Affine-evasive Sets Modulo a Prime

Divesh Aggarwal*

May 10, 2014

Abstract

In this work, we describe a simple and efficient construction of a large subset S of \mathbb{F}_p , where p is a prime, such that the set A(S) for any non-identity affine map A over \mathbb{F}_p has small intersection with S.

Such sets, called affine-evasive sets, were defined and constructed in [ADL14] as the central step in the construction of non-malleable codes against affine tampering over \mathbb{F}_p , for a prime p. This was then used to obtain efficient non-malleable codes against split-state tampering.

Our result resolves one of the two main open questions in [ADL14]. It improves the rate of non-malleable codes against affine tampering over \mathbb{F}_p from $\log \log p$ to a constant, and consequently the rate for non-malleable codes against split-state tampering for *n*-bit messages is improved from $n^6 \log^7 n$ to n^6 .

^{*}Department of Computer Science, New York University. Email: divesha@cs.nyu.edu.

1 Introduction

Non-malleable Codes (NMCs). NMCs were introduced in [DPW10] as a beautiful relaxation of error-correction and error-detection codes. Informally, given a tampering family \mathcal{F} , an NMC (Enc, Dec) against \mathcal{F} encodes a given message m into a codeword $c \leftarrow \text{Enc}(m)$ in a way that, if the adversary modifies m to c' = f(c) for some $f \in \mathcal{F}$, then the the message m' = Dec(c')is either the original message m, or a completely "unrelated value". As has been shown by the recent progress [DPW10, LL12, DKO13, ADL14, FMVW13, FMNV14, CG14a, CG14b] NMCs aim to handle a much larger class of tampering functions \mathcal{F} than traditional error-correcting or errordetecting codes, at the expense of potentially allowing the attacker to replace a given message xby an unrelated message x'. NMCs are useful in situations where changing x to an unrelated x'is not useful for the attacker (for example, when x is the secret key for a signature scheme.)

Split-State Model. NMCs do not exist for the class of all functions \mathcal{F}_{all} . In particular, it does not include functions of the form f(c) := Enc(h(Dec(c))), since Dec(f(Enc(m))) = h(m) is clearly related to m. One of the largest and practically relevant tampering families for which we can construct NMCs is the so-called split-state tampering family where the codeword is split into two parts $c_1 || c_2$, and the adversary is only allowed to tamper with c_1, c_2 independently to get $f_1(c_1) || f_2(c_2)$. A lot of the aforementioned results [LL12, DKO13, ADL14, CG14b, FMNV14] have studied NMCs against split-state tampering. [ADL14] gave the first (and the only one so far) information-theoretically secure construction in the split-state model from n-bit messages to $n^7 \log^7 n$ -bit codewords (i.e., code rate $n^6 \log^7 n$). The security proof of this scheme relied on an amazing property of the inner-product function modulo a prime, that was proved using results from additive combinatorics.

Affine-evasive Sets and Our Result. One of the crucial steps in the construction of [ADL14] was the construction of NMC against affine tampering modulo p. This was achieved by constructing an affine-evasive set of size $p^{1/\log \log p}$ modulo a prime p. It was asked as an open question whether there exists an affine-evasive set of size $p^{\Theta(1)}$, which will imply constant rate NMC against affine-tampering and rate n^6 NMC against split-state tampering.¹ We resolve this question in the affirmative by giving an affine-evasive set of size $\Theta(\frac{p^{1/4}}{\log p})$.

2 Explicit Construction

For any set $S \subset \mathbb{Z}$, let $aS + b = \{as + b | s \in S\}$. By $S \mod p \subseteq \mathbb{F}_p$, we denote the set of values of $S \mod p$.

We first define an affine-evasive set $S \subseteq \mathbb{F}_p$.

Definition 1 A non-empty set $S \subseteq \mathbb{F}_p$ is said to be (γ, ν) -affine-evasive if $|S| \leq \gamma p$, and for any $(a,b) \in \mathbb{F}_p^2 \setminus \{(1,0)\}$, we have

 $|S \cap (aS + b \pmod{p})| \le \nu |S| .$

 $^{^{1}}$ Under a plausible conjecture, this will imply constant rate NMC against split-state tampering. See Theorem 4 for more details.

Now we give a construction of an affine-evasive set.

Let $Q := \{q_1, \ldots, q_t\}$ be the set of all primes less than $\frac{1}{2}p^{1/4}$. Define $S \subset \mathbb{F}_p$ as follows:

$$S := \left\{ \frac{1}{q_i} \pmod{p} \mid i \in [t] \right\} . \tag{1}$$

Thus, S has size $\Theta(\frac{p}{\log p})$ by the prime number theorem.

Theorem 1 For any prime p, the set S defined in Equation (1) is $(\frac{1}{2}p^{-3/4}, \Theta(\log^2 p \cdot p^{-1/4}))$ -affine-evasive.

Proof. Clearly,

$$|S| = t \le \frac{1}{2}p^{1/4} = \frac{1}{2}p^{-3/4} \cdot p$$
.

Fix $a, b \in \mathbb{F}_p$, such that $(a, b) \neq (1, 0)$. Now, we bound $|S \cap (aS + b \pmod{p})|$. Consider any distinct $1/\alpha_1, 1/\alpha_2, 1/\alpha_3 \in S \cap (aS + b \pmod{p})$. We have

$$\frac{a}{\alpha_i} + b = \frac{1}{\beta_i} \pmod{p} \text{ for } i = 1, 2, 3 , \qquad (2)$$

where $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3 \in Q$.

Therefore, we have that

$$\frac{\frac{a}{\alpha_1}+b-\frac{a}{\alpha_2}-b}{\frac{a}{\alpha_1}+b-\frac{a}{\alpha_3}-b} = \frac{\frac{1}{\beta_1}-\frac{1}{\beta_2}}{\frac{1}{\beta_1}-\frac{1}{\beta_3}} \pmod{p} ,$$

which on simplification implies

$$(\beta_3 - \beta_1)(\alpha_2 - \alpha_1)\alpha_3\beta_2 = (\beta_2 - \beta_1)(\alpha_3 - \alpha_1)\alpha_2\beta_3 \pmod{p}.$$

Note that both the left-hand and right-hand side of the above equation takes values between $\frac{-p}{16}$ and $\frac{p}{16}$, and hence the equality holds in \mathbb{Z} (and not just in \mathbb{Z}_p).

$$(\beta_3 - \beta_1)(\alpha_2 - \alpha_1)\alpha_3\beta_2 = (\beta_2 - \beta_1)(\alpha_3 - \alpha_1)\alpha_2\beta_3.$$
(3)

Now we fix α_1, α_2 and hence β_1, β_2 , and bound the number N of possible (α_3, β_3) that satisfy Equation 3.

- **CASE 1:** $\alpha_3 = \beta_3$. In this case, $(a 1) = b\alpha_3 \pmod{p}$. This can have at most 1 solution since we assumed that $(a, b) \neq (1, 0)$.
- **CASE 2:** $\alpha_3 \neq \beta_3$. By equation 3, we have that α_3 divides $(\beta_2 \beta_1)(\alpha_3 \alpha_1)\alpha_2\beta_3$. Clearly, α_3 is co-prime to β_3 and $\alpha_3 \alpha_1$. Therefore, α_3 divides $(\beta_2 \beta_1)\alpha_2$. Since $|(\beta_2 \beta_1)\alpha_2| \leq \frac{\sqrt{p}}{4}$, therefore, the total number of distinct primes that divide $(\beta_2 \beta_1)\alpha_2$ is at most $\log \frac{\sqrt{p}}{4} = \frac{1}{2}\log p 2$.

Thus, $N \leq \frac{1}{2} \log p - 1$, and hence the total number of elements in $S \cap (aS + b \pmod{p})$ is at most $\frac{1}{2} \log p + 1$.

3 Affine-evasive function and Efficient NMCs

We recall here the definition of affine-evasive functions from [ADL14]. Affine-evasive functions immediately give efficient construction of NMCs against affine-tampering.

Definition 2 A surjective function $h : \mathbb{F}_p \mapsto \mathcal{M} \cup \{\bot\}$ is called (γ, δ) -affine-evasive if or any $a, b \in \mathbb{F}_p$ such that $a \neq 0$, and $(a, b) \neq (1, 0)$, and for any $m \in \mathcal{M}$,

- 1. $\Pr_{U \leftarrow \mathbb{F}_p}(h(aU+b) \neq \bot) \leq \gamma$
- 2. $\Pr_{U \leftarrow \mathbb{F}_n}(h(aU+b) \neq \bot \mid h(U) = m) \leq \delta$
- 3. A uniformly random X such that h(X) = m is efficiently samplable.

We now mention a result that shows that we can construct an affine-evasive function from an affine-evasive set S.

Lemma 1 ([ADL14, Claim 5]) Let $S \subseteq \mathbb{F}_p$ be a (γ, ν) -affine-evasive set with $\nu \cdot K \leq 1$, and K divides $|S|^2$ Furthermore, let S be ordered such that for any i, the i-th element is efficiently computable in $O(\log p)$. Then there exists a $(\gamma, \nu \cdot K)$ -affine-evasive function $h : \mathbb{F}_p \mapsto \mathcal{M} \cup \{\bot\}$.

Note that the above result requires that for any i, the i-th element of S is efficiently computable for some ordering of the set S. This is not possible for our construction since for our construction this would mean efficiently sampling the i-th largest prime. However, this requirement was made just to make sure that h^{-1} is efficiently samplable. We circumvent this problem by giving a slightly modified definition of the affine-evasive function h in the proof of the following.

Lemma 2 There exists an efficiently computable $(p^{-3/4}, \Theta(K \log^2 p \cdot p^{-1/4}))$ -affine-evasive function $h : \mathbb{F}_p \mapsto \mathcal{M} \cup \{\bot\}$.

Proof. Without loss of generality, let $\mathcal{M} = \{1, \ldots, K\}$, for some integer K. Let $S \subseteq \mathbb{F}_p$ be as defined in Section 2. Define S_1, \ldots, S_K to be a partition of S as follows.

$$S_i := \left\{ s \in S \mid \frac{1}{s} \in \left[\frac{i-1}{2K} p^{1/4}, \frac{i}{2K} p^{1/4} \right] \right\} .$$
(4)

Note that by the construction of S and the prime number theorem, each S_i has size at least $\Theta(\frac{p^{1/4}}{K \log p})$.

Let $h : \mathbb{F}_p \mapsto \mathcal{M} \cup \{\bot\}$ be defined as follows:

$$h(x) = \begin{cases} i & \text{if } x \in S_i \\ \bot & \text{otherwise} \end{cases}.$$

The statement $\Pr(h(aU+b) \neq \bot) \leq p^{-3/4}$ is obvious by the definition of S, and the observation that aU+b is uniform in \mathbb{F}_p .

²The assumption K divides |S| is just for simplicity.

Also, for any $m \in \mathcal{M}$, and for any $(a, b) \neq (1, 0)$, and $a \neq 0$,

$$\Pr(h(aU+b) \neq \bot | h(U) = m) = \frac{\Pr(aU+b \in S \land U \in S_m)}{\Pr(U \in S_m)}$$
$$\leq \frac{\Pr(aU+b \in S \land U \in S)}{|S_m|/p}$$
$$= \frac{p}{|S_m|} \Pr(U \in S \cap (a^{-1}S - ba^{-1}) \pmod{p})$$
$$= \Theta(K \log^2 p \cdot p^{-1/4}).$$

Also, sampling a uniformly random X such that h(X) = m is equivalent to sampling a uniformly random prime q in the interval

$$I := \left[\frac{m-1}{2K}p^{1/4}, \frac{m}{2K}p^{1/4}\right)$$

and computing $1/q \mod p$. Sampling q can be done in time polynomial in $\log p$ by repeatedly sampling a random element in I until we get a prime. Computing $1/q \mod p$ can be done efficiently using Extended Euclidean Algorithm.

Note that the proof of Lemma 2 is identical to the proof of Lemma 1, except the proof that a uniformly random X such that h(X) = m is efficiently samplable for any given m. Using this and the construction of [ADL14], we get the following results.

Theorem 2 There exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to $\Theta(k + \log(\frac{1}{\varepsilon}))$ that is ε -non malleable w.r.t. the family of affine tampering functions \mathcal{F}_{aff} .

Theorem 3 There exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to $\Theta((k + \log(\frac{1}{\varepsilon})^7))$ that is ε -non malleable w.r.t. the family of split-state tampering functions \mathcal{F}_{split} .

Also, assuming the following conjecture from [ADL14], our result gives the first NMC with constant rate in the split-state model.

Conjecture 1 ([ADL14, Conjecture 2]) There exists absolute constants c, c' > 0 such that the following holds. For any finite field \mathbb{F}_p of prime order, and any n > c', let $L, R \in \mathbb{F}_p^n$ be uniform, and fix $f, g: \mathbb{F}_p^n \to \mathbb{F}_p^n$. Then

$$\Delta(\phi_{f,g}(L,R) ; \mathcal{D}) \le p^{-cn} .$$

Theorem 4 Assuming Conjecture 1, there exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to $\Theta(k + \log(\frac{1}{\varepsilon}))$ that is ε -non malleable w.r.t. the family of split-state tampering functions \mathcal{F}_{split} .

References

- [ADL14] D. Aggarwal, Y. Dodis, and S. Lovett. Non-malleable codes from additive combinatorics. In *STOC*, 2014. To appear.
- [CG14a] M. Cheraghchi and V. Guruswami. Capacity of non-malleable codes. In Innovations in Theoretical Computer Science. ACM, 2014. To appear.

- [CG14b] M. Cheraghchi and V. Guruswami. Non-malleable coding against bit-wise and split-state tampering. In *Theory of Cryptography Conference - TCC*. Springer, 2014. To appear.
- [DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from twosource extractors. In Advances in Cryptology-CRYPTO 2013. Springer, 2013.
- [DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In Andrew Chi-Chih Yao, editor, *ICS*, pages 434–452. Tsinghua University Press, 2010.
- [FMNV14] S. Faust, P. Mukherjee, J. Nielsen, and D. Venturi. Continuous non-malleable codes. In *Theory of Cryptography Conference TCC*. Springer, 2014. To appear.
- [FMVW13] S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-malleable codes and keyderivation for poly-size tampering circuits. *IACR Cryptology ePrint Archive*, 2013.
- [LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model. In Advances in Cryptology-CRYPTO 2012, pages 517–532. Springer, 2012.