Affine-evasive Sets Modulo a Prime

Divesh Aggarwal*

October 16, 2014

Abstract

In this work, we describe a simple and efficient construction of a large subset S of \mathbb{F}_p , where p is a prime, such that the set A(S) for any non-identity affine map A over \mathbb{F}_p has small intersection with S.

Such sets, called affine-evasive sets, were defined and constructed in [ADL14] as the central step in the construction of non-malleable codes against affine tampering over \mathbb{F}_p , for a prime p. This was then used to obtain efficient non-malleable codes against split-state tampering.

Our result resolves one of the two main open questions in [ADL14]. It improves the rate of non-malleable codes against affine tampering over \mathbb{F}_p from $\log \log p$ to a constant, and consequently the rate for non-malleable codes against split-state tampering for n-bit messages is improved from $n^6 \log^7 n$ to n^6 .

^{*}Department of Computer Science, New York University. Email: divesha@cs.nyu.edu.

1 Introduction

Non-malleable Codes (NMCs). NMCs were introduced in [DPW10] as a beautiful relaxation of error-correction and error-detection codes. Informally, given a tampering family \mathcal{F} , an NMC (Enc, Dec) against \mathcal{F} encodes a given message m into a codeword $c \leftarrow \mathsf{Enc}(m)$ in a way that, if the adversary modifies m to c' = f(c) for some $f \in \mathcal{F}$, then the message $m' = \mathsf{Dec}(c')$ is either the original message m, or a completely "unrelated value". As has been shown by the recent progress [DPW10, LL12, DKO13, ADL14, FMVW13, FMNV14, CG14a, CG14b] NMCs aim to handle a much larger class of tampering functions \mathcal{F} than traditional error-correcting or error-detecting codes, at the expense of potentially allowing the attacker to replace a given message x by an unrelated message x'. NMCs are useful in situations where changing x to an unrelated x' is not useful for the attacker (for example, when x is the secret key for a signature scheme.)

Split-State Model. NMCs do not exist for the class of all functions $\mathcal{F}_{\mathsf{all}}$. In particular, it does not include functions of the form $f(c) := \mathsf{Enc}(h(\mathsf{Dec}(c)))$, since $\mathsf{Dec}(f(\mathsf{Enc}(m))) = h(m)$ is clearly related to m. One of the largest and practically relevant tampering families for which we can construct NMCs is the so-called split-state tampering family where the codeword is split into two parts $c_1 \| c_2$, and the adversary is only allowed to tamper with c_1, c_2 independently to get $f_1(c_1) \| f_2(c_2)$. A lot of the aforementioned results [LL12, DKO13, ADL14, CG14b, FMNV14] have studied NMCs against split-state tampering. [ADL14] gave the first (and the only one so far) information-theoretically secure construction in the split-state model from n-bit messages to $n^7 \log^7 n$ -bit codewords (i.e., code rate $n^6 \log^7 n$). The security proof of this scheme relied on an amazing property of the inner-product function modulo a prime, that was proved using results from additive combinatorics.

Affine-evasive Sets and Our Result. One of the crucial steps in the construction of [ADL14] was the construction of NMC against affine tampering modulo p. This was achieved by constructing an affine-evasive set of size $p^{1/\log\log p}$ modulo a prime p. It was asked as an open question whether there exists an affine-evasive set of size $p^{\Theta(1)}$, which will imply constant rate NMC against affine-tampering and rate n^6 NMC against split-state tampering.¹ We resolve this question in the affirmative by giving an affine-evasive set of size $\Theta(\frac{p^{1/4}}{\log p})$.

2 Explicit Construction

For any set $S \subset \mathbb{Z}$, let $aS + b = \{as + b | s \in S\}$. By $S \mod p \subseteq \mathbb{F}_p$, we denote the set of values of $S \mod p$.

We first define an affine-evasive set $S \subseteq \mathbb{F}_p$.

Definition 1 A non-empty set $S \subseteq \mathbb{F}_p$ is said to be (γ, ν) -affine-evasive if $|S| \leq \gamma p$, and for any $(a,b) \in \mathbb{F}_p^2 \setminus \{(1,0)\}$, we have

$$|S \cap (aS + b \pmod{p})| \le \nu |S|$$
.

 $^{^{1}}$ Under a plausible conjecture, this will imply constant rate NMC against split-state tampering. See Theorem 5 for more details.

Now we give a construction of an affine-evasive set.

Let $Q:=\{q_1,\ldots,q_t\}$ be the set of all primes less than $\frac{1}{2}p^{1/4}$. Define $S\subset\mathbb{F}_p$ as follows:

$$S := \left\{ \frac{1}{q_i} \pmod{p} \mid i \in [t] \right\} . \tag{1}$$

Thus, S has size $\Theta(\frac{p^{1/4}}{\log p})$ by the prime number theorem.

Theorem 1 For any prime p, the set S defined in Equation (1) is $(\frac{1}{2}p^{-3/4}, O(p^{-1/4} \cdot \log p))$ -affine-evasive.

Proof. Clearly,

$$|S| = t \le \frac{1}{2}p^{1/4} = \frac{1}{2}p^{-3/4} \cdot p$$
.

Fix $a, b \in \mathbb{F}_p$, such that $(a, b) \neq (1, 0)$. Now, we show that $|S \cap (aS + b \pmod{p})| \leq 3$. Assume, on the contrary, that there exist distinct $\alpha_i \in Q$ for $i \in \{0, 1, 2, 3\}$ such that $1/\alpha_i \pmod{p} \in S \cap (aS + b \pmod{p})$. We have

$$\frac{a}{\beta_i} + b = \frac{1}{\alpha_i} \pmod{p} \text{ for } i = 0, 1, 2, 3,$$
 (2)

where $\beta_i, \alpha_i \in Q$ for $i \in \{0, 1, 2, 3\}$, and $\alpha_i \neq \alpha_j$ for any $i \neq j$.

For any i, if $\beta_i = \alpha_i$, then $b \cdot \beta_i = 1 - a \mod p$, which has at most one solution (since we assume $(a, b) \neq (1, 0)$). Thus, without loss of generality, we assume that $\beta_i \neq \alpha_i$, for $i \in \{1, 2, 3\}$, and $\beta_1 < \beta_2 < \beta_3$.

From Equation (2), we have that

$$\frac{\frac{a}{\beta_1} + b - \frac{a}{\beta_2} - b}{\frac{a}{\beta_1} + b - \frac{a}{\beta_3} - b} = \frac{\frac{1}{\alpha_1} - \frac{1}{\alpha_2}}{\frac{1}{\alpha_1} - \frac{1}{\alpha_3}} \pmod{p} ,$$

which on simplification implies

$$(\alpha_3 - \alpha_1)(\beta_2 - \beta_1)\beta_3\alpha_2 = (\alpha_2 - \alpha_1)(\beta_3 - \beta_1)\beta_2\alpha_3 \pmod{p}.$$

Note that both the left-hand and right-hand side of the above equation takes values between $\frac{-p}{16}$ and $\frac{p}{16}$, and hence the equality holds in \mathbb{Z} (and not just in \mathbb{Z}_p).

$$(\alpha_3 - \alpha_1)(\beta_2 - \beta_1)\beta_3\alpha_2 = (\alpha_2 - \alpha_1)(\beta_3 - \beta_1)\beta_2\alpha_3. \tag{3}$$

By equation 3, we have that β_3 divides $(\alpha_2 - \alpha_1)(\beta_3 - \beta_1)\beta_2\alpha_3$. Clearly, β_3 is relatively prime to α_3 , β_2 , and $\beta_3 - \beta_1$. Therefore, β_3 divides $(\alpha_2 - \alpha_1)$. This implies

$$\beta_3 \le |\alpha_2 - \alpha_1| \ . \tag{4}$$

Also, from equation 3, we have that α_2 divides $(\alpha_2 - \alpha_1)(\beta_3 - \beta_1)\beta_2\alpha_3$, which by similar reasoning implies α_2 divides $\beta_3 - \beta_1$. Thus, using that $\beta_3 > \beta_1$,

$$0 < \alpha_2 \le \beta_3 - \beta_1 < \beta_3 \ . \tag{5}$$

Similarly, we can obtain α_1 divides $\beta_3 - \beta_2$, which implies

$$0 < \alpha_1 \le \beta_3 - \beta_2 < \beta_3 \ . \tag{6}$$

Equation (5) and (6) together imply that $|\alpha_2 - \alpha_1| < \beta_3$, which contradicts Equation (4).

3 Affine-evasive function and Efficient NMCs

Affine-evasive function. We recall here the definition of affine-evasive functions from [ADL14]. Affine-evasive functions immediately give efficient construction of NMCs against affine-tampering.

Definition 2 A surjective function $h : \mathbb{F}_p \mapsto \mathcal{M} \cup \{\bot\}$ is called (γ, δ) -affine-evasive if for any $a, b \in \mathbb{F}_p$ such that $a \neq 0$, and $(a, b) \neq (1, 0)$, and for any $m \in \mathcal{M}$,

- 1. $\Pr_{U \leftarrow \mathbb{F}_n}(h(aU+b) \neq \bot) \leq \gamma$
- 2. $\Pr_{U \leftarrow \mathbb{F}_n}(h(aU+b) \neq \bot \mid h(U) = m) \leq \delta$
- 3. A uniformly random X such that h(X) = m is efficiently samplable.

We now mention a result that shows that we can construct an affine-evasive function from an affine-evasive set S.

Lemma 1 ([ADL14, Claim 5]) Let $S \subseteq \mathbb{F}_p$ be a (γ, ν) -affine-evasive set with $\nu \cdot K \leq 1$, and K divides |S|. Furthermore, let S be ordered such that for any i, the i-th element is efficiently computable in $O(\log p)$. Then there exists a $(\gamma, \nu \cdot K)$ -affine-evasive function $h : \mathbb{F}_p \mapsto \mathcal{M} \cup \{\bot\}$.

Note that the above result requires that for any i, the i-th element of S is efficiently computable for some ordering of the set S. This is not possible for our construction since for our construction this would mean efficiently sampling the i-th largest prime. However, this requirement was made just to make sure that h^{-1} is efficiently samplable. We circumvent this problem by giving a slightly modified definition of the affine-evasive function h in the proof of Lemma 2. Before proving this, we state the following result that we will need.

Theorem 2 ([HB88]) For any $n \in \mathbb{N}$, and any $n' \leq n$ such that $n'^{12/7} \geq n$,

$$\pi(n) - \pi(n - n') = \Theta\left(\frac{n'}{\log n}\right) ,$$

where $\pi(n)$ denote the number of primes less than n.

Lemma 2 Let \mathcal{M} be a finite set such that $|\mathcal{M}| \geq 2$, and let $p \geq |\mathcal{M}|^{16}$ be a prime. There exists an efficiently computable $(p^{-3/4}, O(|\mathcal{M}| \log p \cdot p^{-1/4}))$ -affine-evasive function $h : \mathbb{F}_p \mapsto \mathcal{M} \cup \{\bot\}$.

Proof. Without loss of generality, let $\mathcal{M} = \{1, \dots, K\}$, for some integer K. Let $S \subseteq \mathbb{F}_p$ be as defined in Section 2. Define S_1, \dots, S_K to be a partition of S as follows.

$$S_i := \left\{ s \in S \mid \frac{1}{s} \in \left[\frac{i-1}{2K} p^{1/4}, \frac{i}{2K} p^{1/4} \right) \right\} . \tag{7}$$

Now let $n_i = \frac{p^{1/4}i}{2K}$ and $n' = \frac{p^{1/4}}{2K}$. By the construction of S, $|S_i| = \pi(n_i) - \pi(n_i - n')$. We will bound $|S_i|$ for all $i \in [K]$ using Theorem 2. To do this, we need to verify that for all i, $n'^{12/7} \ge n_i$. Since $n_i < n_j$ for all i < j, it is sufficient to show this for i = K, i.e., $n_i = \frac{p^{1/4}}{2}$.

$$\frac{n'^{12/7}}{n_K} \ = \ \frac{2p^{3/7}}{(2K)^{12/7}p^{1/4}} \ = \ \frac{p^{5/28}}{2^{5/7} \cdot K^{12/7}} \ \ge \ \frac{K^{5 \cdot 16/28}}{2^{5/7} \cdot K^{12/7}} \ = \ \frac{K^{8/7}}{2^{5/7}} \ > \ 1 \ ,$$

²The assumption K divides |S| is just for simplicity.

where we used the fact that $p \ge K^{16}$, and $K \ge 2$. Also note that n_i is upper bounded by $\frac{p^{1/4}}{2}$, and hence $\log n_i = O(\log p)$. Thus, using Theorem 2, we get that each S_i has size at least $\Theta(\frac{p^{1/4}}{K \log p})$.

Let $h: \mathbb{F}_p \mapsto \mathcal{M} \cup \{\bot\}$ be defined as follows:

$$h(x) = \begin{cases} i & \text{if } x \in S_i \\ \bot & \text{otherwise} \end{cases}$$

The statement $\Pr(h(aU+b) \neq \bot) \leq p^{-3/4}$ is obvious by the definition of S, and the observation that aU+b is uniform in \mathbb{F}_p .

Also, for any $m \in \mathcal{M}$, and for any $(a, b) \neq (1, 0)$, and $a \neq 0$,

$$\Pr(h(aU+b) \neq \bot | h(U) = m) = \frac{\Pr(aU+b \in S \land U \in S_m)}{\Pr(U \in S_m)}$$

$$\leq \frac{\Pr(aU+b \in S \land U \in S)}{|S_m|/p}$$

$$= \frac{p}{|S_m|} \Pr(U \in S \cap (a^{-1}S - ba^{-1}) \pmod{p})$$

$$= O(K \log p \cdot p^{-1/4}).$$

Also, sampling a uniformly random X such that h(X) = m is equivalent to sampling a uniformly random prime q in the interval

$$I := \left[\frac{m-1}{2K} p^{1/4} , \frac{m}{2K} p^{1/4} \right)$$

and computing $1/q \mod p$. Sampling q can be done in time polynomial in $\log p$ by repeatedly sampling a random element in I until we get a prime. Computing $1/q \mod p$ can be done efficiently using Extended Euclidean Algorithm.

Note that the proof of Lemma 2 is identical to the proof of Lemma 1, except the proof that a uniformly random X such that h(X) = m is efficiently samplable for any given m.

Efficient NMCs. We recall here the definition of non-malleable codes for completeness.

Definition 3 Let \mathcal{F} be some family of tampering functions. For each $f \in \mathcal{F}$, and $m \in \mathcal{M}$, define the tampering-experiment

$$\textit{Tamper}_m^f := \left\{ \begin{array}{c} c \leftarrow \textit{Enc}(m), \; \tilde{c} \leftarrow f(c), \; \tilde{m} = \textit{Dec}(\tilde{c}) \\ \textit{Output: } \tilde{m}. \end{array} \right\}$$

which is a random variable over the randomness of the encoding function Enc. We say that a coding scheme (Enc, Dec) is ε -non-malleable w.r.t. \mathcal{F} if for each $f \in \mathcal{F}$, there exists a distribution (corresponding to the simulator) D_f over $\mathcal{M} \cup \{\bot, \mathsf{same}^*\}$, such that, for all $m \in \mathcal{M}$, we have that the statistical distance between Tamper_m^f and

$$\mathit{Sim}_{m}^{f} := \left\{ egin{array}{ll} ilde{m} \leftarrow D_{f} \ Output \colon m \ \textit{if} \ ilde{m} = \mathit{same}^{*}, \ \textit{and} \ ilde{m}, \ \textit{otherwise}. \end{array}
ight.
ight.$$

is at most ε . Additionally, D_f should be efficiently samplable given oracle access to $f(\cdot)$.

Using Lemma 2 and the construction of [ADL14], we get the following results.

Theorem 3 There exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to $\Theta(k + \log(\frac{1}{\varepsilon}))$ bit codewords that is ε -non malleable w.r.t. the family of affine tampering functions $\mathcal{F}_{\mathsf{aff}}$.

Theorem 4 There exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to $\Theta((k + \log(\frac{1}{\varepsilon}))^7)$ bit codewords that is ε -non malleable w.r.t. the family of split-state tampering functions $\mathcal{F}_{\mathsf{split}}$.

Also, assuming the following conjecture from [ADL14], our result gives the first NMC with constant rate in the split-state model.

Conjecture 1 ([ADL14, Conjecture 2]) There exists absolute constants c, c' > 0 such that the following holds. For any finite field \mathbb{F}_p of prime order, and any n > c', let $L, R \in \mathbb{F}_p^n$ be uniform, and fix $f, g : \mathbb{F}_p^n \to \mathbb{F}_p^n$. Let \mathcal{D} be the family of convex combinations of $\{(U, aU + b) : a, b \in \mathbb{F}_p\}$ where $U \in \mathbb{F}_p$ is uniform. Then there exists $D \in \mathcal{D}$ such that

$$\Delta(\langle L, R \rangle, \langle f(L), g(R) \rangle ; D) \leq p^{-cn}$$
.

Theorem 5 Assuming Conjecture 1, there exists an efficient coding scheme (Enc, Dec) encoding k-bit messages to $\Theta(k + \log(\frac{1}{\varepsilon}))$ that is ε -non malleable w.r.t. the family of split-state tampering functions $\mathcal{F}_{\mathsf{split}}$.

References

- [ADL14] D. Aggarwal, Y. Dodis, and S. Lovett. Non-malleable codes from additive combinatorics. In STOC, 2014. To appear.
- [CG14a] M. Cheraghchi and V. Guruswami. Capacity of non-malleable codes. In *Innovations in Theo*retical Computer Science. ACM, 2014. To appear.
- [CG14b] M. Cheraghchi and V. Guruswami. Non-malleable coding against bit-wise and split-state tampering. In *Theory of Cryptography Conference TCC*. Springer, 2014. To appear.
- [DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-source extractors. In *Advances in Cryptology-CRYPTO 2013*. Springer, 2013.
- [DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In Andrew Chi-Chih Yao, editor, *ICS*, pages 434–452. Tsinghua University Press, 2010.
- [FMNV14] S. Faust, P. Mukherjee, J. Nielsen, and D. Venturi. Continuous non-malleable codes. In *Theory of Cryptography Conference TCC*. Springer, 2014. To appear.
- [FMVW13] S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-malleable codes and key-derivation for poly-size tampering circuits. *IACR Cryptology ePrint Archive*, 2013.
- [HB88] D. R. Heath-Brown. The number of primes in a short interval. J. Reine Angew. Math., 389:22–63, 1988.
- [LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model. In Advances in Cryptology-CRYPTO 2012, pages 517–532. Springer, 2012.