
Explicit Optimal Binary Pebbling
for One-Way Hash Chain Reversal

Berry Schoenmakers

Dept of Mathematics & Computer Science
TU Eindhoven, The Netherlands

berry@win.tue.nl

Abstract. We present explicit optimal binary pebbling algorithms for
reversing one-way hash chains. For a hash chain of length 2k, the num-
ber of hashes performed per output round is at most d k

2
e, whereas the

number of hash values stored throughout is at most k. This is optimal
for binary pebbling algorithms characterized by the property that the
midpoint of the hash chain is computed just once and stored until it is
output, and that this property applies recursively to both halves of the
hash chain.
We develop a framework for easy comparison of explicit binary pebbling
algorithms, including simple speed-1 binary pebbles, Jakobsson’s binary
speed-2 pebbles, and our optimal binary pebbles. Explicit schedules de-
scribe for each pebble exactly how many hashes need to be performed
in each round. The optimal schedule exhibits a nice recursive structure,
which allows fully optimized implementations that can readily be de-
ployed. In particular, we develop in-place implementations with minimal
storage overhead (essentially, storing only hash values), and fast imple-
mentations with minimal computational overhead.

1 Introduction

Originally introduced by Lamport to construct an identification scheme resisting
eavesdropping attacks [Lam81], one-way hash chains have become a truly funda-
mental primitive in cryptography. The idea of Lamport’s identification scheme
is to generate a hash chain as a sequence of successive iterates of a one-way hash
function applied to a random seed value, revealing only the last element of the
hash chain upon registration. Later, during successive rounds of identification,
the remaining elements of the hash chain are output in reverse order, one element
at a time.

Due to the one-way property of the hash function, efficient reversal of a hash
chain is non-trivial for long chains. In 2002, Jakobsson introduced a simple and
efficient pebbling algorithm for reversal of one-way hash chains [Jak02], build-
ing on the pebbling algorithm of [IR01] for efficient key updates in a forward-
secure digital signature scheme. Pebbling algorithms for one-way hash chain
reversal strike a balance between storage requirements (measured as the number
of hash values stored) and computational requirements (measured as the number
of hashes performed). The performance constraint is that each next element of

the reversed hash chain should be produced within a limited amount of time after
producing the preceding element. For a hash chain of length n = 2k, Jakobsson’s
algorithm stores O(log n) hash values only and the number of hashes performed
in each round is O(log n) as well.

The problem of efficient hash chain reversal was extensively studied by Cop-
persmith and Jakobsson [CJ02]. They proved nearly optimal complexity for a
binary pebbling algorithm storing at most k+dlog2(k+1)e hash values and per-
forming at most bk2 c hashes per round. Later, it was observed by Yum et al. that a
greedy implementation of Jakobsson’s original algorithm actually stores no more
than k hash values, requiring no more than dk2 e hashes per round [YSEL09].

In this paper we consider the class of binary pebbling algorithms, covering
the best algorithms of [Jak02,CJ02,YSEL09] among others. A binary pebbling
algorithm is characterized by the property that the midpoint of the hash chain
is computed just once and stored until it is output; moreover, this property
applies recursively to both halves of the hash chain. In particular, this means
that after producing the last element of the hash chain as the first output, a
binary pebbling algorithm stores (at least) the k elements at distances 2i − 1,
for 1 ≤ i ≤ k, from the end of the hash chain.

We introduce a simple yet general framework for efficient binary pebbling
algorithms for hash chain reversal, and we completely resolve the case of binary
pebbling by constructing an explicit optimal algorithm. The storage required
by our optimal algorithm does not exceed the storage of k hash values and
the number of hashes performed in any output round does not exceed dk2 e.
This matches the performance of the greedy algorithm of [YSEL09], which is an
optimal binary pebbling algorithm as well. However, we give an exact schedule
for all hashes performed by the algorithm (rather than performing these hashes
in a greedy fashion).

Our optimal schedule is defined explicitly, both as a recursive definition and
as a closed formula, specifying exactly how many hashes should be performed
in a given round by each pebble. Apart from the mathematically appealing
structure thus uncovered, the explicit optimal schedule enables the development
of fully optimized solutions for one-way hash chain reversal. We show the first
in-place (or, in situ) hash chain reversal algorithms which require essentially no
storage beyond the hash values stored for the pebbles; at the same time, the
computational overhead for each round is limited to a few basic operations only
beyond the evaluation of the hash function. Finally, as another extreme type of
solution, we show how to minimize the computational overhead to an almost
negligible amount of work, at the expense of increased storage requirements.

Concretely, for hash chains of length 232 using a 128-bit one-way hash, our
in-place algorithm only stores 516 bytes (32 hash values and one 32-bit counter)
and performs, at most 16 hashes per round. We note that our results may be es-
pecially interesting in the context of post-quantum cryptography, as the security
of one-way hash chains is not affected dramatically by the potential of quantum
computers.

2

2 One-Way Hash Chains

Throughout, we use the following notation for finite sequences. We write A =
{ai}ni=1 = {a1, . . . , an} for a sequence A of length n, n ≥ 0, with {} denoting the
empty sequence. We use |A| = n to denote the length of A, and #A =

∑n
i=1 ai

to denote the weight of A. We write A ‖ B for the concatenation of sequences
A and B, and A + B for element-wise addition of sequences A and B of equal
length, where + takes precedence over ‖. Constant sequences are denoted by
c = c∗n = {c}ni=1, suppressing the length n when it is understood from context;
e.g., A + c denotes the sequence obtained by adding c to all elements of A.

Let f be a cryptographic hash function. The length-2k (one-way) hash chain
f∗k(x) for seed value x is defined as the following sequence:

f∗k(x) = {f i(x)}2
k−1

i=0 .

For authentication mechanisms based on hash chains, we need an efficient algo-
rithm for producing the sequence f∗k(x) in reverse. The problem arises from the
fact that computation of f in the forward direction is easy, while it is intractable
in the reverse direction. So, given x it is easy to compute y = f(x), but given y
it is very hard to compute any x at all such that y = f(x). For long hash chains
the straightforward solutions of either (i) storing f∗k(x) and reading it out in
reverse or (ii) computing each element of f∗k(x) from scratch starting from x are
clearly too inefficient.

3 Binary Pebbling

We introduce a framework that captures the essence of binary pebbling algo-
rithms as follows. We define a pebble as an algorithm proceeding in a certain
number of rounds, where the initial rounds are used to compute the hash chain
in the forward direction given the seed value x, and the hash chain is output in
reverse in the remaining rounds, one element at a time.

For k ≥ 0, we define pebble Pk(x) below as an algorithm that runs for 2k+1−1
rounds in total, and outputs f∗k(x) in reverse in its last 2k rounds. It is essen-
tial that we include the initial 2k − 1 rounds in which no outputs are produced
as an integral part of pebble Pk(x), as this allows us to define and analyze bi-
nary pebbling in a fully recursive manner. In fact, in terms of a given schedule

Tk = {tr}2
k−1

r=1 with #T = 2k − 1, a binary pebble Pk(x) is completely specified
by the following recursive definition, see also Figure 1:

Rounds [1, 2k): Compute {yi = f2k−2i(x)}ki=0 using tr hashes in round r.
Round 2k: Output y0.
Rounds (2k, 2k+1): Run Pi−1(yi) in parallel for i = 1, . . . , k.

We will refer to rounds [1, 2k) as the initial stage of pebble Pk and to rounds
[2k, 2k+1) as its output stage. Running pebbles in parallel means that pebbles
take turns to execute for one round each, where the order in which this happens
within a round is irrelevant.

3

x

Pk−1

Pk−2

initial
stage

output
stage

•

yk

•

yk−1

•

yk−2

• • y0•

−

−

−

round 1

round 2k

round 2k+1−1

Fig. 1. Binary pebble Pk(x), where yi = f2k−2i(x) for i = k, . . . , 0.

The behavior of pebbles P0 and P1 is fixed since T0 = {} and T1 = {1},
respectively. Pebble P0(x) runs for one round only, in which y0 = x is output,
using no hashes at all. Similarly, P1(x) runs for three rounds, performing one
hash in its first round to compute y1 = x and y0 = f(x), outputting f(x) in its
second round, and then running P0(y1) in the third round, which will output
x. More generally, the following theorem shows that correct behavior follows for
any pebble Pk independent of the particular schedule Tk, and furthermore that
the total number of hashes performed by Pk is fixed as well.

Theorem 1. Pebble Pk(x) produces f∗k(x) in reverse in its output stage, per-
forming k2k−1 hashes in total.

Proof The proof is by induction on k. For k = 0, we have that P0(x) outputs
f∗0(x) = x in its one and only round, using 0 hashes.

4

For k ≥ 1, we see that Pk(x) first outputs y0 = f2k−1(x) in round 2k, which is
the last element of f∗k(x). Next, pebbles Pi−1(yi) run in parallel for i = 1, . . . , k.

The induction hypothesis yields that each Pi−1(yi) produces f∗i−1(f2k−2i(x))
in reverse in its last 2i−1 out of 2i − 1 rounds. Hence, in round 2k + 1, P0(y1)

outputs y1 = f∗0(f2k−2(x)). In the next two rounds, P1(y2) outputs f∗1(f2k−4(x))

in reverse. And so on until finally Pk−1(yk) outputs f∗k−1(f2k−1

(x)) in reverse in
the last 2k−1 rounds of Pk(x). The total number of hashes performed by Pk is

2k − 1 +
∑k

i=1(i− 1)2i−2 = k2k−1, using that Pi−1 performs (i− 1)2i−2 hashes
per the induction hypothesis. �

Schedule Tk specifies the number of hashes for the initial stage of Pk. To
analyze the work done by Pk in the output stage, we introduce sequence Wk of
length 2k − 1 to denote the number of hashes performed by Pk in each of its
last 2k − 1 rounds—noting that by definition no hashes are performed by Pk in
round 2k. The following recurrence relation for Wk will be used throughout our
analysis.

Lemma 1. W0 = {}, Wk = Tk−1 + Wk−1 ‖ 0 ‖Wk−1.

Proof Pebble P0 runs for 1 round only, so W0 = {}. For k ≥ 1, we see that in
the last 2k − 1 rounds of pebble Pk, a pebble Pk−1 runs in parallel to pebbles
Pi for i = 0, . . . , k − 2. In these rounds, pebble Pk−1 performs Tk−1 ‖ 0 ‖ Wk−1

hashes, whereas pebbles Pi for i = 0, . . . , k− 2 perform Wk−1 ‖ 0∗2
k−1

hashes in
total, as this matches the number of hashes for a pebble Pk−1 in its last 2k−1−1
rounds. Hence, in total Wk = Tk−1 + Wk−1 ‖ 0 ‖Wk−1 hashes. �

We have the following lower bound for max(Wk), the maximal number of
hashes performed by Pk in any round of the output stage. Interestingly, this
lower bound holds for any schedule Tk. In Section 5 we will present an optimal
schedule achieving the lower bound.

Theorem 2. max(Wk) ≥ dk/2e, for k ≥ 2.

Proof Let k ≥ 2 and consider the average number of hashes per round during
the first half of the output stage. From Theorem 1, Lemma 1, and |Tk−1| =
|Wk−1| = 2k−1 − 1, we have

max(Wk) ≥ #Tk−1 + #Wk−1

|Tk−1 + Wk−1|
=

(k − 1)2k−2

2k−1 − 1
>

k − 1

2
.

Hence, max(Wk) ≥ dk/2e. �

To analyze the storage needed by Pk we will count the number of hash values

stored by Pk at the start of each round. We introduce sequence Sk = {sr}2
k+1−1

r=1

to denote the total storage used by Pk in each round. For instance, s1 = 1 as Pk

only stores x at the start, and s2k = k + 1 as Pk stores y0, . . . , yk at the start of
round 2k independent of schedule Tk.

5

4 Analysis of Speed-1 and Speed-2 Pebbles

In this section we analyze the performance of speed-1 pebbles and speed-2 peb-
bles. We use speed-1 pebbles to demonstrate our framework, whereas the analysis
of speed-2 pebbles, which correspond to Jakobsson’s original algorithm, will be
used in the analysis of our optimal pebbles in the next section.

Speed-1 pebbles are defined by setting Tk = 1∗2
k−1, hence one hash evalua-

tion in each initial round of Pk. To define speed-2 pebbles we set T0 = {}, and

Tk = 0∗2
k−1−1 ‖ 2∗2

k−1−1 ‖ 1 for k ≥ 1, hence a speed-2 pebble is idle in the first
part of the initial stage and then hashes twice in each round until the end of the
initial stage. As can be seen from Theorem 4 below, the storage requirements
are reduced by a factor of 2 for speed-2 pebbles over speed-1 pebbles.

Theorem 3. Both speed-1 and speed-2 pebbles Pk use up to max(Wk) = k − 1
hashes in any output round, for k ≥ 1.

Proof For a speed-1 pebble, Lemma 1 implies max(Wk) = k − 1 for k ≥ 1, as
all elements of Tk−1 are equal to 1.

For a speed-2 pebble we prove by induction on k that max(Wk) = k−1. This
clearly holds for k = 1, 2. For k ≥ 3, we have, using Lemma 1,

Tk−1 = 0∗2
k−2−1 ‖ 2∗2

k−2−1 ‖ 1
Wk−1 = 0 ‖ Tk−2 + Wk−2 ‖ 0 ‖Wk−2.

Therefore,

max(Wk) = max(Tk−1 + Wk−1) = max(Wk−1, 2 + Wk−2),

noting that the last element of Wk−2 = 0. Applying the induction hypothesis
twice, we conclude max(Wk) = max(k − 2, k − 1) = k − 1. �

Lemma 2.

S0 = {1},
Sk = (1∗2

k ‖ Sk−1) + (0 ‖ 1∗2
k−1−1 ‖ Sk−1 ‖ 0∗2

k−1

), for a speed-1 Pk,

Sk = (1∗2
k ‖ Sk−1) + (0∗2

k−1 ‖ Sk−1 ‖ 0∗2
k−1

), for a speed-2 Pk.

Proof Pebble P0(x) only needs to store x during its one and only round,
therefore S0 = {1}. For k ≥ 1, any pebble Pk(x) also needs to store x throughout
all of its rounds, where pebble Pk−1(yk) = Pk−1(x) takes over the storage of x

during the output stage. This accounts for the term 1∗2
k ‖ Sk−1.

In addition, a speed-1 pebble needs to store a hash value from round 2 until
it reaches yk−1 in round 2k−1. From thereon, the total additional storage cor-
responds to running a speed-1 Pk−1(yk−1) pebble. This accounts for the term

0 ‖ 1∗2
k−1−1 ‖ Sk−1 ‖ 0∗2

k−1

.
A speed-2 pebble needs no additional storage during its first 2k−1 rounds.

Then it needs to store an additional hash value from round 2k−1+1 on. By taking

0∗2
k−1 ‖ Sk−1 ‖ 0∗2

k−1

as additional term, we account for both the additional

6

hash value stored by a speed-2 pebble during rounds (2k−1, 2k−1 + 2k−2] and
the storage corresponding to a speed-2 Pk−1(yk−1) pebble, running from round
2k−1 + 1. �

Theorem 4. A speed-1 pebble Pk uses up to max(Sk) = max(k + 1, 2k − 2)
storage, and a speed-2 pebble Pk uses up to max(Sk) = k + 1 storage.

Proof Using that s2k = k + 1, we write Sk = Ak ‖ k+1 ‖ Bk, where |Ak| =
|Bk| = 2k − 1.

For a speed-1 pebble Pk, it can easily be checked that max(Sk) = max(k +
1, 2k − 2) holds for k = 0, 1. To prove this for k ≥ 2, we note that it suffices to
show max(Ak, Bk) = 2k−2, as max(Sk) = max(Ak, k+1, Bk). Lemma 2 implies

Ak = 1 ‖ 2∗2
k−1−1 ‖ 1 + Ak−1

Bk = Ak−1 + Bk−1 ‖ k ‖ Bk−1,

so we have that max(Ak, Bk) = max(Ak−1 +Bk−1, k) = max(2k−2, k) = 2k−2
follows if we can show max(Ak + Bk) = 2k, for k ≥ 1. We prove the latter by
induction on k. For k = 1, clearly true as A1 = B1 = {1}. For k ≥ 2, we see that
max(Ak+Bk) = max(2+Ak−1+Bk−1, k+2) = max(2k, k+2) = 2k follows from
the induction hypothesis, also using that the first element of Ak−1 + Bk−1 = k.

For a speed-2 pebble Pk, we note that max(Sk) = k + 1 follows from the
fact that Ak + Bk = k + 1, which we show by induction on k. For k = 0,
Ak + Bk = k + 1 is vacuously true, as A0, B0 are empty sequences. For k ≥ 1,
we see from Lemma 2 that

Ak = 1∗2
k−1 ‖ 1 + Ak−1

Bk = Ak−1 + Bk−1 ‖ k ‖ Bk−1.

Thus, from the induction hypothesis we have Ak−1+Bk−1 = k, hence Ak+Bk =
k + 1. �

5 Optimal Binary Pebbles

In this section, we will reduce the maximal number of hashes per round from k−1
for a speed-2 pebble Pk to dk/2e for an optimal pebble Pk, without increasing
the storage requirements. We do so by letting our optimal pebbles Pk be idle for
the first 2k−1 − 1 rounds, just as speed-2 pebbles do. During rounds [2k−1, 2k),
an optimal pebble will work at varying speeds, roughly as follows: the average
speeds in each quarter are 2, 1, 2, and 3 hashes per round, respectively. To
streamline the presentation, we will at first allow “ 1

2 hashes” in the definition of
our optimal schedule. At the end of this section, we will show how to round the
schedule to integer values without affecting optimality.

We define optimal schedule Tk as follows:

T0 = {}, Tk = 0∗2
k−1−1 ‖ Uk ‖ Vk,

7

where
U1 = {1}, Uk = 1

2 + Uk−1 ‖ 1∗b2
k−3c,

V1 = {}, Vk = 1
2 + Uk−1 ‖ 1

2 + Vk−1.

For example, T1 = {1}, T2 = {0, 3
2 ,

3
2}, and T3 = {0, 0, 0, 2, 1, 2, 2}.

Optimality is proved in the next two theorems.

Theorem 5. An optimal pebble Pk uses up to max(Wk) = k/2 hashes in any
output round, for k ≥ 2.

Proof We use Lemma 1 without explicitly referring to it.
Since max(Wk) = max(Tk−1+Wk−1), we obtain max(Wk) = k/2, if we prove

by induction on k that

Tk + Wk = Tk−1 + Wk−1 ‖ k+1
2

∗2k−1

.

This property clearly holds for k = 1, 2. For k ≥ 3, the definition of Tk implies
that the property is in fact equivalent to

(Uk ‖ Vk) + (0 ‖Wk−1) = k+1
2

∗2k−1

.

From the definition of Uk, Vk and the induction hypothesis for Tk−2 + Wk−2 we
obtain

Uk ‖ Vk = 1
2 + Uk−1 ‖ 1∗2

k−3 ‖ 1
2 + (Uk−1 ‖ Vk−1),

0 ‖Wk−1 = 0 ‖ Tk−3 + Wk−3 ‖ k−1
2

∗2k−3

‖ 0 ‖Wk−2.

Since 0 ‖ Tk−3 + Wk−3 is equal to the first half of 0 ‖ Wk−2, we get from the
induction hypothesis that indeed all elements of (Uk ‖ Vk) + (0 ‖ Wk−1) are
equal to k+1

2 . �

Let len(x) = dlog2(x + 1)e denote the bit length of nonnegative integer x.
The next two lemmas give closed formulas for the optimal schedule Tk and its
partial sums. Lemma 4 will be used to prove Theorem 6, but these formulas
also provide the basis for our efficient in-place implementation of optimal binary
pebbling.

Lemma 3. For optimal schedule Tk = {tr}2
k−1

r=1 , we have for 2k−1 ≤ r < 2k:

tr = 1
2

(
k + 1− len

(
(2r) mod 2len(2

k−r))) .
Proof The proof is by induction on k. For 0 ≤ k ≤ 2, the formula is easily
checked. For k ≥ 3, we distinguish two cases.

Case 2k−1 ≤ r < 2k−1 + 2k−2. We first note that (2r) mod 2len(2
k−r) = 2r− 2k.

If r ≥ 2k−1 + 2k−3, we have tr = 1 by definition and we see the formula for tr
yields 1 as well as len(2r − 2k) = k − 1. Otherwise r < 2k−1 + 2k−3, hence we
have tr = tr+2k−2 . So, this case reduces to the case below by noting that also

(2(r + 2k−2)) mod 2len(2
k−(r+2k−2)) = 2r − 2k.

8

Case 2k−1 + 2k−2 ≤ r < 2k. From the definition of the optimal schedule we see

that in this case tr = 1
2 + t′r−2k−1 , where Tk−1 = {t′z}2

k−1−1
z=1 . From the induction

hypothesis we get:

t′r−2k−1 = 1
2

(
k − len((2(r − 2k−1)) mod 2len(2

k−1−(r−2k−1)))
)
.

Rewriting this formula for t′r−2k−1 we obtain

tr = 1
2 + 1

2

(
k − len((2r − 2k) mod 2len(2

k−r))
)
.

Noting that len(2k − r) ≤ k, we see that the formula holds for tr as well. �

Lemma 4. For optimal schedule Tk = {tr}2
k−1

r=1 , we have for 0 ≤ j ≤ 2k−1:

2k−1∑
r=2k−j

tr = 1
2

(
j(k −m) + (m + 3− l)2l − 2m

)
− 1,

where l = len(j) and m = len(2l − j).

Proof The proof is by induction on j. For j = 0, both sides are equal to 0.
For 1 ≤ j ≤ 2k−1, Lemma 3 implies that

t2k−j = 1
2

(
k + 1− len((−2j) mod 2l)

)
.

Combined with the induction hypothesis for j − 1 we obtain

2k−1∑
r=2k−j

tr = 1
2

(
j(k−m′) + m′+1− len((−2j) mod 2l) + (m′+3−l′)2l

′
− 2m

′
)
−1,

where l′ = len(j − 1) and m′ = len(2l
′ − j + 1). We distinguish two cases.

Case l′ = l− 1. This means that j = 2l−1, and hence m = l and m′ = 1. We are
done as both sides are equal to 1

2j(k + 4− l)− 1.
Case l′ = l. This means that 2l−1 < j < 2l, hence 0 < 2l+1 − 2j < 2l. This
implies len((−2j) mod 2l) = m+1, so we see that both sides are equal if m = m′.
If m′ = m + 1, we see that 2l − j = 2m − 1 and that therefore both sides are
equal as well. �

Theorem 6. An optimal pebble Pk uses up to max(Sk) = k + 1 storage.

Proof We prove that the storage requirements of an optimal pebble do not
exceed the storage requirements of a speed-2 pebble, hence that max(Sk) = k+1
for an optimal pebble as well.

Consider the rounds in which a speed-2 pebble and an optimal pebble store

the values yi = f2k−2i(x) for i = k, . . . , 1. We claim that an optimal pebble will
never store yi before a speed-2 pebble does. Clearly, a speed-2 pebble stores yi in
round 2k − 2i−1 for i = k, . . . , 1. However, in round 2k − 2i−1 an optimal pebble

9

still has to compute at least as many hashes as a speed-2 pebble needs to reach
y0:

2k−1∑
r=2k−2i−1

tr = 2i−2(k + 4− i)− 1 ≥ 2i − 1,

using Lemma 4 for j = 2i−1. �

As a final step we will round the optimal schedule Tk to integer values,
without affecting optimality. For example, we round T2 = {0, 3

2 ,
3
2} to {0, 1, 2}

or to {0, 2, 1}. In general, we make sure that if an element is rounded up then
its neighbors are rounded down, and vice versa. The rounding also depends on
the parity of k to alternate between rounding up and rounding down. Hence, we
define the rounded optimal schedule by:

tr =
⌊
1
2

(
(k + r) mod 2 + k + 1− len((2r) mod 2len(2

k−r))
)⌋

, (1)

for 2k−1 ≤ r < 2k. Accordingly, we see that optimal pebble Pk will use up to
max(Wk) = dk/2e hashes in any output round, matching the lower bound of
Theorem 2.

6 Optimized Implementations

A hash chain is deployed as follows as part of an authentication mechanism like
Lamport’s identification scheme. Given a random seed value x, the initial stage
of any type of binary pebble Pk(x) is simply performed by iterating the hash

function f and storing the values yi = f2k−2i(x) for i = k, . . . , 0. The value of y0
is then output, e.g., as part of the registration protocol for Lamport’s scheme.
The other hash values y1, . . . , yk are stored for the remainder of the output stage,
e.g., for use in later runs of Lamport’s identification protocol.

The initial stage is preferably executed inside the secure device that will
later use the hash chain for identification. However, for lightweight devices such
as smart cards, RFID tags, sensors, etc., the initial stage will typically be run
on a more powerful device, after which hash values y1, . . . , yk will be inserted in
the lightweight device and hash value y0 can be used for registration.

To implement the output stage of a pebble Pk one needs to handle potentially
many pebbles all running in parallel. The pseudocode in [Jak02,CJ02,YSEL09]
suggests rather elaborate techniques for keeping track of the (state of) peb-
bles. On the contrary, we will show how to minimize storage and computational
overhead by exploiting specific properties of Jakobsson’s speed-2 pebbles and
our optimal pebbles. In particular, we present in-place hash chain reversal algo-
rithms, where the entire state of these algorithms (apart from the hash values)
is represented between rounds by a single k-bit counter only.

We introduce the following terminology to describe the state of a pebble Pk.
This terminology applies to both speed-2 pebbles and optimal pebbles. Pebble Pk

is said to be idle if it is in rounds [1, 2k−1), hashing if it is in rounds [2k−1, 2k],
and redundant if it is in rounds (2k, 2k+1). An idle pebble performs no hashes

10

at all, while a hashing pebble will perform at least one hash per round, except
for round 2k in which Pk outputs its y0 value. The work for a redundant pebble
Pk is taken over by its child pebbles P0, . . . , Pk−1 during its last 2k − 1 output
rounds.

The following theorem provides the basis for our in-place algorithms by show-
ing precisely how the state of all pebbles running in parallel during the output
stage of a pebble Pk can be determined from the round number. Let xi ∈ {0, 1}
denote the i-th bit of nonnegative integer x, 0 ≤ i < len(x).

Theorem 7. For a speed-2 pebble or optimal pebble Pk in output round 2k+1−c,
1 ≤ c ≤ 2k, we have for every i, 0 ≤ i ≤ k, exactly one non-redundant pebble Pi

present if and only if bit ci = 1, and if present, Pi is in round 2i − (c mod 2i).

Proof The proof is by induction on c. For c = 2k, only ck = 1, which corresponds
to pebble Pk being the only pebble around. Also, Pk is in its 2kth round.

For 1 ≤ c < 2k, write c′ = c + 1 and let k′ ≥ 0 be maximal such that
c′ mod 2k

′
= 0. Hence c′k′ = 1. By the induction hypothesis for c′, pebble Pk′ is

in its first output round 2k
′
. So, in the next round Pk′ becomes redundant, and

is replaced by child pebbles Pk−1, . . . , P0 who will all be in their first round. As
c = c′ − 1, this corresponds to the fact that ck′ = 0 and ck′−1 = · · · = c0 = 1,
also noting that 2i − (c mod 2i) = 1 for i = k′ − 1, . . . , 0.

For i > k′, we have ci = c′i. All non-redundant pebbles in round 2k+1 − c′

remain so in round 2k+1 − c, and for these pebbles the round number becomes
2i − (c′ mod 2i) + 1 = 2i − (c mod 2i), as required. �

As a corollary, we see that a non-redundant pebble Pi is hashing precisely
when ci−1 = 0, and Pi is idle otherwise, since for ci = 1 we have that ci−1 = 0
if and only if 2i− (c mod 2i) ≥ 2i−1. This holds also for i = 0 if we put c−1 = 0.

6.1 In-Place Speed-2 Pebbles

We present an in-place implementation of a speed-2 pebble Pk for which the
overall storage is limited to the space for k hash values and one k-bit counter
c. As explained above, we will assume that hash values y1, . . . , yk are given as
input and that y0 has been output already. Thus, Pk has exactly 2k − 1 output
rounds remaining. We use c to count down the output rounds.

The basis for our in-place algorithm is given by the next theorem.

Theorem 8. For a speed-2 pebble Pk in output round 2k+1−c, 1 ≤ c ≤ 2k, each
non-redundant pebble Pi present stores t+1 hash values, where t is maximal such
that ci−1 = . . . = ci−t = 0 with 0 ≤ t ≤ i.

Proof From Theorem 7 it follows that non-redundant pebble Pi is in round
r = 2i − (c mod 2i). Since 0 ≤ t ≤ i is maximal such that ci−1 = . . . = ci−t = 0,
we have that 2i − 2i−t < r ≤ 2i − 2i−t−1. This implies that Pi stores t + 1 hash
values in round r, as Lemma 2 says that for a speed-2 pebble Pi the storage
requirements throughout its first 2i rounds are given by sequence Di, where
D0 = {1} and Di = 1∗2

i−1 ‖ 1 + Di−1. �

11

Algorithm 1 In-place speed-2 pebble Pk, round r = 2k+1 − c, 1 ≤ c < 2k.

1: output z[0]
2: k ← pop0(c)
3: for i← 1 to k do z[i− 1]← z[i]
4: k ← k + 1; c← bc/2c
5: p← k − 1
6: while c 6= 0 do
7: z[p]← f(z[k])
8: if p 6= 0 then z[p]← f(z[p])
9: k ← k + pop0(c) + pop1(c)

10: p← k

Theorem 8 suggests a simple approach to store the hash values for a speed-2
pebble Pk throughout its output stage. We use a single array z of length k to
store all hash values as follows. Initially, z[0] = y1, . . . , z[k−1] = yk, and counter
c = 2k − 1. This corresponds to pebble Pk being at the start of its output stage,
where it starts to run pebbles Pi(yi+1) in parallel, for i = 0, . . . , k − 1, each of
these (non-redundant) pebbles Pi storing exactly one hash value in array z. In
general, in output round 2k+1 − c of Pk, we let each non-redundant pebble Pi

store its hash values in array z in segment z[i..i− t] (corresponding to ci = 1 and
ci−1 = 0, . . . , ci−t = 0). As a result, the non-redundant pebbles jointly occupy
consecutive segments of array z, storing exactly len(c) hash values in total.

Algorithm 1 describes precisely what pebble Pk does in round r, 2k < r <
2k+1. Note that we let c = 2k+1−r at the start of round r. Based on Theorem 7,
we process the bits of c as follows, using operations pop0(c) and pop1(c) to count
and remove all trailing 0s and 1s from c, respectively.

Let k′ ≥ 0 be maximal such that c mod 2k
′

= 0. Hence ck′ = 1. From
Theorem 7, we see that pebble Pk′ is in its first output round 2k

′
, hence Pk′

becomes redundant in the next round, and each of its children will take over one
hash value. The hash values y0, . . . , yk′ computed by Pk′ in its initial stage are
stored in z[0], . . . , z[k′]. So, we output z[0] = y0 for Pk′ and move y1, . . . , yk′ to
entries z[0], . . . , z[k′ − 1]. This makes entry z[k′] available. We distinguish two
cases.

Case len(c− 1) = len(c)− 1. In this case no new hash values need to be stored,
and z[k′] will be unused from this round on.

Case len(c−1) = len(c). Let k′′ ≥ k′+1 be maximal such that c mod 2k
′′

= 2k
′
.

Hence ck′′ = 1. We claim that speed-2 pebble Pk′′ is the unique pebble that needs
to store an additional hash value. Pebble Pk′′ is in round 2k

′′ − (c mod 2k
′′
) =

2k
′′ − 2k

′
, so it is 2k

′
rounds from the end of its initial stage. We store its

additional hash value in z[k′].

This explains Algorithm 1. In the first iteration of the loop in lines 6–10,
we have that p = k′ holds at line 7. Each hashing pebble performs two hashes,
except when a pebble is at the end of its initial stage (corresponding to p = 0).
Essentially no processing is done for idle pebbles, due to the use of operation
pop1(c) in line 9.

12

Algorithm 2 In-place optimal pebble Pk, round r = 2k+1 − c, 1 ≤ c < 2k.

1: output z[0]
2: k ← pop0(c)
3: for i← 1 to k do z[i− 1]← z[i]
4: k ← k + 1; c← bc/2c
5: while c 6= 0 do
6: p← k
7: k ← k + pop0(c)
8: j ← (−r) mod 2k

9: t← (k + j) mod 2
10: l← len(j)
11: m← len(2l − j)
12: s← (m + 1) mod (l + 1)
13: h← b(t + j(k −m) + (m + 3− l)2l − 2m)/2c
14: g ← len(h)− 1
15: p← p + g − l ,
16: for d← 1 to b(t + k + 1− s)/2c do
17: x← z[p]
18: if h = 2g then g ← g − 1; p← p− 1
19: z[p]← f(x)
20: h← h− 1
21: k ← k + pop1(c)

6.2 In-Place Optimal Pebbles

In this section we turn the algorithm for speed-2 pebbles into one for optimal
pebbles by making three major changes. See Algorithm 2.

First, we make sure that the number of hashes performed by each hashing
pebble Pk is in accordance with Eq. (1). The actual hashing by Pk is done in
the loop in lines 16–20. To apply Eq. (1), the actual round number j = (2k −
r) mod 2k for Pk is determined in line 8. Writing l = len(j) and m = len(2l− j),
we have that the number of hashes as specified by Eq. (1) can be computed as
b(t+k+1−s)/2c, where t = (k+j) mod 2 and s = (m+1) mod (l+1), actually
using that len((2l − 2j) mod 2l) = len(2l+1 − 2j) mod (l + 1) holds for j ≥ 1.

Second, we make sure that each hashing pebble Pk will store the correct hash
values for yk, . . . , y0. To this end, note that Lemma 4 tells precisely how many
hashes pebble Pk still needs to compute at the start of round j. Thus we set h
to this value (plus one) in line 13, and test in line 18 if the current hash value
must be stored (that is, whether h is an integral power of 2).

Finally, we make sure that hashing pebble Pk will store its hash values in
the right entries of array z. In line 6, we let variable p point to the first entry
of the segment of array z used by pebble Pk. Then in line 15, the value of p
is adjusted by adding the difference between the number of hash values that
a speed-2 pebble Pk would still need to store at the start of round j and the
number of hash values that an optimal pebble Pk still needs to store at the start
of round j.

13

Algorithm 3 Fast optimal pebble Pk, round r = 2k+1 − c, 1 ≤ c < 2k.

1: output z[0]
2: k ← pop0(c)
3: for i← 1 to k do z[i− 1]← z[i]
4: k ← k + 1; c← bc/2c
5: if c odd then a[v]← (1, k, k, k, 2k, 2k); v ← v + 1
6: u← v
7: while c 6= 0 do
8: k ← k + pop0(c)
9: u← u− 1; (e, l, s, p, g, h)← a[u]

10: e← e− 1
11: if e ≤ 0 then
12: if s = 0 then
13: l← l − 1; if l 6= 1 then s← 2
14: else
15: if s = l then s← 0 else e← 2s−1; s← s + 1
16: for d← 1 to b((k + e) mod 2 + k + 1− s)/2c do
17: x← z[p]
18: if h = g then g ← bg/2c; p← p− 1
19: z[p]← f(x)
20: h← h− 1
21: if h 6= 1 then a[u]← (e, l, s, p, g, h) else v ← v − 1
22: k ← k + pop1(c)

This explains the design of Algorithm 2. Note that in total only three bit
length computations are used per hashing pebble (cf. lines 10, 11, and 14).

6.3 Optimal Pebbles with Minimal Computational Overhead

Even though the computational overhead for our in-place implementation is
small, it may still be relatively large if hash evaluations themselves take very lit-
tle time. For instance, if the hash function is (partly) implemented in hardware.
Using Intel’s AES-NI instruction set one can implement a 128-bit hash function
that takes a few cycles only (e.g., see [BÖS11], noting that for one-way hash
chains no collision-resistance is needed such that one can use Matyas-Meyer-
Oseas for which the key is fixed). Therefore, we also provide an implementation
minimizing the computational overhead at the expense of some additional stor-
age.

We will keep some state for each pebble, or rather for each hashing pebble
only. Although an optimal pebble Pk will store up to k hash values at any time,
we observe that no more than dk/2e hashing pebbles will be present at any time.
As in our in-situ algorithms we will thus avoid any storage (and processing) for
idle pebbles, as can be seen from Algorithm 3.

A segment a[0..v−1] of an array a of length bk/2c suffices to store the relevant
hashing pebbles, where initially v = 0. In each round, at most one idle pebble Pk

will become hashing, and if this happens pebble Pk is added to array a, cf. line 5.

14

Later, once pebble Pk is done hashing, it will be removed again from array a,
cf. line 21.

For each hashing pebble we store six values called e, l, s, p, g, h, respectively.
Except for counter e, these values correspond to the variables in Algorithm 2.
Using j to refer to the round pebble Pk is at, as in Algorithm 2, we have l = len(j)
and also s = (m+1) mod (l+1), where m = len(2l−j). We use e to count down
to zero starting from the appropriate powers of 2, cf. line 15.

As a result, Algorithm 3 limits the computations for each hashing pebble to
a few simple operations only.

7 Concluding Remarks

We have completely resolved the case of binary pebbling of hash chains by con-
structing an explicit optimal schedule. A main advantage of our optimal schedule
is that it allows for very efficient in-place pebbling algorithms. This compares
favorably with the greedy pebbling algorithms of [YSEL09], which require a sub-
stantial amount of storage beyond the hash values themselves. The pseudocode
of Algorithms 1–3 is readily translated into efficient program code, applying
further optimizations depending on the target platform.1

The security of one-way hash chains for use in authentication mechanisms
such as Lamport’s identification scheme does not depend on the collision resis-
tance of the hash function. Therefore, it suffices to use 128-bit hash values—
rather than 256-bit hash values, say. Using, for instance, the above mentioned
Matyas-Meyer-Oseas construction one obtains a fast and simple one-way func-
tion f : {0, 1}128 → {0, 1}128 defined as f(x) = AESIV(x) ⊕ x, where IV is a
128-bit string used as fixed “key” for the AES block cipher. Consequently, even
for very long hash chains of length 232, our in-place optimal pebbling algorithm
will just store 516 bytes (32 hash values and one 32-bit counter) and perform
at most 16 hashes per identification round. Similarly, long hash chains of length
216 would allow devices capable only of lightweight cryptography to run 65535
rounds of identification (e.g., more than twice per hour over a period of three
years), requiring only 258 bytes of storage and using at most 8 hashes per round.

We leave as an open problem whether binary pebbling yields the lowest
space-time product. Reversal of a length-n hash chain using optimal binary peb-
bling requires log2 n storage and 1

2 log2 n time per round, yielding 1
2 log2

2 n as
space-time product. Coppersmith and Jakobsson [CJ02] derived a lower bound
of approx. 1

4 log2
2 n for the space-time product. Whether this lower bound is

achievable is doubtful, because the lower bound is derived without taking into
account that the maximum number of hashes during any round needs to be mini-
mized. As a natural alternative, we have done a preliminary study of “Fibonacci”
pebbling, considering hash chains of length n = Fk, the kth Fibonacci number.
Initial results, however, suggest that the space-time product is not lower than
for binary pebbling.

1 Sample code (in C, Java, Python) available at www.win.tue.nl/~berry/pebbling/.

15

http://www.win.tue.nl/~berry/pebbling/

As another direction for further research we suggest to revisit the problem
of efficient Merkle tree traversal studied in [Szy04], which plays a central role
in hash-based signature schemes [Mer87,Mer89]; in particular, it would be inter-
esting to see whether algorithms for generating successive authentication paths
can be done in-place. More generally, research into optimal (in-place) algorithms
for hash-based signatures is of major interest both in the context of lightweight
cryptography (e.g., see [PCTS02,MSS13]; more references in [YSEL09]) and in
the context of post-quantum cryptography (e.g., see [BDE+13]).

References

BDE+13. J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing, and M. Rückert. On the
security of the Winternitz one-time signature scheme. International Journal
of Applied Cryptography, 3(1):84–96, 2013.

BÖS11. J.W. Bos, O. Özen, and M. Stam. Efficient hashing using the AES instruc-
tion set. In Cryptographic Hardware and Embedded Systems (CHES 2011),
volume 6917 of Lecture Notes in Computer Science, pages 507–522, Berlin,
2011. Springer-Verlag.

CJ02. D. Coppersmith and M. Jakobsson. Almost optimal hash sequence traversal.
In Financial Cryptography 2002, volume 2357 of Lecture Notes in Computer
Science, pages 102–119, Berlin, 2002. Springer-Verlag.

IR01. G. Itkis and L. Reyzin. Forward-secure signatures with optimal signing and
verifying. In Advances in Cryptology—CRYPTO ’01, volume 2139 of Lecture
Notes in Computer Science, pages 332–354, Berlin, 2001. Springer-Verlag.

Jak02. M. Jakobsson. Fractal hash sequence representation and traversal. In Proc.
IEEE International Symposium on Information Theory (ISIT ’02), page 437.
IEEE Press, 2002. Full version eprint.iacr.org/2002/001.

Lam81. L. Lamport. Password authentication with insecure communication. Com-
munications of the ACM, 24(11):770–772, 1981.

Mer87. R. Merkle. A digital signature based on a conventional encryption function.
In Advances in Cryptology—CRYPTO ’87, volume 293 of Lecture Notes in
Computer Science, pages 369–378, Berlin, 1987. Springer-Verlag.

Mer89. R. Merkle. A certified digital signature. In Advances in Cryptology—
CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages
218–238, Berlin, 1989. Springer-Verlag.

MSS13. N. Mourier, R. Stampp, and F. Strenzke. An implementation of the hash-
chain signature scheme for wireless sensor networks. In Lightweight Cryp-
tography for Security and Privacy (LightSec 2013), volume 8162 of Lecture
Notes in Computer Science, pages 68–80, Berlin, 2013. Springer-Verlag.

PCTS02. A. Perrig, R. Canetti, J.D. Tygar, and D. Song. The TESLA broadcast
authentication protocol. RSA CryptoBytes, 5(2):2–13, 2002.

Szy04. M. Szydlo. Merkle tree traversal in log space and time. In Advances in
Cryptology—EUROCRYPT ’04, volume 3027 of Lecture Notes in Computer
Science, pages 541–554, Berlin, 2004. Springer-Verlag.

YSEL09. Dae Hyun Yum, Jae Woo Seo, Sungwook Eom, and Pil Joong Lee. Single-
layer fractal hash chain traversal with almost optimal complexity. In Topics
in Cryptology – CT-RSA 2009, volume 5476 of Lecture Notes in Computer
Science, pages 325–339, Berlin, 2009. Springer-Verlag.

16

	Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal

