
FeW: A Lightweight Block Cipher 

Manoj Kumar
1, 2

, Saibal K. Pal
1
 and Anupama Panigrahi

2 

1
Scientific Analysis Group, DRDO, Delhi, INDIA 

2
Department of Mathematics, University of Delhi, INDIA 

mktalyan@yahoo.com
 

 

Abstract: In this paper, we propose a new lightweight block cipher called 

FeW
1
 which encrypts 64-bit plaintext using key size 80/128 bits and produces 

64-bit ciphertext. FeW is a software oriented design with the aim of achieving 

high efficiency in software based environments. We use a mix of Feistel and 

generalised Feistel structures (referred as Feistel-M structure hereinafter) to 

enhance the security of our design against basic cryptanalytic attacks like 

differential, linear, impossible differential and zero correlation attacks. 

Security analysis of this scheme proves its strength against present day 

cryptanalytic attacks. 

Keywords:  Block Cipher, Feistel structure, Generalised Feistel structure, 

Lightweight Cryptography, SPN 

1. Introduction 

Lightweight cryptography [26] has emerged as a vast research direction in the area of 

cryptography. Research in this direction started in the beginning of 21
st
 century to meet the 

requirement of cryptographic algorithms requiring very low implementation area and less 

power consumption. There was requirement for product designers and developers to 

provide security features in tiny and handheld devices. This was the time when Rijndael 

[10] was selected as AES and there was a need for lightweight ciphers for specific 

applications. RFID tags and sensor networks are the examples of products that employ 

lightweight cryptographic algorithms.  Lightweight block ciphers like PRESENT [4], 

HIGHT [14], LBlock [38], TWINE [34], SIMON and SPECK family [7], TEA [39], DES 

Light weight variant [23] and other lightweight designs [8,12,13,19,31,40,15,22,35] with 

different design constructions [20] have been published in last 15 years. PRESENT and 

CLEFIA have been chosen as a lightweight encryption standard by International 

Organisation of Standardisation (ISO) and International Electro-technical Commission. 

Wide publicity of PRESENT, inspired researchers to designs new and more efficient 

lightweight block cipher. Various new cryptanalytic attacks and their combinations [21] 

have also been discovered and applied on block ciphers in last few years. Some 

cryptanalytic attacks have been applied on full round ciphers and some have been shown to 

be prone to various attacks.  

                                                           
1
 FeW refer to Feather Weight, which is a term in certain sports between lightweight and 

bantamweight. 

 



Lightweight block cipher designs are mainly based on two structures: Feistel and SPN. The 

concept of confusion and diffusion given by Shannon [29] is used in both structures to 

design the secure cryptographic algorithms. These design principles are still the best 

concept to design a new block ciphers.  Feistel structure was proposed by Horst Feistel and 

the first block cipher design based on this structure was LUCIFER [28]. In this structure, 

input plaintext is encrypted by dividing it in two equal parts and using a round function 

(comprising of non-linear substitution and linear permutation which gives confusion and 

diffusion) on one part while the other part remains unchanged for the next round. DES [6] 

is the first widely used Feistel Network based block cipher design which was in use for 

almost two decades. Schneier and Kelsey [32] examined the concept given by Feistel and 

they generalized this structure and called it unbalanced Feistel networks (UFNs). UFNs 

consists a series of rounds in which one part of block operates on the rest of the block. 

However, in a UFN the two parts need not be of same size. But UFNs did not receive much 

attention from the cryptographic community for designing the block cipher. The first 

choice between balance Feistel network (BFN) and UFN is obviously BFN based designs. 

Generalized balance Feistel networks are the generalization of Balance Feistel which 

encrypts the plaintext block by dividing it into n equal parts. If the confusion and diffusion 

is applied on the whole block length in each round while encryption then the structure is 

called SPN. In this structure we require that round subkeys are of same size as block 

length. The current cryptographic standard for block ciphers AES [10] have been designed 

using the SPN structure. 
 

 As compared to SPN based ciphers, Feistel based ciphers seem to be a better choice for 

lightweight ciphers as it does not need inversion of the round function and inverse of S-box 

involved in round function. Feistel based design performs less computation as compared to 

SPN based designs, because half of the input block is processed through round function, 

whereas SPN based designs apply substitution and permutation on full input block in every 

round. Therefore we choose the Feistel structure with SPN round function to design a new 

lightweight block cipher. Some previous designs also have used similar operations in round 

function as we have used in our design. SMS4 [9] block cipher is used in Chinese WAPI 

standard which uses shifts and xor on 32 bit words in its round function and key 

scheduling. We have used two different shift and xor operations on 16 bit words inside the 

round function. Key schedule of FeW is designed using the key expansion concept similar 

to the PRESENT. Generalised Feistel based designs CLEFIA [36] have used two different 

round functions but we have used two different functions which are applied on mixed input 

data of two 16 bit Feistel branches. Our design is based on Feistel-M structures, which 

proves to be very helpful in enhancing the security of our design against cryptanalytic 

attacks. 

This paper is organised as follows. In section 2, we describe the design specifications of 

lightweight block cipher FeW in detail. Key schedule for key size 80-bit is presented in 

section 3.  Security evaluation of FeW against some basic cryptanalytic attacks is described 

in section 4. Finally, we conclude the paper in section 5. 

Notations: We have used the following notations in this paper while describing the 

lightweight block cipher FeW: 



- Pm:  64-bit input plaintext block 

- Cm:   64-bit output ciphertext block 

- MK-80: 80-bit user supplied key 

- MK-128: 128-bit user supplied key 

- RKi:  16-bit subkey extracted from Key register MK 

- Ki:  32-bit subkey for round i (concatenation of RK2i and RK2i+1) 

- F:  Round function 

- WF1:  Weight Function 1 used inside F 

- WF2:  Weight Function 2 used inside F 

- ⊕     Bitwise exclusive-OR operation 

- <<<n  Left cyclic shift by n bits 

- >>n  Right shift by n bits 

- [i]2  Binary representation of integer i 

- ||:  Concatenation of two bit strings 

- &:  Bitwise And between two bit strings 
 

2. FeW: Lightweight Block Cipher 

We describe the Encryption algorithm and Key Schedule of lightweight block cipher 

FeW in this section: 

2.1 Specifications of FeW 

FeW encrypts plaintext in blocks of size 64 bits (This is the commonly preferred block size 

in case of lightweight block ciphers). Design of FeW (Fig.1) is based on Feistel-M 

structure which is broadly a Balanced Feistel based design but its round function process 

32 bit word like generalised Feistel based designs. The round function F uses two different 

functions WF1 and WF2 and applies these on two 16 bit words. This type of mixing method 

is used first time in a block cipher. We have shown that this significantly improves the 

immunity of our design against cryptanalytic attacks. 

FeW takes 64-bit of plaintext data as input and produces a 64-bit data of ciphertext as 

output. There are total 32 rounds in FeW. We obtain 64-bit ciphertext by swapping the 

output words of the last round. FeW uses two options for the size of Master key MK: 80 

bits and 128 bits. Based on two key sizes, we name the two versions of FeW, the first 

version with 80-bit key size as FeW-80 and the second version with 128-bit key size as 

FeW-128.  

 

 

 

 

 

 

 

Fig.1: One round of FeW (Feistel-M) 
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2.2 Encryption Algorithm 

First we divide 64-bit plaintext Pm into two halves namely P0 and P1. Each of these halves 

is of size 32-bit. We have 64-bit input plaintext Pm as concatenation of two 32-bit words P0 

and P1 as follows: 

P0 || P1 ← Pm 

Encryption procedure of FeW is described as follows: 

(a) For i =0 to 31, apply round functions F on 32-bit word Pi+1 and xor it with Pi to 

produce Pi+2: 

Pi+2 ← Pi ⊕  F(Pi+1 , Ki ) 

(b) Apply swap function on the output of the last round: 

(P33, P32) ← (P32, P33) 

(c) We obtain two 32 bit ciphertext words: 

(C0, C1) ← (P33, P32) 

Finally, we obtain the 64-bit ciphertext Cm as concatenation of C0 and C1 as follows: 

Cm ← C0 || C1 

Now we describe below the Round functions F in detail: 

2.3 Round function F 

F is the round function of FeW and its internal structure is shown in Fig 2. It takes 32 bit 

input Xi and produces 32 bit output Yi. 

F: {0, 1}
32

 → {0, 1}
32

 

We have used two different weight functions WF1 and WF2 inside F, both of these 

functions take 16 bit input and produce 16 bit output. Weight functions WF1 and WF2 are 

described in section 2.3.1 and 2.3.2 in detail. In each round, F is applied on 32 bit input Xi
 

as follows: 

(i) Xi ⊕ Ki 

(ii) C(8) || D(8) || E(8) || F(8) 

(iii)  (A= C(8) || F(8)  ) || (B =  E(8) || D(8)) 

A & B are processed through weight functions WF1 and WF2. Finally, 32-bit output Yi is 

the concatenating of 16-bit outputs from WF1 and WF2. This 32-bit output Yi from round 

function F is xored with 32-bit word Pi to get Pi+2 as described below:  

Pi+2 ← Pi ⊕ F(Xi) 

i.e. Pi+2 ← Pi ⊕ Yi 



 

 

 

 

 

 

 

 

Fig. 2: Round Function F 

2.3.1 Weight Function WF1 

This function takes 16-bit input and produces 16-bit output. Weight function WF1 consists 

of application of S-box 4 times in parallel as non-linear operation and cyclic shifts and 

exclusive-or operation as linear mixing operation L1. Weight function WF1 is described 

below in detail: 

WF1: {0, 1}
16

 → {0, 1}
16

 

Y  ← WF1(A = A0  || A1   || A2  || A3  )          

          

First, we apply 4x4 S-box in parralal 4 times on A to get U then apply cyclic shifs on U 

and xor these with U to get Y as output of function WF1 as follows: 

U0  ← S(A0) 

U1  ← S(A1) 

U2 ← S(A2) 

U3 ← S(A3) 

 

U ← (U0   || U1   || U2   || U3) 

 

Y ← (U ⊕  U<<<1  ⊕  U<<<5  ⊕ U<<<9  ⊕ U<<<12) 

 

2.3.2 Weight Function WF2 

Similar to WF1, WF2 also takes 16-bit input and produces 16-bit output. WF2 consists of 

application of S-box 4 times in parallel and apply cyclic shifts on V and xor these with V to 

get Z as output of WF2 as linear mixing operation L2 which is different from L1. WF2 is 

described below in detail: 

WF2: {0, 1}
16

   →   {0, 1}
16

 

WF2 WF1 

Y

Xi 

Ki 

C D E F 

A B 



Z  ←  WF2(B = B0   || B1   || B2  || B3) 

First, we apply 4x4 S-box in parralal 4 times on B to get V then apply shift and xor V to 

get Z as output of function WF2 as follows: 

V0 ← S(B0) 

V1 ← S(B1) 

V2 ← S(B2) 

V3 ←S(B3) 

V ←V0 || V1  || V2  || V3 

Z ←V ⊕  V<<< 4 ⊕ V<<< 7 ⊕ V<<<11 ⊕ V <<< 15  

 

2.4 S-Box 

We have used the same 4x4 S-box in encryption, decryption and key schedule of 

lightweight block cipher FeW-80 and FeW-128. This S-box has already been used in block 

cipher HummingBird2 [11]. Saarinan [30] also has given cryptographic analysis of all 4x4 

bit S-boxes and this S-box falls in the category of Golden S-boxes: 

x 0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F 

S(x)  2  E  F  5  C  1  9  A  B  4  6  8  0  7  3  D 
 

Table 1: S-box S 

2.5 Key Schedule for MK-80 

There is no related key attack reported on PRESENT like key schedule till now. We also 

prefer the same type of key schedule for our design. First, store MK-80 in a key register 

called MK as  

MK= k0 k1 k2 k3............ k78 k79. 

We obtain round subkeys RK0 by extracting leftmost 16 bits of current contents of MK and 

proceed in the following way to obtain the other round subkeys: 

a. While i < 64, update the register MK in the following steps: 

1. MK<<<13 

2. [k0 k1 k2 k3] ← S[k0 k1 k2 k3]    

 [k64 k65 k66 k67] ← S[k64 k65 k66 k67]  

     [k76 k77 k78 k79] ← S[k76 k77 k78 k79] 

3. [k68 k69 k70 k71 k72 k73 k74 k75] ← [k68 k69 k70 k71 k72 k73 k74 k75] ⊕ [i]2  

b. Increment i by 1 and extract leftmost 16 bits of current contents of MK as round 

subkey RKi. 

 

3. Security Analysis 

There is a large variety of cryptanalytic attacks which can be applied on block ciphers. We 

give secrurity estimates of our design against some basic cryptanalytic attacks in this 

section. 



3.1 Differential Cryptanalysis 

Differential attack [6] is one of the most basic cryptanalytic attacks applied on block 

ciphers. This attack was invented by Biham and Shamir in 1990 and applied on DES. This 

attack exploits the high probability differences in input and ouput of an encryption system 

and these high probability input and output occurences of certain pairs are used to recover 

round subkeys from the outermost rounds. Linear components of a cipher produces the 

certain outputs with probability 1, while this is not the case for the non linear components 

(S-box in our design).  These are examined and high probability input and output 

differences of these componenets (S-box) are used to form differential trail of the cipher by 

joining 1 round high probability differentials trails. FeW uses a 4x4 S-box as its only non 

linear component. We give a Difference Distribution table (DDT) for this S-box by 

counting the occurences of all possible input and output differences. DDT (16x16) of S-

box is given in table 5 (Appendix D). 

Maximum differential probability for arbitrary input difference producing a output 

difference in a single S-box application is 4/16 = 2
-2

 . This value ensures that even if there 

is only one active S-box in each round, still differential attack will require 2
64 

chosen 

palintexts(full codebook) to distinguish it from random permutation. 

3.1.1 Experimental results on L1 and L2 

We applied L1 and L2 on all possible input differences and observed the output differences 

using computer programs, the following observations (table 2) are made between input and 

output differences which are very useful in proving our design secure against the 

Differential and Linear attacks: 

Minimum number of non zero nibbles 

(L1 and L2) 

Input Difference Output Difference 

1 4 

2 3 

3 2 

4 1 

Table 2: Number of non zero nibbles 

There are two cases on the bases of observations made on linear permutation layers of 

round functions WF1 and WF2: 

1. Input difference with 1 non zero nibble gives output difference with at least 4 non zero 

nibbles and next round input difference with 4 non zero nibbles produces output 

difference with 1 non zero nibble and vice versa. 

2. Input difference with 2 non-zero nibbles gives 3 non zero nibbles and the process 

continues with 3 non zero nibbles as input to the next round and 2 non zero nibbles as 

output and vice versa. 



Branch number of a function is defined by Rijmen [27] and Kanda [16] for SPN based 

designs and Feistel based designs with SPN type round function. We define below the 

Branch number of the linear permutation layers used in FeW and differential & linear 

Branch number of FeW. We use the similar techniques as in [18,37] to show the resistance 

of FeW to Differential and linear attacks. 

Definition 1: (Branch Number) If X is 16 bit input to the function f and X is written as 

concatenation of 4 nibbles x0, x1, x2 and x3 each of size 4 bit. By defining the number of 

non zero nibbles in f by Hw(f), we define the branch number of the function     

f: {0,1}
16

 → {0,1}
16

  

by β(� ) as follows: 

β(� ) =
min

X ≠ 0, X ∈ {0,1}�� 
 (Hw(X) + Hw(� (X)) 

Definition 2: Differential Branch number β�  of a linear permutation layer L is defined as: 

β�(L) =
min

∆X ≠ 0, X�, X� ∈ {0,1}�� 
 (Hw(∆X) + Hw(L(∆X)) 

where ∆X = X1 ⊕X2 is input difference to the linear layers of FeW and L(∆X)= L(X1) 

⊕L(X2) is output difference. In case of FeW, Differential Branch number of the linear 

layer L1 and L2 used in F is 5, which is verified by a Computer programme (Table 2). 

Theorem 1: If Pi || Pi+1 is the 64-bit input to i
th

 round of FeW and Xi is the 32 bit input and 

Yi is the 32 bit output to the round function F at i
th

 round. We obtain the following 

relationship between the input and output of three consecutive rounds (i.e. i
th

, i+1
th

 and 

i+2
th

 rounds). 

Xi ⊕ Xi+2 = Yi+1 

Proof: We draw 3 rounds of FeW in Fig. 3, We consider structure of FeW broadly a Feistel 

structure. We have the following relations between the intermediate states, input and 

output to the round function: 

Xi    = Pi+1                    (i) 

Xi+1 = Pi+2                    (ii) 

Xi+2 = Pi+3                   (iii) 

Yi = Pi ⊕ Pi+2            (iv) 

Yi+1 = Pi+1⊕ Pi+3      (v) 

Yi+2 = Pi+2⊕ Pi+4     (vi) 

We have the following desired relation using equations (i), (iii) & (v) between input and 

output to the round function W: 

Yi+1 = Xi ⊕ Xi+2      (vii) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Three consecutive rounds of FeW (Broadly Feistel structure) 

Theorem 2: If ∆Xi ⊕ ∆Xi+2 is not equal to zero, then three consecutive rounds of FeW 

have at least 5 differentially active S-boxes. 

Proof: We denote the linear transformation layers (L1 and L2) in round function F by L and 

use theorem 1 with linearity of L, we have the following relation: 

∆Xi ⊕ ∆Xi+2 = ∆Yi+1 = L(L
-1

(∆Yi+1) = L( ∆L
-1 

(Yi+1))   (viii) 

Since applying inverse of L on the output to round function at round i, we get the same 

number of non zero nibbles as there are in the input to round function. Therefore, we have 

the following relation: 

Hw(∆Xi+1) = Hw(∆L
-1

(Yi+1))          (ix) 

We know the relation Hw( ) + Hw(!) ≥ Hw(  ⊕ !) between the number of non zero 

nibbles in two binary strings   and ! [16]. Using this relation, we get: 

Hw(∆Xi) + Hw(∆Xi+2) ≥ Hw(∆Xi ⊕ ∆Xi+2)        (x) 

Using (viii), (ix) & (x) and β�(L)  we have the following relation which asserts that any 3 

consecutive rounds will have at least 5 differentially active S-boxes if ∆Xi ⊕ ∆Xi+2≠0: 

Hw(∆Xi) + Hw(∆Xi+1) +Hw(∆Xi+2) = Hw(∆Xi) + Hw(∆Xi+2) +Hw(∆Xi+1) 

                                                                   = Hw(∆Xi) + Hw(∆Xi+2) +Hw(∆L
-1

(Yi+1)) 

Pi+2 

Xi+1 

F(Pi+2, Ki+1) 

Pi+1 

Yi+1 

Xi+2 

F(Pi+3, Ki+2) 

Pi+2 

Yi+2 

Pi+3 

Yi Xi 

F(Pi+1, Ki) 

Pi Pi+1 

Pi+3 Pi+4 



                                                    ≥ Hw(∆Xi ⊕ ∆Xi+2 ⊕ ∆L
-1

(Yi+1))  

                                                     = Hw(L( ∆L
-1

(Yi+1)) ⊕ ∆L
-1

(Yi+1))    

= 5 
 

Theorem 3: Any four consecutive rounds of FeW (i
th 

to i+3
rd

 round) can have at the most 

one differentially inactive round function. 

Proof: We use the Fig. 3 to prove the theorem. If round function to i
th 

round is 

differentially active then we must have 64-bit input to this round of the form 

(∆Pi≠0)||(∆Pi+1=0), which implies that ∆ Xi = 0 & ∆ Yi = 0. Number of active S-boxes in 

this round are zero. Input to i+1
th 

round will be of the form (∆ Pi+1 = 0)||( ∆ Pi+2 = ∆ Pi ≠ 0), 

which gives us that ∆ Xi+1 ≠ 0 & ∆ Yi+1 ≠ 0. Minimum number of active S-boxes in this 

round is 1. We obtain input to i+2
nd

 round of the form (∆ Pi+2 = ∆ Pi ≠ 0)||( ∆ Pi+3 ≠ 0), 

which means ∆ Xi+2 ≠ 0 & ∆ Yi+2 ≠ 0. Minimum number of active S-boxes for this round 

are 4. For the input ot the round function of i+3
rd

 round (i.e ∆ Xi+3) to be be differentially 

passive, we should get input to this round of the form (∆ Pi+3 = ∆ Pi ≠ 0)||( ∆ Pi+4 = 0). This 

type of input (∆ Pi+4 = 0) is possible in the case when ∆ Pi ⊕ ∆ Yi+2=0. Susbstituting this 

value in terms of input, we get ∆ Pi ⊕ F(∆ Pi+3) =0. Finally, writing Pi+3 in terms of ∆ Pi+2, 

we get ∆Pi⊕F(F(∆Pi+2))=0, which can be represented in terms of input to i
th

 round as 

follows:  

∆ Pi ⊕ F(F(∆ Pi)) =0 

We searched this relation for all possible input differences ∆ Pi ≠ 0 using a Computer 

programme but this relation was not satisfied for any ∆ Pi ≠ 0. 

We derived the above results considering the strucure of FeW broadly a Feistel structure, 

while FeW is based on Fesitel-M structure, which mix the Feistel branches and apply two 

different functions. We found the minimum number of active S-boxes (Table 3) in each 

round of FeW with Feistel-M structure. Maximum differential probability of the 4x4 S-box 

used in FeW is 2
-2

. Table 3 shows that the minimum number of active S-boxes in 11 rounds 

is 34, which confirms that single differential charcatersitics is bounded by 2
-68

. It is not 

possible to mount any useful differential attack beyond 16 rounds. 

 

#Round #Active S-boxes(min) 

1 0 

2 1 

3 5 

4 10 

5 14 

6 17 

7 20 

8 24 

9 27 

10 30 

11 34 

Table 3: Number of Active S-boxes 



To show full round FeW immune to Differential attack, we provide a lower bound on the 

number of active S-boxes in 27 round differential charcteristic. The following theorem 

shows the resistance of full round FeW against the Differential attack. 

Theorem 4: Any differential characteristic for 27 rounds of FeW has a minimum 45 active 

S-boxes and hence the probability of this differential characteristic is 2
-90

. 

Proof: We can easily prove this using the fact that any 3 round of FeW has a minimum of 

5 differentially active S-boxes. Therefore 3x9=27 rounds will have minimum of 5x9=45 

differentially active S-boxes. So, the probability of a single 27 round differential trail is (2
-

2
)
45

=2
-90

. If we use 27 round trail to recover round subkeys for 32 round FeW, it will 

require 2
90

 chosen plaintext which is more than the amount of data available. This theorem 

ensures that full round FeW is secure enough against differential attack. 

3.2 Impossible Differential Cryptanalysis 

Impossbile Differential attack [3] is an extension of basic differential attack This attack 

works with differentials of probability 0 as opposed to basic differential attack which 

requires differentials of high probability. This attack recovers keys using impossible 

differential by dropping the keys from the list of all possible key candidates which satisfies 

the impossible differntial and the key (or keys) remaning in the list are the candidates for 

the correct key. This attack has given best result on some ciphers like CLEFIA. We obtain 

the following best 6 round impossible differential trail for FeW: 

( 000 0000 0000 0000) 6R→ (0000 0000 0000  000) 

where   denote any non zero 4 bit nibble and * denote any 4 bit nibble. We get 

contradication at round 3 between two events of probability 1 (Table 4). Using this 

impossible differential trail and allowing the attacker to add 3 round on the top and 6 

rounds at the bottom of this trail , on can still break FeW reduced to at the most 15 rounds. 

#R 6 R Impossible Differential Pr 

0 

1 

2 

3 

3 

4 

5 

6 

 000 0000 0000 0000 

0000 0000  000 0000 

 000 0000 **** 0000 

**** 0000 **** **** 

**** **** **** 0000 

**** 0000 000  0000 

000  0000 0000 0000 

0000 0000 0000 000  

 

1 

1 

1 

1 

1 

1 

 

Table 4: Impossible Differential trail 

3.3 Linear Cryptanalysis 

FeW can be shown resistant to Linear cryptanalysis [24] similar to the case of resistence to 

differential attack. First we define Linear Branch number of the linear layer L of FeW: 



Definition 3: Linear Branch number !0  of a function L is defined as: 

!0(1) =
234

 ≠ 0,  ∈ {0,1}�� 
 (56( ) + 56(1∗( )) 

where   is output mask value and L
*
( ) is input mask value to the linear layer . L

* is the 

linear function concerned to L. In case of FeW, Linear Branch number of the linear layers 

L1 and L2 used in F is 5, which is verified by a Computer programme. 

Theorem 4: Any linear characteristic for 27 rounds of FeW has a minimum 45 active S-

boxes and hence the maximal bias of this 27 round linear trail is 2
-90

. 

Proof: We again consider FeW as a Feistel structure only. Linear branch number of linear 

layers L1 and L2 of FeW is 5 and the maximal bias of the S-box is 2
-2

. Any 3 rounds linear 

trail of FeW has a minimum 5 linearly active S-boxes which can be easily verified (Fig. 3). 

Any output mask value   to round function F corresponds to input mask value ! and this 

becomes output mask value to the next round. If we get   as input mask value again then 

there are minimum 5 linearly active S-boxes in 3 round linear trail since the branch number 

of Layer L is 5. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Linear trail of FeW (Broadly a Fesitel Structure) 

By using Matsui`s [24] Piling-up lemma, we get maximal bias for 3 round linear trail: 

2
4
x(2

-2
)
5 

= 2
-6

 

Applying the same lemma again, we get the maximal bias of 27 round linear trail: 

0 

! 

F(Pi+2, Ki+1) 

  

  

  

F(Pi+3, Ki+2) 

! 

! 

  

0 0 

F(Pi+1, Ki) 

0   

0 ! 



2
8
x(2

-6
)
9 

= 2
-46

 

If we assume that full round is attacked using 27 round differential trail, then the amount of 

known plaintext/ciphertext data requirement is of order 2
90

 which is more than the 

available data limit. 

3.4 Zero Correlation Cryptanalysis 

Zero correlation attack [5] is an extension of  linear attack and this is similar to the 

impossible differential attack which is the extension of differential attack. This attack was 

published by Bogdanov & Rijmen and they applied this attack on CLEFIA reduced to 13 

rounds using 9 round zero correlation trail. CLEFIA like structures have the maximum 9 

round zero correlation trail. But, our design is Feistel-M based design so it is not possible 

to get even 9 round zero correlation trail for this type of designs. Similar to the impossible 

differential cryptanalysis of FeW, zero correlation trail for FeW exist ony for 6 rounds and 

FeW can be attacked using this attack upto the maximum 15 rounds. 

3.5 Related Key Cryptanalysis 

We exploit the weakness of Key schedule in Related key attack[1]. We have designed the 

Key schedule of FeW in a similar way to the lightweight block cipher PRESENT`s Key 

schedule. Our key schedule is stronger than the Key schedule of PRESENT. We have 

made 3 application of non linear S-box for each 16-bit subkey derivation. As a result, all 

subkey bits are nonlinear function of key bits after 11 rounds. Till now, there is no 

significant attack on PRESENT`s key schedule, therefore we assume that this attack can 

not be applied to FeW which has a stronger key schedule than PRESENT. 

3. Conclusion 

We described a new lightweight block cipher FeW by introducing a new type of mixing 

between Feistel and generalised Feistel structures based designs. We called this structure a 

Feistel-M structure which is used for the first time in the design of lightweight block cipher 

FeW. We analysed the security of FeW against some basic cryptanalytic attacks and this 

design is secure enough against these attacks. There is a large variety of attacks which can 

be applied to block ciphers, therefore we invite all researchers to apply and report their 

attacks on FeW. 
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Appendix A: Test vectors (FeW-80) 

plaintext key ciphertext 

00000000 00000000  00000000 00000000 0000 70954e26  8a5b327b 

00000000 00000000 FFFFFFFF FFFFFFFF FFFF 45381557  e3c84bdd 

FFFFFFFF FFFFFFFF 00000000 00000000 0000 a308ea91  57a81d66 

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFF b5c4b383  48c989e8 

 

Appendix B: Key schedule (MK-128) 

First, store MK-128 in a key register called MK as MK= k0 k1 k2 k3.........k127. We obtain 

round subkeys RK0 by extracting leftmost 16 bits of current contents of MK and proceed in 

the following way to obtain the other round subkeys: 

a. While i < 64, update the register MK in the following steps: 

(i) MK<<<13 

(ii) [k0 k1 k2 k3] ← S[k0 k1 k2 k3] 

[k4 k5 k6 k7] ← S[k4 k5 k6 k7]    

 [k64 k65 k66 k67] ← S[k64 k65 k66 k67]  

[k76 k77 k78 k79] ← S[k76 k77 k78 k79] 

(iii) [k68 k69 k70 k71 k72 k73 k74 k75] ← [k68 k69 k70 k71 k72 k73 k74 k75] ⊕ [i]2  

 

b. Increment i by 1 and extract leftmost 16 bits of current contents of MK as round 

subkey RKi. 

Appendix C: Decryption Algorithm (FeW-80) 

FeW is balance Feistel-M based design, therefore decryption algorithm of FeW uses the 

same round function as encryption algorithm. The only difference is that the round subkey 

is used in reverse direction. Decryption procedure is described as follows: 

First we divide 64-bit ciphertext Cm into two halves of size 32 bit each namely C0 and C1. 

We have 64-bit input ciphertext Cm as below: 

C0 || C1 ← Cm  

Decryption procedure of FeW is expressed as follows: 

(a) For i =0 to 31, apply round functions F on 32-bit word Ci+1 and xor it with Ci to 

produce Ci+2 

Ci+2 ← Ci ⊕  F(Ci+1 ⊕ K31-i ) 

(b) Finally, apply the following swap function on the output of last round 

(C33, C32) ← (C32, C33) 

(c)  We obtain the following 32 bit plaintext words P0 and P1: 

(P0, P1) ← (C33, C32) 

We obtain the 64-bit plaintext as concatenation of two 32 bit words P0 and P1 as follows: 

Pm ← P0 || P1 



Appendix D: Difference & Linear Distribution Tables 

OD: output difference, ID: Input difference, OM: output mask, IM: input mask 

OD 

ID 

 

0      1    2   3   4    5    6   7    8   9    A  B   C   D   E   F 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

16 

0   

0   

0   

0   

0   

0   

0   

0   

0   

0   

0   

0   

0   

0   

0 

0   

0   

0   

2   

0   

0   

0   

2   

0   

0   

2   

0   

2   

2   

4   

2 

0   

0   

0   

2   

0   

2   

0   

0   

0   

0   

2   

4   

2   

4   

0   

0 

0   

2   

2   

2   

2   

0   

2   

2   

2   

0   

0   

0   

0   

2   

0   

0 

0   

0   

0   

2   

0   

4   

2   

0   

0   

0   

0   

2   

0   

0   

2   

4 

0   

0   

2   

2   

2   

2   

0   

0   

0   

0   

0   

4   

4   

0   

0   

0 

0   

0   

0   

2   

4   

0   

2   

0   

2   

2   

0   

2   

0   

0   

0   

2 

0   

2   

0   

0   

0   

0   

2   

4   

4   

2   

0   

0   

0   

0   

2   

0 

0   

0   

0   

0   

0   

0   

2   

2   

0   

4   

4   

0   

2   

2   

0   

0 

0   

2   

0   

2   

2   

2   

2   

2   

0   

2   

0   

2   

0   

0   

0   

0 

0   

2   

0   

0   

4   

0   

2   

0   

0   

2   

0   

0   

2   

2   

0   

2 

0   

2   

2   

0   

0   

0   

0   

0   

2   

0   

4   

2   

0   

0   

4   

0 

0   

0   

4   

0   

0   

2   

0   

2   

2   

2   

0   

0   

2   

0   

0   

2 

0   

2   

2   

0   

0   

2   

2   

0   

2   

0   

2   

0   

2   

0   

2   

0 

0   

2   

4   

2   

0   

0   

0   

0   

0   

2   

2   

0   

0   

0   

2   

2 

0   

2   

0   

0   

2   

2   

0   

2   

2   

0   

0   

0   

0   

4   

0   

2 

 

Table 4: Difference Distribution Table of S-box 
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Table 5: Linear approximation Table of S-box 


