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Abstract

Machine learning classification is used in numerous settings nowadays, such as medical or genomics predictions,
spam detection, face recognition, and financial predictions. Due to privacy concerns in some of these applications, it is
important that the data and the classifier remain confidential.

In this work, we construct three major classification protocols that satisfy this privacy constraint: hyperplane
decision, Naïve Bayes, and decision trees. These protocols may also be combined with AdaBoost. They rely on a
library of building blocks for constructing classifiers securely, and we demonstrate the versatility of this library by
constructing a face detection classifier.

Our protocols are efficient, taking milliseconds to a few seconds to perform a classification when running on real
medical datasets.

1 Introduction
Classifiers are an invaluable tool in many settings today, such as medical or genomics predictions, spam detection, face
recognition, and finance. Many of these applications handle sensitive data [WGH12, SG11, SG13], and it is important
that the data and the classifier remain confidential.

Consider the typical setup with supervised learning, depicted in Figure 1. Supervised learning algorithms consist of
two phases: (i) the training phase during which the algorithm learns a model w from a set of labeled examples, and (ii)
the classification phase that runs a classifier C over a previously unseen feature vector x, using the model w to output a
prediction C(x,w).
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Figure 1: Model overview. Each shaded box indicates private data that should be accessible to only one party: the
dataset and the model to the server, and the input and prediction result to the client. Each straight non-dashed rectangle
indicates an algorithm, single arrows indicate inputs to these algorithms, and double arrows indicate outputs.

In applications that handle sensitive data, it is important that the feature vector x and the model w remain secret to
one or some of the parties involved. Consider the example of a hospital having a model built out of the medical profiles
of current patients; the model is sensitive because it can leak information about the current patients, and its usage has to
be HIPPA1 compliant. A new person would like to predict if she would be treated successfully at the hospital or whether
she is likely to develop a certain disease, but does not want to reveal her sensitive medical profile to the hospital (unless

∗Direction Générale de l’Armement. Work done while visiting MIT CSAIL. The views and conclusions contained herein are those of the author
and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the DGA or the French
Government.

1Health Insurance Portability and Accountability Act of 1996
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Learning algorithm Classifier
Perceptron Hyperplane decision
Least squares Hyperplane decision
Fischer linear discriminant Hyperplane decision
Support vector machine Hyperplane decision
Naive Bayes Naïve Bayes
Decision trees (ID3/C4.5) Decision trees

Table 1: Machine learning algorithms and their classifiers, defined in Section 3.1.

she actually gets treated there). Ideally, the hospital and the patient run a protocol at the end of which the patient learns
one bit (“yes/no”), and neither party learns anything else about the other party’s input. A similar setting arises for a
financial institution (e.g., an insurance company) holding a sensitive model, and a customer wanting to estimate rates or
quality of service based on her personal information.

Throughout this paper, we refer to this goal shortly as privacy-preserving classification. Concretely, a client has a
private input represented as a feature vector x, and the server has a private model w as input. The way the model w is
obtained is independent of our protocols here. For example, the server could have computed the model w after running
the training phase on plaintext data as usual. Only the classification needs to be privacy-preserving: the client should
learn C(x,w) but nothing else about the model w, while the server should not learn anything about the client’s input or
the classification result.

In this work, we construct efficient privacy-preserving protocols for three of the most common classifiers: hyperplane
decision, Naïve Bayes, and decision trees, as well as a more general classifier combining these using AdaBoost. Even
though there are many machine learning algorithms, most of them use one of these three classifiers, as described in
Table 1.

While generic secure multi-party computation [Yao82, GMW87, MNPS04] can implement any classifier in principle,
due to their generality, such schemes are not efficient. Most existing work in machine learning and privacy [LP00,
DHC04, WY04, ZW05, BDMN05, VKC08, GLN13] focuses on preserving privacy during the training phase, and
does not address classification. The few works on privacy-preserving classification either consider a weaker security
setting in which the client learns the model [BLN13] or focus on specific classifiers (e.g., face detectors [EFG+09,
SSW10, AB06, AB07]) that are useful in limited situations.

Designing efficient privacy-preserving classification faces two main challenges. The first is that the computation
performed over sensitive data by some classifiers is quite complex (e.g., decision trees), making it harder to support
efficiently. The second is how to provide a solution that is more generic than the three classifiers: constructing a separate
solution for each classifier does not provide insight into how to combine these classifiers or how to construct other
classifiers. Even though these are three of the most common classifiers, various settings use other classifiers or use a
combination of these three classifiers. We address these challenges using two key techniques.

Our main technique is to identify a set of core operations over encrypted data that underlie many classification
protocols. We found these operations to be comparison, argmax, and dot product. We use efficient protocols for each
one of these, either by adapting existing schemes or by constructing new schemes.

Our second technique is to design these building blocks in a composable way, with regard to both functionality and
security. To achieve this goal, we ensure that:

• The input and output of all our building blocks are data encrypted with additively homomorphic encryption. Then,
we provide a mechanism to switch from one encryption scheme to another to enable composing our building
blocks;

• The API of these building blocks is flexible: even though each building block computes a fixed function, it allows
the choice of which party obtains the output of the computation, whether the output is encrypted or decrypted,
and of which party provides the inputs to the protocol;

• The security of these protocols composes using modular sequential composition [Can98].

We then use these building blocks to construct our three classifiers. Some of these incorporate additional techniques,
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such as using SIMD slots with fully homomorphic encryption to improve performance of our decision trees by at least
twice.

We emphasize that the contribution of our building blocks library goes beyond the classifiers we build in this paper:
one can use them to construct other privacy-preserving classifiers in a modular fashion. To demonstrate this point, we
use our building blocks to construct a multiplexer and a classifier for face detection, as well as to combine our classifiers
using AdaBoost.

Our last contribution is an implementation and evaluation of our building blocks and classifiers. We evaluate our
classifiers on real datasets with sensitive data about breast cancer, credit card approval, audiology, and nursery data; our
algorithms are efficient, running in milliseconds up to at most a few seconds.

The rest of the paper is organized as follows. Section 2 describes related work, Sections 3–4 provide the necessary
machine learning and cryptographic background, Section 5 presents our building blocks, Sections 6–9 describe our
classifiers, and Sections 10–11 present our implementation and evaluation results.

2 Related work
Our work is the first to provide efficient privacy-preserving protocols for a broad class of classifiers.

Secure two-party computation protocols for generic functions exist in theory [Yao82, GMW87, LP07, IPS08, LP09]
and in practice [MNPS04]. However, these rely on heavy cryptographic machinery, and applying them directly to
our problem setting would be far too inefficient. Hence, when practicality is important, researchers attempt to design
specialized protocols.

Previous work focusing on privacy-preserving machine learning can be broadly divided into two categories: (i)
techniques for private training, and (ii) techniques for private classification (recall the distinction from Figure 1). There
is a large body of literature related to the first category which we discuss in Section 2.1. Our work falls in the second
category, where there has been less work done, which we discuss in Section 2.2. We also mention work related to the
building blocks we use in our protocols in Section 2.3.

It is worth mentioning that our work on privacy-preserving classification is incomparable to the work in the
differential privacy community on private machine learning (see e.g. [CMS11]). Our work aims to protect the
confidentiality of user data, whereas differential privacy seeks to bound the amount of statistical inference that
can be performed on a particular individual.

2.1 Privacy-preserving training
Existing techniques have been developed for privacy preserving training for Naïve Bayes [VKC08, WY04, ZW05],
decision trees [BDMN05, LP00], linear discriminant classifiers [DHC04], and more general kernel methods [LLM06].

Grapel et al. [GLN13] show how to train several machine learning classifiers using a somewhat homomorphic
encryption scheme. They focus on a few simple classifiers (e.g. the linear means classifier), and do not elaborate on more
complex algorithms such as support vector machines. They also support private classification, but in a weaker security
model where the client learns more about the model than just the final sign of the classification. Indeed, performing the
final comparison with fully homomorphic encryption (FHE) is impractical, a difficulty we overcome with an interactive
setting.

2.2 Privacy-preserving classification
Little work has been done to address the general problem of privacy preserving classification in practice; previous work
focuses on a weaker security setting (in which the client learns the model) and/or only supports specific classifiers.

In Bos et al. [BLN13], a third party can compute medical prediction functions over the encrypted data of a patient
using fully homomorphic encryption. In their setting, everyone (including the patient) knows the predictive model, and
their algorithm hides only the input of the patient from the cloud. Our protocols, on the other hand, would also hide the
model from the patient. Their algorithms cannot be applied to our setting because they leak more information than just
the bit of the prediction to the patient. Furthermore, our techniques are notably different; using FHE directly for our
classifiers would result in significant overheads with the existing constructions.
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Barni et al. [BFK+09, BFL+09] construct secure evaluation of linear branching programs, which they use to
implement a secure classifier of ECG signals. Their technique is based on finely-tuned garbled circuits. By comparison,
our construction is not limited to branching programs (or decision trees), keeps the model private, and is twice as fast
on branching programs.

Other works [EFG+09, SSW10, AB06, AB07] construct specific face recognition or detection classifiers. We focus
on providing a set of generic building blocks to construct more complex classifiers. In Section 11.1.2, we show how to
construct a private face detection classifier using the modularity of our techniques.

2.3 Work related to our building blocks
Two of the basic components we use are private comparison and private computation of dot products. These subjects
have been well studied previously; see [Yao82, DGK07, DGK09, Veu11, LT05, AB06] for comparison techniques and
[AD01, GLLM05, Kil05, AB06] for techniques to compute dot products. Our contribution is not focused on improving
the performance of these techniques, but instead on showing how to combine them in a secure and modular fashion.

3 Background and definitions

3.1 Classification in machine learning algorithms
The standard problem in classification is to construct a function f : Rd 7→ {c1, ..., ck} that takes as input a feature
vector x ∈ Rd and returns which of k classes the input belongs to. We now describe how three popular classifiers work
on regular, unencrypted data. For more details, we refer the reader to [BN06].
Hyperplane decision-based classifiers. Given a hypothesis spaceH equipped with an inner product 〈·, ·〉, a hyperplane
based classifier uses a linear model w ∈ H to solve a binary (k = 2) classification problem; any user input x such that
〈w, φ(x)〉 ≥ 0 is classified into class c2, otherwise it is labelled as part of class c1. Here, φ : Rd 7→ H denotes the
feature mapping from Rd toH [BN06]. These kinds of classifiers are inherently binary, and there are many techniques
for extending them to k-class classification for k > 2. We use one of the most common approaches, one-versus-all,
where k different models {wi}ki=1 are trained to discriminate each class from all the others. The decision rule is then
given by (cf. [BN06]):

k∗ = argmax
i∈[k]

〈wi, φ(x)〉

This framework is general enough to cover many common algorithms, such as support vector machines (SVMs), logistic
regression, and least squares. In this work, we focus on the case whenH = Rd (and φ(x) = x) and note that a large
class of infinite dimensional spaces can be approximated with a finite dimensional space (as in [RR07]), including the
popular gaussian kernel (RBF). In this case, φ(x) = Px for a randomized projection matrix P chosen during training.
Notice that Px consists solely of inner products; we will show how to support private evaluation of inner products later,
so for simplicity we drop P from the discussion.
Naïve Bayes classifiers. Whereas hyperplane decision algorithms try to learn the decision surface directly from the
data, generative models (such as Naïve Bayes) work by learning the underlying joint probability distribution of the data
and labels, and making predictions based on the distribution. More specifically, given k classes {c1, ..., ck}, a generative
model using a maximum a posteriori decision rule works by choosing the class with the highest posterior probability:

k∗ = argmax
i∈[k]

p(ci|x) = argmax
i∈[k]

p(ci, x)

where the second equality follows from applying Bayes’ rule. In general the joint probabilities p(ci, x) can be arbitrarily
complex. We focus specifically on the Naïve Bayes model, which assumes that p(ci, x) has the following factorization:

p(ci, x1, ..., xd) = p(ci)

d∏
j=1

p(xj |ci)
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namely, each of the d features are conditionally independent given the class. For simplicity, we will assume that each
xi is discrete, so the p(xi|cj)’s are really probability masses. The model w in the Naïve Bayes model is completely
specified by {p(ci)}ki=1 and {{p(xj |ci)}dj=1}ki=1.
Decision trees. A decision tree is a non-parametric classifier which works by partitioning the feature vector space one
attribute at a time; interior nodes in the tree correspond to partitioning rules, and leaf nodes correspond to class labels.
A feature vector x is classified by walking the tree starting from the root, using the partitioning rule at each node to
decide which branch to take until a leaf node is encountered. The leaf node’s label is the feature vector’s classification.

c1 c2 c3

c4 c5

x1 > w1 x1  w1

x2  w2x2 > w2 x3  w3

x4  w4x4 > w4

Figure 2: Decision tree

Figure 2 gives an example of a decision tree. The model consists of the tree itself and the decision criteria (in this
case the thresholds w1, . . . , w4). In Section 8, we present the tools to efficiently perform private classification on binary
decision trees (binary refers to the structure of the tree, not the domain of the attributes).

3.2 Cryptographic preliminaries
3.2.1 Cryptosystems

In this work, we use three additively homomorphic cryptosystems. A public-key encryption scheme HE is additively
homomorphic if, given two encrypted messages HE.Enc(a) and HE.Enc(b), there exists a public key operation ⊕ such
that c← HE.Enc(a)⊕HE.Enc(b) is an encryption of a+ b. The cryptosystems we use are:
1. the QR cryptosystem of Goldwasser-Micali [GM82],
2. the Paillier cryptosystem [Pai99], and
3. a leveled fully homomorphic encryption (FHE) scheme, HELib [Hal13]

3.2.2 Cryptographic assumptions

We prove that our protocols are secure based on the semantic security [Gol04] of the above cryptosystems. These
cryptosytems rely on standard and well-studied computational assumptions: the Quadratic Residuosity assumption, the
Decisional Composite Residuosity assumption, and the Ring Learning With Error (RLWE) assumption.

3.2.3 Adversarial model

We prove security of our protocols using the secure two-party computation framework for passive adversaries (or
honest-but-curious [Gol04]) defined in Appendix A.1. To enable us to compose various protocols into a bigger protocol
in a secure way, we invoke modular sequential composition (see Appendix A.2).
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Input A Input B Output A Output B Implementation
a b [a < b] – DGK

JaK, JbK – a ≤ b – Protocol 1
JaK, JbK – – [a ≤ b] Protocol 1 without the last two steps
JaK, JbK – – a ≤ b Protocol 2
JaK, JbK – [a ≤ b] – Protocol 2 without the last two steps

Table 2: The various setups under which our comparison protocol works and their corresponding implementations. Whenever a
party has an encrypted output, the output can be decrypted by the other party.

4 Notation
All our protocols are between two parties: parties A and B for our building blocks and parties C (client) and S (server)
for our classifiers.

Inputs and outputs of our building blocks are either unencrypted or encrypted with an additively homomorphic
encryptions scheme. We use the following notation. The plaintext space of QR is F2 (bits), and we denote by [b] a bit b
encrypted under QR; the plaintext space of Paillier consists in ZN where N is the public modulus, and we denote by
JmK an integer m encrypted under Paillier.

The plaintext space of the FHE scheme is F2, but we can pack more than one bit in a single ciphertext using SIMD
slots (cf. [SV11]). Hence, [Jb1, . . . , bnK] denotes the encryption of the bit vector (b1, . . . , bn) using these slots, and [JbK]
the encryption of the single bit b (b is copied in every slot).

5 Building blocks
In this section, we develop a library of building blocks, which we later use to build the classifiers. We also intend this
library for being useful in constructing other classifiers than the ones described in our paper. The building blocks in this
section combine existing techniques with either new techniques or engineering.

5.1 Comparison
Here we describe our comparison protocol. In order for this protocol to be used in various classifiers, its setup needs to
be flexible: namely, it has to support a range of choices for which party gets the input or the output and in what form.
Table 2 shows the various ways our comparison protocol can be used. To implement each row of the table, we build on
existing protocols.

5.1.1 Comparison with unencrypted inputs

For comparison with unencrypted inputs, we use a variation of the protocol described in [DGK07, DGK09, EFG+09],
which we call DGK.
DGK. In this protocol, two parties A and B want to compare two private l bit integers a and b. B has a Paillier secret
key SKP and a GM secret key SKGM , whereas A has the associated public keys. At the end of the protocol, A outputs
the encrypted bit [t] where t = (a < b). We refer the reader to [EFG+09] (c.f. Section 5) and [DGK07] (c.f. Section 3)
for the full description and proof.
Performance. In [Veu11], another comparison protocol is presented, called LSIC. LSIC’s appeal versus DGK is in
performing a lot less modular multiplications per invocation. However, experimentally we found that the number of
rounds needed by LSIC (linear in the size of the input) is a bottleneck in practical uses, and therefore we stick to only
using DGK.
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5.1.2 Comparison with encrypted inputs

To develop our protocols, we require the ability to compare two encrypted inputs. More specifically, suppose that party
A wants to compare two encrypted l bit unsigned integers a and b, but party B holds the decryption key. Protocol 1 is a
new protocol for this scenario, which is based mostly on [Veu11] (c.f. Section 2.1).

Protocol 1 Comparing encrypted data
Input A:JaK and JbK, the bit length l of a and b, the secret key SKQR, public key PKP
Input B:Secret key SKP , public key PKQR, the bit length l
Output A:(a ≤ b)

1: A: JxK← JbK · J2lK · JaK−1 mod N2

2: A chooses a random number r ← (0, 2λ+l) ∩ Z
3: A: JzK← JxK.JrK mod N2 . Blind x
4: A sends JzK to B
5: B decrypts JzK
6: A: c← r mod 2l

7: B: d← z mod 2l

8: With A, B privately computes the encrypted bit [t′] such that t = (d < c) using DGK
9: A encrypts rl and sends [rl] to B

10: B encrypts zl
11: B: [t]← [t′] · [zl] · [rl]
12: B: sends [t] to A
13: A decrypts and outputs t

Proposition 5.1. Protocol 1 is correct and secure in the honest-but-curious model.

5.1.3 Reversed comparison over encrypted data

In some cases, we want the result of the comparison to be revealed to the party that does not hold the encrypted data.
We use Protocol 2 for this, which is Protocol 1 from [Veu11].

Protocol 2 Reversed comparing encrypted data
Input A:JaK and JbK, public keys PKQR and PKP
Input B:Secret keys SKP and SKQR
Output B:(a ≤ b)

1: A: JxK← JbK · J2lK · JaK−1

2: A chooses a random number r ← (0, 2λ+l) ∩ Z
3: A: JzK← JxK · JrK . Blind x
4: A sends JzK to B
5: B decrypts JzK
6: A: c← r mod 2l

7: B: d← z mod 2l

8: With B, A privately computes the encrypted bit [t′] such that t′ = (d < c) using DGK
9: B encrypts zl and sends [zl] to A

10: A encrypts rl
11: A: [t]← [t′] · [zl] · [rl]
12: A: sends [t] to B
13: B decrypts and outputs t
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Proposition 5.2. Protocol 2 is secure in the honest-but-curious model.

5.1.4 Keeping the output secret

In some cases (cf. Section 8), the party not holding the QR secret key might want to keep the encryption of the result
secret and not reveal it to the other party. To do so, we simply run Protocol 1 and 2 without sending the encrypted result
[t] to the party who holds the secret key. For these protocols, the proofs of security are identical to the ones for the
original protocols.

5.1.5 Negative integers comparison and sign determination

So far, we assumed that the input integers a and b were unsigned. Indeed the protocols do not allow carry-overs; the
algorithm would break because 2l + b− a < 0. To enable negative comparison, we change the protocol to use l + 1
instead of l as the exponent of 2; hence, we will always have 2l+1 + b− a ≥ 0.

We also need to compute the sign of an encrypted integer JbK. In this case, we simply call Protocol 1 or 2 with JaK
being an encryption of 0. Note that we do not need to use the l + 1 exponent trick described previously because b+ 2l

will always stay positive for a l bit signed integer.

5.2 argmax over encrypted data
In this scenario, party A has k values a1, . . . , ak encrypted under party B’s secret key and wants party B to know the
argmax over these values (the index of the biggest value), but neither party should learn anything else. In particular,
B should not learn the order relations between ai’s. A simple way to achieve this is to have A randomly permute
the k values. This way, B can compare the permuted ai, get the maximum and send this index to A, who inverts the
permutation to get the result. In the following, we denote (aπi )i the permuted family (aπi = aπ(i)).

However, B needs to hide from A the partial results of the comparison. This means that B needs to hide even the
indices of the values its comparing. One way to do so is for B to compare every pair of inputs from A, but this would
result in a quadratic number of comparisons.

Instead, our protocol only performs a linear number of comparisons by sequentially comparing the current element
with the maximum element and updating the maximum element. The challenge is that party A knows which element
becomes the maximum. To hide this information, we have A maintain the maximum in an encrypted form and B update
the maximum according to the result of the comparisons without A being able to link the maximum to one of the values
compared; this is achieved by having B refresh the encryption of the maximum.

The resulting protocol is shown in Protocol 3. Here, Refresh is the procedure to refresh Paillier ciphertexts. In the
case where the “refresher” knows the secret key, this can be seen as a decryption followed by a re-encryption. If not, it
can be seen as a multiplication by an encryption of 0.

Proposition 5.3. Protocol 3 is correct and secure in the honest-but-curious model.

5.3 Changing the encryption scheme
To enable us to compose various building blocks, we need to convert ciphertexts from one public-key encryption scheme
to random ciphertexts of the same plaintext in another public-key encryption schemes, given only the public keys of the
corresponding schemes.

In this section, we develop such a protocol. Suppose we have two additively homomorphic encryption schemes E1

and E2, both semantically secure with the same message space M . Once again we have two parties A and B. Party B
has the secret keys SK1 and SK2 for both schemes and A has the corresponding public keys PK1 and PK2, in addition to
a value encrypted with PK1. Protocol 4 enables A to get an encryption of its value under E2 without revealing anything
to B.

Here, J.K1 is an encryption using E1 and J.K2 is an encryption using E2.
One can notice that, for some schemes, the message spaceM depends on the secret keys. It this case, we must be sure

that party A can still uniformly pick elements of M without knowing it. For example, for Paillier, M = Z∗N ' Z∗p ×Z∗q
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Protocol 3 argmax over encrypted data
Input A: k encrypted integers (Ja1K, . . . , JakK), the bit length l of the ai ,and public keys PKQR and PKP
Input B: Secret keys SKP and SKQR, the bit length l
Output A: argmaxi ai

1: A: chooses a random permutation π over {1, . . . , k}
2: A: JmK← Jaπ(1)K
3: B: i0 ← 1
4: for i = 2 to k do
5: Using Protocol 2, B gets the bit bi = (m ≤ aπ(i))

6: A picks two random integers ri, si ← (0, 2λ+l) ∩ Z
7: A: Jm′iK← JmK · JriK . m′i = m+ ri
8: A: Ja′iK← Jaπ(i)K · JsiK . a′i = aπ(i) + si
9: A sends Jm′iK and Ja′iK to B

10: if bi is true then
11: B: i0 ← i
12: B: JviK← RefreshJa′iK . vi = a′i
13: else
14: B: JviK← RefreshJm′iK . vi = m′i
15: end if
16: B sends to A JviK
17: B sends to A the couple (JxiK, JyiK) = (Jb̄iK, JbiK)
18: A: JmK← JviK · JxiK−ri · JyiK−si
19: . m = vi − xi · ri − yi · ti
20: end for
21: B sends i0 to A
22: A outputs π−1(i0)

where p and q are the private primes. However, in this case, A can sample noise in ZN that will not be in Z∗N with
negligible probability (1− 1

p )(1− 1
q ) ≈ 1− 2√

N
(remember N is large – 1024 bits in our instantiation).

Proposition 5.4. Protocol 4 is secure in the honest-but-curious model.

We use this protocol in the setting where M = {0, 1} and the encryption schemes are QR (for E1) and an FHE
scheme over bits (for E2).

In some cases, we might also want to switch from QR to Paillier (e.g. reuse the encrypted result of a comparison
in a homomorphic computation), which has a different message space. Note that we can simulate the homomorphic
XOR operation and a message space M = {0, 1} with Paillier: we can easily compute the encryption of b1 ⊕ b2 under
Paillier when at most one of the bi is encrypted (cf. Appendix C). Indeed, party A knows the randomness r in the clear.

5.4 Computing dot products
For completeness, we include a straightforward algorithm for computing dot products of two vectors, which relies on
Paillier’s homomorphic property.

Proposition 5.5. Protocol 5 is secure in the honest-but-curious model.

5.5 Dealing with floating point numbers
Although all our protocols manipulate integers, classifiers usually use floating point numbers. Hence, when developing
classifiers with our protocol library, we must adapt our protocols accordingly.
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Protocol 4 Changing the encryption scheme
Input A: JcK1 and public keys PK1 and PK2

Input B: Secret keys SK1 and SK2

Output A: JcK2

1: A uniformly picks r ←M
2: A sends Jc′K1 ← JcK1 · JrK1 to B
3: B decrypts c′ and re-encrypts with E2

4: B sends Jc′K2 to A
5: A: JcK2 = Jc′K2 · JrK−1

2

6: A outputs JcK2

Protocol 5 Private dot product
Input A: x = (x1, . . . , xd) ∈ Zd, public key PKP
Input B: y = (y1, . . . , yd) ∈ Zd, secret key SKP
Output A: J〈x, y〉K

1: B encrypts y1, . . . , yd and sends the encryptions JyiK to A
2: A: JvK← 1 . v ← 0
3: for i = 1 to d do
4: A: JvK← JvK · JyiKxi mod N2 . v ← v + xi · yi
5: end for
6: A re-randomizes and outputs JvK

Fortunately, most of the operations involved are either additions or multiplications. As a consequence, a simple
solution is to multiply each floating point value by a constant K (e.g. K = 252 for IEEE 754 doubles). We must also
take care of the bit length for the comparisons.

An example of a full analysis is given for the Naïve Bayes classifier in Appendix D.

6 Private hyperplane decision
For this classifier, we use a one-versus-all approach for hyperplane based classifier with k classes: the client has as
input a feature vector x and the server has k different models {wi}ki=1. Recall that classification result is given by

k∗ = argmax
i∈[k]

〈wi, x〉

To compute k∗, the client computes the encryption of J〈wi, x〉K for all i ∈ [k] and then applies the argmax protocol
(Protocol 3) to the encrypted dot products.

Proposition 6.1. Protocol 6 is secure in the honest-but-curious model.

7 Secure Naïve Bayes classifiers

7.1 General principle
Section 3.1 describes the Naïve Bayes classifier in some detail. Recall that each feature vector x is x = (x1, ..., xd),
with each of the xi taking on discrete values. As is typically done for numerical stability reasons, we work with the

10



Protocol 6 Private hyperplane decision
Client’s (C) Input: x = (x1, . . . , xd) ∈ Zd, public keys PKP and PKQR
Server’s (S) Input: {wi}ki=1 where ∀i ∈ [k], wi ∈ Zn, secret keys SKP and SKQR
Client’s Output: argmax

i∈[k]

〈wi, x〉

1: for i = 1 to k do
2: C and S run Protocol 5 where C is party A with input is x and S is party B with input is wi.
3: C gets JviK the result of the protocol.

. vi ← 〈x,wi〉
4: end for
5: C and S run Protocol 3 where C is the Owner, and S the Helper, and Jv1K, . . . , JvkK the input cyphertexts. C gets

the result i0 of the protocol.
. i0 ← argmax

i∈[k]

vi

6: C outputs i0

logarithm of the probability distributions:

k∗ = argmax
i∈[k]

log p(ci|x)

= argmax
i∈[k]

log p(ci) +

d∑
j=1

log p(xj |ci)

 (1)

Since the xi’s are discrete, we can look at the conditional probabilities as entries of a D×k table, where k is the number
of categories and D =

∑d
i=1Di, with Di as the number of possible outcomes (the domain size) of the variable xi.

The general idea is that the server can encrypt this table under Paillier. For each class ci, the client does d + 1
lookups in this table to get the entries Jlog p(ci)K and Jlog p(xj |ci)K corresponding to its feature vector x and then
computes an encryption Jlog p(x, ci)K for every i ∈ [k] (there are k(d+ 1) lookups in total). Finally, the client runs the
argmax protocol (Protocol 3).

7.2 Building a secure Naïve Bayes classifier
As noticed in Section 5.5, we need to work with integers. To do so, we prepare our data by multiplying all the
probabilities by a constant factor K and then we apply the algorithm described in Section 7.1 with these new values.

We prepare kd+ 1 tables:
• One table for the priors on the classes TC : TC(i) ≈ log p(ci)

• One table per feature per class T j : T j(xj , i) ≈ log p(xj |ci)
We refer the reader to Appendix D for more precise explanations.

Once the probability table is converted to integers, we can use Paillier’s additively homomorphic cryptosystem to
do the computations: for every class ci, the client computes

JpiK = JTC(i)K
d∏
j=1

JT j(xj , i)K

where xj is value for the j-th feature. Finally, the client runs Protocol 3 to get argmax pi. Given the fact that Protocol 3
is secure and Paillier cryptosystem is semantically secure, the security of this classifier is trivial. For completeness, the
protocol is shown in Protocol 7.

Proposition 7.1. Protocol 7 is secure in the honest-but-curious model.
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Protocol 7 Naïve Bayes Classifier
Client’s (C) Input: x = (x1, . . . , xd) ∈ Zd, public key PKP , secret key SKQR
Server’s (S) Input: The secret key SKP , public key PKQR and probability tables {log p(ci)}1≤i≤k and{{

log p(x
(l)
j |ci)

}
x
(l)
j ∈Xj

}
1≤j≤d,1≤i≤k

Client’s Output: i0 such that p(x, ci0) is maximum

1: The server prepares the tables TC and {T j}1≤j≤d and encrypts their entries using Paillier.
2: The server sends JTCK and {JT jK}1≤j≤d to the client.
3: For all 1 ≤ i ≤ k, the client computes JpiK = JTC(i)K

∏d
j=1JT

j(xj , i)K.
4: The client runs the argmax protocol (Protocol 3) with the server and gets i0 = argmaxi pi
5: C outputs i0

8 Oblivious decision trees
The goal here is to design a protocol that allows the server to traverse a binary decision tree using an element x input
from the client in a way that hides the client’s input from the server, and hides both the structure of the tree and the
thresholds from the client.

8.1 Polynomial form of a decision tree
Our protocol works off the following observation: classifying using a binary decision tree is the same thing as evaluating
a simple multi-variate polynomial. As before, we associate a condition to a boolean variable that is 1 if the condition is
true, and 0 otherwise. In other words, we can view the decision tree from Figure 2 as the same as the tree of Figure 3.
Note that c1, . . . , c5 correspond to the class labels. The 4-variables polynomial associated with this tree is

b1

b2

c1 c2

b3

c3 b4

c4 c5

0 1

0 1

1

1

0

0

Figure 3: Decision tree with booleans

P (b1, b2, b3, b4) =

b1 [b3 · (b4 · c5 + (1− b4) · c4) + (1− b3) · c3]

+ (1− b1) [b2 · c2 + (1− b2) · c1]
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We can build a simple recursive procedure F to build the polynomial form of a binary decision tree T

c If T is a leaf with category index ci, F(T ) = ci.

T1T0

b

0 1 If T is an inner node using boolean b as its associated condition and T0

and T1 its two subtrees, then F(T ) = b · F(T1) + (1− b) · F(T0).

Hence, given a tree T with n nodes, this procedure outputs a polynomial P with overall degree roughly log2 n. We
now focus on privately evaluating this polynomial.

8.2 Private evaluation of a polynomial
We reduced our problem to the private evaluation of an n variables polynomial. Remember that the values of the boolean
variables must remain unknown to the server (the owner of the tree). Therefore, the server has to do the computation
over encrypted data.

More formally, suppose the server has the encryptions [Jb1K], . . . , [JbnK] of the n variables under a fully-homomorphic
encryption scheme and a polynomial P corresponding to its decision tree with k possible categories. It then has to
compute P ([Jb1K], . . . , [JbnK]) = [JP (b1, . . . , bn)K] and return the (re-randomized) result to the client. Technically, we do
not need a real FHE scheme; a leveled homomorphic scheme is enough as the depth of the tree – hence the degree of
the polynomial – remains quite small.

One last note is that FHE schemes are faster over a binary F2 message space, but the result of P is usually more
than one bit in length. To overcome this limitation, we use SIMD slots with FHE (as described in [SV11]): these
allow encrypting multiple bits in a single ciphertext such that any operation applied to the ciphertext gets applied in
parallel to each of the bits. Hence, instead of one polynomial P , we create l = dlog2 ke (k is the number of categories)
polynomials Pj where Pj computes the j-th bit of the result given by P . Then, with one FHE evaluation, we evaluate all
Pj’s at once, without any additional computational overhead, instead of computing the log k polynomials one-by-one.
In practice, it means improving the performances by a factor at least 2 when classifying in more than two categories.

When using a (leveled) FHE scheme, we must be aware of the depth of the circuit we are computing. In our case, by
cleverly regrouping multiplications pairwise, we can reduce a polynomial P of degree d to a log d depth circuit.

8.3 Formal description
Protocol 8 describes the resulting protocol. See Section 4 for the FHE notation.

Protocol 8 Decision Tree Classifier
Client’s (C) Input: x = (x1, . . . , xn) ∈ Zn, secret keys SKQR,SKFHE
Server’s (S) Input: The public keys PKQR,PKFHE , the model as a decision tree, with n boolean inputs, the boolean
inputs [b1], . . . , [bn] encrypted under QR
Client’s Output: The value of the leaf of the decision tree associated with the inputs b1, . . . , bn.

1: S produces an n-variate polynomial P as described in section 8.1 (including the SIMD slots).
2: Using Protocol 4, S gets the encryptions [Jb1K], . . . , [JbnK] of b1, . . . , bn under the FHE scheme, homomorphically

computes [JP0(b1, . . . , bn), . . . , Pl−1(b1, . . . , bn)K] and sends the result to the client.
3: C decrypts the result as the bit vector (v0, . . . , vl−1) and outputs

∑l−1
i=0 vi · 2i

Proposition 8.1. Protocol 8 is secure in the honest-but-curious model.
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bool Linear_Classifier_Client::run()
{

exchange_keys();

// values_ is a vector of integers
// compute the dot product
mpz_class v = compute_dot_product(values_);
mpz_class w = 1; // encryption of 0

// compare the dot product with 0
return enc_comparison(v, w, bit_size_, false);

}

void Linear_Classifier_Server_session::
run_session()

{
exchange_keys();

// enc_model_ is the encrypted model vector
// compute the dot product
help_compute_dot_product(enc_model_, true);

// help the client to get
// the sign of the dot product
help_enc_comparison(bit_size_, false);

}

Figure 4: Implementation example: a linear classifier

9 Combining classifiers with AdaBoost
AdaBoost is a technique introduced in [FS97]. The idea is to combine a set of weak classifiers hi(x) : Rd 7→ {−1,+1}
to obtain a better classifier. The AdaBoost algorithm chooses t scalars {αi}ti=1 and constructs a strong classifier as:

H(x) = sign

(
t∑
i=1

αihi(x)

)

If each of the hi(·)’s is an instance of a classifier supported by our protocols, then given the scalars αi, we can easily
and securely evaluate H(x) by simply composing our building blocks. First, we run the secure protocols for each of hi,
except that the server keeps the intermediate result (the outcome of hi(x)) encrypted (e.g. using Section 5.1.4). Second,
if necessary, we convert them to Paillier’s encryption scheme with Protocol 4, and combine these intermediate results
using Paillier’s additive homomorphic property. Finally, we run the comparison of encrypted data algorithm, so that the
client gets the final result.

10 Implementation
We have implemented the protocols and the classifiers in C++ using GMP2, Boost, Google’s Protocol Buffers3, and
HELib [Hal13] for the FHE implementation.

The code is written in a modular way: all the elementary protocols defined in Section 5 can be used as black boxes
with minimal developer effort. Thus, writing secure classifiers comes down to invoking the right API calls to the
protocols. For example, for the linear classifier, the client simply calls the key exchange protocol, followed by the dot
product protocol, and then the comparison of encrypted data protocol to output the result, as shown in Figure 4.

11 Evaluation
To evaluate our work, we answer the following questions: (i) can our building blocks be used to construct other
classifiers in a modular way (Section 11.1), (ii) what is the performance overhead of our building blocks (Section 11.3),
and (iii) what is the performance overhead of our classifiers (Section 11.4)?

11.1 Using our building blocks library
Here we demonstrate that our building blocks library can be used to build other classifiers modularly and is a useful
contribution by itself. We will construct a multiplexer and a face detector. A face detection algorithm over encrypted

2http://gmplib.org/
3https://code.google.com/p/protobuf/

14

http://gmplib.org/
https://code.google.com/p/protobuf/


data already exists [AB06, AB07], so our construction here is not the first such construction, but it serves as a proof of
functionality of our library.

11.1.1 Building a multiplexer

It is often useful to compute the following generalized comparison function:

fα,β(a, b) =

{
α if a > b

β otherwise

We can easily fα,β as a linear combination of the bit b = (a ≤ b):

fα,β(b) = b · β + (1− b) · α = α+ b · (β − α)

If we have the encryption JbK of b under Paillier, and we know both α and β, using Paillier’s scheme homomorphism,
we can compute an encryption of fα,β(b):

Jfα,β(b)K = JαK · JbKβ−α

Hence, we just need to compare a and b, keeping the result encrypted with QR, and then change the encryption scheme
(cf. Section 5.3) to get b = (a ≤ b) encrypted with Paillier.

11.1.2 Viola and Jones face detection

The Viola and Jones face detection algorithm [VJ01] is a particular case of an AdaBoost classifier. Denote by X an
image represented as an integer vector and x a particular detection window (a subset of X’s coefficients). The strong
classifier H for this particular detection window is

H(x) = sign

(
t∑
i=1

αihi(x)

)

where the ht are weak classifiers of the form

hi(x) = sign (〈x, yi〉 − θi)

In our setting, Alice owns the image and Bob the classifier (e.g. the vectors {yi} and the scalars {θi} and {αi}). Neither
of them wants to disclose their input to the other party. Thanks to our building blocks, Alice can run Bob’s classifier on
her image without her learning anything about the parameters and Bob learning any information about her image.

The weak classifiers can be seen as multiplexers; with the above notation, we have

ht(x) = f1,−1(〈x, yt〉 − θt)

Using the elements of Section 11.1.1, we can easily compute the encrypted evaluation of every one of these weak
classifiers under Paillier, and then, as described in Section 9, compute the encryption of H(x).

11.2 Performance evaluation setup
Our performance evaluations were run using two desktop computers each with identical configuration: two Intel i7 (64
bit) processors for a total 8 cores running at 3.4 GHz and 8 GB RAM. Since the machines were on the same network,
we artificially inflated the roundtrip time for a packet to be 40 ms to mimic real network latency. We used 1024 bit
crypto keys, and chose the statistical security parameter λ to be 100. When using HELib, we use 80 bits of security,
which corresponds to a 1024 bit asymmetric key.

15



11.3 Building blocks performance
We examine performance in terms of computation time at the client and server, communication bandwidth, and also
number of interactions (round trips).

11.3.1 Comparison protocols

Comparison with unencrypted input. Table 3 gives the running time of the DGK comparison protocol with
unencrypted input for various input size. The DGK protocol runs in parallel using four threads for each party.

Bit size A Computation B Computation Total Time Communication Interactions
10 5.03 ms 12.38 ms 98.4 ms 5.26 kB 3
20 8.34 ms 17.3 ms 107 ms 10.4 kB 3
32 13.70 ms 17.58 ms 112 ms 16.5 kB 3
64 26.15 ms 39.03 ms 149 ms 32.9 kB 3

Table 3: Comparison with unencrypted input protocols evaluation

Comparison with encrypted input. Table 4 presents the performance of the comparison with encrypted inputs
protocols, with DGK as underlying comparison protocols.

11.3.2 argmax

Figure 5 presents the running times and the communication overhead of the argmax of encrypted data protocol (cf.
Section 5.2). The input integers were 64 bit integers.
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Figure 5: Argmax of encrypted data protocol evaluation. The bars represent the execution of the protocol when the comparisons are
executed one after each other, linearly. The line represents the execution when comparisons are executed in parallel, tree-wise.

Protocol Bit size
Computation

Total Time Communication Interactions
Owner Helper

Comparison 64 38.07 ms 20.99 ms 258.5 ms 33.41 kB 6
Reversed Comp. 64 25.83 ms 36.93 ms 292.1 ms 33.41 kB 6

Table 4: Comparison with encrypted input protocols evaluation
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Owner Computation Helper Computation Total Time Communication Interactions
47.0 ms 232 ms 549 ms 481.2 kB 2

Table 5: Change encryption scheme protocol evaluation

Data set Model size
Computation Time per protocol4 Total

Comm. Interactions
Client Server Compare Dot product running time

Breast cancer (1) 30 52.0 ms 35.7 ms 281 ms 45.4 ms 326 ms 41.35 kB 7
Credit (3) 47 55.8 ms 44.0 ms 275 ms 48.2 ms 323 ms 45.70 kB 7

(a) Linear Classifier

Data set
Specs. Computation Time per protocol4 Total

Comm. Interactions
C F Client Server Prob. Comp. Argmax running time

Breast Cancer (2) 2 9 122 ms 148 ms 82.1 ms 469 ms 551 ms 77.26 kB 14
Nursery (5) 5 9 434 ms 393 ms 82.9 ms 1563 ms 1646 ms 171.1 kB 42

Audiology (4) 24 70 1557 ms 1931 ms 636 ms 3388 ms 4024 ms 2067 kB 166

(b) Naïve Bayes Classifier. C is the number of categories and F is the number of features. The Prob. Comp. column corresponds to
the computation of the probabilities p(ci|x) (cf. Section 7).

Data set
Tree Specs. Computation Time per protocol4 FHE

Comm. Interactions
N D Client Server Compare ES Change Eval. Decrypt

Nursery (5) 4 4 991 ms 1756 ms 1474 ms 1709 ms 182 ms 1443 ms 3210 kB 30
ECG (6) 6 4 1485 ms 2595 ms 2309 ms 2627 ms 689 ms 2005 ms 4272 kB 44

(c) Decision Tree Classifier. ES change indicates the time to run the protocol for changing encryption schemes. N is the number of
nodes of the tree and D is its depth.

Table 6: Classifiers evaluation

11.4 Classifier performance
Here we evaluate each of the classifiers described in Sections 6–8. The models are trained non-privately using
scikit-learn5. We used the following datasets from the UCI machine learning repository [BL13]:
1. The Wisconsin Diagnostic Breast Cancer data set
2. The Wisconsin Breast Cancer (Original) data set, a simplified version of the previous dataset.
3. Credit Approval data set
4. Audiology (Standardized) data set
5. Nursery data set
6. ECG (electrocardiogram) classification data from Barni et al. [BFK+09]

These data sets represent some typical cases where we want to ensure privacy of both the server’s model and client’s
input.

More specifically, we used sets 2 and 3 to test the hyperplane decision classifier, sets 1, 4 and 5 for the Naïve Bayes
classifier, and sets 5 and 6 for the decision tree classifier. Table 6 shows the performance results. Our classifiers run in at
most a few seconds, which we believe to be very practical for sensitive applications.

4Including communication
5http://scikit-learn.org
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For the decision tree classifier, we compared our construction to Barni et al. [BFK+09] on the ECG dataset (by
turning their branching program into a decision tree). Their performance is 1765 ms6 for the client and 4235 ms for
the server with communication cost of 112.2KB. Even though their evaluation does not consider the communication
delays, we are still twice as fast for the server and faster for the client. Moreover, we must not forget that we keep the
tree private while Barni et al. construction reveals the computation circuit (by revealing the garbled circuit).

12 Conclusion
In this paper, we constructed three major privacy-preserving classifiers as well as provided a library of building blocks
that enables constructing other classifiers. We also demonstrated the efficiency of our classifiers on real datasets.
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A Preliminaries for proofs

A.1 Secure two-party computation framework
All our protocols are two-party protocols, which we label as party A and party B. In order to show that they do private
computations, we work in the honest-but-curious (semi-honest) model as described in [Gol04].

Let f = (fA, fB) be a (probabilistic) polynomial function and Π a protocol computing f . A and B want to
compute f(a, b) where a is A’s input and b is B’s input, using Π and with the security parameter λ. The view of
party A during the execution of Π is the tuple VA(λ, a, b) = (1λ; a; rA;mA

1 , . . . ,m
A
t ) where r is A’s random tape

and mA
1 , . . . ,m

A
t are the messages received by A. We define the view of B similarly. We also define the outputs of
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parties A and B for the execution of Π on input (a.b) as OutputΠA(λ, a, b) and OutputΠB(λ, a, b), and the global output
as OutputΠ(λ, a, b) = (OutputΠA(λ, a, b),OutputΠB(λ, a, b)).

To ensure security, we have to show that whatever A can compute from its interactions with B can be computed
from its input and output, which leads us to the following security definition.

Definition A.1. The two-party protocol Π securely computes the function f if there exists two probabilistic polynomial
time algorithms SA and SB such that for every possible input a, b of f ,

{SA(1λ,a, fA(a, b)), f(a, b)} ≡c
{VA(λ, a, b),OutputΠ(λ, a, b)}

and

{SB(1λ,a, fB(a, b)), f(a, b)} ≡c
{VB(λ, a, b),OutputΠ(λ, a, b)}

where ≡c means computational indistinguishability against probabilistic polynomial time adversaries with negligible
advantage in the security parameter λ.

To simplify the notation (and the proofs), hereinafter we omit the security parameter. As we mostly consider
deterministic functions f , we can simplify the distributions we want to show being indistinguishable (see [Gol04]):
when f is deterministic, to prove the security of Π that computes f , we only have to show that

SA(a, fA(a, b)) ≡c VA(a, b)

SB(b, fB(a, b)) ≡c VB(a, b)

Unless written explicitly, we will always prove security using this simplified definition.

A.2 Modular Sequential Composition
In order to ease the proofs of security, we use sequential modular composition, as defined in [Can98]. The idea is
that the parties run a protocol Π and use calls to an ideal functionality f in Π (e.g. A and B compute f privately by
sending their inputs to a trusted third party and receiving the result). If we can show that Π respects privacy in the
honest-but-curious model and if we have a protocol ρ that privately computes f in the same model, then we can replace
the ideal calls for f by the execution of ρ in Π; the new protocol, denoted Πρ is then secure in the honest-but-curious
model.

We call hybrid model with ideal access to f1, . . . , fm or (f1, . . . , fm)-hybrid model the semi-honest model
augmented with an incorruptible trusted party T for evaluating functionalities f1, . . . , fm. The parties run a protocol Π
that contain calls to T for the evaluation of one of f1, . . . , fm. For each call, each party sends its input and wait until
the trusted party sends the output back. We emphasize on the fact that the parties must not communicate until receiving
T ’s output (we consider only sequential composition). Ideal calls to the trusted party can be done several times, even
for the same function, but each call is independent: T does not maintain state between two calls.

Let Π be a two-party protocol in the (f1, . . . , fm)-hybrid model. Let ρ1, . . . , ρm be real protocols (i.e. protocols in
the semi-honest model) computing f1, . . . , fm and define Πρ1,...,ρm as follows. All ideals calls of Π to the trusted party
for fi is replaced by a real execution of ρi: if party Pj has to compute fi with input xj , Pj halts, starts an execution of
ρi with the other parties, gets the result βj when ρi concludes, and continues as if βj was received from T .

Theorem A.2. [Can98] (Theorem 5) restated as in [LP08] (Theorem 3) – Let f1, . . . , fm be two-party probabilistic
polynomial time functionalities and ρ1, . . . , ρm protocols that compute respectively f1, . . . , fm in the presence of
semi-honest adversaries.

Let g be a two-party probabilistic polynomial time functionality and Π a protocol that securely computes g in the
(f1, . . . , fm)-hybrid model in the presence of semi-honest adversaries.

Then Πρ1,...,ρm securely computes g in the presence of semi-honest adversaries.
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A.3 Cryptographic assumptions
Assumption 1. (Quadratic Residuosity Assumption – from [GM82]) Let N = p× q be the product of two distinct odd
primes p and q. Let QRN be the set of quadratic residues modulo N and QNRN be the set of quadratic non residues
(i.e. x ∈ QNRN if x is not a square modulo N and its Jacobi symbol is 1).
{(N,QRN ) : |N | = λ} and {(N,QNRN ) : |N | = λ} are computationally indistinguishable with respect to

probabilistic polynomial time algorithms.

Assumption 2. (Decisional Composite Residuosity Assumption – from [Pai99]) Let N = p × q, |N | = λ be the
product of two distinct odd primes p and q. A number z is said to be a N -th residue modulo N2 if there exists a number
y ∈ ZN2

z = yN mod N2

N -th residues are computationally indistinguishable from non N -th residues with respect to probabilistic polynomial
time algorithms.

For further explanations about the last assumption, used for the FHE scheme, we refer the reader to [BGV12].

Assumption 3. (RLWE) For security parameter λ, let f(x) = xd + 1 where d is a power of 2. Let q ≥ 2 be an integer.
Let R = Z[x]/(f(x)) and let Rq = R/qR. Let χ be a distribution over R. The RLWEd,q,χ problem is to distinguish
between two distributions: In the first distribution, one samples (ai, bi) uniformly from R2

q . In the second distribution,
one first draws s← Rq uniformly and then samples (ai, bi) ∈ R2

q by sampling ai ← Rq uniformly, ei ← χ, and setting
bi = ai.s+ ei.

The RLWEd,q,χ assumption is that the RLWEd,q,χ problem is infeasible.

B Proofs

B.1 Comparison protocols
B.1.1 Encrypted comparison

Proof of Proposition 5.1 . Correctness As a and b are l bits integers, x = 2l + b− a is a l+ 1 bits integer and its most
significant bit (the l + 1-th bit) is 1 iff a ≤ b. What protocol 1 actually does is computing this bit. The computations are
done over encrypted data, using Paillier’s encryption scheme. In the rest of the proof, we will do as if the data were not
encrypted under Paillier. The correctness will hold as long as we do not experience carry-overs modulo N . In particular,
this implies that l+ 1 + λ < log2N . For operations over bits using QR, we don’t have this problem as we are operating
on F2.

Again, since x is a l+ 1 bit number, its most significant bit is x÷ 2l where ÷ denotes the integer division. We have
x = 2l(x÷ 2l) + (x mod 2l) where 0 ≤ (x mod 2l) < 2l. As z = x+ r,

z = 2l(z ÷ 2l) + (z mod 2l)

= 2l((x÷ 2l) + (r ÷ 2l)) + ((x mod 2l) + (r mod 2l))

Hence, z ÷ 2l = x÷ 2l + r ÷ 2l if (x mod 2l) + (r mod 2l) < 2l and z ÷ 2l = (x÷ 2l) + (r ÷ 2l) + 1 otherwise.
More generally, z ÷ 2l = (x÷ 2l) + (r ÷ 2l) + t′ where t′ = 0⇔ (x mod 2l) + (r mod 2l) < 2l.

We can also notice that, if t′ = 0, z mod 2l = (x mod 2l) + (r mod 2l) and z mod 2l = (x mod 2l) + (r mod
2l)− 2l otherwise. As a consequence,

t′ = 0⇔ z mod 2l = (x mod 2l) + (r mod 2l)

⇔ z mod 2l ≥ (r mod 2l)
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In the end, as x÷ 2l is either 0 or 1, we can compute everything modulo 2

x÷ 2l = (z ÷ 2l)− (r ÷ 2l)− t′ mod 2

= zl ⊕ rl ⊕ t′

The mistake in [Veu11], resided in that very last line: for all integers v and i, (v ÷ 2i) mod 2 = vi and not vi+1.

Security We suppose that the encrypted bit [t′] is ideally computed (using calls to a trusted party in the hybrid model).
We show that the protocol is secure in this model and conclude using the sequential modular composition theorem.

A’s view is VA = (JaK, JbK, l, SKQR,PKP ; r, coins; [t]) where SKQR is the secret key for the QR cryptosystem,
PKP is the public key for Paillier’s cryptosystem, and coins are the random coins used for the encryptions of 2l, r and
rl. Given (JaK, JbK, l, SKQR,PKP , a ≤ b), we build the simulator SA:
1. Compute [t̃] an encryption of the bit (a ≤ b) under QR.
2. Pick r̃ ← (0, 2λ+l) ∩ Z.

3. Let c̃oins be random coins for two Paillier encryptions and one QR encryption.

4. Output (JaK, JbK, l, SKQR,PKP ; r̃, c̃oins; [t̃])

The distributions VA(JaK, JbK, l, SKQR,PKQR,SKP ,PKP ) and SA(JaK, JbK,SKQR,PKP , a ≤ b) are exactly the same
because the randomness is taken from the same distribution in both cases, and the QR cyphertext encrypts the same bit.

B’s view is VB = (PKQR,SKP , l, JzK; coins; [t′], [rl]) where coins are the random coins used for the encryption of
zl. The simulator SB(PKQR,SKP , l) runs as follows:
1. Pick z̃ ← (0, 2λ+l) ∩ Z.
2. Encrypt z̃ under Paillier: Jz̃K.
3. Generate [t̃′] and [r̃l], two encryptions of random bits under QR

4. Let c̃oins be random coins for one QR encryption.

5. Output (PKQR,SKP , l, Jz̃K; c̃oins; [t̃′], [r̃l])

The random tapes coins and c̃oins are generated in the exact same manner and independently from any other
parameter, so

(PKQR,SKP , Jz̃K; c̃oins; [t̃′][r̃l])

= (PKQR,SKP , Jz̃K; coins; [t̃′][r̃l])

Recall that z = x + r mod N where x is an l bits integer and r is an l + λ bits integer. But as we chose
l + 1 + λ < log2N , we have z = x+ r. The distribution of z̃ is statistically indistinguishable from the distribution of
z (the distributions are distinguishable with an advantage of 2−λ at most).

We also directly have that (SKP , Jz̃K) ≡s (SKP , JzK) and as a consequence, as the distribution of z̃ and z is
independent from t̃′ and r̃l,

(PKQR,SKP , Jz̃K; coins; [t̃′], [r̃l])

≡s (PKQR,SKP , JzK; coins; [t̃′], [r̃l])

By semantic security of QR,

(PKQR,SKP , l, JzK; coins; [t̃′], [r̃l])

≡c (PKQR,SKP , l, JzK; coins; [t′], [rl])

and

SB(PKQR,SKP , l)

≡c VB(JaK, JbK, l, SKQR,PKQR,SKP ,PKP )
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We conclude the proof of security using modular sequential composition. We replace the ideal calls for computing
the encrypted bit [t′] by the provable secure DGK protocol and invoke Theorem A.2 to prove security in the semi-honest
model.

B.1.2 Reversed encrypted comparison

Proof of Proposition 5.2. The proof of security is similar to the one of Proposition 5.1. Again we first suppose that [t′]
is ideally computed (hybrid model).

A’s view is VA = (JaK, JbK, l,PKQR,PKP ; r, coins; [t′], [zl]) where PKQR is the public key for the QR cryptosystem,
PKP is the public key for Paillier’s cryptosystem and coins is the random tape used for the Paillier encryptions of r and
2l, and the QR encryption of rl.

Given (JaK, JbK,PKQR,PKP ), we build the simulator SA:
1. Pick r̃ ← (0, 2λ+l) ∩ Z.
2. Generate [t̃′] and [z̃l], two encryptions of random bits under QR

3. Let c̃oins be random coins for two Paillier encryptions and one QR encryption.

4. Output (JaK, JbK, l,PKQR,PKP ; r̃, c̃oins; [z̃l])

For both cases (A’s view and the simulator SA), r and r̃ are taken from the same uniform distribution over
(0, 2λ+l) ∩ Z, and coins and c̃oins are random tapes of the same length, so

SA(JaK, JbK,PKQR,PKP )

= (JaK, JbK, l,PKQR,PKP ; r, coins; [z̃l])

By semantic security of the QR cryptosystem, we conclude with the computational indistinguishability of SA and VA
distributions:

SA(JaK, JbK,PKQR,PKP )

= (JaK, JbK, l,PKQR,PKP ; r, coins; [z̃l])

≡c (JaK, JbK, l,PKQR,PKP ; r, coins; [zl])

= VA(JaK, JbK, l, SKQR,PKQR,SKP ,PKP )

B’s view is VB = (SKQR,SKP , JzK, [t]; coins) where SKQR is the secret key for the QR cryptosystem, SKP is
the secret key for Paillier’s cryptosystem, and coins are the random coins necessary for the QR encryption of zl. The
simulator SB(SKQR,SKP , a ≤ b) runs as follows:
1. Compute [t̃] an encryption of the bit (a ≤ b) under QR.
2. Pick z̃ ← (0, 2λ+l) ∩ Z.
3. Encrypt z̃ under Paillier: Jz̃K.

4. Let c̃oins be random coins for one QR encryption.

5. Output (SKQR,SKP , l, Jz̃K, [t̃]; c̃oins)

Once again, the distributions of coins and c̃oins are identical:

(SKQR,SKP , l, Jz̃K, [t̃]; c̃oins)

= (SKQR,SKP , l, Jz̃K, [t̃]; coins)

Recall that z = x + r where x is an l bits integer and r is an l + λ bits integer. The distribution of z̃ is statistically
indistinguishable from the distribution of z. We also directly have that (SKP , Jz̃K) ≡s (SKP , JzK) and as a consequence,
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as the distribution of z̃ and z is independent from t̃′,

(SKQR,SKP , l, Jz̃K, [t̃]; coins)

≡s (SKQR,SKP , l, JzK, [t̃]; coins)

Moreover, by construction, (SKQR, [t̃]) = (SKQR, [a < b]) and

(SKQR,SKP , l, JzK, [t̃]; coins)
= (SKQR,SKP , l, JzK, [a < v]; coins).

Finally, we have

SB(SKQR,SKP , a ≤ b)
≡s VB(JaK, JbK, l, SKQR,PKQR,SKP ,PKP ).

Again, we conclude the proof of security using modular sequential composition. We replace the ideal calls for
computing the encrypted bit [t′] by the provable secure DGK protocol and invoke Theorem A.2 to prove security in the
semi-honest model.

B.2 Argmax

Proof of Proposition 5.3. Correctness To prove correctness, we have to show that the following invariant holds: at
the end of the loop for iteration i, m is the maximum of {aπ(j)}1≤j≤i and aπ(i0) = m.

It this holds, at the end of the loop iterations aπ(i0) is the maximum of {aπ(j)}1≤j≤k = {aj}1≤j≤k, hence
i0 = argmaxj aπ(j) and π−1(i0) = argmaxj aj .

At initialization (line 4), the invariant trivially holds as the family {aπ(j)}1≤j≤i contains only one element.
Suppose the property is true for iteration i− 1. Let us distinguish two cases:

• If bi is true (i.e. m ≤ aπ(i)), max{aπ(j)}1≤j≤i−1 ≤ aπ(i), as the invariant holds for the previous iteration, and then
max{aπ(j)}1≤j≤i = aπ(i).
Then i0 is set to i, vi = a′i and (xi, yi) = (0, 1). As a consequence, m is set by A to

vi − xi.ri − yi.si = a′i − si = aπ(i)

We have clearly that aπ(i0) = aπ(i) = m and m = max{aπ(j)}1≤j≤i, the invariant holds at the end of the i-th
iteration in this case.
• If bi is false (m > aπ(i)), max{aπ(j)}1≤j≤i−1 > aπ(i) and max{aπ(j)}1≤j≤i = max{aπ(j)}1≤j≤i−1 = m.

Then i0 is not changed, vi is set to m′i and (xi, yi) = (1, 0). As a consequence,

vi − xi.ri − yi.si = m′i − ri = m

m is unchanged. As both m and i0 stayed the same and max{aπ(j)}1≤j≤i = max{aπ(j)}1≤j≤i−1, the invariant
holds at the end of the i-th iteration in this case.

Security To prove security, we first consider that line 5 of the protocol is ideally executed: we ask a trusted party T to
compute the function f(JxK, JyK, l, SKQR,PKQR,SKP ,PKP ) in the f -hybrid model where

f(JxK, JyK, l, SKQR,PKQR,SKP ,PKP )

=
(fA(x, y, l,SKQR,PKQR,SKP ,PKP );

fB(JxK, JyK, l, SKQR,PKQR,SKP ,PKP ))

and f computes the function of Protocol 2, i.e. fA returns nothing and fB returns the bit x ≤ y.
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We will conclude using Theorem A.2.

A’s view is

VA =({JaiK}ki=1, l,PKQR,PKP ;

π, {ri}ki=2, {si}ki=2, coins; {JviK}ki=2, π(argmax
i

ai))

where coins is the random tape for encryptions. To simulate A’s real view, the simulator SA does the following on input
(Ja1K, . . . , JakK, l,PKQR,PKP , argmaxi ai):
1. Picks a random permutation π̃ of {1, . . . , k}
2. Picks k − 1 random integers r̃2, . . . , r̃k in (0, 2)l+λ ∩ Z
3. Picks k − 1 random integers s̃2, . . . , s̃k in (0, 2)l+λ ∩ Z
4. Generates k − 1 random Paillier encryptions Jṽ2K, . . . , JṽkK.

5. Generate a random tape for 2(k − 1) Paillier encryptions c̃oins
6. Outputs

({JaiK}ki=1, l,PKQR,PKP ;

π̃, {r̃i}ki=2, {s̃i}ki=2, c̃oins; {JṽiK}ki=2, π̃(argmax
i

ai))

We define the following hybrids:
• H0 = VA(Ja1K, . . . , JakK, l, SKQR,PKQR,SKP ,PKP )

• H1 = ({JaiK}ki=1, l,PKQR,PKP ;
π, {ri}ki=2, {si}ki=2, coins; {JṽiK}ki=2, π(argmaxi ai))

• H2 = ({JaiK}ki=1, l,PKQR,PKP ;

π, {r̃i}ki=2, {s̃i}ki=2, c̃oins; {JṽiK}ki=2, π(argmaxi ai))

• H3 = SA(Ja1K, . . . , JakK, l,PKQR,PKP , argmaxi ai)

By semantic security of Paillier’s cryptosystem, as B refreshes the cyphertexts, for all i, (PKP , JviK) ≡c (PKP , JṽiK)
and more generally,

({JaiK}ki=1, l,PKQR,PKP ;π, {ri}ki=2, {si}ki=2;

{JviK}ki=2, π(argmax
i

ai))

≡c
({JaiK}ki=1, l,PKQR,PKP ;π, {ri}ki=2, {si}ki=2;

{JṽiK}ki=2, π(argmax
i

ai))

and H0 ≡c H1 as π(argmaxi ai) = i0
Given that the r̃i, s̃i and c̃oins are generated according to the same distribution as ri, si (uniform over (0, 2)l+λ ∩Z)

and coins (random tape for 2(k − 1) Paillier encryptions), and that they are completely independent from the ṽi or π,
the hybrids H1 and H2 are equal.

Similarly, the distribution of (π, π(argmaxi ai)) and (π̃, π̃(argmaxi ai)) are exactly the same. As π and π̃ are
independent from the other parameters, we also have H2 = H3.

Hence, we showed that

VA({JaiK}ki=1, l, SKQR,PKQR,SKP ,PKP )

≡c SA({JaiK}ki=1, l,PKQR,PKP , argmax
i

ai).
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B’s view is

VB = (SKP ,SKQR, l; coins; {bi}ki=2, {Jm′iK}ki=2, {Ja′iK}ki=2)

where coins are the random coins for k − 1 Paillier cyphertext refresh. The simulator SB(SKP ,SKQR, l) runs as
follows:
1. Generates a random permutation π̃ of {1, . . . , k}
2. Set JãiK = JiK
3. Run the protocol with the JãiK as input data, π̃ as the permutation, and same parameters otherwise. Let

(SKP ,SKQR, l; c̃oins; {bi}ki=2, {Jm̃′iK}ki=2, {Jã′iK}ki=2) be B’s view of this run.
4. Outputs

(SKP ,SKQR, l; c̃oins; {bi}ki=2, {Jm̃′iK}ki=2, {Jã′iK}ki=2)

Let p : {ai}1≤i≤k 7→ {1, . . . , k} be the function that associates ai to its rank among the ai (in ascendent order).
Let us fix the permutation π for a while and define the following hybrids:
0. H0 = VB({JaiK}ki=1, l, SKQR,PKQR,SKP ,PKP )

1. H1 = (SKP ,SKQR, l; coins; {b̃i}ki=2, {Jm′iK}ki=2, {Ja′iK}ki=2) (the b̃i come from the simulator).
2. H2 = VB({Jp(a1)K}ki=1, l, SKQR,PKQR,SKP ,PKP )

We will show that these hybrids are perfectly equal for every permutation π.
As p(.) is a map that does not change the order of the ai, we have that for all i, j, ai ≤ aj ⇔ p(ai) ≤ p(aj). As a

consequence, for a given permutation π, the bits bi do not change if we replace the ai by p(ai). Thus, H0 = H1.
As, in the real execution of the protocol and in the simulator execution, a′i, m

′
i, m̃

′
i and ã′i are statistically blinded

the same way, by adding random noise from (0, 2λ+l ∩Z), and the random tape are generated in the same way, we have
H1 = H2.

Now, we want to show that H2 ≡s SB(SKP ,SKQR, l) - we do not fix π anymore. Let π0 be the permutation such
that p(ai) = π0(i). We can then rewrite H2 as

H2 = VB(Jπ0(1)K, . . . , Jπ0(k)K, l, SKQR,PKQR,SKP ,PKP )

As π̃ and π ◦ π0 are statistically indistinguishable, we have H2 ≡s SB(SKP ,SKQR, l): recall that SB’s output is the
view of B when the protocol is run with the set {ai = i} as input set and π̃ as the permutation. Hence

VB(Ja1K, . . . , JakK, l, SKQR,PKQR,SKP ,PKP )

≡s SB(SKP ,SKQR, l)

We conclude the proof of security using modular sequential composition. We replace the ideal calls for computing
the encrypted bits bi by the provable secure Protocol 2 and invoke Theorem A.2 to prove security in the semi-honest
model.

B.3 Changing the encryption scheme
Proof of Proposition 5.4. In this protocol the computed function is probabilistic, and we have to show security according
to the full definition (cf. section A.1). The function is f :

f(JcK1,PK1,PK2,SK1,SK2) = (JcK2, ∅)

For the sake of simplicity, we do not take into account the randomness used for the encryptions of r for A and c′ for B.
As before, the distribution of these coins for one party is completely independent of the other elements to be taken in
account in the simulations, so we just do not mention them in security proof.

A’s view is VA = (PK1,PK2, JcK1; r; Jc′K2). A’s output is JcK2. The simulator SA(PK1,PK2, JcK1) runs as follows:

27



1. Picks uniformly at random r̃ ←M and c̃′ ←M .
2. Generates the encryption Jc̃′K2 of c̃′ under E2.
3. Outputs (PK1,PK2, JcK1; r̃; Jc̃′K2).

r and r̃ are taken from the same distribution, independently from any other parameter, so

{(PK1,PK2, JcK1; r̃; Jc̃′K2); f(JcK1,PK1,PK2,SK1,SK2)}
= {(PK1,PK2, JcK1; r; Jc̃′K2); f(JcK1,PK1,PK2,SK1,SK2)}

By semantic security of scheme E2 we have that

{(PK1,PK2, JcK1; r; Jc̃′K2); f(JcK1,PK1,PK2,SK1,SK2)}
≡c {(PK1,PK2, JcK1; r; Jc′K2); JcK2}

and so

{SA(JcK1,PK1,PK2), f(JcK1,PK1,PK2,SK1,SK2)}
≡c {VA(JcK1,PK1,PK2,SK1,SK2),

Output(JcK1,PK1,PK2,SK1,SK2)}

B’s view is VB = (SK1,SK2; Jc+ rK1). We build a simulator SB(SK1,SK2):
1. Picks a random c̃←M .
2. Encrypt c̃ under E1.
3. Outputs (SK1,SK2, Jc̃K1).

Again, the distribution of c̃ and c + r are identical, so the real distribution {(SK1,SK2; Jc + rK1); JcK2} and the
ideal distribution {(SK1,SK2; Jr̃K1); f(JcK1,PK1,PK2,SK1,SK2)} are statistically indistinguishable.

B.4 Computing dot products
Proof of Proposition 5.5. As B does not receive any message, its view only consists in its input and its random tape
used for the encryptions. Hence the simulator SB simply generate random coins and

SB(y,SKP ) = (y,SKP ; coins) = VB(x, y, SKP ,PKP ).

where rand are the random coins.

A’s view is VA = (x,PKP ; rA; Jy1K, . . . , JynK). On input (x,PKP , JvK), the simulator SA does the following:
1. Generates n encryptions of 0 using Paillier: c1, . . . , cn.

2. Generates the random coins necessary for a Paillier re-randomization and put them in c̃oins.

3. Outputs (x,PKP ; c̃oins; c1, . . . , cn).

coins and c̃oins come from the same distribution, independently from other parameters. Thus,

{(x,PKP ; c̃oins; c1, . . . , cn); J〈x, y〉K}
= {(x,PKP ; coins; c1, . . . , cn); J〈x, y〉K}

and by semantic security of Paillier,

{(x,PKP ; coins; c1, . . . , cn); J〈x, y〉K}
≡c {(x,PKP ; coins; Jy1K, . . . , JynK); JvK}
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i.e., when f is f(x, y,SKP ,PKP ) = (J〈x, y〉K, ∅)

{SA(x,PKP , JvK); f(x, y, SKP ,PKP )}
≡c {VA(x, y,SKP ,PKP );Output(x, y, SKP ,PKP )}

B.5 Classifiers
B.5.1 Hyperplane decision

Proof of Proposition 6.1. The client’s view is VC = (PKP ,PKQR, x; {JviK}ki=1, i0). The simulator SC , on input
(PKP ,SKQR, x, k

∗) where k∗ = argmax
i∈[k]

〈wi, x〉 does the following:

1. Generate k random Paillier encryptions JṽiK
2. Output (PKP ,SKQR, x; {JṽK}ki=1, k

∗)

As the index i0 that the client receives is its output, and as Paillier’s cryptosystem is semantically secure, the
distributions SC = (PKP ,SKQR, x; {JṽK}ki=1, k

∗) and VC = (PKP ,SKQR, x; {JviK}ki=1, i0) are computationally
indistinguishable.

As the server views nothing but its inputs (the server does not receive any message in the hybrid model), we use for
the trivial simulator that just outputs its inputs for the proof of security.

As Protocols 3 and 5 are secure in the honest-but-curious model, we obtain the security of the hyperplane decision
protocol using modular sequential composition (Theorem A.2).

B.5.2 Bayes classifier

Proof of Proposition 7.1. The client’s view is VC = (PKP ,SKQR, x; JTCK, JT 1K, . . . , JTnK, i0). The simulator SC ,
on input (PKP ,SKQR, x, imax) where imax = argmaxj P(C = cj |X = x),

• generates tables of random Paillier encryptions JT̃CK and JT̃ iK;
• outputs (PKP ,SKQR, x; JT̃CK, JT̃ 1K, . . . , JT̃nK, imax).

As the integer i0 that the client receives is its output, and as Paillier’s cryptosystem is semantically secure, the dis-
tributions SC = (PKP ,SKQR, x; JT̃CK, JT̃ 1K, . . . , JT̃nK, imax) and VC = (PKP ,SKQR, x; JTCK, JT 1K, . . . , JTnK, i0)
are computationally indistinguishable.

Again, as the server views nothing but its inputs (the server does not receive any message in the hybrid model), we
use the trivial simulator that outputs its inputs and the random coins for the encryption for the proof of security.

As Protocol 3 is secure in the honest-but-curious model, we obtain the security of the hyperplane decision protocol
using modular sequential composition (Theorem A.2).

B.5.3 Decision tree

Proof of Proposition 8.1. The proof of security for the server is very easily obtained using modular sequential
composition of Protocol 4.

For the client also the proof is trivial, using modular sequential composition and the semantical security of the FHE
scheme.
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C Computing XOR with Paillier
Suppose a party gets the bit b1 encrypted under Paillier’s encryption scheme, and that this party only has the public key.
This party knows the bit b2 in the clear and wants to compute the encryption of Jb1 ⊕ b2K.

To do so, we just have to notice that

b1 ⊕ b2 =

{
b1 if b2 = 0

1− b1 if b2 = 1

Hence, it is very easy to compute an encryption of b1 ⊕ b2 if we know the modulus N and the generator g (cf. Paillier’s
scheme construction):

Jb1 ⊕ b2K =

{
Jb1K if b2 = 0

gJb1K−1 mod N2 if b2 = 1

If we want to unveil the result to an adversary who knows the original encryption of b1 (but not the secret key), we
have to refresh the result of the previous function to ensure semantic security.

D Preparing data for the Naïve Bayes classifier
First of all, to be able to use our tools, we have to work with integers and not floats. Hopefully, as the only operations
used in the classification step are additions (cf. Equation (1)), we can just multiply the conditional probabilities p(xj |ci)
by a constant K and truncate the results to the lower integer.

For example, if we are able to compute the conditional probabilities using IEEE 754 double precision floating point
numbers, with 52 bits of precision and if e is the biggest exponent of these floating point numbers, we can choose K to
be K = 2e+52. We will keep the same precision (52 bits) and use integers.

Let l0 be the maximum bit length of an element in the integer table.
Now, if – as before – d is the number of features, the maximum number of bits when doing the computations will be

lmax = l0 + d + 1: we have to add the probabilities for the d features and the probability of the class label. Hence,
the value l used for the comparison protocols must be chosen larger than lmax. Actually, as probabilities are number
smaller than one, their logarithm is negative. As a consequence, according to Section 5.1.5, we must take l ≥ lmax + 1.
In the case of IEEE 754 doubles, we have l ≥ 53.

Finally, we must also ensure that log2N > l + 1 + λ where λ is the security parameter and N is the modulus
for Paillier’s cryptosystem plaintext space (cf. Section 5.1.2). This condition is easily fulfilled as, for a good level of
security, we have to take log2N ≥ 1024 and we usually take λ ≈ 100.

Thus, the server produces kd+ 1 tables T using the well chosen positive constant K:
• the table for the priors on the class TC : TC(i) = dK log p(ci)e
• one table per feature per class T j : T j(xj , i) = dK log p(xj |ci)e

We finish the data preparation by encrypting each entry of the table using the secret key for Paillier’s cryptosystem.
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