Affine-evasive Sets Modulo a Prime

Divesh Aggarwal*

June 10, 2014

Abstract

In this work, we describe a simple and efficient construction of a large subset S of \mathbb{F}_{p}, where p is a prime, such that the set $A(S)$ for any non-identity affine map A over \mathbb{F}_{p} has small intersection with S.

Such sets, called affine-evasive sets, were defined and constructed in [ADL14] as the central step in the construction of non-malleable codes against affine tampering over \mathbb{F}_{p}, for a prime p. This was then used to obtain efficient non-malleable codes against split-state tampering.

Our result resolves one of the two main open questions in [ADL14]. It improves the rate of non-malleable codes against affine tampering over \mathbb{F}_{p} from $\log \log p$ to a constant, and consequently the rate for non-malleable codes against split-state tampering for n-bit messages is improved from $n^{6} \log ^{7} n$ to n^{6}.

[^0]
1 Introduction

Non-malleable Codes (NMCs). NMCs were introduced in [DPW10] as a beautiful relaxation of error-correction and error-detection codes. Informally, given a tampering family \mathcal{F}, an NMC (Enc, Dec) against \mathcal{F} encodes a given message m into a codeword $c \leftarrow \operatorname{Enc}(m)$ in a way that, if the adversary modifies m to $c^{\prime}=f(c)$ for some $f \in \mathcal{F}$, then the the message $m^{\prime}=\operatorname{Dec}\left(c^{\prime}\right)$ is either the original message m, or a completely "unrelated value". As has been shown by the recent progress [DPW10, LL12, DKO13, ADL14, FMVW13, FMNV14, CG14a, CG14b] NMCs aim to handle a much larger class of tampering functions \mathcal{F} than traditional error-correcting or errordetecting codes, at the expense of potentially allowing the attacker to replace a given message x by an unrelated message x^{\prime}. NMCs are useful in situations where changing x to an unrelated x^{\prime} is not useful for the attacker (for example, when x is the secret key for a signature scheme.)

Split-State Model. NMCs do not exist for the class of all functions $\mathcal{F}_{\text {all }}$. In particular, it does not include functions of the form $f(c):=\operatorname{Enc}(h(\operatorname{Dec}(c)))$, since $\operatorname{Dec}(f(\operatorname{Enc}(m)))=h(m)$ is clearly related to m. One of the largest and practically relevant tampering families for which we can construct NMCs is the so-called split-state tampering family where the codeword is split into two parts $c_{1} \| c_{2}$, and the adversary is only allowed to tamper with c_{1}, c_{2} independently to get $f_{1}\left(c_{1}\right) \| f_{2}\left(c_{2}\right)$. A lot of the aforementioned results [LL12, DKO13, ADL14, CG14b, FMNV14] have studied NMCs against split-state tampering. [ADL14] gave the first (and the only one so far) information-theoretically secure construction in the split-state model from n-bit messages to $n^{7} \log ^{7} n$-bit codewords (i.e., code rate $n^{6} \log ^{7} n$). The security proof of this scheme relied on an amazing property of the inner-product function modulo a prime, that was proved using results from additive combinatorics.

Affine-evasive Sets and Our Result. One of the crucial steps in the construction of [ADL14] was the construction of NMC against affine tampering modulo p. This was achieved by constructing an affine-evasive set of size $p^{1 / \log \log p}$ modulo a prime p. It was asked as an open question whether there exists an affine-evasive set of size $p^{\Theta(1)}$, which will imply constant rate NMC against affine-tampering and rate n^{6} NMC against split-state tampering. ${ }^{1}$ We resolve this question in the affirmative by giving an affine-evasive set of size $\Theta\left(\frac{p^{1 / 4}}{\log p}\right)$.

2 Explicit Construction

For any set $S \subset \mathbb{Z}$, let $a S+b=\{a s+b \mid s \in S\}$. By $S \bmod p \subseteq \mathbb{F}_{p}$, we denote the set of values of S modulo p.

We first define an affine-evasive set $S \subseteq \mathbb{F}_{p}$.
Definition 1 A non-empty set $S \subseteq \mathbb{F}_{p}$ is said to be (γ, ν)-affine-evasive if $|S| \leq \gamma p$, and for any $(a, b) \in \mathbb{F}_{p}^{2} \backslash\{(1,0)\}$, we have

$$
|S \cap(a S+b \quad(\bmod p))| \leq \nu|S| .
$$

[^1]Now we give a construction of an affine-evasive set.
Let $Q:=\left\{q_{1}, \ldots, q_{t}\right\}$ be the set of all primes less than $\frac{1}{2} p^{1 / 4}$. Define $S \subset \mathbb{F}_{p}$ as follows:

$$
\begin{equation*}
S:=\left\{\left.\frac{1}{q_{i}} \quad(\bmod p) \right\rvert\, i \in[t]\right\} \tag{1}
\end{equation*}
$$

Thus, S has size $\Theta\left(\frac{p}{\log p}\right)$ by the prime number theorem.
Theorem 1 For any prime p, the set S defined in Equation (1) is $\left(\frac{1}{2} p^{-3 / 4}, \Theta\left(p^{-1 / 4} \cdot \log p\right)\right)$-affineevasive.

Proof. Clearly,

$$
|S|=t \leq \frac{1}{2} p^{1 / 4}=\frac{1}{2} p^{-3 / 4} \cdot p
$$

Fix $a, b \in \mathbb{F}_{p}$, such that $(a, b) \neq(1,0)$. Now, we show that $|S \cap(a S+b(\bmod p))| \leq 3$. Assume, on the contrary, that there exist distinct $\alpha_{i} \in Q$ for for $i \in\{0,1,2,3\}$ such that $1 / \alpha_{i}(\bmod p) \in$ $S \cap(a S+b(\bmod p))$. We have

$$
\begin{equation*}
\frac{a}{\alpha_{i}}+b=\frac{1}{\beta_{i}} \quad(\bmod p) \text { for } i=1,2,3 \tag{2}
\end{equation*}
$$

where $\alpha_{i}, \beta_{i} \in Q$ for $i \in\{0,1,2,3\}$, and $\beta_{i} \neq \beta_{j}$ for any $i \neq j$.
For any i, if $\alpha_{i}=\beta_{i}$, then $b \cdot \alpha_{i}=1-a \bmod p$, which has at most one solution (since we assume $(a, b) \neq(1,0)$. Thus, without loss of generality, we assume that $\alpha_{i} \neq \beta_{i}$, for $i \in\{1,2,3\}$, and $\alpha_{1}<\alpha_{2}<\alpha_{3}$.

From Equation (2), we have that

$$
\frac{\frac{a}{\alpha_{1}}+b-\frac{a}{\alpha_{2}}-b}{\frac{a}{\alpha_{1}}+b-\frac{a}{\alpha_{3}}-b}=\frac{\frac{1}{\beta_{1}}-\frac{1}{\beta_{2}}}{\frac{1}{\beta_{1}}-\frac{1}{\beta_{3}}} \quad(\bmod p),
$$

which on simplification implies

$$
\left(\beta_{3}-\beta_{1}\right)\left(\alpha_{2}-\alpha_{1}\right) \alpha_{3} \beta_{2}=\left(\beta_{2}-\beta_{1}\right)\left(\alpha_{3}-\alpha_{1}\right) \alpha_{2} \beta_{3} \quad(\bmod p) .
$$

Note that both the left-hand and right-hand side of the above equation takes values between $\frac{-p}{16}$ and $\frac{p}{16}$, and hence the equality holds in \mathbb{Z} (and not just in \mathbb{Z}_{p}).

$$
\begin{equation*}
\left(\beta_{3}-\beta_{1}\right)\left(\alpha_{2}-\alpha_{1}\right) \alpha_{3} \beta_{2}=\left(\beta_{2}-\beta_{1}\right)\left(\alpha_{3}-\alpha_{1}\right) \alpha_{2} \beta_{3} \tag{3}
\end{equation*}
$$

By equation 3, we have that α_{3} divides $\left(\beta_{2}-\beta_{1}\right)\left(\alpha_{3}-\alpha_{1}\right) \alpha_{2} \beta_{3}$. Clearly, α_{3} is relatively prime to β_{3}, α_{2}, and $\alpha_{3}-\alpha_{1}$. Therefore, α_{3} divides $\left(\beta_{2}-\beta_{1}\right)$. This implies

$$
\begin{equation*}
\alpha_{3} \leq\left|\beta_{2}-\beta_{1}\right| \tag{4}
\end{equation*}
$$

Also, from equation 3, we have that β_{2} divides $\left(\beta_{2}-\beta_{1}\right)\left(\alpha_{3}-\alpha_{1}\right) \alpha_{2} \beta_{3}$, which by similar reasoning implies β_{2} divides $\alpha_{3}-\alpha_{1}$. Thus, using that $\alpha_{3}>\alpha_{1}$,

$$
\begin{equation*}
0<\beta_{2} \leq \alpha_{3}-\alpha_{1}<\alpha_{3} \tag{5}
\end{equation*}
$$

Similarly, we can obtain β_{1} divides $\alpha_{3}-\alpha_{2}$, which implies

$$
\begin{equation*}
0<\beta_{1} \leq \alpha_{3}-\alpha_{2}<\alpha_{3} \tag{6}
\end{equation*}
$$

Equation (5) and (6) together imply that $\left|\beta_{2}-\beta_{1}\right|<\alpha_{3}$, which contradicts Equation (4).

3 Affine-evasive function and Efficient NMCs

We recall here the definition of affine-evasive functions from [ADL14]. Affine-evasive functions immediately give efficient construction of NMCs against affine-tampering.

Definition $2 A$ surjective function $h: \mathbb{F}_{p} \mapsto \mathcal{M} \cup\{\perp\}$ is called (γ, δ)-affine-evasive if or any $a, b \in \mathbb{F}_{p}$ such that $a \neq 0$, and $(a, b) \neq(1,0)$, and for any $m \in \mathcal{M}$,

1. $\operatorname{Pr}_{U \leftarrow \mathbb{F}_{p}}(h(a U+b) \neq \perp) \leq \gamma$
2. $\operatorname{Pr}_{U \leftarrow \mathbb{F}_{p}}(h(a U+b) \neq \perp \mid h(U)=m) \leq \delta$
3. A uniformly random X such that $h(X)=m$ is efficiently samplable.

We now mention a result that shows that we can construct an affine-evasive function from an affine-evasive set S.

Lemma 1 ([ADL14, Claim 5]) Let $S \subseteq \mathbb{F}_{p}$ be a (γ, ν)-affine-evasive set with $\nu \cdot K \leq 1$, and K divides $|S| .{ }^{2}$ Furthermore, let S be ordered such that for any i, the i-th element is efficiently computable in $O(\log p)$. Then there exists a $(\gamma, \nu \cdot K)$-affine-evasive function $h: \mathbb{F}_{p} \mapsto \mathcal{M} \cup\{\perp\}$.

Note that the above result requires that for any i, the i-th element of S is efficiently computable for some ordering of the set S. This is not possible for our construction since for our construction this would mean efficiently sampling the i-th largest prime. However, this requirement was made just to make sure that h^{-1} is efficiently samplable. We circumvent this problem by giving a slightly modified definition of the affine-evasive function h in the proof of the following.

Lemma 2 There exists an efficiently computable $\left(p^{-3 / 4}, \Theta\left(K \log p \cdot p^{-1 / 4}\right)\right)$-affine-evasive function $h: \mathbb{F}_{p} \mapsto \mathcal{M} \cup\{\perp\}$.

Proof. Without loss of generality, let $\mathcal{M}=\{1, \ldots, K\}$, for some integer K. Let $S \subseteq \mathbb{F}_{p}$ be as defined in Section 2. Define S_{1}, \ldots, S_{K} to be a partition of S as follows.

$$
\begin{equation*}
S_{i}:=\left\{s \in S \left\lvert\, \frac{1}{s} \in\left[\frac{i-1}{2 K} p^{1 / 4}, \frac{i}{2 K} p^{1 / 4}\right)\right.\right\} . \tag{7}
\end{equation*}
$$

Note that by the construction of S and the prime number theorem, each S_{i} has size at least $\Theta\left(\frac{p^{1 / 4}}{K \log p}\right)$.

Let $h: \mathbb{F}_{p} \mapsto \mathcal{M} \cup\{\perp\}$ be defined as follows:

$$
h(x)= \begin{cases}i & \text { if } x \in S_{i} \\ \perp & \text { otherwise } .\end{cases}
$$

The statement $\operatorname{Pr}(h(a U+b) \neq \perp) \leq p^{-3 / 4}$ is obvious by the definition of S, and the observation that $a U+b$ is uniform in \mathbb{F}_{p}.

[^2]Also, for any $m \in \mathcal{M}$, and for any $(a, b) \neq(1,0)$, and $a \neq 0$,

$$
\begin{aligned}
\operatorname{Pr}(h(a U+b) \neq \perp \mid h(U)=m) & =\frac{\operatorname{Pr}\left(a U+b \in S \wedge U \in S_{m}\right)}{\operatorname{Pr}\left(U \in S_{m}\right)} \\
& \leq \frac{\operatorname{Pr}(a U+b \in S \wedge U \in S)}{\left|S_{m}\right| / p} \\
& =\frac{p}{\left|S_{m}\right|} \operatorname{Pr}\left(U \in S \cap\left(a^{-1} S-b a^{-1}\right)(\bmod p)\right) \\
& =\Theta\left(K \log p \cdot p^{-1 / 4}\right) .
\end{aligned}
$$

Also, sampling a uniformly random X such that $h(X)=m$ is equivalent to sampling a uniformly random prime q in the interval

$$
I:=\left[\frac{m-1}{2 K} p^{1 / 4}, \frac{m}{2 K} p^{1 / 4}\right)
$$

and computing $1 / q \bmod p$. Sampling q can be done in time polynomial in $\log p$ by repeatedly sampling a random element in I until we get a prime. Computing $1 / q \bmod p$ can be done efficiently using Extended Euclidean Algorithm.

Note that the proof of Lemma 2 is identical to the proof of Lemma 1, except the proof that a uniformly random X such that $h(X)=m$ is efficiently samplable for any given m. Using this and the construction of [ADL14], we get the following results.

Theorem 2 There exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to $\Theta(k+$ $\left.\log \left(\frac{1}{\varepsilon}\right)\right)$ that is ε-non malleable w.r.t. the family of affine tampering functions $\mathcal{F}_{\text {aff }}$.

Theorem 3 There exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to $\Theta((k+$ $\left.\log \left(\frac{1}{\varepsilon}\right)^{7}\right)$) that is ε-non malleable w.r.t. the family of split-state tampering functions $\mathcal{F}_{\text {split }}$.

Also, assuming the following conjecture from [ADL14], our result gives the first NMC with constant rate in the split-state model.

Conjecture 1 ([ADL14, Conjecture 2]) There exists absolute constants $c, c^{\prime}>0$ such that the following holds. For any finite field \mathbb{F}_{p} of prime order, and any $n>c^{\prime}$, let $L, R \in \mathbb{F}_{p}^{n}$ be uniform, and fix $f, g: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{n}$. Then

$$
\Delta\left(\phi_{f, g}(L, R) ; \mathcal{D}\right) \leq p^{-c n}
$$

Theorem 4 Assuming Conjecture 1, there exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to $\Theta\left(k+\log \left(\frac{1}{\varepsilon}\right)\right)$ that is ε-non malleable w.r.t. the family of split-state tampering functions $\mathcal{F}_{\text {split }}$.

References

[ADL14] D. Aggarwal, Y. Dodis, and S. Lovett. Non-malleable codes from additive combinatorics. In STOC, 2014. To appear.
[CG14a] M. Cheraghchi and V. Guruswami. Capacity of non-malleable codes. In Innovations in Theoretical Computer Science. ACM, 2014. To appear.
[CG14b] M. Cheraghchi and V. Guruswami. Non-malleable coding against bit-wise and split-state tampering. In Theory of Cryptography Conference - TCC. Springer, 2014. To appear.
[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from twosource extractors. In Advances in Cryptology-CRYPTO 2013. Springer, 2013.
[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In Andrew Chi-Chih Yao, editor, ICS, pages 434-452. Tsinghua University Press, 2010.
[FMNV14] S. Faust, P. Mukherjee, J. Nielsen, and D. Venturi. Continuous non-malleable codes. In Theory of Cryptography Conference - TCC. Springer, 2014. To appear.
[FMVW13] S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-malleable codes and keyderivation for poly-size tampering circuits. IACR Cryptology ePrint Archive, 2013.
[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model. In Advances in Cryptology-CRYPTO 2012, pages 517-532. Springer, 2012.

[^0]: *Department of Computer Science, New York University. Email: divesha@cs.nyu.edu.

[^1]: ${ }^{1}$ Under a plausible conjecture, this will imply constant rate NMC against split-state tampering. See Theorem 4 for more details.

[^2]: ${ }^{2}$ The assumption K divides $|S|$ is just for simplicity.

