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Abstract. PANDA is a family of authenticated ciphers submitted to
CARSAR, which consists of two ciphers: PANDA-s and PANDA-b. In
this work we present a state recovery attack against PANDA-s with time
complexity about 241 under the known-plaintext-attack model, which
needs 137 pairs of known plaintext/ciphertext and about 2GB memories.
Our attack is practical in a small workstation. Based on the above attack,
we further deduce a forgery attack against PANDA-s, which can forge
a legal ciphertext (C, T ) of an arbitrary plaintext P . The results show
that PANDA-s is insecure.
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1 Introduction

Authenticated cipher is a cipher combining encryption with authentication,
which can provide confidentiality, integrity and authenticity assurances on the
data simultaneously and has been widely used in many network session proto-
cols such as SSL/TLS [1, 2], IPSec [3], etc. Currently a new competition, namely
CAESAR, is calling for submissions of authenticated ciphers [4]. This competi-
tion follows a long tradition of focused competitions in secret-key cryptography,
and is expected to have a tremendous increase in confidence in the security of
authenticated ciphers.

PANDA is a family of authenticated ciphers designed by D. Ye et al and
has been submitted to the CAESAR competition [5]. PANDA consists of two
ciphers: PANDA-s and PANDA-b, and both are based on a simple round func-
tion. PANDA-s is similar to authenticated encryption (in short AE) with sponge
structures [6] and is a mixture of a stream cipher and a MAC. PANDA-b is an
online cipher like APE [7] with a permeation. In [8] Y. Sasaki et al present a
forgery attack against PANDA-s under the condition of nonce reuse. It should
be pointed that the nonce is usually a counter and is used once, thus it is easy
to avoid launching Y. Sasaki et al’ attack in practice. As for PANDA-s, in this
work we present a practical state recovery attack with time complexity about
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241 under the known-plaintext-attack model, which needs 137 pairs of known
plaintext/ciphertext and about 2GB memories. What is more, based on the
above attack, we further deduce a forgery attack against PANDA-s which can
forge a legal ciphertext (C, T ) of an arbitrary plaintext P . The results show that
PANDA-s is insecure.

The rest of this paper is organized as follows: in section 2 we recall PANDA-s
briefly, and in section 3 we provide a state recovery attack and an evaluation of
the time, data and memory complexity of our attack. Finally we further deduce
a forgery attack against PANDA-s in section 4.

2 Description of PANDA-s

In this section we recall PANDA-s briefly. Since our attack does not involve in
the initialization and the process of associated data of PANDA-s, thus here we
omit them, and more details of PANDA-s can be found in [5].

PANDA-s takes in a 128-bit key K, a 128-bit nonce N , a variable-length
associated data A and a variable-length plaintext P and outputs a variable-
length ciphertext (C, T ), where T is a 128-bit authentication tag. The main
part of PANDA-s is a round function RoundFunc, which is a bijection from an
eight 64-bit-block input to an eight 64-bit-block output. The state of PANDA-s
is seven 64-bit blocks, which is a part of the input and output of RoundFunc.
RoundFunc consists of four non-linear transformations SubNibbles and a linear
transformation LinearTrans, as shown in Fig. 1.

Fig. 1 The round function RoundFunc in PANDA-s

Let (w, x, y, z, S0, S1, S2,m) and (w′, x′, y′, z′, S′0, S
′
1, S
′
2, r) be the input and

the output of RoundFunc respectively. Then the specific process of RoundFunc
is defined as follows:

RoundFunc(w, x, y, z, S0, S1, S2,m)
w′ ← SubNibbles(w ⊕ x⊕m)
x′ ← SubNibbles(x⊕ y)
y′ ← SubNibbles(y ⊕ z)
z′ ← SubNibbles(S0)
(S′0, S

′
1, S
′
2)← LinearTrans(S0 ⊕ w, S1, S2)

r ← x⊕ x′
return (w′, x′, y′, z′, S′0, S

′
1, S
′
2, r)



2.1 SubNibbles

SubNibbles is a nonlinear transformation from a 64-bit input to a 64-bit output,
and is shown in Fig. 2. Let a0a1 · · · a63 and b0b1 · · · b63 be the input and the out-
put of SubNibbles respectively. Then bibi+16bi+32bi+48 = S(aiai+16ai+32ai+48),
where S(·) represents a 4× 4 S-box and is defined as in [5], i = 0, 1, · · · , 15.

Fig. 2 SubNibbles acts on the individual columns of its input block

2.2 LinearTrans

The linear transformation uses the operations of a finite field. The finite field
F264 is defined by an irreducible polynomial p(x) = x64 + x30 + x19 + x+ 1, i.e.,
F264 = F2(θ), where θ is a root of p(x). The block a0a1 · · · a63 corresponds to
a0 + a1θ + · · · + a62θ

62 + a63θ
63 ∈ F264 . The linear transformation LinearTrans

is defined as LinearTrans(S0, S1, S2)=(S0, S1, S2)A, where the matrix

A =

0 1 0
0 0 1
1 α α+ 1

7

and α = θ32 ∈ F264 .

2.3 Encryption

Let p0p1 · · · pm−1 be the plaintext and state be the internal state of PANDA-s
after initialization. Then the encryption is described as below:

(state, r)← RoundFunc(state, 0)
for t = 0 to m− 1
ct ← pt ⊕ r
(state, r)← RoundFunc(state, pt)

2.4 The tag T

Use tempti to update state with RoundFunc 14 times, and then output the XOR
of some of state bits as the authentication tag T , where tempti = adlen when i
is even, tempti = mslen when i is odd, adlen and mslen are the bit-length of



the associated data and the plaintext repectively. More specifically,
for i = 0 to 13
state← RoundFunc(state, tempti)

T ← (w ⊕ y, x⊕ z)

3 A state recovery attack on PANDA-s

In this section we assume that an attacker has known a phase of the plaintext pt+i

corresponding to the ciphertext ct+i after time t ≥ 0, where i = 0, 1, · · · ,m− 1,
and m is large enough for the attacker to launch his attack. Since rt+i = pt+i ⊕
ct+i for i ≥ 0, thus the attacker knows the key words {rt+i}0≤i≤m−1 as well.
Below we first introduce some notations.

Let (w, x, y, z, S0, S1, S2) be the registers of PANDA-s and (wt, xt, yt, zt, S0,t,
S1,t, S2,t) be the state of these registers at time t ≥ 0. For an arbitrary 64-bit
word x = x0x1 · · ·x63, we denote

x[j] = xjxj+16xj+32xj+48,

where 0 ≤ j ≤ 15. Observe the update of the state of PANDA-s, and we have
the following conclusion:

Lemma 1 1. If xt[j] is known for some 0 ≤ j ≤ 15, then all the sequences
{xt+i[j] }i≥0, { yt+i[j] }i≥0, { zt+i[j] }i≥0 and {S0,t+i[j] }i≥0 are known;

2. If both xt[j] and wt[j] are known for some 0 ≤ j ≤ 15, then the sequence
{wt+i[j] }i≥0 is known.

Proof. It is noticed that xt+i+1[j] = xt+i[j]⊕ rt+i[j] for any i ≥ 0, thus we have

xt+i+1[j] = xt[j]⊕
i⊕

k=0

rt+k[j].

If xt[j] is known, then the whole sequence {xt+i[j] }i≥0 is known.

By the definition of the SubNibbles, we have

yt+i[j] = S−1(xt+i+1[j])⊕ xt+1[j], (1)

zt+i[j] = S−1(yt+i+1[j])⊕ yt+1[j], (2)

S0,t+i[j] = S−1(zt+i+1[j]), (3)

thus the sequences {yt+i[j]}i≥0, {zt+i[j]}i≥0 and {S0,t+i[j]}i≥0 are known.

Item 2 follows directly from wt+i+1[j] = S(wt+i[j]⊕ pt+i[j]⊕xt+i[j]) for any
i ≥ 0. �



3.1 A state recovery attack

In this section we will provide a state recovery attack against PANDA-s. The
details are described as below:

1. Get equations on {wt+i}i≥0 and {S0,t+i}i≥0.

By the definition of the LinearTrans, we need only three equations got at
three distinct times to eliminate the variables S1,t and S2,t. More precisely,
the process is shown below:
First we get three equations at time t+ 1, t+ 2 and t+ 2:

S0,t+1 = (S0,t ⊕ wt, S1,t, S2,t)A e1, (4)

S0,t+2 = ((S0,t ⊕ wt, S1,t, S2,t)A2 + (wt+1, 0, 0)A) e1, (5)

S0,t+3 = ((S0,t ⊕ wt, S1,t, S2,t)A3 + (wt+2, 0, 0)A+ (wt+1, 0, 0)A2) e1, (6)

where e1 = (1, 0, 0)′ is a basic column vector.
Second, we eliminate the variables S1,t and S2,t from the above equations
and get

wt+2 ⊕ C5wt+1 ⊕ C6wt = C0, (7)

where C0 = C1S0,t+3⊕C2S0,t+2⊕C3S0,t+1⊕C4S0,t, and C1, C2, · · · , C6 are
constants as defined in Appendix A.

2. Find a multiple of x2 ⊕ C5x⊕ C6 with coefficients 0 or 1.

It is noticed that the computation of the S-boxes in the SubNibbles can be
done in parallel, we need to find a nonzero multiple of x2 ⊕ C5x ⊕ C6 with
coefficients 0 or 1 in F264 in order to solve equation (7) faster. Indeed we do
it easily. One can check the following polynomial f(x)

f(x) =
⊕
i∈I

xi

such that x2 ⊕ C5x⊕ C6|f(x), where

I = { 0, 4, 6, 7, 8, 10, 11, 14, 15, 17, 18,
19, 21, 23, 26, 30, 31, 32, 33, 34, 35, 37,
39, 43, 45, 46, 47, 49, 50, 51, 52, 55, 59,
61, 63, 64, 67, 68, 70, 72, 73, 74, 77, 78,
79, 83, 85, 89, 91, 94, 96, 97, 99, 100, 101,

103, 105, 106, 107, 108, 109, 110, 112, 113, 115, 117,
118, 119, 122, 124, 125, 127}.

So we have ⊕
i∈I

wt+i = Ct, (8)

where Ct is a linear relation of S0,t+i (i = 0, 1, · · · 127), or is viewed as an
expression only on xt.



3. Set up the tables Tj in order to solve wt and xt faster.

Set Wt =
⊕

i∈I wt+i. First we subdivide equation (8) into 16 equations:

Wt[j] = Ct[j], 0 ≤ j ≤ 15. (9)

For each equation, for example j, by Lemma 1, the left Wt[j] depends on
wt[j] and xt[j], and the right Ct[j] depends on xt[j] (j = 0, 1, · · · , 15). Let
k be a positive integer such that k ≤ 15. We consider the case j = 0 and
further rewrite Ct[0] as below:

Ct[0] = Ft ⊕Gt,

where Ft relies on S0,t+i[0], S0,t+i[1], · · · , S0,t+i[k − 1], that is, xt[0], xt[1],
· · · , xt[k− 1], and Gt relies on S0,t+i[k], S0,t+i[k+ 1], · · · , S0,t+i[15], that is,
xt[k], xt[k + 1], · · · , xt[15], 0 ≤ i ≤ 15. Hence we have

Wt[0] = Ft ⊕Gt.

Consider k + 1 successive times t, t + 1, · · · , t + k, and we get an equation
system 

Wt[0]⊕ Ft = Gt

Wt+1[0]⊕ Ft+1 = Gt+1

· · ·
Wt+k[0]⊕ Ft+k−1 = Gt+k

(10)

and write it as E(wt[0], xt[0], · · · , xt[k − 1]) = (Gt, Gt+1, · · ·Gt+k) in short.
For any (k + 1)-tuple (Gt, Gt+1, · · · , Gt+k), we set up a table T0 to record
(wt[0], xt[0], · · · , xt[k − 1]), where

E(wt[0], xt[0], · · · , xt[k − 1]) = (Gt, Gt+1, · · ·Gt+k).

On the other hand, for any 1 ≤ j ≤ 15, we set up a table Tj whose input
is (xt[j], Ct[j]) and output is wt[j], where wt[j], xt[j], Ct[j] meet equation (9).

4. Recover the state by looking up the tables Tj.

After the tables Tj are set up, we can recover the state (wt, xt, yt, zt, S0,t, S1,t,
S2,t) by looking up the tables Tj . More precisely, the process is shown below:

(a) FOR each possible value of (xt[k], · · · , xt[15]), DO:
(b) Compute the (k + 1)-tuple (Gt, · · · , Gt+k); Look up the table T0 to

recover wt[0] and xt[0], · · · , xt[k − 1];
(c) Recover yt, zt, S0,t and compute Ct by xt;
(d) Look up the table Tj to recover wt[j] by xt[j] and Ct[j] for 1 ≤ j ≤ 15;
(e) Recover S1,t and S2,t by the LinearTrans.
(f) Check whether the recovered state (wt, xt, yt, zt, S0,t, S1,t, S2,t) is correct

or not. YES, output the current state and stop; NO, go to (a).



3.2 The time, data and memory complexity

In our attack we take k = 6. The most time-consuming operations in our
attack mainly include the establishment of the table T0 and the traversal of
(xt[6], · · · , xt[15]). As for the former, namely, establishing the table T0, we first
set up a temporary table temp which records (wt[0], xt[0], xt[1], xt[2]) for any
(G′t, G

′
t+1, G

′
t+2, G

′
t+3), where (wt[0], xt[0], xt[1], xt[2]) meets the following equa-

tions: 
Wt[0]⊕ F ′t = G′t
Wt+1[0]⊕ F ′t+1 = G′t+1

Wt+2[0]⊕ F ′t+2 = G′t+2

Wt+3[0]⊕ F ′t+3 = G′t+3

,

where F ′t means an expression only on xt[0], xt[1], xt[2] split from Ft. At the
worst case, for any (G′t, G

′
t+1, G

′
t+2, G

′
t+3), we go through all possible values

of (wt[0], xt[0], xt[1], xt[2]) and get the correct one, whose time complexity is at
most (24×4)2 = 232. Second, we set up the table T0 by means of the temporary ta-
ble temp. For any (Gt, · · · , Gt+6), we guess the possible value of (xt[3], xt[4], xt[5])
and look up the temporary table temp to recover (wt[0], xt[0], xt[1], xt[2]). Then
we further check whether the recovered solution (wt[0], wt[0], · · · , wt[5]) meets
the rest 3 equations in (10) or not, and record the correct one. The time complex-
ity of the second step is about 24×(3+7) = 240. Finally we delete the temporary
table temp as soon as the table T0 is set up. Thus the total time complexity of
setting up the table T0 is about 240 + 232 ≈ 240. As for the latter, namely, the
traversal of (xt[6], · · · , xt[15]), since it has totally 24×10 = 240 possible values,
thus the time complexity of the traversal of (xt[6], · · · , xt[15]) is about 240. So
the total time complexity of our attack is about 240 + 240 = 241.

As for the data complexity, in order to compute Gt, we need to compute
S0,t+i[6], · · · , S0,t+i[15] (i = 0, 1, 2, · · · , 127). The latter needs about 131 pairs
of known plaintext/ciphertext. Further we need more 6 pairs of known plaintex-
t/ciphertext for computing Gt+1, · · · , Gt+6. Thus we need totally 137 pairs of
known plaintext/ciphertext, and it is very low.

As for the memory complexity, in order to store the table T0, we need about
7 × 24×7B ≈ 231B = 2GB memories, and store the tables Tj (j = 1, 2, · · · , 15),
we need 15× 28B < 4KB. Thus the memory complexity is about 2GB.

4 A forgery attack

Let (C, T ) be the ciphertext and the authentication tag transported in some
communication session. If an attacker has known a small phase of plaintext P
which corresponds to some phase of the ciphertext C, then he can recover all
corresponding plaintext of the ciphertext C and forge arbitrary legal ciphertext
C ′ and the authentication tag T ′, where we assume that the plaintext P contains
at least 137 of 64-bit blocks. The process is shown blow: based on the above
attack, first the attacker recovers the state of PANDA-s at the beginning of
processing the plaintext P with the plaintext/ciphertext pairs (P,C) ; second,



since the update of the state of PANDA-s is invertible, he further recovers the
initial state of PANDA-s in the process of encryption and decrypts the ciphertext
C to get the whole plaintext P ; finally, the attacker chooses an arbitrary plaintext
P ′ and encrypts them with the recovered initial state to get C ′ and further
generates the tag T ′. The attacker sends the message (C ′, T ′) to a legal receiver
(note: he has the legal secret key). The receiver decrypts C ′ and verifies T ′ to
get P ′.
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A The constants C1, C2, · · · , C6

The bit representation is with regard to the primitive element θ, and the most
significant bit is at the left.

C1 =1000001101110000100010001100100001011000011010000001001101001001

C2 =1110010101000110011111001001101111011101111110011110011001011000

C3 =0011100010111000001010101111110111000011110100011001100101011001

C4 =1000001101110000100010001100100001011000011010000001001101001001

C5 =1100110000010111011110011111000010001000110010110001110011110011

C6 =1000001101110000100010001100100001011000011010000001001101001001


