
From Single-Bit to Multi-Bit Public-Key Encryption

via Non-Malleable Codes

Sandro Coretti1, Ueli Maurer1, Björn Tackmann1, and Daniele Venturi2

1ETH Zürich
2Sapienza University of Rome

May 9, 2014

Abstract

One approach towards basing public-key encryption schemes on weak and credible assump-
tions is to build “stronger” or more general schemes generically from “weaker” or more restricted
schemes. One particular line of work in this context, which has been initiated by Myers and
Shelat (FOCS ’09) and continued by Hohenberger, Lewko, and Waters (Eurocrypt ’12), is to
build a multi-bit chosen-ciphertext (CCA) secure public-key encryption scheme from a single-
bit CCA-secure one. While their approaches achieve the desired goal, it is fair to say that the
employed techniques are complicated and that the resulting ciphertext lengths are impractical.

We propose a completely different and surprisingly simple approach to solving this prob-
lem. While it is well-known that encrypting each bit of a plaintext string independently is
insecure—the resulting scheme is malleable—we show that applying a suitable non-malleable
code (Dziembowski et al., ICS ’10) to the plaintext and subsequently encrypting the resulting
codeword bit-by-bit results in a secure scheme. To the best of our knowledge, our result is the
first application of non-malleable codes in a context other than memory tampering.

The original notion of non-malleability is, however, not sufficient. We therefore prove that
(a simplified version of) the code of Dziembowski et al. is actually continuously non-malleable
(Faust et al., TCC ’14). Then, we show that this notion is sufficient for our application. Since
continuously non-malleable codes require to keep a single bit of (not necessarily secret) state in
the decoding, the decryption of our scheme also has to keep this state. This slight generalization
of the traditional formalization of public-key encryption schemes seems appropriate for applica-
tions. Compared to the previous approaches, our technique leads to conceptually simpler and
more efficient schemes.

Contents

1 Introduction 2
1.1 Overview 2
1.2 Outline of the Paper 3
1.3 More Details on Related Work . 6

2 Preliminaries 7
2.1 Random Systems 7
2.2 Channel Resources 8
2.3 Public-Key Encryption Schemes . 9
2.4 Continuously Non-Malleable Codes 10

3 From Single-Bit to Multi-Bit Chan-
nels 11
3.1 Single-bit Channels from Single-

bit PKE 12
3.2 Tying the Channels Together . . 12

4 Continuous Non-Malleability
against Bit-Wise Tampering 14
4.1 Proof of Theorem 3 15

4.2 Proof of Theorem 2 19

5 On the Necessity of Self-Destruct 22

5.1 Proof of Theorem 11 23

6 Conclusions 24

A Non-Malleable Codes and the One-
Time Pad 27

B The Composition Theorem of Con-
structive Cryptography 30

C (Replayable) Self-Destruct Chosen
Ciphertext Security 31

C.1 Formal Definition 31

C.2 Security Proof 32

D Continuous Non-Malleability
against Full Bit-Wise Tampering 33

1 Introduction

1.1 Overview

A public-key encryption (PKE) scheme enables a sender A to send messages to a receiver B confi-
dentially if B can send a single message, the public key, to A authentically. A encrypts a message
with the public key and sends the ciphertext to B via a channel that could be authenticated or
insecure, and B decrypts the received ciphertext using the private key. Following the seminal work
of Diffie and Hellman [14], the first formal definition of public-key encryption has been provided
by Goldwasser and Micali [24], and to date numerous instantiations of this concept have been pro-
posed, e.g., [41, 17, 11, 21, 25, 27, 42, 40], for different security properties and based on various
different computational assumptions.

One natural approach towards developing public-key encryption schemes based on weak and
credible assumptions is to build “stronger” or more general schemes generically from “weaker” or
less general ones. While the “holy grail”—generically building a chosen-ciphertext secure scheme
based on any chosen-plaintext secure one—has so far remained out of reach, and despite negative
results [23], various interesting positive results have been shown. For instance, Cramer et al. [10]
build bounded-query chosen-ciphertext secure schemes from chosen-plaintext secure ones, Choi et
al. [5] non-malleable schemes from chosen-plaintext secure ones, and Lin and Tessaro [29] show how
the security of weakly chosen-ciphertext secure schemes can be amplified. A line of work started
by Myers, Sergi, and shelat [38] and continued by Dachman-Soled [12] shows how to obtain chosen-
ciphertext secure schemes from plaintext-aware ones. Most relevant for our work, however, are the
results of Myers and Shelat [39] and Hohenberger, Lewko, and Waters [26], which generically build

2

a multi-bit chosen-ciphertext secure scheme from a single-bit chosen-ciphertext secure one.
A näıve approach to solving this problem would be to encrypt each bit m[i] of a plaintext

m = (m[1], . . . ,m[k]) under an independent public key pki of the single-bit scheme. Unfortunately,
this simple approach does not yield chosen-ciphertext security. The reason is that the above scheme
is malleable: Given a ciphertext e = (e1, . . . , ek), where ei is an encryption of m[i], an attacker can
generate a new ciphertext e′ 6= e that decrypts to a related message, for instance by copying the
first ciphertext component e1 and replacing the other components by fresh encryptions of, say, 0.

The idea underlying our approach is remarkably simple: As the insufficiency of the näıve scheme
stems from its malleability, we first encode the message using a non-malleable1 code (a concept
introduced by Dziembowski et al. [16]) to protect its integrity, obtaining an n-bit codeword c =
(c[1], . . . , c[n]). Then, we encrypt each bit c[i] of the codeword using public key pki as in the näıve
protocol from above.

Unfortunately, non-malleable codes as introduced by [16] are not sufficient: Since they are only
secure against a single tampering, the security of the resulting scheme would only hold with respect
to a single decryption. Continuously non-malleable codes (Faust et al. [18]) allow us to extend
this guarantee to an a priori unbounded number of decryptions. These codes, however, require
us to keep one bit of state for the decryption: The code “self-destructs” once an attack has been
detected, and, therefore, further decryptions must be prevented. This is a restriction that we prove
to be unavoidable.

Overall, we obtain a scheme that achieves chosen-ciphertext security for an a priori unbounded
number of decryptions (unlike, e.g., [10, 5]) and becomes dysfunctional only in the event of an
explicit attack. This restriction is acceptable in the usual scenarios where the attacker can anyway
violate the availability by preventing messages from being delivered.

1.2 Outline of the Paper

The above issue of building a multi-bit PKE scheme from a single-bit one and our approach based
on non-malleable codes can be rephrased in the framework of constructive cryptography [31, 33].
This permits splitting the security proof of our scheme into two independent steps. For the first
step, which includes a reduction from breaking the CCA-security of the 1-bit scheme, we can reuse
a previous result [7]. The second step—the main technical contribution of this paper—is purely
information-theoretic.

Constructive cryptography. Security statements for cryptographic schemes can be stated as
constructions of a “stronger” or more useful desired resource from a “weaker” or more restricted
assumed one. Two such construction steps can be composed, i.e., if a protocol π constructs a

resource S from an assumed resource R, denoted by R
π

==⇒ S, and, additionally, a protocol ψ
assumes resource S and constructs a resource T , then the composition theorem of constructive
cryptography states that the composed protocol, denoted ψ ◦ π, constructs resource T from R.
The resources considered in this work are different types of communication channels between two
parties A and B; a channel is a resource that involves three entities: the sender, the receiver, and
a (potential) attacker E.

1Roughly, a code is non-malleable w.r.t. a function class F , if the message obtained by decoding a codeword
modified via a function in F is either the original message or a completely unrelated value.

3

We use and extend the notation by [35], denoting different types of channels by different arrow
symbols. A confidential channel (later denoted −�→→•) hides the messages sent by A from the
attacker E but potentially allows her to inject independent messages; an authenticated channel
(later denoted •−�→→) is dual to the confidential channel in that it potentially leaks the message to
the attacker but prevents modifications and injections; an insecure channel (later denoted − →→)
protects neither the confidentiality nor the authenticity. In all cases, the double arrow head indicates
that the channel can be used to transmit multiple messages. A single arrow head, instead, means
that channels are single-use.

Warm-up: Dealing with the malleability of the one-time pad. The one-time pad allows
to encrypt an n-bit message m using an n-bit shared key κ by computing the ciphertext e = m⊕κ.
If e is sent via an insecure channel, an attacker can replace it by a different ciphertext e′, in
which case the receiver will compute m′ = e′ ⊕ κ = m ⊕ (e ⊕ e′). This can be seen, as described
in [34], as constructing from an insecure channel and a shared secret n-bit key an “XOR-malleable”
channel (denoted −−⊕→•), which is confidential but allows the attacker to specify a mask δ ∈ {0, 1}n
(= e⊕ e′) to be XORed to the transmitted message.

Non-malleable codes can be used to deal with the XOR-malleability. To transmit a k-bit mes-
sage m, we encode m with a (k, n)-bit non-malleable code, obtaining an n-bit codeword c, which
we transmit via the XOR-malleable channel −−⊕→•. Since by XORing a mask δ to a codeword
transmitted via −−⊕→• the attacker can influence the value of each bit of the codeword only in-
dependently, a code C that is non-malleable w.r.t. the function class Fbit, which (in particular)
allows to either “keep” or “flip” each bit of a codeword only individually, is sufficient. Indeed,
the non-malleability of C implies that the decoded message will be either the original message or
a completely unrelated value, which is the same guarantee as formulated by the single-message
confidential channel (denoted −→•), and hence using C, one achieves the construction

−−⊕→• ==⇒ −→•.

A more detailed treatment and a formalization of this example appears in Appendix A; suitable
non-malleable codes are described in [16, 4].

Dealing with the malleability of multiple single-bit encryptions. Following [7], a PKE
scheme is chosen-ciphertext secure if and only if it constructs a confidential channel −�→→• from A
to B from an authenticated channel←−• from B to A and an insecure channel − →→ from A to B [7].
Consequently, a single-bit public-key encryption scheme constructs a single-bit confidential channel,

denoted by
1-bit

−�→→•. By the composition theorem, n copies of a single-bit encryption scheme construct

n instances of the channel
1-bit

−�→→•, written
[1-bit

−�→→•
]n

.
Thus, the remaining step is showing how to achieve the construction[1-bit

−�→→•
]n

==⇒
k-bit

−�→→• (1)

for some k > 1. Then, by the composition theorem, plugging these two steps together yields a
construction of a k-bit confidential channel from an authenticated channel and an insecure channel,
and thus, using the result from [7] again, is a chosen-ciphertext secure PKE scheme.

To achieve construction (1), we use non-malleable codes. The fact that the channels are multiple-
use leads to two important differences to the one-time-pad example above: First, the attacker can

4

fabricate multiple codewords, which are then decoded. Second, these messages can be created by
combining any of the bits in each channel. This results in a different class of tampering functions,
called Fcopy, against which the code needs to be secure.

We build a continuously non-malleable code w.r.t. Fcopy; the code consists of a linear error-
correcting secret sharing (LECSS) scheme and can be seen as a simplified version of the code
in [16]. The security proof of the code proceeds in two steps: First, we prove that it is continuously
non-malleable w.r.t. Fcopy against tampering with a single encoding. Then, we show that if a code
is continuously non-malleable w.r.t. Fcopy against tampering with a single encoding, then it is also
adaptively continuously non-malleable w.r.t. Fcopy, i.e., against tampering with many encodings
simultaneously.2 These two steps are the technical heart of this work.

On the necessity of “self-destruct”. The description of our main protocol above omitted one
important detail. The code, to be continuously non-malleable, has to “self-destruct” in the event
of a decoding error. For the application in the setting of public-key encryption, this means that
the decryption algorithm also has to deny processing any further ciphertext once the code self-
destructs, which requires storing a single bit of information. We formalize this as a resource FLAG
allowing to store a single (publicly readable) bit. The necessity of self-destruct is not an artifact of
our proof technique: We show that without self-destruct no code can be continuously non-malleable
with respect to Fcopy, which means in particular that no such code is sufficient for the constructive
statement we aim for. This proof can be found in Section 5.

For practical applications, instead of registering an encryption public key at a certification
authority (CA), the receiver can register a signature verification key and publish a new, signed
encryption public key (e.g., on his web page) once the decryption self-destructs. This is different
from bounded-query secure schemes, which can be used to process only an a priori fixed number
of messages. In our scheme, the key only needs to be replaced in the event of an attack, and if no
attack occurs, the number of possible decryptions is a priori unbounded. This methodology could
even lead to stronger security statements in other related constructions.

Game-based security. The security of our scheme can also be captured by a game-based notion.
This notion, called self-destruct chosen-ciphertext security (SD-CCA), is a CCA variant that allows
the scheme to self-destruct in case it detects an invalid ciphertext. The standard CCA game can
easily be extended to include the self-destruct mode of the decryption: The decryption oracle keeps
answering decryption queries as long as no invalid ciphertext (i.e., a ciphertext upon which the
decryption algorithm outputs an error symbol) is received; after such an event occurs, no further
decryption query is answered.

The guarantees of SD-CCA are perhaps best understood if compared to the q-bounded CCA
notion by [5]. While q-CCA allows an a priori determined number q of decryption queries, SD-CCA
allows an arbitrary number of valid decryption queries and one invalid query. From a practical view-
point, an attacker can efficiently violate the availability with a scheme of either notion. However,
as long as no invalid ciphertexts are received, an SD-CCA scheme can run indefinitely, whereas
a q-CCA scheme has to necessarily stop after q decryptions. A formal definition of SD-CCA and
further discussion can be found in Appendix C.

One can show that SD-CCA security can in fact be achieved from CPA security only [8], by
generalizing the approach of Choi et al. [5]. The resulting scheme, however, is considerably less

2We remark that all our definitions are based on non-malleability and not on strong non-malleability [16].

5

efficient than the one we provide in this paper.

1.3 More Details on Related Work

The work of Hohenberger et al. [26]—building on the work of Myers and Shelat [39]—describes a
multi-bit CCA-secure encrytion scheme from a single-bit CCA-secure one, a CPA-secure one, and a
1-query-bounded CCA-secure one. Their scheme is rather sophisticated and has a somewhat circular
structure, requiring a complex security proof. The public key is of the form pk = (pkin , pkA, pkB),
where the “inner” public key pkin is the public key of a DCCA secure PKE scheme, and the “outer”
public keys pkA and pkB are, respectively, the public key of a 1-bounded CCA and a CPA secure
PKE scheme. To encrypt a k-bit message m one first encrypts a tuple (rA, rB,m), using the “inner”
public key, obtaining a ciphertext ein , where rA and rB are thought as being the randomness for
the “outer” encryption scheme. Next, one has to encrypt ein under the “outer” public key pkA
(resp. pkB) using randomness rA (resp. rB) and thus obtaining a ciphertext eA (resp. eB). The
output ciphertext is e = (eA, eB).

To use the above scheme, we have to instantiate the DCCA, 1-bounded CCA and CPA compo-
nents. As argued in [26], all schemes can be instantiated using a single-bit IND-CCA PKE scheme
yielding a fully black-box construction of a multi-bit IND-CCA PKE scheme from a single-bit IND-
CCA PKE scheme. Let us denote with γp (resp., γe) the bit-length of the public key (resp., the
ciphertext) for the single-bit IND-CCA PKE scheme. When we refer to the construction of [10] for
the 1-bounded CCA component, we get a public key of size roughly (3 + 16s)γp for the public key
and (k + 2s) · 4s · γ2

e for the ciphertext, for security parameter s.3

In contrast, our scheme instantiated with the information-theoretic LECSS scheme of [16] has
a ciphertext of length ≈ 5kγe and a public key of length kγp. Note that the length of the public
key depends on the length of the message, as we need independent public keys for each encrypted
bit (whereas the DCCA scheme can use always the same public key). However, we observe that
when k is not too large, e.g. in case the PKE scheme is used as a key encapsulation mechanism,
we would have k ≈ s yielding public keys of comparable size. On the negative side, recall that
our construction needs one bit of (potentially public) storage to self-destruct in case an invalid
ciphertext is processed, which is not required in [26].

As shown in [7], the constructive security statement for public-key encryption corresponds to
RCCA-security, a notion proposed by Canetti et al. [2]. Hence, our scheme actually achieves self-
destruct RCCA-security. We remark, however, that if one is interested in CCA-security, this can
be achieved generically from RCCA-security [2]. Moreover, we conjecture that when instantiated
with a strong adaptively continuously non-malleable code w.r.t. Fcopy, our approach actually yields
a scheme that is CCA-secure.

Non-malleable codes. Beyond the constructions of [16, 4, 18], non-malleable codes exists against
block-wise tampering [6], against split-state tampering—both information-theoretic [15, 1] and com-
putational [30]—and in a setting where the computational complexity of the tampering functions
is somewhat limited [3, 20]. We stress that the typical application of non-malleable codes is to
protect cryptographic schemes against memory tampering (see, e.g., [16, 13]). To the best of our
knowledge, this paper shows the first application of non-malleable codes beyond tamper resilience.

3For simplicity, we assumed that the random strings rA, rB are computed by stretching the seed (of length s) of
a pseudo-random generator.

6

2 Preliminaries

2.1 Random Systems

Resources and converters. We use the concepts and terminology of abstract [33] and construc-
tive cryptography [31]. The resources we consider are different types of communication channels,
which are systems with three interfaces labeled by A, B, and E. A converter is a two-interface
system which is directed in that it has an inside and an outside interface. Converters model proto-
col engines that are used by the parties, and using a protocol is modeled by connecting the party’s
interface of the resource to the inside interface of the converter (which hides those two interfaces)
and using the outside interface of the converter instead. We generally use upper-case, bold-face
letters (e.g., R, S) or channel symbols (e.g., •−�→→) to denote resources or single-interface systems
and lower-case Greek letters (e.g., α, β) or sans-serif fonts (e.g., enc, dec) for converters. We denote
by Φ the set of all resources and by Σ the set of all converters.

For I ∈ {A,B,E}, a resource R ∈ Φ, and a converter α ∈ Σ, the expression αIR denotes the
composite system obtained by connecting the inside interface of α to interface I of R; the outside
interface of α becomes the I-interface of the composite system. The system αIR is again a resource
(cf. Figure 5 on page 13). For two resources R and S, [R,S] denotes the parallel composition of
R and S. For each I ∈ {A,B,E}, the I-interfaces of R and S are merged and become the sub-
interfaces of the I-interface of [R,S].

Distinguishers. A distinguisher D connects to all interfaces of a resource U and outputs a single
bit at the end of its interaction with U. The expression DU defines a binary random variable, and
the distinguishing advantage of a distinguisher D on two systems U and V is defined as

∆D(U,V) := |P[DU = 1]− P[DV = 1]|.

The distinguishing advantage measures how much the output distribution of D differs when it is
connected to either U or V. Note that the distinguishing advantage is a pseudo-metric.4

Reductions. When relating two distinguishing problems, it is convenient to use a special type
of system C that translates one setting into the other. Formally, C is a converter that has an
inside and an outside interface. When it is connected to a system S, which is denoted by CS, the
inside interface of C connects to the (merged) interface(s) of S and the outside interface of C is
the interface of the composed system. C is called a reduction system (or simply reduction).

To reduce distinguishing two systems S,T to distinguishing two systems U,V, one exhibits a
reduction C such that CS ≡ U and CT ≡ V. Then, for all distinguishers D, we have ∆D(U,V) =
∆D(CS,CT) = ∆DC(S,T). The last equality follows from the fact that C can also be thought of
as being part of the distinguisher, which follows from composition-order independence [33].

Discrete systems. The behavior of systems can be formalized by random systems as in [37, 32]:
A random system S is a sequence (pS

Y i|Xi)i≥1, where pS
Y i|Xi(y

i, xi) is the probability of observing

the outputs yi = (y1, . . . , yi) given the inputs xi = (x1, . . . , xi). If for two systems R and S,

pR
Y i|Xi = pS

Y i|Xi

4That is, it is symmetric, satisfies the triangle inequality, and ∆D(R,R) = 0 for all D and R.

7

for all i and for all parameters where both are defined, they are called equivalent, denoted by R ≡ S.
In that case, ∆D(R,S) = 0 for all distinguishers D.

A system S can be extended by a so-called monotone binary output (or MBO) B, which is an
additional one-bit output B1, B2, . . . with the property that Bi = 1 implies Bi+1 = 1 for all i.5 The

enhanced system is denoted by Ŝ, and its behavior is described by the sequence (pŜ
Y i,Bi|Xi)i≥1. If

for two systems R̂ and Ŝ with MBOs,

pR̂
Y i,Bi=0|Xi = pŜ

Y i,Bi=0|Xi

for all i, they are called game equivalent, which is denoted by R̂
g
≡ Ŝ. In such a case, ∆D(R,S) ≤

ΓD(R̂) = ΓD(Ŝ), where ΓD(R̂) denotes the probability that D provokes the MBO. For more details
and a proof of this fact, consult [32].

The notion of construction. We formalize the security of protocols via the notion of construc-
tion, introduced in [31]:

Definition 1. Let Φ and Σ be as above, and let ε1 and ε2 be two functions mapping each distin-
guisher D to a real number in [0, 1]. A protocol π = (π1, π2) ∈ Σ2 constructs resource S ∈ Φ from

resource R ∈ Φ with distance (ε1, ε2) and with respect the simulator σ ∈ Σ, denoted R
π,σ,(ε1,ε2)

==⇒ S,
if for all distinguishers D,{

∆D(π1
Aπ2

B⊥ER,⊥ES) ≤ ε1(D) (availability)
∆D(π1

Aπ2
BR, σES) ≤ ε2(D) (security).

The availability condition captures that a protocol must correctly implement the functionality
of the constructed resource in the absence of the attacker. The security condition models the
requirement that everything the attacker can achieve in the setting with the assumed resource
and the protocol, she can also accomplish in the setting with the constructed resource (using the
simulator to translate the behavior).

2.2 Channel Resources

From the perspective of constructive cryptography, the purpose of a public-key encryption scheme
is to construct a confidential channel from non-confidential channels. Here, a channel is a resource
that involves a sender, a receiver, and—to model channels with different levels of security—an
attacker. The main type of channels relevant to this work are defined below.

Insecure multiple-use channel. We specify the insecure channel with respect to a set {A,B,E}
of interfaces, and parametrize the channel by a message space {M} ⊆ {0, 1}∗. The insecure
channel − →→ transmits multiple messages and corresponds to, for instance, communication via the
Internet. If no attacker is present (i.e., in case ⊥E− →→), then all messages are transmitted from
A to B faithfully. Otherwise (for − →→), the communication can be controlled via the E-interface,
i.e., the attacker learns all messages input at the A-interface and chooses the messages to be output
at the B-interface. The channel is described in more detail in Figure 1.

5In other words, once the MBO is 1, it cannot return to 0.

8

The channel ⊥E− →→

(Repeatedly) Upon input a mes-
sage m at the A-interface, out-
put m at the B-interface.

The channel − →→ with accessible E-interface

• (Repeatedly) Upon input a message m at the A-
interface, output m at the E-interface.
• (Repeatedly) Upon input a message m at the E-

interface, output m at the B-interface.

Figure 1: Insecure, multiple-use communication channel from A to B, denoted − →→ .

Authenticated (unreliable) single-use channel. The (single-use) authenticated channel •−→,
described in Figure 2, is also formulated in the {A,B,E}-setting and allows the sender A to
transmit a single message to the receiver B authentically. That means, while the attacker (at
the E-interface) can still read the transmitted message, the only influence allowed is delaying the
message (arbitrarily, i.e., there is no guarantee that the message will ever be delivered). The channel
guarantees that if a message is delivered to B, then this message was input by A before. There are
different constructions that result in the channel ←−•, based on, for instance, MACs or signature
schemes.

The channel ⊥E•−→

Upon input a message m at the
A-interface, output m at the B-
interface.

The channel •−→ with accessible E-interface

• Upon input a message m at the A-interface, output
m at the E-interface.
• Accept at the E-interface a bit d ∈ {0, 1}, on input
d = 0, output m at the B-interface.

Figure 2: Authenticated, single-use communication channel from A to B, denoted •−→.

Confidential multiple-use channel. The k-bit confidential channel is also specified with inter-

faces in {A,B,E}. The channel
k-bit

−�→→• transmits multiple messages. If no attacker is present (i.e.,

in case ⊥E
k-bit

−�→→•), then all messages are transmitted from A to B faithfully. Otherwise (for
k-bit

−�→→•),
on input a message m ∈ {0, 1}k at the A-interface, the message m is stored in a buffer B. The
attacker can then choose messages from the buffer B (by using an index, since it might not know
the messages) to be delivered at the B-interface, or inject “fresh” messages from {0, 1}k which are
then also output at the B-interface. The channel is described in more detail in Figure 3.

2.3 Public-Key Encryption Schemes

A public-key encryption (PKE) scheme with message space M ⊆ {0, 1}∗ and ciphertext space E
is defined as three algorithms Π = (K,E,D), where the key-generation algorithm K outputs a
key pair (pk, sk), the (probabilistic) encryption algorithm E takes a message m ∈ M and a public
key pk and outputs a ciphertext e ← Epk(m), and the decryption algorithm takes a ciphertext
e ∈ E and a secret key sk and outputs a plaintext m ← Dsk(e). The output of the decryption
algorithm can be the special symbol �, indicating an invalid ciphertext. A PKE scheme is correct
if m = Dsk(Epk(m)) (with probability 1 over the randomness in the encryption algorithm) for all

9

The channel ⊥E
k-bit

−�→→•

• On input m ∈ {0, 1}k at
interface A, output m at
interface B.

The channel
k-bit

−�→→• with accessible E-interface

• On the ith input mi ∈ {0, 1}k at interface A, output i
at the E-interface and store (i,mi) in buffer B.
• On input i ∈ N at interface E, if (i,m) ∈ B for some
m ∈ {0, 1}k, output m at interface B.
• On input m ∈ {0, 1}k at interface E, output m at the

interface B.

Figure 3: Confidential, multiple-use k-bit channel from A to B; denoted
k-bit

−�→→•.

System Sreal
F

init
β ← 0
i← 0

on (encode, x)
i← i+ 1

c(i)←$ Enc(x)

on (tamper, f) with f ∈ F (i)

if β = 1
output �

else

c′ ← f(c(1), . . . , c(i))
x′ ← Dec(c′)
if x′ = �

β ← 1
output x′

System Ssimu
F ,τ

init
β ← 0
i← 0

on (encode, x)
i← i+ 1

x(i)←$ x

on (tamper, f) with f ∈ F (i)

if β = 1
output �

else
x′←$ τ(i, f)
if x′ = �

β ← 1
if x′ = (same, j)

x′ ← x(j)

output x′

Figure 4: Systems Sreal
F and Ssimu

F ,τ defining adaptive continuous non-malleability of (Enc,Dec).

messages m and all key pairs (pk, sk) generated by K.

Chosen-ciphertext security. The standard bit-guessing game used to define security against
chosen-ciphertext attacks (CCA) is phrased as a distinguishing problem between two game systems
Gcca

0 and Gcca
1 (cf. Section 2.1), defined as follows: For a PKE scheme Π, both initially run the

key-generation algorithm to obtain (pk, sk) and output pk. Upon (the first) query (chall,m), Gcca
0

outputs an encryption e← Epk(m) of m and Gcca
1 an encryption e← Epk(m̄), called the challenge,

of a randomly chosen message m̄ of length |m|. Both systems answer decryption queries (dec, e′)
by returning m′ ← Dsk(e

′) at any time unless e′ equals the challenge e (if defined), in which case
the answer is test.

2.4 Continuously Non-Malleable Codes

Non-malleable codes, introduced in [16], are coding schemes that protect the encoded messages
against certain classes of adversarially chosen modifications, in the sense that the decoding will
result either in the original message or in an unrelated value.

Definition 2 (Coding scheme). A (k, n)-coding scheme (Enc,Dec) consists of a randomized en-
coding function Enc : {0, 1}k → {0, 1}n and a deterministic decoding function Dec : {0, 1}n →
{0, 1}k ∪ {�} such that Dec(Enc(x)) = x (with probability 1 over the randomness of the encoding
function) for each x ∈ {0, 1}k. The special symbol � indicates an invalid codeword.

In the original definition, the adversary is allowed to modify the codeword via a function of the
specified class F only once. Continuous non-malleability, introduced in [18], extends this guarantee

10

to the case where the adversary is allowed to perform multiple such modifications for a fixed target
codeword. The notion of adaptive continuous non-malleability considered here is an extension of
the one in [18] in that the adversary is allowed to adaptively specify messages and the functions
may depend on multiple codewords. That is, the class F is actually a sequence (F (i))i≥1 of function
families with F (i) ⊆ {f | f : ({0, 1}n)i → {0, 1}n}, and after encoding i messages, the adversary
chooses functions from F (i). A similar adaptive notion has been already considered for continuous
strong non-malleability in the split-state model [19].

Formally, adaptive continuous non-malleability w.r.t. F is defined by comparing the two random
systems Sreal

F and Ssimu
F ,τ defined in Figure 4. Both systems expect to interact with a distinguisher D,

whose objective is to tell the two systems apart. System Sreal
F produces a random encoding c(i) of

each message x(i) specified by D and allows D to repeatedly issue tampering functions f ∈ F (i). For
each such query, Sreal

F computes the modified codeword c′ = f(c(1), . . . , c(i)) and outputs Dec(c′).
Whenever Dec(c′) = �, the system enters a “self-destruct” mode, in which all further queries are
replied with �.

The second random system, Ssimu
F ,τ , features a simulator τ , which is allowed to keep state. The

simulator repeatedly takes a tampering function and outputs either a message x′, (same, i), or �,
where (same, i) is used by τ to indicate that (it believes that) the tampering function has copied
the ith encoding. System Ssimu

F ,τ outputs whatever τ outputs, except that (same, i) is replaced by

the ith message x(i) specified by D. Moreover, in case of �, Ssimu
F ,τ “self-destructs”.

For `, q ∈ N, Sreal
F ,`,q is the system that behaves as Sreal

F except that only the first ` encode-queries

and the first q tamper-queries are handled (and similarly for Ssimu
F ,τ,`,q and Ssimu

F ,τ). Note that by

setting ` = 1, one recovers continuous non-malleability,6 and by additionally setting q = 1 the
original definition of non-malleability.

Definition 3 (Adaptive continuous non-malleability). Consider a sequence F = (F (i))i≥1 of func-
tion families F (i) ⊆ {f | f : ({0, 1}n)i → {0, 1}n} and let `, q ∈ N. A coding scheme (Enc,Dec)
is adaptively continuously (F , ε, `, q)-non-malleable (or simply (F , ε, `, q)-non-malleable) if there
exists a simulator τ such that ∆D(Sreal

F ,`,q,S
simu
F ,τ,`,q) ≤ ε for all distinguishers D.

3 From Single-Bit to Multi-Bit Channels

In this section we show how to combine a single-bit chosen-ciphertext secure (CCA) PKE scheme
with an adaptively continuously non-malleable code to achieve a multi-bit chosen-ciphertext secure
scheme (see Section 2.3 for a definition of CCA security). All channel resources that appear in this
section are formally defined in Section 2.2.

Let k > 1. As shown in [7], in constructive terms obtaining a k-bit CCA-secure scheme means
achieving the construction

[←−•,− →→] ==⇒
k-bit

−�→→•, (2)

where the (single-use) authenticated channel ←−• can be used for transmitting the public key and
the insecure channel − →→ for sending ciphertexts.7 Our approach to achieve construction (2) can
be modularly divided into two main constructive steps, as explained in the following subsections.

6Being based on strong non-malleability, the notion of [18] is actually stronger than ours.
7According to [7], a scheme that achieves (2) is in fact only guaranteed to be RCCA-secure [2], a notion sufficient

for most applications. Note, however, that full CCA security can be achieved generically from RCCA security [2].

11

3.1 Single-bit Channels from Single-bit PKE

Given a 1-bit CCA-secure PKE scheme Π, one can build a protocol pke = (encrypt, decrypt) that
achieves the construction

[←−•,− →→]
pke

==⇒ [
1-bit

−�→→•]n (3)

for any n ∈ N. More precisely, following [7, Theorem 2], a 1-bit CCA-secure PKE scheme can be
seen as a protocol pke1 = (encrypt1, decrypt1) that achieves the construction

[←−•,− →→]
(encrypt1,decrypt1)

==⇒
1-bit

−�→→•, (4)

where, in a nutshell, decrypt1 is responsible for key generation as well as decryption and encrypt1

for encryption.
Using the composition theorem (see Appendix B), one obtains

[←−•,− →→]n
(encrypt′1,decrypt

′
1)

==⇒ [
1-bit

−�→→•]n, (5)

where encrypt′1 and decrypt′1 are the n-fold parallel composition of encrypt1 and decrypt1, respec-
tively. A slight modification pke′′1 of protocol pke′1 = (encrypt′1, decrypt′1) allows to use [←−•, [− →→]n]
as the assumed resource. Essentially, all public keys are concatenated and sent via a single←−•. A
proof of security is straight-forward. Moreover, there is a simple protocol s that constructs [− →→]n

from − →→ . Essentially, it appends i to a message when it is to be sent over the ith channel. Thus,
using the composition theorem again, the concatenation pke := pke′′1 ◦ s achieves construction (3).

3.2 Tying the Channels Together

To achieve construction (2), it remains to construct a k-bit confidential channel from the n single-bit
confidential channels. This is achieved by having the sender encode the message with a (k, n)-non-
malleable code and sending the resulting codeword over the 1-bit channels, while the receiver
decodes all n-bit strings received on these channels.

Due to the self-destruct property of continuously non-malleable codes, the receiver must stop
decoding once an invalid codeword has been received. This requires keeping a single bit of state,
which we formalize by the additional resource FLAG: Initially, it internally sets β ← 0. When read
is input at interface B, FLAG outputs β at B. When B inputs set, FLAG sets β ← 1 and outputs
β at E.

Summarizing, the goal is to develop a protocol nmc = (enc, dec) that achieves

[FLAG, [
1-bit

−�→→•]n]
nmc

==⇒
k-bit

−�→→• . (6)

Note that the need for FLAG is not an artifact of our proof technique: In Section 5 we show that
k-bit

−�→→• cannot be constructed from [
1-bit

−�→→•]n by a stateless protocol.
Let (Enc,Dec) be a (k, n)-coding scheme and consider the following protocol nmc = (enc, dec)

(cf. Figure 4): Converter enc encodes every message m ∈ {0, 1}k input at its outside interface with
fresh randomness, resulting in an encoding c = (c[1], . . . , c[n]) ← Enc(m). Then, for i = 1, . . . , n,
it outputs bit c[i] to the ith channel at the inside interface. Converter dec, whenever it receives an
n-bit string c′ = (c′[1], . . . , c′[n]) (where the ith bit c′[i] was sent via the ith channel), it outputs
read at the inside sub-interface corresponding to resource FLAG. If the value subsequently received

12

FLAG

1-bit

−�→→•

...

1-bit

−�→→•

enc decA B

E

A B

E

k-bit

−�→→•

σ

Figure 5: Left: The assumed resource [FLAG, [
1-bit

−�→→•]n] with protocol converters enc and dec at-

tached to interfaces A and B, denoted encAdecB[FLAG, [
1-bit

−�→→•]n]. Right: The constructed resource
k-bit

−�→→• with simulator σ attached to the E-interface, denoted σE
k-bit

−�→→•. In particular, σ must

simulate the E-interfaces of FLAG and [
1-bit

−�→→•]n. The protocol is secure if the two systems are
indistinguishable.

at the inside interface is β = 1, dec outputs � at its outside interface. Otherwise, it computes
m′ ← Dec(c′) and outputs m′ at the outside interface. If m′ = �, it also outputs set at the inside
interface.

The required non-malleability. Since each of the channels
1-bit

−�→→• allows the attacker to either
forward one of the bits in the channel or to inject a fresh bit which is either 0 or 1, this results in the
following class Fcopy of tampering functions against which the code needs to be secure: Let Fcopy :=

(F (i)
copy)i≥1 where F (i)

copy ⊆ {f | f : ({0, 1}n)i → {0, 1}n} and each function f ∈ F (i)
copy is characterized

by a vector χ(f) = (f1, . . . , fn) where fi ∈ {zero, one, copy1, . . . , copyi}, with the meaning that f
takes as input i codewords (c(1), . . . , c(i)) and outputs a codeword c′ = (c′[1], . . . , c′[n]) in which
each bit is either set to 0 (zero), set to 1 (one), or copied from the corresponding bit in a codeword
c(j) (copyj).

Theorem 1 (see below) implies that nmc achieves construction (6) if (Enc,Dec) is adaptively
continuously non-malleable w.r.t. Fcopy. We construct such a code in Section 4.

Theorem 1. For any `, q ∈ N, if (Enc,Dec) is (Fcopy, ε, `, q)-continuously non-malleable, there
exists a simulator σ such that

[FLAG, [
1-bit,`,q
−�→→•]n]

(enc,dec),σ,(0,ε)
==⇒

k-bit,`,q
−�→→• , (7)

where the additional superscripts `, q on a channel mean that it only processes the first ` queries at
the A-interface and only the first q queries at the E-interface.

Proof. The availability condition (7) holds by the correctness of the code.
Let F := Fcopy, Sreal

F := Sreal
F ,`,q, and Ssimu

F ,τ := Ssimu
F ,τ,`,q where τ is the simulator guaranteed to

exist by Definition 3. Consider the following simulator σ (based on τ), which simulates the E-sub-
interfaces of FLAG and the 1-bit confidential channels at its outside interface: Initially it sets β ← 0.
When i is received at the inside interface, it outputs i at each outside sub-interface corresponding

13

to a 1-bit confidential channel. Whenever σ receives one instruction to either deliver of inject one
bit8 at each outside sub-interface corresponding to one of the confidential channels, it assemble
these to a function f with χ(f) = (f1, . . . , fn) as follows: For all j = 1, . . . , n,

fj :=

zero if the instruction on the jth sub-interface is 0,

one if the instruction on the jth sub-interface is 1,

copyv if the instruction on the jth sub-interface is v.

Then, σ invokes τ to obtain x′←$ τ(i, f), where i is the number of instructions i received at the
inside interface so far. If β = 1, σ outputs � at the inside interface. Otherwise, if x′ = �, σ sets
β ← 1 and outputs it at the outside sub-interface corresponding to FLAG. If x′ = (same, j), σ
outputs j at the inside interface. Otherwise, it outputs x′.

Consider the following reduction C, which provides interfaces A, B, and E on the outside and
expects to connect to either Sreal

F or Ssimu
F ,τ on the inside. When a message m is input at the A-

interface, C outputs (encode,m) on the inside. Similarly to σ, it repeatedly collects instructions
input at the E-sub-interfaces and uses them to form a tamper function f , which it outputs on
the inside as (tamper, f). Then, it outputs the answer x′ received on the inside at the B-interface.
Additionally, if x′ = �, C outputs 1 at the E-sub-interface corresponding to FLAG and subsequently
only outputs � at interface B.

One observes that

CSreal
F ≡ encAdecB[FLAG, [

1-bit,`,q
−�→→•]n] and CSsimu

F ,τ ≡ σE
k-bit,`,q
−�→→• .

Thus, for all distinguishers D,

∆D(encAdecB[FLAG, [
1-bit,`,q
−�→→•]n], σE

k-bit,`,q
−�→→•) = ∆D(CSreal

F ,CSsimu
F ,τ) = ∆DC(Sreal

F ,Ssimu
F ,τ) ≤ ε.

4 Continuous Non-Malleability against Bit-Wise Tampering

In this section, we describe a code based on a linear error-correcting secret-sharing code (LECSS)
and prove it adaptively continuously non-malleable w.r.t. Fcopy. As we argue below, it is actually
sufficient to prove that the code is continuously non-malleable for a single encoding, which is
formalized by the following (generic) theorem. The proof appears in Section 4.2.

Let ` ∈ N. Consider the sequence Fcopy = (F (i)
copy)i∈[`] (as introduced in Section 3). The tran-

sition from (F (1)
copy, ·, 1, ·)- to (Fcopy, ·, `, ·)-non-malleability is achieved generically for an arbitrary

(k, n)-coding scheme (Enc,Dec). In particular, we prove the following theorem:

Theorem 2. If (Enc,Dec) is continuously (Fcopy, ε, 1, q)-non-malleable, it is also continuously

(Fcopy, 2`ε+ q`
2k
, `, q)-non-malleable, for all ` ∈ N.

8For simplicity, assume that no deliver instruction for some v greater than the number of instructions i received
at the inside interface so far is input.

14

The use of a LECSS is inspired by the work of [16], who proposed a (single-shot) non-malleable
code against bit-wise tampering based on a LECSS and one other code. As we do not need to
provide non-malleability against “bit-flips”, using only the LECSS is sufficient for our purposes.
The following definition is taken from [16]:

Definition 4 (LECSS code). A (k, n)-coding scheme (Enc,Dec) is a (d, t)-linear error-correcting
secret-sharing (LECSS) code if the following properties hold:

• Linearity: For all c ∈ {0, 1}n such that Dec(c) 6= ⊥, all δ ∈ {0, 1}n, we have

Dec(c+ δ) =

{
⊥ if Dec(δ) = ⊥
Dec(c) + Dec(δ) otherwise.

• Distance d: For all non-zero c′ ∈ {0, 1}n with Hamming weight wH(c′) < d, we have
Dec(c′) = ⊥.
• Secrecy t: For any fixed x ∈ {0, 1}k, the bits of Enc(x) are individually uniform and t-wise

independent (over the randomness in the encoding).

It turns out that a LECSS code is already continuously non-malleable with respect to Fcopy:

Theorem 3. Assume that (Enc,Dec) is a (t, d)-LECSS (k, n)-code for d > n/4 and d > t. Then
(Enc,Dec) is (Fcopy, ε, 1, q)-continuously non-malleable for all q ∈ N and

ε = 3 · 2−t +

(
t

n(d/n− 1/4)2

)t/2
.

4.1 Proof of Theorem 3

For brevity, we write Fset for F (1)
copy below, with the idea that the tampering functions in F (1)

copy only
allow to keep a bit or to set it to 0 or to 1. More formally, a function f ∈ Fset can be characterized
by a vector χ(f) = (f1, . . . , fn) where fi ∈ {zero, one, keep}, with the meaning that f takes as input
a codeword c and outputs a codeword c′ = (c′[1], . . . , c′[n]) in which each bit is either set to 0 (zero),
set to 1 (one), or left unchanged (keep).

For the proof of Theorem 3, fix q ∈ N and some distinguisher D. For the remainder of this
section, let F := Fset, Sreal

F := Sreal
F ,1,q and Ssimu

F ,τ := Ssimu
F ,τ,1,q (for a simulator τ to be determined).

For a tamper query f ∈ F with χ(f) = (f1, . . . , fn) issued by D, let A(f) := {i | fi ∈ {zero, one}},
B(f) := {i | fi ∈ {keep}}, and a(f) := |A(f)|. Moreover, let val(zero) := 0 and val(one) := 1.
Queries f with 0 ≤ a(f) ≤ t, t < a(f) < n− t, and n− t ≤ a(f) ≤ n are called low queries, middle
queries, and high queries, respectively.

Handling Middle Queries. Consider the hybrid system H that proceeds as Sreal
F , except that

as soon as D specifies a middle query f , H self-destructs, i.e., answers f and all subsequent queries
with �.

Lemma 4. ∆D(Sreal
F ,H) ≤ 1

2t +
(

t
n(d/n−1/4)2

)t/2
.

15

Proof. Define a successful middle query to be a middle query that does not decode to �. On both
systems Sreal

F and H, one can define an MBO B (cf. Section 2.1) that is provoked if and only if the
first middle query is successful.

Clearly, Sreal
F and H behave identically until MBO B is provoked, thus Ŝreal

F
g
≡ Ĥ, and

∆D(Sreal
F ,H) ≤ ΓD(Ŝreal

F).

Towards bounding ΓD(Ŝreal
F), note first that adaptivity does not help in provoking B: For any

distinguisher D, there exists a non-adaptive distinguisher D′ with

ΓD(Ŝreal
F) ≤ ΓD′(Ŝreal

F). (8)

D′ proceeds as follows: First, it (internally) interacts with D only. Initially, it stores the message
x output by D internally. Whenever D outputs a low query, D′ answers with x. Whenever D
outputs a high query f = (f1, . . . , fn), D′ checks whether there exists a codeword c∗ that agrees
with f in positions i where fi ∈ {zero, one}. If it exists, it answers with Dec(c∗), otherwise with
�. As soon as D specifies a middle query, D′ stops its interaction with D and sends x and all the
queries to Ŝreal

F .
To prove (8), fix all randomness in experiment D′Sreal

F , i.e., the coins of D (inside D′) and the
randomness of the encoding (inside Sreal

F). Suppose D would provoke B in the direct interaction
with Sreal

F . In that case all the answers by D′ are equal to the answers by Sreal
F . This is due to

the fact that the distance of the LECSS is d > t; a successful low query must therefore result in
the original message x and a successful high query in Dec(c∗). Thus, whenever D provokes B, D′

provokes it as well.
It remains to analyze the success probability of non-adaptive distinguishers D′. Fix the coins of

D′; this determines the tamper queries. Suppose there is at least one middle case, as otherwise B is
trivially not provoked. The middle case’s success probability can be analyzed as in [16], which leads

to ΓD′(Ŝreal
F) ≤ 1

2t +
(

t
n(d/n−1/4)2

)t/2
(recall that the MBO cannot be provoked after an unsuccessful

first middle query).

Simulator. The final step of the proof consists of exhibiting a simulator τ such that ∆D(H,Ssimu
F ,τ)

is small. The indistinguishability proof is facilitated by defining two hardly distinguishable systems
B and B′ and a wrapper system W such that WB ≡ H and WB′ ≡ Ssimu

F ,τ .

System B works as follows: Initially, it takes a value x ∈ {0, 1}k, computes an encoding
(c[1], . . . , c[n])←$ Enc(x) of it, and outputs λ (where the symbol λ indicates an empty output).
Then, it repeatedly accepts guesses gi = (j, b), where (j, b) is a guess b for c[j]. If a guess gi is
correct, B returns ai = 1. Otherwise, it outputs ai = � and self-destructs (i.e., all future answers
are �). The system B′ behaves as B except that the initial input x is ignored and the c[1], . . . , c[n]
are chosen uniformly at random and independently.

The behavior of B (and similarly the one of B′) is described by a sequence (pB
Ai|Gi)i≥0 of

conditional probability distributions, where pB
Ai|Gi(a

i, gi) is the probability of observing the outputs

ai = (λ, a1, . . . , ai) given the inputs gi = (x, g1, . . . , gi). For simplicity, assume below that gi is such
that no position is guessed twice (a generalization is straight-forward) and that ai is of the form
{λ}{1}∗{�}∗ (as otherwise it has probability 0 anyway).

For system B, all i, and any gi, pB
Ai|Gi(a

i, gi) = 2−(s+1) if ai has s < min(i, t) leading 1’s; this

follows from the t-wise independence of the bits of Enc(x). All remaining output vectors ai, i.e.,

16

those with at least min(i, t) preceding 1’s, share a probability mass of 2−min(i,t), in a way that
depends on the code in use and on x. (It is easily verified that this yields a valid probability
distribution.) The behavior of B′ is obvious given the above (simply replace “t” by “n” in the
above description).

Lemma 5. ∆D(B,B′) ≤ 2−(t−1).

Proof. On both systems B and B′, one can define an MBO B that is zero as long as less than t
positions have been guessed correctly. In the following, B̂ and B̂′ denote B and B′ with the MBO,
respectively.

Analogously to the above, the behavior of B̂ (and similarly the one of B̂′) is described by a

sequence (pB̂
Ai,Bi=0|Gi)i≥0 of conditional probability distributions, where pB̂

Ai,Bi=0|Gi(a
i, gi) is the

probability of observing the outputs ai = (λ, a1, . . . , ai) and b0 = b1 = . . . = bi = 0 given the inputs
gi = (x, g1, . . . , gi). One observes that due to the t-wise independence of Enc(x)’s bits, for i < t,

pB̂
Ai,Bi=0|Gi(a

i, gi) = pB̂′

Ai,Bi=0|Gi(a
i, gi) =

2−(s+1) if ai has s < i leading 1’s,

2−i if ai has i leading 1’s, and

0 otherwise,

and for i ≥ t,

pB̂
Ai,Bi=0|Gi(a

i, gi) = pB̂′

Ai,Bi=0|Gi(a
i, gi) =

{
2−(s+1) if ai has s < t leading 1’s,

0 otherwise.

Therefore, B̂
g
≡ B̂′ and ∆D(B,B′) ≤ ΓD(B̂′). Observe that by an argument similar to the one

above, adaptivity does not help in provoking the MBO of B̂′. Thus, ΓD(B̂′) ≤ 2−(t−1), since an
optimal non-adaptive strategy simply tries to guess distinct positions.

Recall that the purpose of the wrapper system W is to emulate H using B. The key point is to
note that low queries f can be answered knowing only the positions A(f) of Enc(x), high queries
knowing only the positions in B(f), and middle queries can always be rejected. A full description
of W can be found in Figure 6. It has an outside interface o and an inside interface i; at the
latter interface, W expects to be connected to either B or B′. For notational convenience, let
val(zero) := 0 and val(one) := 1.

Lemma 6. WB ≡ H.

Proof. Since the distance of the LECSS is d > t, the following holds: A low query results in same if
all injected positions match the corresponding bits of the encoding, and in � otherwise. Similarly,
for a high query, there can be at most one codeword that matches the injected positions. If such a
codeword c∗ exists, the outcome is Dec(c∗) if the bits in the keep-positions match c∗, and otherwise
�. By inspection, it can be seen that W acts accordingly.

Consider now the system WB′. Due to the nature of B′, the behavior of WB′ is independent
of the value x that is initially encoded. This allows to easily design a simulator τ as required by
Definition 3. A full description of τ can be found in Figure 7.

Lemma 7. The simulator τ of Figure 7 satisfies WB′ ≡ Ssimu
F ,τ .

17

System W

init
∀i ∈ [n] : c[i]← λ

on first (encode, x) at o
output x at i

on (tamper, f) with 0 ≤ a(f) ≤ t at o
for i where fi ∈ A(f)

g ← val(fi)
if c[i] = λ

output (i, g) at i
get a ∈ {�, 1} at i
if a = �

self-destruct
c[i]← g

else
if c[i] 6= g

self-destruct

output x at out

on (tamper, f) with t < a(f) < n− t at o
self-destruct

on (tamper, f) with n− t ≤ a(f) ≤ n at o
for i where fi ∈ A(f)

c′[i]← val(fi)
if ∃codeword c∗ : ∀i ∈ A(f) : c′[i] = c∗[i]

for i where fi ∈ B(f)
g ← c∗[i]
if c[i] = λ

output (i, g) at i
get a ∈ {�, 1} at i
if a = �

self-destruct
c[i]← g

else
if c[i] 6= g

self-destruct

else
self-destruct

output Dec(c∗) at out

Figure 6: The wrapper system W. The command self-destruct causes W to output � at o and
to answer all future queries by �.

Simulator τ

init
∀i ∈ [n] : c[i]←$ {0, 1}

on (tamper, f) with 0 ≤ a(f) ≤ t
if ∀i ∈ A(f) : val(fi) = c[i]

return same
else

return �

on (tamper, f) with t < a(f) < n− t
return �

on (tamper, f) with n− t ≤ a(f) ≤ n
for i where fi ∈ A(f)

c′[i]← val(fi)
for i where fi ∈ B(f)

c′[i]← c[i]
c′ ← (c′[1] · · · c′[n])
return Dec(c′)

Figure 7: The simulator τ .

18

Proof. Consider the systems WB′ and Ssimu
F ,τ . Both internally choose uniform and independent bits

c[1], . . . , c[n]. System WB′ answers low queries with the value x initially encoded if all injected
positions match the corresponding random bits and with � otherwise. Simulator τ returns same in
the former case, which Ssimu

F ,τ replaces by x, and � in the latter case.
Observe that the answer by WB′ to a high query f always matches Dec(c′[1], . . . , c′[n]), where

for i ∈ A(f), c′[i] = val(fi), and for i ∈ B(f), c′[i] = c[i]: If no codeword c∗ matching the injected
positions exists, then Dec(c′[1], . . . , c′[n]) = �, which is also what WB′ outputs. If such c∗ exists
and c∗[i] = c[i] for all i ∈ B(f), the output of WB′ is Dec(c′[1], . . . , c′[n]). If there exists an i ∈ B(f)
with c∗[i] 6= c[i], WB′ outputs �, and in this case Dec(c′[1], . . . , c′[n]) = � since the distance of the
LECSS is d > t.

The proof of Theorem 3 now follows from a simple triangle inequality.

Proof (of Theorem 3). From Lemmas 4, 5, 6, and 7, one obtains that for all distinguishers D,

∆D(Sreal
F ,Ssimu

F ,τ) ≤ ∆D(Sreal
F ,H) + ∆D(H,WB)︸ ︷︷ ︸

=0

+ ∆D(WB,WB′)︸ ︷︷ ︸
=∆DW(B,B′)

+ ∆D(WB′,Ssimu
F ,τ)︸ ︷︷ ︸

=0

≤ 2−t +

(
t

n(d/n− 1/4)2

)t/2
+ 2−(t−1) ≤ 3 · 2−t +

(
t

n(d/n− 1/4)2

)t/2
.

4.2 Proof of Theorem 2

Theorem 2. If (Enc,Dec) is continuously (Fcopy, ε, 1, q)-non-malleable, it is also continuously

(Fcopy, 2`ε+ q`
2k
, `, q)-non-malleable, for all ` ∈ N.

System Slor
F ,b

init
β ← 0
i← 0

on (encode, x0, x1)
i← i+ 1

x
(i)
0 ←$ x0

x
(i)
1 ←$ x1

c(i)←$ Enc(xb)

on (tamper, f) with f ∈ F (i)

if β = 1
output �

else

c′ ← f(c(1), . . . , c(i))
x′←$ Dec(f)
if x′ = �

β ← 1

if ∃j : x′ ∈ {x(j)
0 , x

(j)
1 }

x′ ← (same, j)
output x′

Figure 8: Systems Slor
F ,0 and Slor

F ,1 defining lor-non-
malleability of (Enc,Dec).

Left-or-right non-malleability. The proof
of Theorem 2, which uses a hybrid argument, is
facilitated by introducing a left-or-right (LOR)
variant of non-malleability. The two definitions
are equivalent, as shown by Lemmas 8 and 9
below. In the LOR variant,9 the encode-oracle
takes as input pairs of messages and encodes
either always the first or always the second
message. The goal of the attacker is to find
out which is the case. Formally, LOR-non-
malleability is defined using the two random
systems Slor

F ,0 and Slor
F ,1, shown in Figure 8.10

When processing a tamper query, if there
are multiple indices j for which (same, j) could

9One should not confuse the above LOR variant with strong non-malleability, the difference being that for strong
non-malleability Slor

F,b would output (same, j) iff c′ = c(j). In fact, being equivalent to non-malleability, our LOR
variant is strictly weaker.

10The same LOR variant was already considered in [16, Definition A.1] (and referred to as “alternative” non-
malleability). In this sense Lemma 8 and 9 below are a generalization of [16, Theorem A.1] to the adaptive and
continuous case.

19

be output, Slor
F ,b outputs the largest such j. As before, for b ∈ {0, 1} and `, q ∈ N, Slor

F ,b,`,q is the

system that behaves as Slor
F ,b except that only the first ` encode-queries and the first q tamper-queries

are handled.

Definition 5 (Adaptive continuous left-or-right non-malleability). Let F = (F (i))i≥1 be a se-
quence of function families F (i) ⊆ {f | f : ({0, 1}n)i → {0, 1}n} and let `, q ∈ N. A coding
scheme (Enc,Dec) is adaptively continuously (F , ε, `, q)-LOR-non-malleable (or simply (F , ε, `, q)-
LOR-non-malleable) if there exists a simulator τ such that ∆D(Slor

F ,0,`,q,S
lor
F ,1,`,q) ≤ ε for all distin-

guishers D.

Lemma 8. If (Enc,Dec) is (F , ε, `, q)-non-malleable, it is also (F , 2ε, `, q)-LOR-non-malleable.

Proof. Fix `, q, and a simulator τ , and let Sreal
F := Sreal

F ,`,q, Ssimu
F ,τ := Ssimu

F ,τ,`,q, Slor
F ,0 := Slor

F ,0,`,q,

and Slor
F ,1 := Slor

F ,1,`,q. For b ∈ {0, 1}, consider the following reduction Cb: Upon the ith query

(encode, x0, x1) at the outside interface, it stores x
(i)
0 := x0 and x

(i)
1 := x1 internally and outputs

(encode, xb) at the inside interface. Upon a query (tamper, f) at the outside interface, Cb outputs
(tamper, f) at the inside interface and subsequently receives a value x′ at the inside interface. If

there exist indices i′ such that x′ ∈ {x(i′)
0 , x

(i′)
1 }, Cb outputs (same, i′) for the largest such index at

the outside interface. Otherwise, it outputs x′.
One observers that

C0S
real
F ≡ Slor

F ,0 and C1S
real
F ≡ Slor

F ,1 and C0S
simu
F ,τ ≡ C1S

simu
F ,τ ,

where the third equivalence follows from the fact that the observable behavior of CbS
simu
F ,τ is inde-

pendent of the messages Cb outputs to Ssimu
F ,τ . Hence, for all attackers A,

∆A(Slor
F ,0,S

lor
F ,1) = ∆A(C0S

real
F ,C1S

real
F)

≤ ∆A(C0S
real
F ,C0S

simu
F ,τ) + ∆A(C0S

simu
F ,τ ,C1S

simu
F ,τ) + ∆A(C1S

simu
F ,τ ,C1S

real
F)

≤ ∆AC0(Sreal
F ,Ssimu

F ,τ) + ∆AC1(Sreal
F ,Ssimu

F ,τ)

≤ 2ε.

Lemma 9. If (Enc,Dec) is (F , ε, `, q)-LOR-non-malleable, it is also (F , ε+ q`
2k
, `, q)-non-malleable.

Proof. Fix ` and q, and let Sreal
F := Sreal

F ,`,q, Ssimu
F ,τ := Ssimu

F ,τ,`,q (for a simulator τ to be defined next),

Slor
F ,0 := Slor

F ,0,`,q, and Slor
F ,1 := Slor

F ,1,`,q. Consider the following simulator τ : It internally keeps a

counter i ← 0. When invoked on (i′, f) with f ∈ F (i′), if i′ > i, it samples x
(j)
1 ←$ {0, 1}k \

{x(1)
1 , . . . , x

(j−1)
1 } and computes c

(j)
1 ←$ Enc(x

(j)
1) for all i < j ≤ i′ and sets i ← i′. Then, it

computes the tampered codeword c′ ← Dec(f(c
(1)
1 , . . . , c

(i)
1)) and decodes it to x′ ← Dec(c′). If

x′ = x
(j)
1 for some indices j, τ returns (same, j) for the largest such j. Otherwise, it returns x′.

Consider the following reduction C: Upon the ith query (encode, x) at the outside interface, it

chooses x
(i)
1 ←$ {0, 1}k \{x(1)

1 , . . . , x
(i−1)
1 }, stores x

(i)
0 := x internally, and outputs (encode, x

(i)
0 , x

(i)
1)

at the inside interface. Upon a query (tamper, f) at the outside interface, C outputs (tamper, f)
at the inside interface and subsequently receives a value x′ at the inside interface. If x′ = (same, j)

for some j, C outputs x
(j)
0 at the outside interface. Otherwise, it outputs x′.

20

Observe that CSlor
F ,1 ≡ Ssimu

F ,τ . In both cases, the ith query of the type (encode, x) is treated

by sampling fresh values x
(i)
1 distinct from all x

(1)
1 , . . . , x

(i−1)
1 and computing c

(i)
1 as an encoding of

x
(i)
1 . (This is delayed in Ssimu

F ,τ , but that does not change the distribution.) A query (tamper, f) with

some function f ∈ F (i) is answered by evaluating f(c
(1)
1 , . . . , c

(i)
1), decoding the resulting codeword

to obtain a message x′, and if x′ = x
(j)
1 for some j ∈ {1, . . . , i}, returning x

(j)
0 and x′ otherwise.

The systems CSlor
F ,0 and Sreal

F are, however, not equivalent. The reason is that if, in CSlor
F ,0,

Dec(f(c
(1)
0 , . . . , c

(i)
0)) = x

(j)
1 for some j ∈ {1, . . . , i}, then Slor

F ,0 returns (same, j), which C replaces

by x
(j)
0 . There is no comparable behavior in Sreal

F . Provoking this event, however, corresponds to

“non-adaptively guessing” one of the values x
(j)
1 , which occurs with probability at most i

2k
in each

query.

Formally, one can define a monotone binary output (MBO, see Section 2.1) on CSlor
F ,0; ĈSlor

F ,0
(the system extended by this additional output) and Sreal

F are now conditionally equivalent, and by
[37, Theorem 1], the distinguishing advantage ∆A(CSlor

F ,0,S
real
F) is upper-bounded by the probability

of provoking this event, which for at most ` encode- and at most q tamper-queries can be bounded
by q`

2k
.

Hence, for all attackers A,

∆A(Sreal
F ,Ssimu

F ,τ) = ∆A(Sreal
F ,CSlor

F ,1)

≤ ∆A(Sreal
F ,CSlor

F ,0) + ∆A(CSlor
F ,0,CSlor

F ,1)

≤ q`
2k

+ ∆AC(Slor
F ,0,S

lor
F ,1)

≤ q`
2k

+ ε.

Lemma 10. If (Enc,Dec) is continuously (Fcopy, ε, 1, q)-LOR-non-malleable, it is also continuously
(Fcopy, ` · ε, `, q)-LOR-non-malleable, for all ` ∈ N.

Proof. Fix ` and q, let F := Fcopy, and set S′b := Slor
F ,b,`,q and Sb := Slor

F ,b,1,q for b ∈ {0, 1}.
The distinguishing advantage between S′0 and S′1 is bounded via a hybrid argument, where the

ith hybrid H(i) picks x0 when processing the first i encode queries (encode, x0, x1) and x1 afterwards.
For each i, the distinguishing advantage between successive hybrids H(i−1) and H(i) is bounded by
exhibiting a system Ci that reduces distinguishing S0 and S1 to distinguishing the hybrids.

For i = 0, 1, . . . , `, hybrid H(i) works as follows: Initialization and (tamper, f) are defined as
with S′0 and S′1. The first i queries (encode, x0, x1) are handled by encoding x0, i.e., c(j) ← Enc(x0)
for the jth encoding. For all later queries, x1 is encoded, i.e., c(j) ← Enc(x1).

One observes that
H(`) ≡ S′0 and H(0) ≡ S′1.

For i = 1, . . . , n, reduction Ci works as follows: For the first i−1 encode queries (encode, x0, x1)
(at the outside interface), it computes and stores an encoding of x0, i.e., c(j) ← Enc(x0) for the
jth encoding. Upon the ith query (encode, x0, x1), it outputs (encode, x0, x1) at the inside interface.
(Note that as a consequence, a target encoding c←$ Enc(xb) is generated, depending on whether
Ci is connected to S0 or S1.) The remaining encode queries are handled by encoding the second
message x1, i.e., c(j) ← Enc(x1).

21

System Ci maintains a counter j that keeps track of the number of encode queries it has

encountered. When a tamper query (tamper, f) with f ∈ F (j)
copy and χ(f) = (f1, . . . , fn) is received

at the outside interface, it computes f ′1, . . . , f
′
n, where

f ′v :=

fv if fv ∈ {zero, one},
zero if fv = copyw for w 6= i, and c(w)[v] = 0,

one if fv = copyw for w 6= i, and c(w)[v] = 1,

copy1 if fv = copyi.

Then, it outputs (tamper, f ′) at the inside interface, where f ′ is the function in F (1)
copy with χ(f ′) =

(f ′1, . . . , f
′
n).11 Let x′ be the answer to the tamper query at the inside interface. Ci computes the

set of indices j for which x′ matches one of the two messages of the jth encode query. Moreover, if
x′ = same, index i is added to that set as well. Then, it outputs (same, j) for the largest index j in
the set. If the set is empty, x′ is output.

One observes that
CiS0 = H(i) and CiS1 = H(i−1).

Thus, for all adversaries A,

∆A(S′0,S
′
1) = ∆A(H(`),H(0)) ≤

∑̀
i=1

∆A(H(i),H(i−1))

≤
∑̀
i=1

∆A(CiS0,CiS1) ≤
∑̀
i=1

∆ACi(S0,S1) ≤ ` · ε.

Proof (of Theorem 2). Follows immediately from Lemmas 8, 9, and 10.

5 On the Necessity of Self-Destruct

In this section we show that no (k, n)-coding scheme (Enc,Dec) can achieve (even non-adaptive)
continuous non-malleability against Fcopy without self-destruct. This fact is reminiscent of the
negative result by Gennaro et al. [22]. The impossibility proof in this section assumes that Dec is
deterministic and that Dec(Enc(x)) = x with probability 1 for all x ∈ {0, 1}k (cf. Definition 2).
The distinguisher D provided by Theorem 11 is universal, i.e., it breaks any coding scheme (if given
oracle access to its decoding algorithm).

For the remainder of this section, let F := Fset (as defined in Section 4), Sreal
F := Sreal

F ,1,n, and

Ssimu
F ,τ := Ssimu

F ,τ,1,n (with some simulator τ). Moreover, both Sreal
F and Ssimu

F ,τ are stripped of the
self-destruct mode.

Theorem 11. There exists a distinguisher D such that for all coding schemes (Enc,Dec) and all
simulators τ ,

∆D(Sreal
F ,Ssimu

F ,τ) ≥ 1− n+ 1

2k
.

11For simplicity, we assume here that S0 and S1 answer tamper queries consisting of zero and one instructions only
even before a message has been encoded.

22

The corollary below states no pair of converters (enc, dec) can achieve the constructive statement
corresponding to Theorem 1 without relying on the self-destruct feature.

Corollary 12. For any protocol nmc := (enc, dec) and all simulators σ, if both converters are
stateless and

[
1-bit

−�→→•]n
(enc,dec),σ,(0,ε)

==⇒
k-bit

−�→→•,

then,

ε ≥ 1− n+ 1

2k
.

Proof. Note that the protocol achieves perfect availability and thus constitutes a perfectly correct
(k, n)-coding scheme (since the converters are stateless and with perfect correctness, dec can w.l.o.g.
be assumed to be deterministic). Consider an arbitrary simulator σ. It can be converted into a
simulator τ as required by Definition 3 in a straight-forward manner. Similarly, there exists a
straight-forward reduction C such that

C(encAdecB[
1-bit,1,n
−�→→•]n) ≡ Sreal

F and C(σE
k-bit,1,n
−�→→•) ≡ Ssimu

F ,τ .

Thus, DC achieves advantage 1− n+1
2k

.

5.1 Proof of Theorem 11

Distinguisher D := DExt uses an algorithm Ext that always extracts the encoded message when
interacting with system Sreal

F and does so with small probability only when interacting with system
Ssimu
F ,τ (for any simulator).

The Extraction Algorithm. Consider the following algorithm Ext, which repeatedly issues
tamper queries (tamper, f) with f ∈ Fset, expects an answer in {0, 1}k ∪ {�, same}, and eventually
outputs a value x′ ∈ {0, 1}k: Initially, it initializes variables f1, . . . , fn ← λ (where the value λ
stands for “undefined”). Then, for i = 1, . . . , n it proceeds as follows: It queries (tamper, f) with
χ(f) = (f1, . . . , fi−1, zero, keep, . . . , keep). If the answer is same, it sets fi ← zero and otherwise
fi ← one. In the end Ext outputs x′ ← Dec(val(f1) · · · val(fn)).

The Distinguisher. Consider the following distinguisher DExt: Initially, it chooses x ← {0, 1}k
and outputs (encode, x) to the system it is connected to. Then, it lets Ext interact with that system,
replacing an answer by same whenever it is x. When Ext terminates and outputs a value x′, DExt

outputs 1 if x′ = x and 0 otherwise.

Lemma 13. P[DExtS
real
F = 1] = 1.

Proof. Assume that before the ith iteration of Ext, asking the query (tamper, f) with χ(f) =
(f1, . . . , fi−1, keep, keep, . . . , keep) to Sreal

F yields the answer x. From this it follows that either
(f1, . . . , fi−1, zero, keep, . . . , keep) or (f1, . . . , fi−1, one, keep, . . . , keep) leads to the answer x; Ext
sets fi appropriately (the fact that the answer x is replaced by same plays no role here). Thus, in
the end, computing Dec(val(f1) · · · val(fn)) yields x.

23

In other words, Lemma 13 means that Ext always succeeds at recovering the value x chosen by
D. Showing that this happens only with small probability when DExt interacts with Ssimu

F ,τ completes
the proof.

Lemma 14. P[DExtS
simu
F ,τ = 1] ≤ n+1

2k
.

Proof. Consider the following modified distinguisher D̂Ext that works as DExt except that it does
not modify the answers received by the system it is connected to. Moreover, let Ŝsimu

F ,τ be the
the system that ignores all encode-queries and handles queries (tamper, f) by invoking τ(1, f) and
outputting τ ’s answer.

Note that in both experiments, Ext’s view is identical unless it causes τ to output x (the value
encoded by D), which happens with probability at most n

2k
. Thus,

|PDExtS
simu
F,τ [Ext outputs x]− PD̂ExtŜ

simu
F,τ [Ext outputs x]| ≤ n

2k
.

Furthermore, in experiment D̂ExtŜ
simu
F ,τ , Ext’s view is independent of x, and therefore, x is output

by Ext with probability 1
2k

. The claim follows.

6 Conclusions

We have shown how non-malleable codes can be used to obtain a construction of a multi-bit chosen-
ciphertext secure PKE scheme from a single-bit chosen-ciphertext secure one. To the best of our
knowledge, this is the first application of non-malleable codes outside the area of tamper resilience.
Our construction is quite efficient and very intuitive. Its decryption algorithm needs to keep a single
bit of state, which is acceptable for practical applications. In general, this suggests that dropping
the usual requirement that the decryption be stateless may lead to the discovery of better schemes.

The formalization in constructive cryptography allowed us to focus on the technically most
challenging part—proving that our code satisfies an extension of the original non-malleability
requirement—and to keep this proof purely information-theoretical. The reduction from breaking
the security of the single-bit scheme to breaking the security of our construction we then obtain,
using the composition theorem of constructive cryptography, as a corollary from our results.

Acknowledgments. We thank Joël Alwen and Daniel Tschudi for helpful discussions, in partic-
ular on the impossibility proof in Section 5. The work was supported by the Swiss National Science
Foundation (SNF), project no. 200020-132794.

References

[1] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. Electronic Colloquium on Computational Complexity (ECCC), 20:81, 2013. To
appear in STOC 2014.

[2] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security.
In CRYPTO, pages 565–582, 2003.

24

[3] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In ITCS,
pages 155–168, 2014.

[4] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. In TCC, pages 440–464, 2014.

[5] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box construction
of a non-malleable encryption scheme from any semantically secure one. In TCC, pages 427–
444, 2008.

[6] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. BiTR: Built-in tamper resilience. In
ASIACRYPT, pages 740–758, 2011.

[7] Sandro Coretti, Ueli Maurer, and Björn Tackmann. Constructing confidential channels from
authenticated channels - public-key encryption revisited. In ASIACRYPT (1), pages 134–153,
2013.

[8] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. Self-destruct chosen-
ciphertext security from semantic security, 2014. Manuscript.

[9] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. Detection of
algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In
EUROCRYPT, pages 471–488, 2008.

[10] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael Pass,
Abhi Shelat, and Vinod Vaikuntanathan. Bounded CCA2-secure encryption. In ASIACRYPT,
pages 502–518, 2007.

[11] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, CRYPTO 1998, volume 1462 of
LNCS, pages 13–25, Heidelberg, 1998. Springer.

[12] Dana Dachman-Soled. A black-box construction of a CCA2 encryption scheme from a plaintext
aware encryption scheme. In Hugo Krawczyk, editor, PKC, LNCS. Springer, 2014.

[13] Ivan Damg̊ard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Bounded tamper
resilience: How to go beyond the algebraic barrier. In ASIACRYPT (2), pages 140–160, 2013.

[14] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[15] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-
source extractors. In CRYPTO (2), pages 239–257, 2013.

[16] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS,
pages 434–452, 2010.

[17] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In CRYPTO, pages 10–18, 1984.

25

[18] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous
non-malleable codes. In TCC, pages 465–488, 2014.

[19] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A leakage
and tamper resilient random access machine, 2014. Manuscript.

[20] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-
malleable codes and key-derivation for poly-size tampering circuits. In EUROCRYPT, pages
111–128, 2014.

[21] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. RSA-OAEP is
secure under the RSA assumption. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 260–274, Heidelberg, 2001. Springer.

[22] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hardware tamper-
ing. In TCC, pages 258–277, 2004.

[23] Yael Gertner, Tal Malkin, and Steven Myers. Towards a separation of semantic and CCA
security for public key encryption. In TCC, pages 434–455, 2007.

[24] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–
299, 1984.

[25] Dennis Hofheinz and Eike Kiltz. Practical chosen ciphertext secure encryption from factor-
ing. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 313–332,
Heidelberg, 2009. Springer.

[26] Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dangerous queries: A new
approach for chosen ciphertext security. In EUROCRYPT, pages 663–681, 2012.

[27] Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, and Moti Yung. A new randomness extraction
paradigm for hybrid encryption. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479
of LNCS, pages 590–609, Heidelberg, 2009. Springer.

[28] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tackmann, and Daniele Venturi.
Anonymity-preserving public-key encryption: A constructive approach. In Privacy Enhancing
Technologies, pages 19–39, 2013.

[29] Huijia Lin and Stefano Tessaro. Amplification of chosen-ciphertext security. In EUROCRYPT,
pages 503–519, 2013.

[30] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model.
In CRYPTO, pages 517–532, 2012.

[31] Ueli Maurer. Constructive cryptography - a new paradigm for security definitions and proofs.
In TOSCA, pages 33–56, 2011.

[32] Ueli Maurer. Conditional equivalence of random systems and indistinguishability proofs. In
2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pages 3150–
3154, 2013.

26

[33] Ueli Maurer and Renato Renner. Abstract cryptography. In ICS, pages 1–21, 2011.

[34] Ueli Maurer, Andreas Rüedlinger, and Björn Tackmann. Confidentiality and integrity: A
constructive perspective. In TCC, pages 209–229, 2012.

[35] Ueli Maurer and Pierre Schmid. A calculus for security bootstrapping in distributed systems.
Journal of Computer Security, 4(1):55–80, 1996.

[36] Ueli Maurer and Björn Tackmann. On the soundness of authenticate-then-encrypt: formalizing
the malleability of symmetric encryption. In ACM Conference on Computer and Communi-
cations Security, pages 505–515, 2010.

[37] Ueli M. Maurer. Indistinguishability of random systems. In EUROCRYPT, pages 110–132,
2002.

[38] Steven Myers, Mona Sergi, and Abhi Shelat. Blackbox construction of a more than non-
malleable CCA1 encryption scheme from plaintext awareness. In Ivan Visconti and Roberto De
Prisco, editors, Security and Cryptography for Networks, volume 7485 of LNCS, pages 149–165.
Springer, 2012.

[39] Steven Myers and Abhi Shelat. Bit encryption is complete. In FOCS, pages 607–616, 2009.

[40] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM J.
Comput., 40(6):1803–1844, 2011.

[41] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems (reprint). Commun. ACM, 26(1):96–99, 1983.

[42] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. SIAM J.
Comput., 39(7):3058–3088, 2010.

A Non-Malleable Codes and the One-Time Pad

The one-time pad encryption scheme is strongly malleable: if a transmitted ciphertext e ∈ {0, 1}n
(corresponding to some message m ∈ {0, 1}n) is replaced by a different ciphertext e′ ∈ {0, 1}n,
then the decryption of e′ will result in m⊕ (e⊕ e′). From the attacker’s perspective, the one-time
pad is XOR-malleable: by replacing the ciphertext e by e ⊕ δ for some δ ∈ {0, 1}n, he can maul
the plaintext from m into m ⊕ δ. If one encodes the message with a non-malleable code prior to
encrypting with the one-time pad, however, the malleability disappears. Let us stress that there
are other, more efficient, ways of achieving the same effect; we analyze this scheme here to prepare
for the analysis of our main scheme in Section 3, which follows the same approach.

We first explicitly describe the channel that is constructed by the one-time pad from an insecure
channel and an (n-bit) shared secret key, namely the XOR-malleable confidential channel −−⊕→•
as described in [36]. This channel, which exactly formalizes that the attacker can specify a bit
mask δ ∈ {0, 1}n (but not more), is described as follows. (The proof is a restricted case of [36,
Lemma 2].)

27

XOR-Malleable Confidential n-bit Channel
n-bit

−−⊕→•
Initially take a bit b ∈ {0, 1} at the E-interface. If b = 0 then:

1. On input m ∈ {0, 1}n at the A-interface, output m at the B-interface.

Otherwise, if b = 1, then:

1. On input m ∈ {0, 1}n at the A-interface, output |m| at the E-interface.
2. On input δ ∈ {0, 1}n at the E-interface, output m⊕ δ at the B-interface.

We then assume the existence of a (k, n)-coding scheme (Enc,Dec) which is (Fbit, ε)-non-
malleable (this corresponds to adaptive continuous (Fbit, 1, 1, ε)-non-malleability according to Def-
inition 3), and describe converters enc and dec as follows:

• The converter enc, obtaining a message m ∈ {0, 1}k at its outside interface, computes
c←$ Enc(m) and outputs c at its inside interface.

• The converter dec, obtaining a message c′ ∈ {0, 1}n at its inside interface, computes m′ ←
Dec(c′) and outputs m′ at its outside interface.

We claim that the protocol (enc, dec) constructs, from the XOR-malleable n-bit channel
n-bit

−−⊕→•,
the non-malleable k-bit channel

k-bit−→• described below. Intuitively, a non-malleable channel allows
the attacker to inject any fixed message of its choice, in the sense that the message transmitted to
the receiver does not depend on the originally sent message.

(Non-Malleable) Confidential n-bit Channel
n-bit−→•

Initially take a bit b ∈ {0, 1} at the E-interface. If b = 0 then:

1. On input m ∈ {0, 1}n at the A-interface, output m at the B-interface.

Otherwise, if b = 1, then:

1. On input m ∈ {0, 1}n at the A-interface, output |m| at the E-interface.
2. On input 1 ∈ N at the E-interface, output m at the B-interface and halt.
3. On input m′ ∈ {0, 1}n at the E-interface, output m′ at the B-interface and halt.

The formal construction statement is as follows.

Lemma 15. Assume that (Enc,Dec) is a (k, n)-coding scheme that is (Fbit, ε)-non-malleable. Then

encAdecB⊥E
n-bit

−−⊕→• ≡ ⊥E k-bit−→• (9)

and there is a simulator σxor such that for all distinguishers D,

∆D

(
encAdecB

n-bit

−−⊕→•, σExor
k-bit−→•

)
≤ ε. (10)

Proof. Condition (9) follows from the correctness of the scheme, i.e., Definition 2. Let F := Fbit,
Sreal
F := Sreal

F ,1,1 and Ssimu
F ,τ := Ssimu

F ,τ,1,1, where τ is the simulator guaranteed to exist by Definition 3.
For condition (10), we describe a simulator σxor as follows:

28

• On input the message length k at the inside interface, output n at the outside interface.
• On input the mask δ ∈ {0, 1}n at the outside interface, invoke τ as m′←$ τ(fδ) with χ(fδ) =

(f1, . . . , fn) and fi = keep (resp., fi = flip) iff δ[i] = 0 (resp., δ[i] = 1). If m′ = same then
output 1 ∈ N at the inside interface, otherwise input m′.

To conclude the proof, we describe a reduction C that, once connected with its inside interface

to Sreal
F (resp. Ssimu

F ,τ), behaves as encAdecB
n-bit

−−⊕→• (resp. σExor
k-bit−→•). This converter provides at the

outside interface three sub-interfaces (labeled A, B, and E), and behaves as follows:

• Upon input a value m ∈ {0, 1}k at the outside A-sub-interface, output n at the outside
E-sub-interface.
• Upon input a value δ ∈ {0, 1}n at the outside E-sub-interface, define fδ ∈ F such that
χ(fδ) = (f1, . . . , fn) with fi = keep (resp., fi = flip) iff δ[i] = 0 (resp., δ[i] = 1), and output
(tamper, fδ) at the inside interface.
• Obtaining the response m′ ∈ {0, 1}k at the inside interface, output m′ at the outside B-sub-

interface.

The output at the E-sub-interface upon inputm ∈ {0, 1}k at the A-sub-interface is always consistent
(namely, n). For CSreal

F , the output at the B-interface on input δ ∈ {0, 1}n at the E-interface
is computed by applying the tampering function fδ to the encoding of the value m; exactly as

in encAdecB
n-bit

−−⊕→•. Analogously, in CSsimu
F ,τ , the output at the B-interface on input δ ∈ {0, 1}n at

the E-interface is computed by applying invoking the simulator τ on the tampering function fδ;

exactly as in σExor
n-bit−→•. As a result, we obtain

∆D

(
encAdecB

n-bit

−−⊕→•, σExor
n-bit−→•

)
= ∆D

(
CSreal
F ,CSsimu

F ,τ

)
= ∆DC

(
Sreal
F ,Ssimu

F ,τ

)
≤ ε,

where DC makes at most one tamper-query. This concludes the proof.

A non-malleable confidential channel still allows an attacker to inject messages. A fully secure
channel, denoted as •−→•, in contrast, allows the attacker only to delay or drop messages. More
formally, the secure channel is described as follows.

Secure n-bit Channel
n-bit•−→•

Initially take a bit b ∈ {0, 1} at the E-interface. If b = 0 then:

1. On input m ∈ {0, 1}n at the A-interface, output m at the B-interface.

Otherwise, if b = 1, then:

1. On input m ∈ {0, 1}n at the A-interface, output |m| at the E-interface.
2. On input 1 ∈ N at the E-interface, output m at the B-interface and halt.

If we assume the availability of some shared secret key
`-bit•===• for some ` ≤ k in parallel to a

confidential k-bit channel
k-bit−→•, we can securely transmit a (k−`)-bit message by simply appending

the key. The key is also specified as a resource as follows.

`-bit Secret Key
`-bit•===•

Choose κ ∈ {0, 1}` uniformly at random, output κ at the A- and B-interfaces.

29

Let (app, chk) be the pair of converters that appends the key to the transmitted message, and in
more detail works as follows:

• The converter app, upon obtaining a message m ∈ {0, 1}k−` at the outside and a key κ ∈
{0, 1}` at the (first sub-interface of the) inside interface, outputs m|κ at the (second sub-
interface of the) inside interface.
• The converter chk, upon obtaining a message x ∈ {0, 1}k and a key κ ∈ {0, 1}`, checks

whether x = m|κ for some m ∈ {0, 1}k−`, and in that case, outputs m at the outside interface.
(Otherwise nothing.)

This protocol constructs from the `-bit key and the k-bit confidential channel a (k − `)-bit secure
channel.

Lemma 16. Let (app, chk) be the protocol described above, then:

appAchkB⊥E
[

`-bit•===•, k-bit−→•
]
≡ ⊥E

(k−`)-bit
•−→• (11)

and there is a simulator σ such that for all distinguishers D,

∆D
(

appAchkB
[

`-bit•===•, k-bit−→•
]
, σE

(k−`)-bit
•−→•

)
≤ 2−`. (12)

Proof sketch. Equation (11) is again easy to verify. To conclude the correctness of equation (12),
we use the simulator σ that upon input (k − `) at the inside interface outputs k at the outside
interface. In case of an input 1 ∈ N at the outside interface, σ also outputs 1 ∈ N at the inside
interface; and in case of an input m′ ∈ {0, 1}k at the outside interface, σ simply halts.

We first see that inputting 1 ∈ N does not benefit the distinguisher, as the output at the B-
interface is exactly the message input at the A-interface. Then we see that the only possibility to

input a value m′ ∈ {0, 1}k and obtain some output in appAchkB
[

`-bit•===•, k-bit−→•
]

(note that σE
(k−`)-bit
•−→•

will never give any output) is to guess the `-bit secret key, which happens with probability at
most 2−`. This concludes the proof.

B The Composition Theorem of Constructive Cryptography

The main statement we prove in the main paper shows the security of one protocol step in isolation,
i.e. we show for the non-malleable code that it constructs the multi-bit confidential channel from
multiple assumed single-bit confidential channels. The composition theorem now states that two
such construction steps can be composed: if one (lower-level) protocol constructs the resource
that is assumed by the other (higher-level) protocol, then the composition of those two protocols
constructs the same resource as the higher-level protocol, but from the resources assumed by the
lower-level protocol, under the assumptions that occur in (at least) one of the individual security
statements. To state the theorem, we make use of a special converter id that behaves transparently
(i.e., allows access to the underlying interface of the resource).

The composition theorem was first explicitly stated in [36], but the statement there was re-
stricted to asymptotic settings. Later, in [28], the theorem was stated in a way that also allows to
capture concrete security statements. The proof, however, still follows the same steps as the one
in [36]. For the statement of the theorem we assume the operation [·, . . . , ·] to be left-associative;
in this way we can simply express multiple resources using the single variable U.

30

Theorem 17. Let R,S,T,U ∈ Φ be resources. Let π = (π1, π2) and ψ = (ψ1, ψ2) be protocols, σπ
and σψ be simulators, and (ε1

π, ε
2
π), (ε1

ψ, ε
2
ψ) such that

R
π,σπ ,(ε1π ,ε

2
π)

==⇒ S and S
ψ,σψ ,(ε

1
ψ ,ε

2
ψ)

==⇒ T.

Then

R
α,σα,(ε1α,ε

2
α)

==⇒ T

with α = (ψ1 ◦ π1, ψ2 ◦ π2), σα = σπ ◦ σψ, and εiα(D) = εiπ(DσEψ) + εiψ(DπA1 π
B
2), where DσEψ and

DπA1 π
B
2 mean that D applies the converters at the respective interfaces. Moreover

[R,U]
[π,(id,id)],[σπ ,id],(ε̄1π ,ε̄

2
π)

==⇒ [S,U],

with ε̄iπ(D) = εiπ(D[·,U]), where D[·,U] means that the distinguisher emulates U in parallel. (The
analogous statement holds with respect to [U,R] and [U,S].)

C (Replayable) Self-Destruct Chosen Ciphertext Security

In Section 3, based on a 1-bit CCA-secure PKE scheme, we provide a protocol (a pair of converters)
pke = (encrypt, decrypt) that achieves transformation

[←−•,− →→ ,FLAG]
pke

==⇒
k-bit

−�→→• . (13)

An alternative view is that we in fact implicitly provide a PKE scheme Π = (K,E,D). In
rough terms, key generation algorithm K, generates n independent key pairs of the 1-bit scheme.
Encryption algorithm E first encodes a message using a non-malleable code and then encrypts each
bit of the resulting encoding independently and outputs the n resulting ciphertexts. Decryption
algorithm D first decrypts the n ciphertexts, decodes the resulting bitstring, and outputs the
decoded message or the symbol �, indicating an invalid ciphertext, if any of these steps fails.

From scheme Π, converters encrypt and decrypt are recovered as follows: Converter encrypt
initially expects a public key pk at the inside interface. When a message m is input at the outside
interface, encrypt outputs c←$ Epk(m) at the inside interface. Converter decrypt initially generates
a key pair (pk, sk) using K and outputs pk at the inside interface. When decrypt receives a ciphertext
c′ at the inside interface, it first outputs read at the inside interface of FLAG to obtain a bit β.
In case β = 0, decrypt computes m′ ← Dsk(c

′) and outputs m′ at the outside interface. In case
m′ = �, decrypt also outputs set at the inside interface of FLAG. In case β = 1, decrypt outputs �
at its outside interface.

In the remainder of this section, we show that our scheme achieves replayable self-destruct
chosen-ciphertext security (SD-RCCA),12 a CCA variant in which the decryption oracle stops work-
ing after receiving an invalid ciphertext.

C.1 Formal Definition

The only difference between the SD-RCCA game and the standard game used to define RCCA is
that the decryption oracle self-destructs, i.e., it stops processing further queries once an invalid

12The notion of replayable CCA security was introduced by [2] to deal with the artificial strictness of full CCA
security.

31

System Gsd-rcca
b

init
(pk, sk)← K
output pk

on (chall,m0)
m1←$M s.t. |m1| = |m0|
c← Epk(mb)
output c

on (dec, c′)
m′ ← Dsk(c

′)
if m′ = �

self-destruct
else if m′ ∈ {m0,m1}

output test
else

output m′

Figure 9: System Gsd-rcca
b , where b ∈ {0, 1}, defining SD-RCCA security of a PKE scheme Π =

(K,E,D). The command self-destruct causes the system to output � and to answer all future
decryption queries by �.

ciphertext is ever queried. Note that the self-destruct feature only affects the decryption oracle;
the adversary is still allowed to get the challenge ciphertext after provoking a self-destruct. For
convenience, the game is phrased as a distinguishing problem between the two systems Gsd-rcca

0 and
Gsd-rcca

1 described in Figure 9.

C.2 Security Proof

It remains to prove that our PKE scheme is indeed SD-RCCA secure. This is achieved by showing
that whenever any protocol pke = (encrypt, decrypt) built from a PKE scheme Π as above achieves
construction (13), then Π is SD-RCCA secure.

In the following, let

U := encryptAdecryptB[←−•,− →→ ,FLAG] and V := σE
k-bit

−�→→•,

where σ is an arbitrary simulator.

Theorem 18. There exist efficient reductions C0 and C1 such that, for all adversaries A,

∆A(Gsd-rcca
0 ,Gsd-rcca

1) ≤ ∆AC0(U,V) + ∆AC1(U,V).

Proof. Consider the following reductions C0 and C1. Both connect to an {A,B,E}-resource on
the inside and provide a single interface on the outside: Initially, both obtain pk at the inside E-
interface and output pk at the outside interface. When (chall,m0) is received on the outside, both
systems choose a random message m1. C0 outputs m0 at the inside A-interface and C1 outputs
m1. Subsequently, c is received at the inside E-interface, and c is output on the outside by both
systems. When a decryption query (dec, c′) is received on the outside, both systems output c′ at
the inside E-interface. A subsequently received message m′ at B is output on the outside by both
systems (as answer to the decryption query) unless m′ ∈ {m0,m1}, in which case test is returned.
Moreover, if m′ = �, both reduction systems self-destruct, i.e., they answer all future decryption
queries by �. We have

C0U ≡ Gsd-rcca
0 and C1U ≡ Gsd-rcca

1 and C0V ≡ C1V,

32

where the last equivalence follows from the fact that, in V, the input from
k-bit

−�→→• to σ is the same

in both systems (the length of the message input at the A-interface of
k-bit

−�→→•) and that decryption
queries causing m0 or m1 to be output at the B-interface are answered by test. Hence,

∆A(Gsd-rcca
0 ,Gsd-rcca

1) = ∆A(C0U,C1U) ≤ ∆A(C0U,C0V) + ∆A(C0V,C1V) + ∆A(C1V,C1U)

= ∆AC0(U,V) + ∆AC1(U,V).

D Continuous Non-Malleability against Full Bit-Wise Tampering

In this section we show that the coding scheme by [16] is continuously non-malleable against Fcopy

extended with bit flips. The scheme relies on a LECSS (E,D) (cf. Definition 4 in Section 4) and a
so-called AMD code (A,V); the latter concept was introduced by [9].

Definition 6 (AMD code). A (k, n)-coding scheme (A,V) is a ρ-secure algebraic manipulation
detection (AMD) code if for all x ∈ {0, 1}n and non-zero ∆ ∈ {0, 1}n, P[V(A(x) + ∆) 6= �] ≤ ρ.

The scheme (Enc,Dec) by [16] is the concatenation of an AMD code and a LECSS, i.e., Enc :=
E ◦ A and Dec := V ◦ D, where V(�) = �.

The tampering class Fcopy can be extended to account for bit flips: Let F ′copy := (F ′(i)copy)i≥1

where F ′(i)copy ⊆ {f | f : ({0, 1}n)i → {0, 1}n} and each function f ∈ F ′(i)copy is characterized by a
vector χ(f) = (f1, . . . , fn) where fi ∈ {zero, one, copy1, . . . , copyi, flip1, . . . , flipi}, with the meaning
that f takes as input i codewords (c(1), . . . , c(i)) and outputs a codeword c′ = (c′[1], . . . , c′[n]) in
which each bit is either set to 0 (zero), set to 1 (one), copied from the corresponding bit in a
codeword c(j) (copyj), or copied and flipped from the corresponding bit in a codeword c(j) (flipj).

Theorem 19. Let (Enc,Dec) as defined above with a (t, d)-LECSS (k, n)-code for d > n/4 and
d > t and a ρ-secure AMD code. Then (Enc,Dec) is (Fcopy, ε, 1, q)-continuously non-malleable for
all q ∈ N and

ε = 3 · 2−t +

(
t

n(d/n− 1/4)2

)t/2
+ ρ.

For brevity, we write Fbit for F ′(1)
copy below, with the idea that the tampering functions in F ′(1)

copy

only allow to keep or flip a bit or to set it to 0 or to 1. More formally, a function f ∈ Fbit can
be characterized by a vector χ(f) = (f1, . . . , fn) where fi ∈ {zero, one, keep, flip}, with the meaning
that f takes as input a codeword c and outputs a codeword c′ = (c′[1], . . . , c′[n]) in which each bit
is either set to 0 (zero), set to 1 (one), left unchanged (keep), or flipped (flip).

For the proof of Theorem 19, fix q ∈ N and some distinguisher D. For the remainder of this
section, let F := Fbit, Sreal

F := Sreal
F ,1,q and Ssimu

F ,τ := Ssimu
F ,τ,1,q (for a simulator τ to be determined).

For a tamper query f ∈ F with χ(f) = (f1, . . . , fn) issued by D, let A(f) := {i | fi ∈ {zero, one}},
B(f) := {i | fi ∈ {keep, flip}}, and a(f) := |A(f)|. Moreover, let val(zero) := val(keep) := 0 and
val(one) := val(flip) := 1. Queries f with 0 ≤ a(f) ≤ t, t < a(f) < n− t, and n− t ≤ a(f) ≤ n are
called low queries, middle queries, and high queries, respectively.

33

Dangerous queries. A tamper query is dangerous if it is

• a middle query or
• a low query such that there exists a codeword δ∗ of the LECSS with ∀i ∈ B(f) : δ∗[i] = val(fi)

and D(δ∗) 6= 0.

Consider the hybrid system H that proceeds as Sreal
F , except that as soon as D specifies a

dangerous query f , H self-destructs, i.e., answers f and all subsequent queries with �.

Lemma 20. ∆D(Sreal
F ,H) ≤ 1

2t +
(

t
n(d/n−1/4)2

)t/2
+ ρ.

Proof. Define a successful dangerous query to be a dangerous query that does not decode to �. On
both systems Sreal

F and H, one can define an MBO B (cf. Section 2.1) that is provoked if and only
if the first dangerous query is successful.

Clearly, Sreal
F and H behave identically until MBO B is provoked, thus Ŝreal

F
g
≡ Ĥ, and

∆D(Sreal
F ,H) ≤ ΓD(Ŝreal

F).

Towards bounding ΓD(Ŝreal
F), note first that adaptivity does not help in provoking B: For any

distinguisher D, there exists a non-adaptive distinguisher D′ with

ΓD(Ŝreal
F) ≤ ΓD′(Ŝreal

F). (14)

D′ proceeds as follows: First, it (internally) interacts with D only. Initially, it stores the message
x output by D internally. Then, it handles the tamper queries f by D as follows:

• Low query: If there exists a codeword δ∗ of the LECSS with ∀i ∈ B(f) : δ∗[i] = val(fi) and
D(δ∗) = 0, D′ answers with x. Otherwise, D′ stops its interaction with D and sends x and
all the queries to Ŝreal

F .

• Middle query: D′ stops its interaction with D and sends x and all the queries to Ŝreal
F .

• High query: If there exists a codeword c∗ that agrees with f in positions i where fi ∈
{zero, one}, D′ answers with Dec(c∗). Otherwise, D′ stops its interaction with D and sends
x and all the queries to Ŝreal

F .

To prove (8), fix all randomness in experiment D′Sreal
F , i.e., the coins of D (inside D′) and the

randomness of the encoding (inside Sreal
F). Suppose D would provoke B in the direct interaction

with Sreal
F . In that case all the answers by D′ are equal to the answers by Sreal

F . This is due to the
fact that the distance of the LECSS is d > t; a successful non-dangerous low query must result in
the original message x and a successful high query in Dec(c∗). Thus, whenever D provokes B, D′

provokes it as well.
It remains to analyze the success probability of non-adaptive distinguishers D′. Fix the coins of

D′; this determines the tamper queries. Suppose there is at least one dangerous query, as otherwise
B is trivially not provoked. The query’s success probability can be analyzed as in [16], depending

on whether it is a low or a high query, which leads to ΓD′(Ŝreal
F) ≤ 1

2t +
(

t
n(d/n−1/4)2

)t/2
+ ρ (recall

that the MBO cannot be provoked after an unsuccessful first dangerous query).

34

System W

init
∀i ∈ [n] : c[i]← λ

on first (encode, x) at o
output x at i

on (tamper, f) with 0 ≤ a(f) ≤ t at o
for i where fi ∈ B(f)

δ′[i]← val(fi)
if ∃codeword δ∗: ∀i ∈ B(f) : δ′[i] = δ∗[i]

for i where fi ∈ A(f)
g ← val(fi)⊕ δ∗[i]
if c[i] = λ

output (i, g) at i
get a ∈ {�, 1} at i
if a = �

self-destruct
c[i]← g

else
if c[i] 6= g

self-destruct

if D(δ∗) 6= 0
self-destruct

else
output x at o

else
self-destruct

on (tamper, f) with t < a(f) < n− t at o
self-destruct

on (tamper, f) with n− t ≤ a(f) ≤ n at o
for i where fi ∈ A(f)

c′[i]← val(fi)
if ∃codeword c∗ : ∀i ∈ A(f) : c′[i] = c∗[i]

for i where fi ∈ B(f)
g ← c∗[i]⊕ val(fi)
if c[i] = λ

output (i, g) at i
get a ∈ {�, 1} at i
if a = �

self-destruct
c[i]← g

else
if c[i] 6= g

self-destruct

if Dec(c∗) = �
self-destruct

else
output Dec(c∗) at o

else
self-destruct

Figure 10: The wrapper system W. The command self-destruct causes W to output � at o and
to answer all future queries by �.

Simulator. The final step of the proof consists of exhibiting a simulator τ such that ∆D(H,Ssimu
F ,τ)

is small. The indistinguishability proof is facilitated by reusing the two (hardly distinguishable)
systems B and B′ from Section 4 and the wrapper system W defined in Figure 10, such that
WB ≡ H and WB′ ≡ Ssimu

F ,τ . System W has an outside interface o and an inside interface i; at
the latter interface, W expects to be connected to either B or B′.

Lemma 21. WB ≡ H.

Proof. Fix a message x. Consider a low query f = (f1, . . . , fn). Let c = E(A(x)) be an encoding of
x, set c′ := f(c), and let δ′ := c+ c′. Using the linearity of the LECSS,

D(c′) = D(E(A(x)) + δ′) = A(x) + D(δ′).

Therefore, H answers tamper query f by x if D(δ′) = 0 and by � otherwise. In order for δ′ to be
equal to some codeword δ∗ of the LECSS, it is necessary that val(fi) = δ∗[i] for all i ∈ B(f) and
that

c[i] + c′[i]︸︷︷︸
val(fi)

= δ∗[i]

35

Simulator τ

init
∀i ∈ [n] : c[i]←$ {0, 1}

on (tamper, f) with 0 ≤ a(f) ≤ t
for i where fi ∈ A(f)

δ′[i]← val(fi)⊕ c[i]
for i where fi ∈ B(f)

δ′[i]← val(fi)
δ′ ← δ′[1] · · · δ′[n]
if D(δ′) 6= 0

return �
else

return same

on (tamper, f) with t < a(f) < n− t
return �

on (tamper, f) with n− t ≤ a(f) ≤ n
for i where fi ∈ A(f)

c′[i]← val(fi)
for i where fi ∈ B(f)

c′[i]← c[i]⊕ val(fi)
c′ ← c′[1] · · · c′[n]
return Dec(c′)

Figure 11: Simulator τ .

for all i ∈ A(f). Note that δ∗, if existent, is unique due to the fact that f is a low query and that
the distance of the LECSS is d > t.

Similarly, for a high query f , there can be at most one codeword that matches the injected
positions. If such a codeword c∗ exists, the outcome is Dec(c∗) if the bits in the keep-positions
match c∗, and otherwise �.

By inspection, it can be seen that W acts accordingly.

Consider now the system WB′. Due to the nature of B′, the behavior of WB′ is independent
of the value x that is initially encoded. This allows to easily design a simulator τ as required by
Definition 3. The description of τ is given in Figure 11.

Lemma 22. The simulator τ of Figure 11 satisfies WB′ ≡ Ssimu
F ,τ .

Proof. Consider the systems WB′ and Ssimu
F ,τ . Both internally choose a vector of n uniform and

independent bits c = (c[1], . . . , c[n]). Set c′ := f(c), and let δ′ := c+ c′. System WB′ answers low
queries with the value x initially encoded if and only if D(δ′) = 0 and with � otherwise. Simulator
τ returns same in the former case, which Ssimu

F ,τ replaces by x, and � in the latter case.
Observe that the answer by WB′ to a high query f always matches Dec(c′[1], . . . , c′[n]), where

for i ∈ A(f), c′[i] = val(fi), and for i ∈ B(f), c′[i] = c[i]⊕ val(fi): If no codeword c∗ matching the
injected positions exists, then Dec(c′[1], . . . , c′[n]) = �, which is also what WB′ outputs. If such c∗

exists and c∗[i] = c[i]⊕ val(fi) for all i ∈ B(f), the output of WB′ is Dec(c′[1], . . . , c′[n]). If there
exists an i ∈ B(f) with c∗[i] 6= c[i]⊕val(fi), WB′ outputs �, and in this case Dec(c′[1], . . . , c′[n]) = �
since the distance of the LECSS is d > t.

The proof of Theorem 19 now follows from a simple triangle inequality.

36

Proof (of Theorem 19). From Lemmas 20, 5, 21, and 22, one obtains that for all distinguishers D,

∆D(Sreal
F ,Ssimu

F ,τ) ≤ ∆D(Sreal
F ,H) + ∆D(H,WB)︸ ︷︷ ︸

=0

+ ∆D(WB,WB′)︸ ︷︷ ︸
=∆DW(B,B′)

+ ∆D(WB′,Ssimu
F ,τ)︸ ︷︷ ︸

=0

≤ 2−t +

(
t

n(d/n− 1/4)2

)t/2
+ ρ+ 2−(t−1)

≤ 3 · 2−t +

(
t

n(d/n− 1/4)2

)t/2
+ ρ.

Lemma 23. If (Enc,Dec) is continuously (F ′copy, ε, 1, q)-LOR-non-malleable, it is also continuously
(F ′copy, ` · ε, `, q)-LOR-non-malleable, for all ` ∈ N.

Proof. The proof is analogous to the proof of Lemma 10, except that the reduction system Ci

computes f ′v as follows:

f ′v :=

fv if fv ∈ {zero, one},
zero if fv = copyw for w 6= i, and c(w)[v] = 0,

one if fv = copyw for w 6= i, and c(w)[v] = 1,

copy1 if fv = copyi,

one if fv = flipw for w 6= i, and c(w)[v] = 0,

zero if fv = flipw for w 6= i, and c(w)[v] = 1,

flip1 if fv = flipi.

37

	Introduction
	Overview
	Outline of the Paper
	More Details on Related Work

	Preliminaries
	Random Systems
	Channel Resources
	Public-Key Encryption Schemes
	Continuously Non-Malleable Codes

	From Single-Bit to Multi-Bit Channels
	Single-bit Channels from Single-bit PKE
	Tying the Channels Together

	Continuous Non-Malleability against Bit-Wise Tampering
	Proof of Theorem 3
	Proof of Theorem 2

	On the Necessity of Self-Destruct
	Proof of Theorem 4

	Conclusions
	Non-Malleable Codes and the One-Time Pad
	The Composition Theorem of Constructive Cryptography
	(Replayable) Self-Destruct Chosen Ciphertext Security
	Formal Definition
	Security Proof

	Continuous Non-Malleability against Full Bit-Wise Tampering

