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Abstract

In this work, we describe a simple and efficient construction of a large subset S of F,,, where
p is a prime, such that the set A(S) for any non-identity affine map A over F, has small
intersection with S'.

Such sets, called affine-evasive sets, were defined and constructed in [ADL14] as the central
step in the construction of non-malleable codes against affine tampering over I, for a prime
p. This was then used to obtain efficient non-malleable codes against split-state tampering.

Our result resolves one of the two main open questions in [ADL14]. It improves the rate
of non-malleable codes against affine tampering over F, from loglogp to a constant, and con-
sequently the rate for non-malleable codes against split-state tampering for n-bit messages is
improved from n®log’ n to n®.
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1 Introduction

Non-malleable Codes (NMCs). NMCs were introduced in [DPW10] as a beautiful relaxation of
error-correction and error-detection codes. Informally, given a tampering family F, an NMC
(Enc, Dec) against F encodes a given message m into a codeword ¢ « Enc(m) in a way that,
if the adversary modifies m to ¢ = f(c) for some f € F, then the the message m’ = Dec(c)
is either the original message m, or a completely “unrelated value”. As has been shown by the
recent progress [DPW10, LL12, DKO13, ADL14, FMVW13, FMNV14, CG14a, CG14b] NMCs aim
to handle a much larger class of tampering functions F than traditional error-correcting or error-
detecting codes, at the expense of potentially allowing the attacker to replace a given message x
by an unrelated message z’. NMCs are useful in situations where changing x to an unrelated x’
is not useful for the attacker (for example, when x is the secret key for a signature scheme.)

Split-State Model. NMCs do not exist for the class of all functions F,. In particular, it does
not include functions of the form f(c) := Enc(h(Dec(c))), since Dec(f(Enc(m))) = h(m) is clearly
related to m. One of the largest and practically relevant tampering families for which we can
construct NMCs is the so-called split-state tampering family where the codeword is split into
two parts ci|lca, and the adversary is only allowed to tamper with c¢i,co independently to get
file1)|| fa(e2). A lot of the aforementioned results [LL12, DKO13, ADL14, CG14b, FMNV14]
have studied NMCs against split-state tampering. [ADL14] gave the first (and the only one so
far) information-theoretically secure construction in the split-state model from n-bit messages to
n’ log7 n-bit codewords (i.e., code rate n® log7 n). The security proof of this scheme relied on an
amazing property of the inner-product function modulo a prime, that was proved using results from
additive combinatorics.

Affine-evasive Sets and Our Result. One of the crucial steps in the construction of [ADL14] was
the construction of NMC against affine tampering modulo p. This was achieved by construct-
ing an affine-evasive set of size pl/loglogp odulo a prime p. It was asked as an open question
whether there exists an affine-evasive set of size p() | which will imply constant rate NMC against

affine-tampering and rate n% NMC against split-state tampering.! We resolve this question in the
pl/4 )

affirmative by giving an affine-evasive set of size 9(1ogp

2 Explicit Construction

For any set S C Z, let S+ b= {as+bls € S}. By S mod p C F,, we denote the set of values
of S modulo p.

We first define an affine-evasive set S C IF,,.

Definition 1 A non-empty set S C F, is said to be (v, v)-affine-evasive if |S| < vp, and for any
(a,b) € F2\ {(1,0)}, we have

ISN(aS+0b (modp))| <v|S|.

!Under a plausible conjecture, this will imply constant rate NMC against split-state tampering. See Theorem 4
for more details.



Now we give a construction of an affine-evasive set.

Let @ :={qi1,...,q} be the set of all primes less than %pl/‘l. Define S C F,, as follows:

si= {2 (moanlieln}. 1)

4qi

Thus, S has size O(ik

o) by the prime number theorem.

p

Theorem 1 For any prime p, the set S defined in Equation ( 1) is (%p*3/4,@(log2p cp U4 -
affine-evasive.

Proof. Clearly,

| 1
Sl=t< ot =p .

Fix a,b € F,, such that (a,b) # (1,0). Now, we bound |S N (aS + b (mod p))|. Consider any
distinet 1/a,1/a9,1/az € SN (aS+b (mod p)). We have

1
b= (modp)fori=123, @

where aq, g, a3, 61, 52,03 € Q.

Therefore, we have that

a a 1
a1 b az b B B
a a 1 1
71_|_b_73_b

which on simplification implies

(B3 — B1)(a2 — aq)afa = (B2 — f1)(az — ar)azfs  (mod p) .

Note that both the left-hand and right-hand side of the above equation takes values between I—g
and %, and hence the equality holds in Z (and not just in Z,).

16>
(B3 — B1)(a2 — ar)azfBe = (B2 — 1) (a3 — a1)azfs . (3)

Now we fix a1, a9 and hence (31, 32, and bound the number N of possible (a3, 33) that satisfy
Equation 3.

CASE 1: a3 = 33. In this case, (a — 1) = bag (mod p). This can have at most 1 solution since
we assumed that (a,b) # (1,0).

CASE 2: a3 # 3. By equation 3, we have that a3 divides (82 — (1)(as — aq)aef3. Clearly, as is
co-prime to 33 and as — ay. Therefore, ag divides (82 — f1)aa. Since |(B2 — fB1)ag| < ?,

therefore, the total number of distinct primes that divide (83 — B1)aq is at most log 4 =
1

5logp — 2.

2

Thus, N < logp— 1, and hence the total number of elements in SN (aS+b (mod p)) is at most
11 1 O
5logp+ 1.



3 Affine-evasive function and Efficient NMCs

We recall here the definition of affine-evasive functions from [ADL14]. Affine-evasive functions
immediately give efficient construction of NMCs against affine-tampering.

Definition 2 A surjective function h : F, — M U{L} is called (v,¢)-affine-evasive if or any
a,beF, such that a # 0, and (a,b) # (1,0), and for any m € M,

1. Pry_p,(h(aU +b) # L) <«
2. Pry_p,(h(aU +b) # L|WU)=m) <0

3. A uniformly random X such that h(X) = m is efficiently samplable.

We now mention a result that shows that we can construct an affine-evasive function from an
affine-evasive set S.

Lemma 1 ([ADL14, Claim 5]) Let S C F,, be a (v,v)-affine-evasive set with v- K < 1, and K
divides |S|.? Furthermore, let S be ordered such that for any i, the i-th element is efficiently
computable in O(logp). Then there exists a (v, v - K)-affine-evasive function h : Fp — M U{L}.

Note that the above result requires that for any i, the i-th element of S is efficiently computable
for some ordering of the set S. This is not possible for our construction since for our construction
this would mean efficiently sampling the i-th largest prime. However, this requirement was made
just to make sure that h~! is efficiently samplable. We circumvent this problem by giving a slightly
modified definition of the affine-evasive function h in the proof of the following.

Lemma 2 There exists an efficiently computable (p~3/*, ©(K log? p-p~1/*)) -affine-evasive function
h:F,— MU{Ll}.

Proof. Without loss of generality, let M = {1,..., K}, for some integer K. Let S C F, be as
defined in Section 2. Define Si,..., Sk to be a partition of S as follows.

- - i — . 4
S {865‘56[2[(1’ Y @)
Note that by the construction of S and the prime number theorem, each S; has size at least
1/4
@(Iflogp)'

Let h:Fp,— MU{L} be defined as follows:

h(m):{z fzes;

1 otherwise .

The statement Pr(h(all +b) # L) < p~3/* is obvious by the definition of S, and the observation
that aU + b is uniform in IF),.

*The assumption K divides |S| is just for simplicity.



Also, for any m € M, and for any (a,b) # (1,0), and a # 0,

Pr(h(aU +b) # L|h(U) =m) = Pr(aU +b€ SAU € Sp)

Pr(U € Sp)
< Pr(aU+be SAU € 5)
B |Sml/p
S Pr(U € SN (a™'S —ba™t) (mod p))

|Sim|
= O(Klog?p - p /).

Also, sampling a uniformly random X such that h(X) = m is equivalent to sampling a uniformly
random prime ¢ in the interval

m—1 4, m 1/4)
ok U ot
and computing 1/¢ mod p. Sampling ¢ can be done in time polynomial in logp by repeatedly

sampling a random element in [ until we get a prime. Computing 1/¢ mod p can be done efficiently
using Extended Euclidean Algorithm. O

Note that the proof of Lemma 2 is identical to the proof of Lemma 1, except the proof that a
uniformly random X such that h(X) = m is efficiently samplable for any given m. Using this and
the construction of [ADL14], we get the following results.

Theorem 2 There exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to ©(k +
log(%)) that is €-non malleable w.r.t. the family of affine tampering functions Faf .

Theorem 3 There exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to O((k +
10g(%)7)) that is €-non malleable w.r.t. the family of split-state tampering functions Fepjit -

Also, assuming the following conjecture from [ADL14], our result gives the first NMC with
constant rate in the split-state model.

Conjecture 1 ([ADL14, Conjecture 2]) There exists absolute constants ¢, > 0 such that the fol-
lowing holds. For any finite field F,, of prime order, and any n > ¢, let L,R € [, be uniform,
and fix f,g:Fy — Fp. Then

A¢rg(L,R) ; D) <p ™.

Theorem 4 Assuming Conjecture 1, there exists an efficient coding scheme (Enc, Dec) encoding
k-bit messages to O(k + log(%)) that is €-non malleable w.r.t. the family of split-state tampering
functions Fepit -
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