with the correct password at each nth attempt to avoid block
of the account. For example if the used technique for honeyword generation
is chaffing-by-tail-tweaking and the honeywords are produced by tweaking the
characters in the selected last t positions, e.g. t = 3, then the adversary should
select password such that last t positions only involve digits to reduce entropy
about possible characters. For this example |T (p)| = 1000, where T (p) stands
for the set of sweetwords producible by tweaking p for the selected character
positions. Also, we assume that system uses CAPTCHA or a similar mechanism
[14,15] to prevent automated login attempts and the adversary is patient to
try all guesses manually each of which needs about 5 seconds. Then, she hits a
honeyword in about 1.5 hours.

3.2 Brute-force Attack

In previous attack, we point out that if a strict policy is executed in a honeyword
detection, system may be vulnerable to DoS attacks affecting the whole system.
On the other hand, a soft policy weakens the influence of honeywords. In this
regard, we describe the following attack to demonstrate an adversary can capture
an amount of accounts in case of a light policy.

We suppose an adversary has obtained a password file F and cracked numer-
ous user passwords. Then, she tries to login with any accounts in the list instead
of compromising a specific account. Furthermore, we assume that the adversary
has no advantage in guessing correct password by analyzing corresponding hon-
eywords, i.e. Pr(g = pi) = 1/k. Last, if one of the user’s honeywords is entered,
system takes the appropriate action according to one of the example policies as
follows:

– Login proceeds as usual,
– User’s account is shutdown until the user establishes a new password.



The common point of the above policies is that even a honeyword entrance is
detected, system gives a local or no response. As a result of this, an adversary can
carry out a brute-force search until a successful login is obtained. For example,
even a user’s account is locked due to a honeyword attempt, she continues to
search with another user’s account, i.e. single guess for each user. She likely
makes a correct guess after k trials, since Pr(g = pi) = 1/k. As an illustrative
example for k = 20, it is highly possible that the adversary finds a correct
password after 20 attempts. It is equivalent to say that if there exists N users in
the system, the adversary may recover genuine passwords of N/k users by using
brute-force search.

3.3 Choosing Policy

By considering the described attacks and discussions, one can infer that there are
two major issues about honeywords. The first issue is flatness of the generator
algorithm such that it is directly related to chance of distinguishing the correct
password out of respective sweetwords. Thus, if the method is not flat enough, it
undermines the main task of the honeywords and an adversary can easily perceive
the correct password. Second issue is that what is the chance of an adversary
in hitting a honeyword intentionally and triggering a false alarm to render the
system in a DoS state. Significance of this issue depends on the adapted policy,
e.g. what would be done in case of a false alarm. Under these points, one can
see that selection of Gen() procedure and an appropriate policy is critically im-
portant. Indeed, these security issues are mentioned in [9]. However, the authors
propose to adapt factors that reduce the potency of DoS attacks, e.g. increasing
t value for chaffing-by-tweaking method instead of insisting on strong policies.
Since the main purpose behind the introduction of honeywords is to overcome
password-crack detection problem, we believe that security policies should not
be loosened to mitigate DoS attacks. In order to hinder DoS attacks, Gen() is
chosen such that Pr(g = wi|pi) = ε must be satisfied, where ε a negligible value.
Also a limit, as λ, for maximum number of honeyword attempts in a period
should be set to prevent brute-force attack. When the limit is exceeded a major
appropriate action should be taken, e.g. forcing users to refresh their passwords.

4 A New Approach

Our proposed model is still based on use of honeywords to detect password-
cracking. However, instead of generating honeywords and storing them in the
password file, we suggest to benefit from existing passwords to simulate honey-
words. In order to achieve this, for each account k−1 existing password indexes,
which we call honeyindexes, are randomly assigned to a newly created account of
ui, where k ≥ 2. Moreover, a random index number is given to this account and
the correct password is kept with the correct index in a list. On the other hand,
in another list ui is stored with an integer set which is consisted of the hon-
eyindexes and the correct index. So, when an adversary analyzes the two lists,



she recognizes that each username is paired with k numbers as sweetindexes and
each of which points to real passwords in the system. The tentative password
indexes hampers an adversary to make a correct guess and she cannot be easily
sure about which index is the correct one. It is equivalent to say that to create
uncertainty about the correct password, we propose to use indexes that map
to valid passwords in the system. The contribution of our approach is twofold.
First, this method requires less storage compared to the original study. Second,
in previous sections we argue that effectiveness of the honeyword system directly
depends on how Gen() flatness is provided and how it is close to human behavior
in choosing passwords. Within our approach passwords of other users are used as
fake passwords, so guess of which password is fake and which is correct becomes
more complicated for an adversary.

4.1 Initialization

Firstly, T fake user accounts (honeypots) are created with their passwords. Also
an index value between [1, N ], but not used previously is assigned to each hon-
eypot randomly. Then k − 1 numbers are randomly selected from the index list
and for each account a honeyindex set is built like Xi = (xi,1, xi,2, . . . , xi,k); one
of the elements in Xi is the correct index (sugarindex ) as ci. Now, we use two
password files as F1 and F2 in the main server: F1 stores username and honeyin-
dex set, < hui, Xi > pairs as shown in Table 2, where hui denotes a honeypot
accounts. On the other hand F2 keeps index number and corresponding hash of
password, < ci, H(pi) >, as depicted in Table 3. Let SI denote index column and
SH represent the corresponding password hash column of F2. Then the function
f(ci) that gives password hash value in SH for the index value ci can be defined
as: f(ci) = {H(pi) ∈ SH :< ci, H(pi) > stored pair of ui and ci ∈ SI}. In or-
der to make points clear, the initialization process is shown within the following
example.

Username Honeyindex Set

agent-lisa (93, 16626, . . . , 94931)

alexius (15476, 51443, . . . , 88429)

baba13 (3, 62107, . . . , 91233)

...
...

zack tayland (1009, 23471, . . . , 47623)

zoom42 (63, 51234, . . . , 72382)

Table 2: Example password file F1 for the proposed model. Each entry has two
elements: First one is the username of the account and second element is hon-
eyindex set for the respective account. Note that table is sorted alphabetically
by the username field.



SI SH

3 H(p3)

7 H(p7)

85 H(p85)

...
...

100000 H(p100000)

100004 H(p100004)

Table 3: Example password file F2 for the proposed model. Each entry has two
elements: First one is the sugarindex of the account and second element is hash
of the corresponding password. Note that table is sorted according to the index
values.

Example 1. Suppose that a honeypot username/password pair is generated like
< macbeth,master2014 > by the system. Then an index number is randomly
selected, for instance 1008, and assigned as the correct index of this account.
Now F2 file is updated according to this information as shown below:

Index No Hash of Password
...

...
1008 H(master2014)

...
...

Then, k − 1 numbers are randomly chosen from SI of F2 and combined with
correct index 1008 in a random manner to produce the index group. For instance
if k = 5, such a group (42, 96104,1008, 7201, 23008) may be generated. In this
case F1 file is seen as below:

Username Honeyindex Set
...

...
macbeth (42, 96104,1008, 7201, 23008)

...
...

4.2 Registration

After the initialization process, system is ready for user registration. In this
phase, a legacy-UI is preferred, i.e. a username and password are required from
the user as ui, pi to register the system. We use the honeyindex generator algo-
rithm Gen(k, SI)→ ci, Xi, which outputs ci as the correct index for ui and the
honeyindexes Xi = (xi,1, xi,2, . . . , xi,k). Note that Gen(k, SI) produces Xi by



randomly selecting k− 1 numbers from SI and also randomly picking a number
ci /∈ SI . So ci becomes one of the elements of Xi. One can see that the generator
algorithm Gen(k, SI) is different from the procedure described in [9], since it
outputs an array of integers rather than a group of honeywords. Note, however,
that the index array Xi is indeed represents which honeywords are assigned
for ui. In other words, the corresponding honeyword will be the real password
whose hash value is f(xi,j). After ci, Xi are obtained, ui, ci pair is delivered to
the honeychecker and F1, F2 files are updated as shown below:

SI SH

3 H(p3)

...
...

ci H(pi)

...
...

...
...

100000 H(p100000)

100004 H(p100004)

Username Honeyindex Set

agent-lisa (93, 16626, . . . , 94931)

alexius (15476, 51443, . . . , 88429)

baba13 (3, 62107, . . . , 91233)

...
...

ui Xi

...
...

zack tayland (1009, 23471, . . . , 47623)

zoom42 (63, 51234, . . . , 72382)

Table 4: After a registration process, how F2 file is changed is illustrated on the
left, while update of F1 is shown on the right.

Last, periodically honeyindexes of each account should be regenerated. As
the number of users in the system increases to provide uniform distribution of
honeyindexes across SI , fresh honeyindex set must involve numbers from this
new larger list. Otherwise, passwords of newly created accounts would not be
used as honeywords in the system and it may give a clue to adversary to in
guessing the correct password of these new accounts. Note that within a uniform
distribution each password is assigned as a honeyword about k times, because
there are N passwords but Nk honeywords are needed.

4.3 Honeychecker

In our approach, the auxiliary service honeychecker is employed to store correct
indexes for each account and we assume that it communicates with the main
server through a secure channel in an authenticated manner. Indeed, it can
be assumed that security enhancements for honeychecker and the main server
presented in [16] are applied, but it is out scope of this study.

The role and primary processes of the honeychecker are the same as described
in the original study [9], except that < i, ci > pair is replaced with < ui, ci >
pair in our case. The honeychecker executes two commands sent by the main
server:



Set: ci,ui
Sets correct password index ci for the user ui.

Check: ui, j
Checks whether ci for ui is equal to given j. Returns the result and if equal-
ity does not hold, notifies system a honeyword situation.

Thus, the honeychecker only knows the correct index for a username, but
not the password or hash of the password. In the following part, functions of the
honeycheker is described

4.4 Login Process

System firstly checks whether entered password, g, is correct for the correspond-
ing username ui. To do this, the hash values stored in F2 file for the respective
indices in Xi are compared with H(g) to find a match. If a match is not obtained,
then it means that g is neither the correct password nor one of the honeywords,
i.e. login fails. On the other hand, if H(g) is found in the list, then the main server
checks whether the account is a honeypot. If it is a honeypot, then it follows a
predefined security policy against the password disclosure scenario. Notice that
for a honeypot account there is no importance of the entered password is genuine
or a honeyword, so it directly manages the event without communicating with
the honeychecker. If, however, H(g) is in the list and it is not a honeypot, the
corresponding j ∈ Xi is delivered to honeychecker with username as < ui, j > to
verify it is the correct index. Honeychecker controls whether j = ci and returns
result to the main server. At the same time if it is not equal then it assured that
the proffered password is a honeyword and adequate actions should be taken
depending on the policy.

5 Security Analysis of the Proposed Model

In this section, we investigate security of the proposed model against some pos-
sible attack scenarios. Before, however, we elaborate on the attack strategies, we
will first state a set of reasonable assumptions about our approach and related
security policies. We suppose that the adversary is able to invert most or many
of the password hashes in file F2. Notice that introduction of this scheme comes
with a DoS attack sensitivity in which an adversary deliberately tries to login
with honeywords to trigger a false alarm. Hence, suggested policies given below
mostly focuses on minimizing DoS vulnerabilities.

– As described in Section 4.4 when a user logins with a wrong password, but
not a honeyword, the login fails. If this wrong password is the password of
another account in the system and the same user hits this situation more than
once, the system should turn on additional logging of the user’s activities
to detect a possible DoS attack and to attribute the adversary, besides the
incorrect login attempt case proceeds as usual.



– If a password in the list is entered in wrong login attempts for more than
once, the system should take actions against a possible DoS alarm. These
attempts may be done with a single username or with different usernames.

– In order to increase number of unique passwords in the system, i.e. re-
duce common passwords, users should be forced to adhere to a password-
composition policy like basic8 (8 or more characters), comprehensive8 (at
least 8 characters including an uppercase and lowercase letter, a symbol,
and a digit and not contain a dictionary word), basic16 (16 or more charac-
ters) in password creation [17]. The importance of this item is addressed in
Section 5.1.

– A username should not be correlated with its password, Remark 3 should be
considered.

– If a created password is in a list of 1000 most common passwords, the user
should be driven to choose another password.

5.1 DoS Attack

Under this attack scenario as described in Section 3.1, the adversary does not
have the password files and their contents. Her main purpose is to trigger a false
alarm and to raise a honeyword alarm situation, i.e. depending on the policy
some or all parts of the system may be out of service or disabled unnecessarily.
We suppose that the adversary has knowledge m + 1 username and respective
passwords in the system as (ua, pa, . . . , ua+m+1, pa+m+1); maybe she intention-
ally created all of these accounts. In this case, a plausible method for attacking
the system is creating m accounts with the same password as pz, while a single
account, uy, has different password like py and entering system with username
uy with password pz. If pz is assigned by the system as a honeyword, then the
adversary mounts a DoS attack by entering with the system < uy, pz > pair. Let
Pr(pz ∈Wy) denote the probability that pz is assigned as one of the honeywords
for uy; it is also success probability of the adversary for this attack. Since there
are N −m passwords different from pz

1 and k honeywords are assigned to each
account:

Pr(pz ∈Wy) = 1−
(N −m

N

)k
. (1)

As an illustrative example for N = 1000000, k = 20 and m = 100, from Eq.
1 an adversary succeeds in realizing the described attack with a probability of
0.002. Note that, adversary would like to perform the attack with more accounts
like py such that in each trial pz is tested. However, from our assumptions we
know that when a password in the system is entered incorrectly by the same
username or different usernames for more than once, a DoS attack alarm should

1 In fact, an adversary may select a common password pz such that it is already
selected by another users, i.e. more than m passwords would become same with pz.
Nevertheless it seems unlikely to find a match with a common password, if a strong
password-composition policy is used in the system.



be triggered. Hence, the adversary cannot increase her chance by making more
trials for the same known password pz without being noticed by the system.

5.2 Password Guessing

In this attack, we assume that an adversary has plundered password files F1

and F2 from the main server and also obtained plaintext passwords by inverting
the hash values. Extracted F2 file gives < indexnumber, password > pairs to
the adversary but they are not directly connect to a specific username. By just
analyzing this she cannot exactly determine which password belongs to which
user. On the other hand, F1 gives username, indexset pairs such that for each
username k possible passwords exist. Also, we suppose that the adversary has
no advantage in guessing the correct password by using specific information of
the user such as age, gender and nationality. If the adversary randomly picks an
account from the list in F1 and then tries to login with a guessed password, then
her success will depend on: First, the selected account is not a honeypot (decoy)
account. Second guessing the correct password pi out of k sweetwords. Otherwise,
the adversary will caught by the system due to a honeyword or a honeyspot. Let
Pr(success) represent the probability that the adversary makes a correct guess
for a randomly picked username. Below, we express the probability that the
adversary, who makes random trials, is not detected by the system, where we
suppose the number of honeypots in the system is T :

Pr(success) =
N − T
N

· 1

k
. (2)

A convenient choice for T should be
√
N . For k = 20 and N = 1000000, she

picks the correct password pi with 5% probability. Conversely, the adversary will
caught by the system in password guessing attack with a chance of 95%, as long
as the password does not carry any information about the username. In contrast
to the guess probability in [9] which depends on number of honeywords, the
chance depends on two factors – number of honeywords and honeypots. Thus,
one can create a higher number of honeypots than

√
N , to increase detection

probability of the adversary.

5.3 Brute-force Attack

In this case, we consider the attack described in Section 3.2. We suppose that
if a honeypot entrance is detected by the system, it responds with a strong
reaction, while a light policy (not suggested) is executed in case of a honeyword
detection. So, we assume that even in a honeyword detection the adversary may
proceed to make her trials due to light local policies. If, however, a honeypot
account is attempted then system follows a marginal policy e.g. demanding all
users to renew their passwords. From binomial distribution the probability that
the adversary hits at least one honeyspot in her α trials is Pr(hit ≥ 1) =
1− (N−T/N)α. Even in this case our approach provides resistance against such



an attack, because for α = 700, T = 1000, N = 1000000 values this probability
tends to 0.5. It is equivalent to say that in brute-force guess attack, it is likely
that the adversary hits a honeypot and system detects the password disclosure
situation.

5.4 Same User in Multiple Systems

In [9], the attack scenarios such that a user reuse passwords on two different
systems as A and B are investigated. For example suppose A uses honeywords
and B has prevalent password storage techniques and a target user ui shares her
password across these two systems. In this case, if an adversary compromises B,
it is apparent that honeywords assigned for this user in A contributes nothing
at all. Conversely, if the adversary pilfers passwords from A, she can try all
sweetwords of the common user ui in A to verify which is the correct password
by submitting to B. If a honeyword is entered to B, it results in an incorrect
password screen, while the adversary successfully logins in case of the correct
password. Notice that our proposed model is also vulnerable these scenarios:
Indeed, if the password is not same but correlated for a user in two distinct
domains, then first scenario may be still valid. For example a user has password
bond007 in B which does not use honeywords. On the other side same user has
password james007 in domain A which assigns honeywords to these user. Then
it is highly possible that an adversary extracts the correct password from the
sweetwords, if she has knowledge of bond007. So, both of the original method
and our approach can not provide resistance against such conditions, as long as
users select same or highly correlated passwords in different domains.

6 Comparison of Honeyword Generation Models

In this section, we give comparison of the generation methods including our
proposed model with respect to storage cost, DoS resistance and flatness of each
algorithm. The results are also depicted in Table 5

6.1 Storage Cost

In this part, we compute storage requirement of our method and compare it with
that in [9]. A typical password file system requires hN plus storage for usernames,
where N stands for number of users in the system and h denotes length of
password hash in bytes. On the other hand this is khN for [9], where k denotes
number of sweetwords assigned to each account. Notice that we ignored the
storage cost stemmed from usernames, since it is not changed after adaptation
of honeywords. The authors also propose a storage optimization technique for the
chaffing-by-tweaking model such that keeping only hash of a single sweetword,
vi,r in database would be enough, because the main server can compute all
possible honeywords from an entered proffered password g, e.g. T (g) then check
hash of each element in T (g) with stored value vi,r in run time. The authors



claim that for a small value of t, |T (g)| will be reasonable. For example if t = 2
is selected in case of ”chaffing-by-tweaking-digits”, |T (g)| becomes 100. Although
the solution works and it is an affordable computation cost for the main server,
we argue about its applicability, e.g. for each login attempt the server makes 100
more hash computation just to save some storage space.

For our approach we assume that each index is requires 4 bytes and the
storage cost becomes2:

4kN + hN + 4N. (3)

To measure the gain in storage compared to original method, we give the ratio
as:

4kN + hN + 4N

khN
=

4k + h+ 4

kh
.

Notice that this ratio is independent from number of users and it is less than one
for realistic values of k and h. For example let used hash function be SHA-1, i.e.
h = 20 bytes and k = 20 as mentioned in [9], then this ratio will be about 0.25.
In other words, for this case our approach needs 1/4 of storage of the original
method. Also note that, as k increases storage cost of our scheme is affected by
the term 4kN , while this is hkN for the methods of [9]. So for practical values
of h, such as 16 for MD5, 20 for SHA-1 and 32 for SHA-256, growth in storage
cost of our method will be less than those of the original ones.

6.2 DoS Resistance

In Section 3.1, we show that chaffing-with-tweaking-model may suffer from a
DoS attack, due to predictability of the honeywords. Unlikely, chaffing-with-a-
password-model provides resistance against such an attack, because honeywords
are generated by using a list of passwords such that they may be independent
from the correct password. In this context, a detailed security analysis of our
proposed model is presented in Section 5.1 and we claim that our scheme also
thwarts a realizable DoS attack as long as the password policies in Section 5
are adapted and the users obey these tenets in password creation. Note that
the authors in [9] avoids direct use of a password list to eliminate a DoS attack
threat in case of very common passwords exist in the list. As opposed to this idea,
our proposed scheme uses password list in the system as honeywords of a user.
However as stated in Section 5, adaptation of a strong password composition
policy likely prevents occurrence of common passwords in high numbers, i.e.
probability of a common password is assigned as a honeyword for a specific
user will be negligibly low. Although, an adversary may hit a real password
using a common password in the system, it is not necessarily a honeyword for
the corresponding account. Thus, use of real passwords as honeywords does not
cause a DoS weakness. Last but not least issue is that in our proposed model
addition to honeywords honeypots are employed to detect a password disclosure.

2 In order to make comparable results, we discarded the storage cost for honeypots–
it needs (4kT + hT + 4T ) bytes of storage for T honeypots



This facilitates showing a strong response to actions of an adversary, because
entering with a honeypot account ensures occurrence of a password leakage.
In other words, in our approach administrator should take stronger actions in
case of a honeypot attempt compared to entering with honeywords in order to
diminish DoS vulnerability.

6.3 Flatness

Remark 1 demonstrates that chaffing-with-tweaking-model may leave traces to
an adversary in distinguishing the genuine password from the honeywords. As
can be inferred from this analysis, the superior method of [9] is the chaffing-with-
a-password-model, because produced honeywords may seem like user passwords
from the perspective of the adversary. Success of the method in flatness de-
pends on how password-model is constructed, for instance the modeling syntax
yields honeywords depending composition of the user password, thereby a per-
fect user like behaviour cannot be provided. On the other hand, the simple model
described in the study may satisfy the distribution of honeywords like user pass-
words by using a list of real passwords. For our proposed model as described
previously passwords of other users become honeywords for a user. Hence, our
model satisfies perfect flatness as long as the correct password is not correlated
with username as pointed in Remark 3 and investigation of a target user pro-
file (age, gender, religion etc.) gives no advantage to an adversary in password
guessing. Comparing our method with the simple model, one can see that our
method is better than the latter in terms of flatness: The honeywords in the
former carry all characteristics of the real passwords in the same system, while
the simple model generates honeywords artificially despite using real passwords
of different list. For example it is well known that users choose segregate their
passwords for more-secure and low-secure sites [18,19]. In [20], it is presented
that reuse rate of weaker passwords is higher than those of stronger passwords,
since the stronger ones are usually created for higher-security sites e.g. banking
accounts. Consequently, a password list from a lower-security site password list
which is used in the simple model for a higher-security site may not be natu-
ral. Also, just consider the user passwords for football or movie fan websites.
Intuitively, it is likely that many passwords will be related to the context, e.g.
passwords include names of heroes, actors, football players or team clubs for
movie and football fan sites respectively. Hence, honeywords generated by re-
lying on a general real password list may not exactly match the context of the
such a specific website, i.e. an unequivocal pattern incompatibility may exist.
This eventually may lead to advantage of an adversary in distinguishing the
honeywords.

6.4 Usability

In this part we compare our approach with the simple model in terms of prac-
ticality and ease of use. By considering the simple model whose password list is



constructed with composition of numerous real passwords and randomly gener-
ated passwords, one can argue about how the real password source is provided. If
same resource of real passwords is used in different sites, similar inherited weak-
nesses related to honeyword generation may be observed. Nonetheless, if use of
publicly available password lists is forbidden (as suggested by the authors), then
it will not be easy to get required large number of real passwords. Conversely, our
approach does not need to use an external real password resource in honeyword
generation, rather it just feeds itself. Therefore, we claim that our approach is
simpler and more practical for implementation, e.g. an admin does not have to
deal with these details.

Method DoS Resistance Flatness Storage Cost

Tweaking weak weak hN∗

Password-model strong strong†,‡ khN

Our model strong strong‡ 4kN + hN + 4N

Table 5: Comparison of honeyword generator models. Same expressions of [9] are
used for table entries: By weak DoS resistance we mean an adversary who knows
the password can hit the one of corresponding honeywords with a non-negligible
chance; while by strong we mean that this chance is ignorably small. The † is
used for condition that its strength depends on how the real password list is
used, e.g. the modeling syntax may fail as noted in Remark 2. The ‡ is used to
mean that condition is satisfied except the case of Remark 3. Also ∗ indicates
optimization technique is considered in storage cost calculation.

7 Conclusion

In this study, we have analyzed security of the honeyword system and addressed
a number of flaws that need to be handled before successful realization of the
scheme. In this respect, we have pointed out that the strength of honeyword
system directly depends on how the generation algorithm selected, i.e. flatness
of the generator algorithm determines chance of distinguishing the correct pass-
word out of respective sweetwords. Another point that we would like to stress is
that defined reaction policies in case of a honeyword entrance can be exploited
by an adversary to realize a DoS attack. This will be a serious threat if chance of
an adversary in hitting a honeyword given the respective password is not negli-
gible. To combat such a problem, also known as DoS resistance, low probability
of such an event must be guaranteed. This can be achieved by employing unpre-
dictable honeywords or altering system policy to minimize this risk. Hence, we
have noted that the security policy should strike the balance between DoS vul-
nerability and effectiveness of honeywords. Furthermore, we have demonstrated
weak and strong points of each method introduced in the original study. It has



been shown that DoS resistance of chaffing-by-tweaking method is weak and also
its flatness can be questioned by regarding Remark 1. Although some weaknesses
of chaffing-by-tweaking techniques are accepted by their creators, we believe that
it should not be considered as alternative method due to its guessable nature
and a potential DoS weakness. Moreover, chaffing-with-tough nuts model has
been investigated and we have doubted about its favour as opposed to ideas of
Juels and Rivest. On the other hand, chaffing-with-a-password-model can fulfill
its claims provided that the generator algorithm is flat. Nevertheless, how the
source of real passwords is attained for this model should be answered before
judging its applicability. Finally, we have presented a new approach to make the
generation algorithm as close as to human nature by generating honeywords with
randomly picking passwords that are belonging to other users in the system. We
have compared the proposed model with other methods with respect to DoS
resistance, flatness, storage cost and usability properties. The comparisons have
indicated that our scheme has advantages over chaffing-with-a-password-model
in terms of storage, flatness and usability.

References

1. Mirante, D., Justin, C.: Understanding Password Database Compromises. Tech-
nical Report TR-CSE-2013-02, Department of Computer Science and Engineering
Polytechnic Institute of NYU (2013)

2. Vance, A.: If your password is 123456, just make it hackme. The New York Times
20 (2010)

3. Brown, K.: The dangers of weak hashes. Technical report, SANS Institute InfoSec
Reading Room (2013)

4. Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: Security and Privacy, 2009 30th IEEE
Symposium on, IEEE (2009) 391–405

5. Cohen, F.: The use of deception techniques: Honeypots and decoys. Handbook of
Information Security 3 (2006) 646–655

6. Almeshekah, M.H., Spafford, E.H., Atallah, M.J.: Improving security using decep-
tion. Technical Report CERIAS Tech Report 2013-13, Center for Education and
Research Information Assurance and Security, Purdue University (2013)

7. Herley, C., Florencio, D.: Protecting financial institutions from brute-force attacks.
In: SEC’08. (2008) 681–685

8. Bojinov, H., Bursztein, E., Boyen, X., Boneh, D.: Kamouflage: Loss-resistant pass-
word management. In: Computer Security–ESORICS 2010, Springer (2010) 286–
302

9. Juels, A., Rivest, R.L.: Honeywords: Making password-cracking detectable. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communica-
tions Security. CCS ’13, New York, NY, USA, ACM (2013) 145–160

10. Burnett, M.: The pathetic reality of adobe password hints. https://xato.net/

windows-security/adobe-password-hints

11. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: Security and Privacy (SP), 2012 IEEE Symposium on, IEEE (2012)
538–552

https://xato.net/windows-security/adobe-password-hints
https://xato.net/windows-security/adobe-password-hints


12. Malone, D., Maher, K.: Investigating the distribution of password choices. In:
Proceedings of the 21st International Conference on World Wide Web. WWW ’12,
New York, NY, USA, ACM (2012) 301–310

13. Burnett, M.: 10000 top passwords. https://xato.net/passwords/

more-top-worst-passwords/

14. Ahn, L.V., Blum, M., Hopper, N.J., Langford, J.: Captcha: Using hard ai prob-
lems for security. In: Proceedings of the 22nd International Conference on Theory
and Applications of Cryptographic Techniques–EUROCRYPT’03. Volume 2656 of
Lecture Notes in Computer Science., Berlin, Heidelberg, Springer-Verlag (2003)
294–311

15. Zhao, L., Mannan, M.: Explicit authentication response considered harmful. In:
Proceedings of the 2013 Workshop on New Security Paradigms Workshop–NSPW
’13, New York, NY, USA, ACM (2013) 77–86

16. Genc, Z.A., Kardas, S., Sabir, K.M.: Examination of a new defense mechanism:
Honeywords. Cryptology ePrint Archive, Report 2013/696 (2013)

17. Kelley, P.G., Komanduri, S., Mazurek, M.L., Shay, R., Vidas, T., Bauer, L.,
Christin, N., Cranor, L.F., Lopez, J.: Guess again (and again and again): Measur-
ing password strength by simulating password-cracking algorithms. In: Security
and Privacy (SP), 2012 IEEE Symposium on, IEEE (2012) 523–537

18. Bonneau, J., Preibusch, S.: The password thicket: Technical and market failures
in human authentication on the web. In: WEIS. (2010)

19. Notoatmodjo, G., Thomborson, C.: Passwords and perceptions. In: Proceedings
of the Seventh Australasian Conference on Information Security–AISC 2009, Aus-
tralian Computer Society, Inc. (2009) 71–78

20. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th international conference on World Wide Web, ACM Press (2007)
657–666

https://xato.net/passwords/more-top-worst-passwords/
https://xato.net/passwords/more-top-worst-passwords/

	Some Remarks on Honeyword Based Password-Cracking Detection

