
Machine Learning Classification over Encrypted Data

Raphaël Bost
DGA∗

Raluca Ada Popa
MIT

Stephen Tu
MIT

Shafi Goldwasser
MIT

Abstract

Machine learning classification is used in numerous settings nowadays, such as medical or genomics predictions,
spam detection, face recognition, and financial predictions. Due to privacy concerns, in some of these applications, it is
important that the data and the classifier remain confidential.

In this work, we construct three major classification protocols that satisfy this privacy constraint: hyperplane
decision, Naïve Bayes, and decision trees. We also enable these protocols to be combined with AdaBoost. At the basis
of these constructions is a new library of building blocks for constructing classifiers securely; we demonstrate that this
library can be used to construct other classifiers as well, such as a multiplexer and a face detection classifier.

We implemented and evaluated our library and classifiers. Our protocols are efficient, taking milliseconds to a few
seconds to perform a classification when running on real medical datasets.

1 Introduction
Classifiers are an invaluable tool in many settings today, such as medical or genomics predictions, spam detection, face
recognition, and finance. Many of these applications handle sensitive data [WGH12, SG11, SG13], so it is important
that the data and the classifier remain private.

Consider the typical setup with supervised learning, depicted in Figure 1. Supervised learning algorithms consist of
two phases: (i) the training phase during which the algorithm learns a model w from a set of labeled examples, and (ii)
the classification phase that runs a classifier C over a previously unseen feature vector x, using the model w to output a
prediction C(x,w).

In applications that handle sensitive data, it is important that the feature vector x and the model w remain secret to
one or some of the parties involved. Consider the example of a medical study or a hospital having a model built out of
the private medical profiles of some patients; the model is sensitive because it can leak information about the patients,
and its usage has to be HIPAA1 compliant. A client wants to use the model to make a prediction about her health (e.g.,
if she is likely to contract a certain disease, or if she would be treated successfully at the hospital), but does not want
to reveal her sensitive medical profile. Ideally, the hospital and the client run a protocol at the end of which the client
learns one bit (“yes/no”), and neither party learns anything else about the other party’s input. A similar setting arises for
a financial institution (e.g., an insurance company) holding a sensitive model, and a customer wanting to estimate rates
or quality of service based on her personal information.

Throughout this paper, we refer to this goal shortly as privacy-preserving classification. Concretely, a client has a
private input represented as a feature vector x, and the server has a private model w as input. The way the model w is
obtained is independent of our protocols here. For example, the server could have computed the model w after running
the training phase on plaintext data as usual. Only the classification needs to be privacy-preserving: the client should
learn C(x,w) but nothing else about the model w, while the server should not learn anything about the client’s input or
the classification result.

In this work, we construct efficient privacy-preserving protocols for three of the most common classifiers: hyperplane
decision, Naïve Bayes, and decision trees, as well as a more general classifier combining these using AdaBoost. These

∗Direction Générale de l’Armement. Work done while visiting MIT CSAIL. The views and conclusions contained herein are those of the author
and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the DGA or the French
Government.

1Health Insurance Portability and Accountability Act of 1996

1

server

data
set

training
phase

model classification
phase

client

data

prediction

Figure 1: Model overview. Each shaded box indicates private data that should be accessible to only one party: the
dataset and the model to the server, and the input and prediction result to the client. Each straight non-dashed rectangle
indicates an algorithm, single arrows indicate inputs to these algorithms, and double arrows indicate outputs.

Learning algorithm Classifier
Perceptron Hyperplane decision
Least squares Hyperplane decision
Fischer linear discriminant Hyperplane decision
Support vector machine Hyperplane decision
Naive Bayes Naïve Bayes
Decision trees (ID3/C4.5) Decision trees

Table 1: Machine learning algorithms and their classifiers, defined in Section 3.1.

classifiers are widely used – even though there are many machine learning algorithms, most of them end up using one
of these three classifiers, as described in Table 1.

While generic secure multi-party computation [Yao82, GMW87, HKoS+10, MNPS04, BDNP08] can implement
any classifier in principle, due to their generality, such schemes are not efficient for common classifiers. As described in
Section 10.5, on a small classification instance, these tools [HKoS+10, BDNP08] ran out of memory on a powerful
machine with 256GB of RAM, and on an artificially simplified classification instance, they ran ≈ 500 times slower
than our protocols ran on the non-simplified instance.

Most existing work in machine learning and privacy [LP00, DHC04, WY04, ZW05, BDMN05, VKC08, GLN13]
focuses on preserving privacy during the training phase, and does not address classification. The few works on privacy-
preserving classification either consider a weaker security setting in which the client learns the model [BLN13] or focus
on specific classifiers (e.g., face detectors [EFG+09, SSW10, AB06, AB07]) that are useful in limited situations.

Designing efficient privacy-preserving classification faces two main challenges. The first is that the computation
performed over sensitive data by some classifiers is quite complex (e.g., decision trees), making it hard to support
efficiently. The second is providing a solution that is more generic than the three classifiers: constructing a separate
solution for each classifier does not provide insight into how to combine these classifiers or how to construct other
classifiers. Even though these are three of the most common classifiers, various settings use other classifiers or use a
combination of these three classifiers (e.g., AdaBoost). We address these challenges using two key techniques.

Our main technique is to identify a set of core operations over encrypted data that underlie many classification
protocols. We found these operations to be comparison, argmax, and dot product. We use efficient protocols for each
one of these, either by improving existing schemes (e.g., for comparison) or by constructing new schemes (e.g., for
argmax).

Our second technique is to design these building blocks in a composable way, with regard to both functionality and
security. To achieve this goal, we use a set of sub-techniques:

• The input and output of all our building blocks are data encrypted with additively homomorphic encryption. In
addition, we provide a mechanism to switch from one encryption scheme to another. Intuitively, this enables a
building block’s output to become the input of another building block;

• The API of these building blocks is flexible: even though each building block computes a fixed function, it allows
a choice of which party provides the inputs to the protocol, which party obtains the output of the computation,
and whether the output is encrypted or decrypted;

• The security of these protocols composes using modular sequential composition [Can98].

2

We emphasize that the contribution of our building blocks library goes beyond the classifiers we build in this paper:
a user of the library can construct other privacy-preserving classifiers in a modular fashion. To demonstrate this point,
we use our building blocks to construct a multiplexer and a classifier for face detection, as well as to combine our
classifiers using AdaBoost.

We then use these building blocks to construct novel privacy-preserving protocols for the three common classifiers.
Some of these incorporate additional techniques, such as an efficient evaluation of a decision tree with fully homomorphic
encryption (FHE) based on a polynomial representation requiring only a small number of multiplications and based on
SIMD FHE slots (see Section 7.2).

Our last contribution is an implementation and evaluation of our building blocks and classifiers. We evaluate our
classifiers on real datasets with private data about breast cancer, credit card approval, audiology, and nursery data; our
algorithms are efficient, running in milliseconds up to a few seconds, and consume a modest amount of bandwidth.

The rest of the paper is organized as follows. Section 2 describes related work, Section 3 provide the necessary
machine learning and cryptographic background, Section 4 presents our building blocks, Sections 5–8 describe our
classifiers, and Sections 9–10 present our implementation and evaluation results.

2 Related work
Our work is the first to provide efficient privacy-preserving protocols for a broad class of classifiers.

Secure two-party computation protocols for generic functions exist in theory [Yao82, GMW87, LP07, IPS08, LP09]
and in practice [HKoS+10, MNPS04, BDNP08]. However, these rely on heavy cryptographic machinery, and applying
them directly to our problem setting would be far too inefficient as exemplified in Section 10.5.

Previous work focusing on privacy-preserving machine learning can be broadly divided into two categories: (i)
techniques for private training, and (ii) techniques for private classification (recall the distinction from Figure 1). Most
existing work falls in the first category, which we discuss in Section 2.1. Our work falls in the second category, where
there has been less work done, which we discuss in Section 2.2. We also mention work related to the building blocks we
use in our protocols in Section 2.3.

It is worth mentioning that our work on privacy-preserving classification is incomparable to work on differential
privacy in the machine learning community (see e.g. [CMS11]). Our work aims to protect the confidentiality of user
data, whereas differential privacy seeks to bound the amount of statistical inference that can be performed on a particular
individual.

2.1 Privacy-preserving training
Existing techniques have been developed for privacy-preserving training for Naïve Bayes [VKC08, WY04, ZW05],
decision trees [BDMN05, LP00], linear discriminant classifiers [DHC04], and more general kernel methods [LLM06].

Grapel et al. [GLN13] show how to train several machine learning classifiers using a somewhat homomorphic
encryption scheme. They focus on a few simple classifiers (e.g. the linear means classifier), and do not elaborate on more
complex algorithms such as support vector machines. They also support private classification, but in a weaker security
model where the client learns more about the model than just the final sign of the classification. Indeed, performing the
final comparison with fully homomorphic encryption (FHE) is impractical, a difficulty we overcome with an interactive
setting.

2.2 Privacy-preserving classification
Little work has been done to address the general problem of privacy-preserving classification in practice; previous work
focuses on a weaker security setting (in which the client learns the model) and/or only supports specific classifiers.

In Bos et al. [BLN13], a third party can compute medical prediction functions over the encrypted data of a patient
using fully homomorphic encryption. In their setting, everyone (including the patient) knows the predictive model, and
their algorithm hides only the input of the patient from the cloud. Our protocols, on the other hand, also hide the model
from the patient. Their algorithms cannot be applied to our setting because they leak more information than just the bit

3

of the prediction to the patient. Furthermore, our techniques are notably different; using FHE directly for our classifiers
would result in significant overheads.

Barni et al. [BFK+09, BFL+09] construct secure evaluation of linear branching programs, which they use to
implement a secure classifier of ECG signals. Their technique is based on finely-tuned garbled circuits. By comparison,
our construction is not limited to branching programs (or decision trees), keeps the model private, and is twice as fast
on branching programs.

Other works [EFG+09, SSW10, AB06, AB07] construct specific face recognition or detection classifiers. We focus
on providing a set of generic classifiers and building blocks to construct more complex classifiers. In Section 10.1.2, we
show how to construct a private face detection classifier using the modularity of our techniques.

2.3 Work related to our building blocks
Two of the basic components we use are private comparison and private computation of dot products. These subjects have
been well studied previously; see [Yao82, DGK07, DGK09, Veu11, LT05, AB06, KSS09] for comparison techniques
and [AD01, GLLM05, Kil05, AB06] for techniques to compute dot products. Section 4.1 discusses how we build on
these tools.

3 Background and definitions

3.1 Classification in machine learning algorithms
The user’s input x is a vector of d elements x = (x1, . . . , xd) ∈ Rd and is also called a feature vector. The standard
problem in classification is to evaluate a classification function Cw : Rd 7→ {c1, ..., ck} that takes as input the feature
vector x; the output is k∗ = Cw(x) ∈ [1 . . . k], the class to which x corresponds, based on a model w. We now describe
how three popular classifiers work on regular, unencrypted data. They differ in the model w and the function Cw. For
more details, we refer the reader to [BN06].
Hyperplane decision-based classifiers. For this classifier, the model w consists of k vectors in Rd (w = {wi}ki=1).
The classifier is (cf. [BN06]):

k∗ = argmax
i∈[k]

〈wi, x〉. (1)

We now explain how Eq. (1) captures many common machine learning algorithms. A hyperplane based classifier
typically works with a hypothesis spaceH equipped with an inner product 〈·, ·〉. This classifier usually solves a binary
classification problem (k = 2): given a user input x, x is classified in class c2 if 〈w, φ(x)〉 ≥ 0, otherwise it is labeled
as part of class c1. Here, φ : Rd 7→ H denotes the feature mapping from Rd toH [BN06]. In this work, we focus on
the case when H = Rd and note that a large class of infinite dimensional spaces can be approximated with a finite
dimensional space (as in [RR07]), including the popular gaussian kernel (RBF). In this case, φ(x) = x or φ(x) = Px
for a randomized projection matrix P chosen during training. Notice that Px consists solely of inner products; we will
show how to support private evaluation of inner products later, so for simplicity we drop P from the discussion.

To extend such a classifier from 2 classes to k classes, we use one of the most common approaches, one-versus-all,
where k different models {wi}ki=1 are trained to discriminate each class from all the others. The decision rule is then
given by (cf. [BN06]) to be Eq. (1). This framework is general enough to cover many common algorithms, such as
support vector machines (SVMs), logistic regression, and least squares.
Naïve Bayes classifiers. For this classifier, the model w consists of various probabilities: the probability that each
class ci occurs, namely {p(C = ci)}ki=1, and the probabilities that an element xj of x occurs in a certain class ci –
or said otherwise, the probabilities of the j-th component xj of x to be v when x belongs to category ci – namely
{{{p(Xj = v|C = ci)}v∈Dj

}dj=1}ki=1 where Dj is Xj’s domain2. The classification function, using a maximum a

2Be careful to distinguish between Xj , the probabilistic event representing the values taken by the j-th feature of user’s input, and xj , the actual
value taken by the specific vector x.

4

c1 c2 c3

c4 c5

x1 > w1 x1  w1

x2  w2x2 > w2 x3  w3

x4  w4x4 > w4

Figure 2: Decision tree

posteriori decision rule, works by choosing the class with the highest posterior probability:

k∗ = argmax
i∈[k]

p(C = ci|X = x)

= argmax
i∈[k]

p(C = ci, X = x)

= argmax
i∈[k]

p(C = ci, X1 = x1, . . . , Xd = xd)

where the second equality follows from applying Bayes’ rule.
The Naïve Bayes model assumes that p(C = ci, X = x) has the following factorization:

p(C = ci, X1 = x1, . . . , Xd = xd)

= p(C = ci)

d∏
j=1

p(Xj = xj |C = ci),

namely, each of the d features are conditionally independent given the class. For simplicity, we assume that the domain
of the features values (the xi’s) is discrete and finite, so the p(Xj = xj |C = ci)’s are probability masses.
Decision trees. A decision tree is a non-parametric classifier which works by partitioning the feature vector space one
attribute at a time; interior nodes in the tree correspond to partitioning rules, and leaf nodes correspond to class labels.
A feature vector x is classified by walking the tree starting from the root, using the partitioning rule at each node to
decide which branch to take until a leaf node is encountered. The class at the leaf node is the result of the classification.

Figure 2 gives an example of a decision tree. The model consists of the structure of the tree and the decision criteria
(in this case the thresholds w1, . . . , w4).

3.2 Cryptographic preliminaries
3.2.1 Cryptosystems

In this work, we use three additively homomorphic cryptosystems. A public-key encryption scheme HE is additively
homomorphic if, given two encrypted messages HE.Enc(a) and HE.Enc(b), there exists a public-key operation ⊕ such
that HE.Enc(a)⊕HE.Enc(b) is an encryption of a+ b. We emphasize that these are homomorphic only for addition,
which makes them efficient, unlike fully homomorphic encryption [Gen09], which supports any function but at an
expensive cost for multiplications. The cryptosystems we use are:
1. the QR (Quadratic Residuosity) cryptosystem of Goldwasser-Micali [GM82],

5

Type Input A Input B Output A Output B Implementation
1 PKP , PKQR, a SKP ,SKQR, b [a < b] – Sec. 4.1.1
2 PKP , SKQR, JaK, JbK SKP ,PKQR – [a ≤ b] Sec. 4.1.2
3 PKP , SKQR, JaK, JbK SKP ,PKQR a ≤ b [a ≤ b] Sec. 4.1.2
4 PKP , PKQR, JaK, JbK SKP ,SKQR [a ≤ b] – Sec. 4.1.3
5 PKP , PKQR,JaK, JbK SKP ,SKQR [a ≤ b] a ≤ b Sec. 4.1.3

Table 2: The API of our comparison protocol and its implementation. There are five types of comparisons each having a different
setup.

2. the Paillier cryptosystem [Pai99], and
3. a leveled fully homomorphic encryption (FHE) scheme, HELib [Hal13]

3.2.2 Cryptographic assumptions

We prove that our protocols are secure based on the semantic security [Gol04] of the above cryptosystems. These
cryptosytems rely on standard and well-studied computational assumptions: the Quadratic Residuosity assumption, the
Decisional Composite Residuosity assumption, and the Ring Learning With Error (RLWE) assumption.

3.2.3 Adversarial model

We prove security of our protocols using the secure two-party computation framework for passive adversaries (or
honest-but-curious [Gol04]) defined in Appendix B.1 . To enable us to compose various protocols into a bigger protocol
in a secure way, we invoke modular sequential composition (see Appendix B.2).

3.3 Notation
All our protocols are between two parties: parties A and B for our building blocks and parties C (client) and S (server)
for our classifiers.

Inputs and outputs of our building blocks are either unencrypted or encrypted with an additively homomorphic
encryption scheme. We use the following notation. The plaintext space of QR is F2 (bits), and we denote by [b] a bit b
encrypted under QR; the plaintext space of Paillier is ZN where N is the public modulus of Paillier, and we denote by
JmK an integer m encrypted under Paillier. The plaintext space of the FHE scheme is F2. We denote by SKP and PKP ,
a secret and a public key for Paillier, respectively. Also, we denote by SKQR and PKQR, a secret and a public key for
QR.

For a constant b, a← b means that a is assigned the value of b. For a distribution D, a← D means that a gets a
sample from D.

4 Building blocks
In this section, we develop a library of building blocks, which we later use to build our classifiers. We designed this
library to also be useful in constructing other classifiers than the ones described in our paper. The building blocks in this
section combine existing techniques with either new techniques or new optimizations.

4.1 Comparison
We now describe our comparison protocol. In order for this protocol to be used in a wide range of classifiers, its setup
needs to be flexible: namely, it has to support a range of choices regarding which party gets the input, which party
gets the output, and whether the input or output are encrypted or not. Table 2 shows the various ways our comparison
protocol can be used. In each case, each party learns nothing else about the other party’s input other than what Table 2
indicates as the output.

6

There are at least two approaches to performing comparison efficiently: using specialized homomorphic encryption,
or using garbled circuits. For the former, [DGK07, DGK09] and [EFG+09] implement comparison with unencrypted
inputs and Veugen [Veu11] performs comparison with encrypted inputs. To implement comparison using the second
method, one could use the state-of-the-art garbling scheme of Bellare et al. [BHKR13], the short circuit for comparison
of Kolesnikov et al. [KSS09] and a recent oblivious transfer scheme due to Asharov et al. [ALSZ13]. Since each garbled
circuit can be used at most once, during the classification protocol, the parties needs to both generate a fresh garbling
and evaluate this garbled circuit. To compose with other building blocks that use homomorphic encryption, one also
needs to convert from homomorphic encryption to garbled inputs and from a garbled output to homomorphic encryption.
This task can be done using random shares as discussed in [KSS]. Both of these approaches to comparison yield good
performance for our setting, and we preferred the first approach due to its simplicity.

We implemented each row of Table 2 by modifying existing protocols. We explain only the modifications here, and
defer full protocol descriptions to Appendix A and proofs of security to Appendix C.1

4.1.1 Comparison with unencrypted inputs (Row 1)

We use a variation of the protocol described in [DGK07, DGK09, EFG+09], which we call DGK.
DGK. In this protocol, two parties A and B want to compare two private integers a (belonging to A) and b (belonging
to B). B has a Paillier secret key SKP and a QR secret key SKQR, whereas A has the associated public keys (PKP and
PKQR). At the end of the protocol, A outputs the encrypted bit [t] where t = (a < b). We refer the reader to [EFG+09]
(c.f. Section 5) and [DGK07] (c.f. Section 3) for the full description and proof. (Veugen [Veu11] provides an alternative
comparison protocol, called LSIC. LSIC performs less modular multiplications per invocation than DGK. However,
our experimental evaluation shows that the number of rounds in LSIC – linear in the size of the input – is too slow for
practical uses, so we use only DGK.)

4.1.2 Comparison with encrypted inputs (Rows 2, 3)

To develop our protocols, we require the ability to compare two encrypted inputs. More specifically, suppose that party
A wants to compare two encrypted integers a and b, but party B holds the decryption key. To implement this task, we
modify Veugen’s [Veu11] protocol to use DGK instead of LSIC as a subprocedure. This yields a protocol for the setup
in Row 2. To ensure that A receives the plaintext output as in Row 3, B sends the encrypted result to A who decrypts it.
Appendix A provides the detailed protocol.

4.1.3 Reversed comparison over encrypted data (Row 4, 5)

In some cases, we want the result of the comparison to be held by the party that does not hold the encrypted data. For
this, we modify Veugen’s protocol to reverse the outputs of party A and party B: we achieve this by exchanging the
role of party A and party B in the second part of the protocol, after invoking the DGK protocol. We do not present the
details in the paper body because they are not insightful, and instead include them in Appendix A. This results in a
protocol whose specification is in Row 4. To obtain Row 5, A sends the encrypted result to B who can decrypt it.

4.1.4 Negative integers comparison and sign determination

Negative numbers are handled by the protocols above unchanged. Even though the Paillier plaintext size is “positive”, a
negative number simply becomes a large number in the plaintext space due to cyclicity of the space. As long as the
values encrypted are within a preset interval (−2`, 2`) for some fixed `, Veugen’s protocol and the above protocols
work correctly.

In some cases, we need to compute the sign of an encrypted integer JbK. In this case, we simply compare encryption
of 0.

7

4.2 argmax over encrypted data
In this scenario, party A has k values a1, . . . , ak encrypted under party B’s secret key and wants party B to know the
argmax over these values (the index of the largest value), but neither party should learn anything else. For example, if
A has values J1K, J100K and J2K, B should learn that the second is the largest value, but learn nothing else. In particular,
B should not learn the order relations between the ai’s.

Our protocol for argmax is shown in Protocol 1. We now provide intuition into the protocol and its security.
Intuition. Let’s start with a strawman. To prevent B from learning the order of the k values {ai}ki=1, A applies a

random permutation π. The i-th element becomes Ja′iK = Jaπ(i)K instead of JaiK.
Now, A and B compare the first two values Ja′1K and Ja′2K using the comparison protocol from row 4 of Table 2.

B learns the index, m, of the larger value, and tells A to compare Ja′mK to Ja′3K next. After iterating in this manner
through all the k values, B determines the index m of the largest value. A can then compute π−1(m) which represents
the argmax in the original, unpermuted order.

Since A applied a random permutation π, B does not learn the ordering of the values. The problem, though, is that
A learns this ordering because, at every iteration, A knows the value of m up to that step and π. One way to fix this
problem is for B to compare every pair of inputs from A, but this would result in a quadratic number of comparisons,
which is too slow.

Instead, our protocol preserves the linear number of comparisons from above. The idea is that, at each iteration,
once B determines which is the maximum of the two values compared, B should randomize the encryption of this
maximum in such a way that A cannot link this value to one of the values compared. B uses the Refresh procedure for
the randomization of Paillier ciphertexts. In the case where the “refresher” knows the secret key, this can be seen as a
decryption followed by a re-encryption. If not, it can be seen as a multiplication by an encryption of 0.

A difficulty is that, to randomize the encryption of the maximum Ja′mK, B needs to get this encryption – however,
B must not receive this encryption because B has the key SKP to decrypt it, which violates privacy. Instead, the idea is
for A itself to add noise ri and si to Ja′mK, so decryption at B yields random values, then B refreshes the ciphertext,
and then A removes the randomness ri and si it added.

In the end, our protocols does (k−1) encrypted comparisons of l bits integers and 7(k−1) homomorphic operations
(refreshes, multiplications and subtractions). In terms of round trips, we have the ones due to the comparisons, to which
we add one round trip per loop iteration i.e. k − 1 round trips.

Proposition 4.1. Protocol 1 is correct and secure in the honest-but-curious model.

Proof intuition. The correctness property is straightforward. Let’s argue security. A does not learn intermediary
results in the computation because of the security of the comparison protocol and because she gets a fresh ciphertext
from B which A cannot couple to a previously seen ciphertext. B does learn the result of each comparison – however,
since A applied a random permutation before the comparison, B learns no useful information. See Appendix C for a
complete proof.

4.3 Changing the encryption scheme
To enable us to compose various building blocks, we developed a protocol for converting ciphertexts from one encryption
scheme to another while maintaining the underlying plaintexts. We first present a protocol that switches between two
encryption schemes with the same plaintext size (such as QR and FHE over bits), and then present a different protocol
for switching from QR to Paillier.

Concretely, consider two additively homomorphic encryption schemes E1 and E2, both semantically secure with the
same plaintext space M . Let J.K1 be an encryption using E1 and J.K2 an encryption using E2. Consider that party B has
the secret keys SK1 and SK2 for both schemes and A has the corresponding public keys PK1 and PK2. Party A also
has a value encrypted with PK1, JcK1. Our protocol, protocol 2, enables A to obtain an encryption of c under E2, JcK2

without revealing anything to B about c.
Proof Intuition. The idea is for A to add a random noise r to the ciphertext using the homomorphic property of

E1. Then B decrypts the resulting value with E1 (obtaining x+ r ∈M) and encrypts it with E2, sends the result to A
which removes the randomness r using the homomorphic property of E2. Even though B was able to decrypt Jc′K1, B
obtains x+ r ∈M which hides x in an information-theoretic way (it is a one-time pad).

8

Protocol 1 argmax over encrypted data
Input A: k encrypted integers (Ja1K, . . . , JakK), the bit length l of the ai, and public keys PKQR and PKP
Input B: Secret keys SKP and SKQR, the bit length l
Output A: argmaxi ai

1: A: chooses a random permutation π over {1, . . . , k}
2: A: JmaxK← Jaπ(1)K
3: B: m← 1
4: for i = 2 to k do
5: Using the comparison protocol (Sec. 4.1.3), B gets the bit bi = (max ≤ aπ(i))

6: A picks two random integers ri, si ← (0, 2λ+l) ∩ Z
7: A: Jm′iK← JmaxK · JriK . m′i = max + ri
8: A: Ja′iK← Jaπ(i)K · JsiK . a′i = aπ(i) + si
9: A sends Jm′iK and Ja′iK to B

10: if bi is true then
11: B: m← i
12: B: JviK← RefreshJa′iK . vi = a′i
13: else
14: B: JviK← RefreshJm′iK . vi = m′i
15: end if
16: B sends to A JviK
17: B sends to A the couple (JxiK, JyiK) = (Jb̄iK, JbiK)
18: A: JmaxK← JviK · JxiK−ri · JyiK−si
19: . max = vi − xi · ri − yi · ti
20: end for
21: B sends m to A
22: A outputs π−1(m)

Note that, for some schemes, the plaintext space M depends on the secret keys. In this case, we must be sure that
party A can still choose uniformly elements of M without knowing it. For example, for Paillier, M = Z∗N ' Z∗p × Z∗q
where p and q are the private primes. However, in this case, A can sample noise in ZN that will not be in Z∗N with
negligible probability (1− 1

p)(1− 1
q) ≈ 1− 2√

N
(remember N is large – 1024 bits in our instantiation).

Proposition 4.2. Protocol 2 is secure in the honest-but-curious model.

In our classifiers, we use this protocol for M = {0, 1} and the encryption schemes are QR (for E1) and an FHE
scheme over bits (for E2). In some cases, we might also want to switch from QR to Paillier (e.g. reuse the encrypted
result of a comparison in a homomorphic computation), which has a different message space. Note that we can simulate
the homomorphic XOR operation and a message space M = {0, 1} with Paillier: we can easily compute the encryption
of b1 ⊕ b2 under Paillier when at most one of the bi is encrypted (which we explain in the next subsection). This is the
case in our setting because party A has the randomness r in the clear.

4.3.1 XOR with Paillier.

Suppose a party gets the bit b1 encrypted under Paillier’s encryption scheme, and that this party only has the public key.
This party knows the bit b2 in the clear and wants to compute the encryption of Jb1 ⊕ b2K.

To do so, we just have to notice that

b1 ⊕ b2 =

{
b1 if b2 = 0

1− b1 if b2 = 1

9

Protocol 2 Changing the encryption scheme
Input A: JcK1 and public keys PK1 and PK2

Input B: Secret keys SK1 and SK2

Output A: JcK2

1: A uniformly picks r ←M
2: A sends Jc′K1 ← JcK1 · JrK1 to B
3: B decrypts c′ and re-encrypts with E2

4: B sends Jc′K2 to A
5: A: JcK2 = Jc′K2 · JrK−1

2

6: A outputs JcK2

Hence, it is very easy to compute an encryption of b1 ⊕ b2 if we know the modulus N and the generator g (cf. Paillier’s
scheme construction):

Jb1 ⊕ b2K =

{
Jb1K if b2 = 0

gJb1K−1 mod N2 if b2 = 1

If we want to unveil the result to an adversary who knows the original encryption of b1 (but not the secret key), we
have to refresh the result of the previous function to ensure semantic security.

4.4 Computing dot products
For completeness, we include a straightforward algorithm for computing dot products of two vectors, which relies on
Paillier’s homomorphic property.

Protocol 3 Private dot product
Input A: x = (x1, . . . , xd) ∈ Zd, public key PKP
Input B: y = (y1, . . . , yd) ∈ Zd, secret key SKP
Output A: J〈x, y〉K

1: B encrypts y1, . . . , yd and sends the encryptions JyiK to A
2: A computes JvK =

∏
iJyiK

xi mod N2 . v =
∑
yixi

3: A re-randomizes and outputs JvK

Proposition 4.3. Protocol 3 is secure in the honest-but-curious model.

4.5 Dealing with floating point numbers
Although all our protocols manipulate integers, classifiers usually use floating point numbers. Hence, when developing
classifiers with our protocol library, we must adapt our protocols accordingly.

Fortunately, most of the operations involved are either additions or multiplications. As a consequence, a simple
solution is to multiply each floating point value by a constant K (e.g. K = 252 for IEEE 754 doubles) and thus support
finite precision. We must also consider the bit length for the comparisons. We show an example of a full analysis in
Section 6 for the Naïve Bayes classifier.

10

5 Private hyperplane decision
Recall from Section 3.1 that this classifier computes

k∗ = argmax
i∈[k]

〈wi, x〉.

Now that we constructed our library of building blocks, it is straightforward to implement this classifier securely: the
client computes the encryption of J〈wi, x〉K for all i ∈ [k] using the dot product protocol and then applies the argmax
protocol (Protocol 1) to the encrypted dot products.

Protocol 4 Private hyperplane decision
Client’s (C) Input: x = (x1, . . . , xd) ∈ Zd, public keys PKP and PKQR
Server’s (S) Input: {wi}ki=1 where ∀i ∈ [k], wi ∈ Zn, secret keys SKP and SKQR
Client’s Output: argmax

i∈[k]

〈wi, x〉

1: for i = 1 to k do
2: C and S run Protocol 3 for private dot product where C is party A with input x and S is party B with input wi.
3: C gets JviK the result of the protocol.

. vi ← 〈x,wi〉
4: end for
5: C and S run Protocol 1 for argmax where C is the A, and S the B, and Jv1K, . . . , JvkK the input ciphertexts. C gets

the result i0 of the protocol.
. i0 ← argmax

i∈[k]

vi

6: C outputs i0

Proposition 5.1. Protocol 4 is secure in the honest-but-curious model.

6 Secure Naïve Bayes classifier
Section 3.1 describes the Naïve Bayes classifier. The goal is for the client to learn k∗ without learning anything about
the probabilities that constitute the model, and the server should learn nothing about x. Recall that the features values
domain is discrete and finite.

As is typically done for numerical stability reasons, we work with the logarithm of the probability distributions:

k∗ = argmax
i∈[k]

log p(C = ci|X = x)

= argmax
i∈[k]

log p(C = ci) +

d∑
j=1

log p(Xj = xj |C = ci)

 (2)

6.1 Preparing the model
Since the Paillier encryption scheme works with integers, we convert each log of a probability from above to an integer
by multiplying it with a large number K (recall that the plaintext space of Paillier is large ≈ 21024 thus allowing for a
large K), thus still maintaining high accuracy. The issues due to using integers for bayesian classification have been
previously studied in [TRMP12], even though their setting was even more restricting than ours. However, they use a
similar idea to ours: shifting the probabilities logarithms and use fixed point representation.

As the only operations used in the classification step are additions and comparisons (cf. Equation (2)), we can just
multiply the conditional probabilities p(xj |ci) by a constant K so to get integers everywhere, while keeping the same
classification result.

11

For example, if we are able to compute the conditional probabilities using IEEE 754 double precision floating point
numbers, with 52 bits of precision, then we can represent every probability p as

p = m · 2e

where m binary representation is (m)2 = 1.d and d is a 52 bits integer. Hence we have 1 ≤ m < 2 and we can rewrite
m as

m =
m′

252
with m′ ∈ N ∩ [252, 253)

We are using this representation to find a constant K such that K.vi ∈ N for all i. As seen before, we can write the
vi’s as

vi = m′i · 2ei−52

Let e∗ = mini ei, and δi = ei − e∗ ≥ 0. Then,

vi = m′i · 2δi · 2e
∗−52

So let K = 252−e∗ . We have K · vi = m′i · 2δi ∈ N. An important thing to notice is that the vi’s can be very large
integers (due to δi), and this might cause overflows errors. However, remember that we are doing all this to store
logarithms of probabilities in Paillier cyphertexts, and as Paillier plaintext space is very large (more than 1024 bits in
our setting) and δi’s remain small3. Also notice that this shifting procedure can be done without any loss of precision as
we can directly work with the bit representation of the floating points numbers.

Finally, we must also ensure that we do not overflow Paillier’s message space when doing all the operations
(homomorphic additions, comparisons, . . .). If – as before – d is the number of features, the maximum number of bits
when doing the computations will be lmax = d+ 1 + (52 + δ∗) where δ∗ = max δi: we have to add the probabilities
for the d features and the probability of the class label (the d+ 1 term), and each probability is encoded using (52 + δ∗)
bits. Hence, the value l used for the comparison protocols must be chosen larger than lmax.

Hence, we must ensure that log2N > lmax + 1 + λ where λ is the security parameter and N is the modulus
for Paillier’s cryptosystem plaintext space (cf. Section 4.1.2). This condition is easily fulfilled as, for a good level of
security, we have to take log2N ≥ 1024 and we usually take λ ≈ 100.

Let Dj be the domain of possible values of xj (the j-th attribute of the feature vector x). The server prepares kd+ 1
tables as part of the model, where K is computed as described just before:
• One table for the priors on the classes P : P (i) = dK log p(C = ci)e.
• One table per feature j per class i, Ti,j : Ti,j(v) ≈ dK log p(Xj = v|C = ci)e, for all v ∈ Dj .

The tables remain small: P has one entry by category i.e. k, and T has one entry by category and feature value i.e. k.D
where D =

∑ |Dj |. In our examples, this represents less than 3600 entries. Moreover, this preparation step can be done
once and for all at server startup, and is hence amortized.

6.2 Protocol
Let us begin with some intuition. The server encrypts each entry in these tables with Paillier and gives the resulting
encryption (the encrypted model) to the client. For every class ci, the client uses Paillier’s additive homomorphism to
compute JpiK = JP (i)K

∏d
j=1JTi,j(xj)K. Finally, the client runs the argmax protocol, Protocol 1, to get argmax pi. For

completeness, the protocol is shown in Protocol 5.

Proposition 6.1. Protocol 5 is secure in the honest-but-curious model.

Proof intuition. Given the security property of the argmax protocol, Protocol 1, and the semantic security of the
Paillier cryptosystem, the security of this classifier follows trivially, by invoking a modular composition theorem.

Efficiency. Note that the tables P and {Ti,j}1≤i≤k,1≤j≤d can be prepared in advance. Hence the cost of constructing
the tables can be amortized over many uses. To compute the encrypted probabilities pi’s, the client runs d homomorphic

3If the biggest δi is 10, the ratio between the smallest and the biggest probability is of order 22
10

= 21024 ...

12

Protocol 5 Naïve Bayes Classifier
Client’s (C) Input: x = (x1, . . . , xd) ∈ Zd, public key PKP , secret key SKQR
Server’s (S) Input: The secret key SKP , public key PKQR and probability tables {log p(C = ci)}1≤i≤k and{
{log p(Xj = v|C = ci)}v∈Dj

}
1≤j≤d,1≤i≤k

Client’s Output: i0 such that p(x, ci0) is maximum

1: The server prepares the tables P and {Ti,j}1≤i≤k,1≤j≤d and encrypts their entries using Paillier.
2: The server sends JP K and {JTi,jK}i,j to the client.
3: For all 1 ≤ i ≤ k, the client computes JpiK = JP (i)K

∏d
j=1JTi,j(xj)K.

4: The client runs the argmax protocol (Protocol 1) with the server and gets i0 = argmaxi pi
5: C outputs i0

operations (here multiplications) for each i, hence doing kd modular multiplications. Then the parties run a single
argmax protocol i.e. k − 1 comparisons and O(k) homomorphic operations. Thus, compared to non-encrypted
computation, the overhead comes only from the use of homomorphic encryption operations instead of plaintext
operations. Regarding the number of round trips, these are due to the argmax protocol: k − 1 runs of the comparison
protocol and k − 1 additional roundtrips.

7 Private decision trees
A private decision tree classifier allows the server to traverse a binary decision tree using the client’s input x such that
the server does not learn the input x, and the client does not learn the structure of the tree and the thresholds at each
node. A challenge is that, in particular, the client should not learn the path in the tree that corresponds to x – the position
of the path in the tree and the length of the path leaks information about the model. The outcome of the classification
does not necessarily leak the path in the tree

The idea is to express the decision tree as a polynomial P whose output is the result of the classification, the class
predicted for x. Then, the server and the client privately compute inputs to this polynomial based on x and the thresholds
wi. Finally, the server evaluates the polynomial P privately.

7.1 Polynomial form of a decision tree
Consider that each node of the tree has a boolean variable associated to it. The value of the boolean at a node is 1 if, on
input x, one should follow the right branch, and 0 otherwise. For example, denote the boolean variable at the root of the
tree by b1. The value of b1 is 1 if x1 ≤ w1 (recall Figure 2), and 0 otherwise.

We construct a polynomial P that, on input all these boolean variables and the value of each class at a leaf
node, outputs the class predicted for x. The idea is that P is a sum of terms, where each term (say t) corresponds
to a path in the tree from root to a leaf node (say c). A term t evaluates to c iff x is classified along that path
in T , else it evaluates to zero. Hence, the term corresponding to a path in the tree is naturally the multiplication
of the boolean variables on that path and the class at the leaf node. For example, for the tree in Figure 3, P is
P (b1, b2, b3, b4, c1, . . . , c5) = b1(b3 · (b4 · c5 + (1− b4) · c4) + (1− b3) · c3) +(1− b1)(b2 · c2 + (1− b2) · c1).

We now present F , a recursive procedure for constructing P given a binary decision tree T :

13

b1

b2

c1 c2

b3

c3 b4

c4 c5

0 1

0 1

1

1

0

0

Figure 3: Decision tree with booleans

c If T consists only of a leaf node with category index ci, F(T) = ci.

If T is empty, return F(T) = 0.

T1T0

b

0 1 Otherwise, T has an internal node using boolean b and T0 and T1 are its
left and right subtrees. Then F(T) = b · F(T1) + (1− b) · F(T0).

7.2 Private evaluation of a polynomial
Let us first explain how to compute the values of the boolean variables securely. Let n be the number of nodes in the
tree and nleaves be the number of leaves in the tree. These values must remain unknown to the server because they
leak information about x. For each boolean variable bi, the server and the client engage in the comparison protocol
to compare wi and the corresponding attribute of x. As a result, the server obtains [bi] for i ∈ 1 . . . n; the server then
changes the encryption of these values to FHE using Protocol 2, thus obtaining [JbiK].

The server evaluates P on ([Jb1K], . . . , [JbnK]) using the homomorphic properties of FHE. In most cases, FHE
evaluation is very slow, but we succeed to make it efficient through a combination of techniques we now discuss. To
understand these techniques, recall that a typical FHE evaluation happens over a circuit whose gates are modular
addition and multiplication. The performance of FHE depends a lot on the depth of multiplications in this circuit.

First, we use a leveled FHE scheme: a scheme that supports only an a priori fixed multiplicative depth instead of an
arbitrary such depth. As long as this depth is small, such a scheme is much faster than a full FHE scheme.

Second, we ensure that the multiplicative depth is very small using a tree-based evaluation. If hmax is the maximum
height of the decision tree, then P has a term a1 · . . . · ahmax . If we evaluate this term naïvely with FHE, we multiply
these values sequentially. This yields a multiplicative depth of hmax, which makes FHE slow for common hmax values.
Instead, we construct a binary tree over these values and multiply them in pairs based on the structure of this tree. This
results in a multiplicative depth of log2 hmax (e.g., 4), which makes FHE evaluation significantly more efficient.

Finally, we use F2 as the plaintext space and SIMD slots for parallelism. FHE schemes are significantly faster when
the values encrypted are bits (namely, in F2); however, P contains classes (e.g., c1) which are usually more than a bit
in length. To enable computing P over F2, we represent each class in binary. Let l = dlog2 ke (k is the number of
classes) be the number of bits needed to represent a class. We evaluate P l times, once for each of the l bits of a class.
Concretely, the j-th evaluation of P takes as input b1, . . . , bn and for each leaf node ci, its j-th bit cij . The result is
P (b1, . . . , bn, c1j , c2j , . . . , cnleavesj), which represents the j-th bit of the outcome class. Hence, we need to run the FHE

14

evaluation l times.
To avoid this factor of l, the idea is to use a nice feature of FHE called SIMD slots (as described in [SV11]): these

allow encrypting multiple bits in a single ciphertext such that any operation applied to the ciphertext gets applied in
parallel to each of the bits. Hence, for each class cj , the server creates an FHE ciphertext [Jcj0, . . . , cjl−1K]. For each
node bi, it creates an FHE ciphertext [Jbi, . . . , biK] by simply repeating the bi value in each slot. Then, the server runs
one FHE evaluation of P over all these ciphertexts and obtains [Jco0, . . . , col−1K] where co is the outcome class. Hence,
instead of l FHE evaluations, the server runs the evaluation only once. This results in a performance improvement of
log k, a factor of 2 and more in our experiments. We were able to apply SIMD slots parallelism due to the fortunate fact
that the same polynomial P had to be computed for each slot.

Finally, evaluating the decision tree is done using 2n FHE multiplications and 2n FHE additions where n is the
number of criteria. The evaluation circuit has multiplication depth dlog2(n) + 1e.

7.3 Formal description
Protocol 6 describes the resulting protocol.

Protocol 6 Decision Tree Classifier
Client’s (C) Input: x = (x1, . . . , xn) ∈ Zn, secret keys SKQR,SKFHE
Server’s (S) Input: The public keys PKQR,PKFHE , the model as a decision tree, including the n thresholds {wi}ni=1.
Client’s Output: The value of the leaf of the decision tree associated with the inputs b1, . . . , bn.

1: S produces an n-variate polynomial P as described in section 7.1.
2: S and C interact in the comparison protocol, so that S obtains [bi] for i ∈ [1 . . . n] by comparing wi to the

corresponding attribute of x.
3: Using Protocol 2, S changes the encryption from QR to FHE and obtains [Jb1K], . . . , [JbnK].
4: To evaluate P , S encrypts the bits of each category ci using FHE and SIMD slots, obtaining

[Jci1, . . . , cilK]. S uses SIMD slots to compute homomorphically [JP (b1, . . . , bn, c10, . . . , cnleaves0), . . . ,
P (b1, . . . , bn, c1l−1, . . . , cnleavesl−1)K]. It rerandomizes the resulting ciphertext using FHE’s rerandomization
function, and sends the result to the client.

5: C decrypts the result as the bit vector (v0, . . . , vl−1) and outputs
∑l−1
i=0 vi · 2i.

Proposition 7.1. Protocol 6 is secure in the honest-but-curious model.

Proof intuition. The proof is in Appendix C , but we give some intuition here. During the comparison protocol, the
server only learns encrypted bits, so it learns nothing about x. During FHE evaluation, it similarly learns nothing about
the input due to the security of FHE. The client does not learn the structure of the tree because the server performs the
evaluation of the polynomial. Similarly, the client does not learn the bits at the nodes in the tree because of the security
of the comparison protocol.

The interactions between the client and the server are due to the comparisons almost exclusively: the decision tree
evaluation does not need any interaction but sending the encrypted result of the evaluation.

8 Combining classifiers with AdaBoost
AdaBoost is a technique introduced in [FS97]. The idea is to combine a set of weak classifiers hi(x) : Rd 7→ {−1,+1}
to obtain a better classifier. The AdaBoost algorithm chooses t scalars {αi}ti=1 and constructs a strong classifier as:

H(x) = sign

(
t∑
i=1

αihi(x)

)
If each of the hi(·)’s is an instance of a classifier supported by our protocols, then given the scalars αi, we can easily
and securely evaluate H(x) by simply composing our building blocks. First, we run the secure protocols for each of

15

Bit size A Computation B Computation Total Time Communication Interactions
10 5.03 ms 12.38 ms 98.4 ms 5.26 kB 3
20 8.34 ms 17.3 ms 107 ms 10.4 kB 3
32 13.70 ms 17.58 ms 112 ms 16.5 kB 3
64 26.15 ms 39.03 ms 149 ms 32.9 kB 3

Table 3: Comparison with unencrypted input protocols evaluation.

Protocol Bit size
Computation

Total Time Communication Interactions
Party A Party B

Comparison 64 38.07 ms 20.99 ms 258.5 ms 33.41 kB 6
Reversed Comp. 64 25.83 ms 36.93 ms 292.1 ms 33.41 kB 6

Table 4: Comparison with encrypted input protocols evaluation.

hi, except that the server keeps the intermediate result, the outcome of hi(x), encrypted using one of our comparison
protocols (Rows 2 or 4 of Table 2). Second, if necessary, we convert them to Paillier’s encryption scheme with Protocol 2,
and combine these intermediate results using Paillier’s additive homomorphic property as in the dot product protocol
Protocol 3. Finally, we run the comparison over encrypted data algorithm to compare the result so far with zero, so that
the client gets the final result.

Party A Computation Party B Computation Total Time Communication Interactions
47.0 ms 232 ms 549 ms 481.2 kB 2

Table 5: Change encryption scheme protocol evaluation.

9 Implementation
We have implemented the protocols and the classifiers in C++ using GMP4, Boost, Google’s Protocol Buffers5, and
HELib [Hal13] for the FHE implementation.

The code is written in a modular way: all the elementary protocols defined in Section 4 can be used as black boxes
with minimal developer effort. Thus, writing secure classifiers comes down to invoking the right API calls to the
protocols. For example, for the linear classifier, the client simply calls a key exchange protocol to setup the various
keys, followed by the dot product protocol, and then the comparison of encrypted data protocol to output the result, as
shown in Figure 4.

10 Evaluation
To evaluate our work, we answer the following questions: (i) can our building blocks be used to construct other
classifiers in a modular way (Section 10.1), (ii) what is the performance overhead of our building blocks (Section 10.3),
and (iii) what is the performance overhead of our classifiers (Section 10.4)?

10.1 Using our building blocks library
Here we demonstrate that our building blocks library can be used to build other classifiers modularly and that it is
a useful contribution by itself. We will construct a multiplexer and a face detector. A face detection algorithm over
encrypted data already exists [AB06, AB07], so our construction here is not the first such construction, but it serves as
a proof of functionality for our library.

4http://gmplib.org/
5https://code.google.com/p/protobuf/

16

http://gmplib.org/
https://code.google.com/p/protobuf/

bool Linear_Classifier_Client::run()
{

exchange_keys();

// values_ is a vector of integers
// compute the dot product
mpz_class v = compute_dot_product(values_);
mpz_class w = 1; // encryption of 0

// compare the dot product with 0
return enc_comparison(v, w, bit_size_, false);

}

void Linear_Classifier_Server_session::
run_session()

{
exchange_keys();

// enc_model_ is the encrypted model vector
// compute the dot product
help_compute_dot_product(enc_model_, true);

// help the client to get
// the sign of the dot product
help_enc_comparison(bit_size_, false);

}

Figure 4: Implementation example: a linear classifier

10.1.1 Building a multiplexer classifier

A multiplexer is the following generalized comparison function:

fα,β(a, b) =

{
α if a > b

β otherwise

We can express fα,β as a linear combination of the bit d = (a ≤ b):

fα,β(d) = d · β + (1− d) · α = α+ d · (β − α).

To implement this classifier privately, we compute JdK by comparing a and b, keeping the result encrypted with QR,
and then changing the encryption scheme (cf. Section 4.3) to Paillier.

Then, using Paillier’s homomorphism and knowledge of α and β, we can compute an encryption of fα,β(d):

Jfα,β(d)K = JαK · JdKβ−α.

10.1.2 Viola and Jones face detection

The Viola and Jones face detection algorithm [VJ01] is a particular case of an AdaBoost classifier. Denote by X an
image represented as an integer vector and x a particular detection window (a subset of X’s coefficients). The strong
classifier H for this particular detection window is

H(x) = sign

(
t∑
i=1

αihi(x)

)

where the ht are weak classifiers of the form hi(x) = sign (〈x, yi〉 − θi) .
In our setting, Alice owns the image and Bob the classifier (e.g. the vectors {yi} and the scalars {θi} and {αi}).

Neither of them wants to disclose their input to the other party. Thanks to our building blocks, Alice can run Bob’s
classifier on her image without her learning anything about the parameters and Bob learning any information about her
image.

The weak classifiers can be seen as multiplexers; with the above notation, we have ht(x) = f1,−1(〈x, yt〉 − θt).
Using the elements of Section 10.1.1, we can easily compute the encrypted evaluation of every one of these weak

classifiers under Paillier, and then, as described in Section 8, compute the encryption of H(x).

10.2 Performance evaluation setup
Our performance evaluations were run using two desktop computers each with identical configuration: two Intel i7 (64
bit) processors for a total 8 cores running at 3.4 GHz and 8 GB RAM. Since the machines were on the same network,

17

we inflated the roundtrip time for a packet to be 40 ms to mimic real network latency. We used 1024-bit cryptographic
keys, and chose the statistical security parameter λ to be 100. When using HELib, we use 80 bits of security, which
corresponds to a 1024-bit asymmetric key.

10.3 Building blocks performance
We examine performance in terms of computation time at the client and server, communication bandwidth, and also
number of interactions (round trips). We can see that all these protocols are efficient, with a runtime on the order of
milliseconds.

10.3.1 Comparison protocols

Comparison with unencrypted input. Table 3 gives the running time of the DGK comparison protocol with
unencrypted input for various input size. The DGK protocol runs in parallel using four threads for each party.
Comparison with encrypted input. Table 4 presents the performance of the comparison with encrypted inputs
protocols, with DGK as underlying comparison protocols.

10.3.2 argmax

Figure 5 presents the running times and the communication overhead of the argmax of encrypted data protocol (cf.
Section 4.2). The input integers were 64 bit integers.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
(m

s)

Elements

Party A
Party B

Communication
Tree

Figure 5: Argmax of encrypted data protocol evaluation. The bars represent the execution of the protocol when the comparisons are
executed one after each other, linearly. The line represents the execution when comparisons are executed in parallel, tree-wise.

10.4 Classifier performance
Here we evaluate each of the classifiers described in Sections 5–7. The models are trained non-privately using
scikit-learn6. We used the following datasets from the UCI machine learning repository [BL13]:
1. the Wisconsin Diagnostic Breast Cancer data set,
2. the Wisconsin Breast Cancer (Original) data set, a simplified version of the previous dataset,

6http://scikit-learn.org

18

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
http://scikit-learn.org

Data set Model size
Computation Time per protocol Total

Comm. Interactions
Client Server Compare Dot product running time

Breast cancer (1) 30 52.0 ms 35.7 ms 281 ms 45.4 ms 326 ms 41.35 kB 7
Credit (3) 47 55.8 ms 44.0 ms 275 ms 48.2 ms 323 ms 45.70 kB 7

(a) Linear Classifier. Time per protocol includes communication.

Data set
Specs. Computation Time per protocol Total

Comm. Interactions
C F Client Server Prob. Comp. Argmax running time

Breast Cancer (2) 2 9 122 ms 148 ms 82.1 ms 469 ms 551 ms 77.26 kB 14
Nursery (5) 5 9 434 ms 393 ms 82.9 ms 1563 ms 1646 ms 171.1 kB 42

Audiology (4) 24 70 1557 ms 1931 ms 636 ms 3388 ms 4024 ms 2067 kB 166

(b) Naïve Bayes Classifier. C is the number of classes and F is the number of features. The Prob. Comp. column corresponds to the
computation of the probabilities p(ci|x) (cf. Section 6). Time per protocol includes communication.

Data set
Tree Specs. Computation Time per protocol FHE

Comm. Interactions
N D Client Server Compare ES Change Eval. Decrypt

Nursery (5) 4 4 991 ms 1756 ms 1474 ms 1709 ms 182 ms 1443 ms 3210 kB 30
ECG (6) 6 4 1485 ms 2595 ms 2309 ms 2627 ms 689 ms 2005 ms 4272 kB 44

(c) Decision Tree Classifier. ES change indicates the time to run the protocol for changing encryption schemes. N is the number of
nodes of the tree and D is its depth. Time per protocol includes communication.

Table 6: Classifiers evaluation.

3. Credit Approval data set,
4. Audiology (Standardized) data set,
5. Nursery data set, and
6. ECG (electrocardiogram) classification data from Barni et al. [BFK+09]

These data sets are scenarios when we want to ensure privacy of the server’s model and client’s input.
Based on the suitability of each classifier, we used data sets 2 and 3 to test the hyperplane decision classifier, sets 1,

4 and 5 for the Naïve Bayes classifier, and sets 5 and 6 for the decision tree classifier.
Table 6 shows the performance results. Our classifiers run in at most a few seconds, which we believe to be practical

for sensitive applications. Note that even if the datasets become very large, the size of the model stays the same – the
dataset size only affects the training phase which happens on unencrypted data before one uses our classifiers. Hence,
the cost of our classification will be the same even for very large data sets.

For the decision tree classifier, we compared our construction to Barni et al. [BFK+09] on the ECG dataset (by
turning their branching program into a decision tree). Their performance is 1765 ms7 for the client and 4235 ms for
the server with communication cost of 112.2KB. Even though their evaluation does not consider the communication
delays, we are still twice as fast for the server and faster for the client. Moreover, we must not forget that we keep the
tree private while Barni et al. reveals the computation circuit (by revealing the garbled circuit).

10.5 Comparison to generic two-party tools
A set of generic secure two- or multi-party computation tools have been developed, such as TASTY [HKoS+10] and
Fairplay [MNPS04, BDNP08]. These support general functions, which include our classifiers.

However, they are prohibitively slow for our specific setting. Our efficiency comes from specializing to classification
functionality. To demonstrate their performance, we attempted to evaluate the Naïve Bayes classifier with these. We

7In Barni et al. [BFK+09], the evaluation was run over two 3GHz computers directly connected via Gigabit Ethernet. We scaled the given results
by 3

3.4
to get a better comparison basis.

19

http://archive.ics.uci.edu/ml/datasets/Credit+Approval
http://archive.ics.uci.edu/ml/datasets/Audiology+(Standardized)
http://archive.ics.uci.edu/ml/datasets/Nursery

used FaiplayMP to generate the circuit for this classifier and then TASTY to run the private computation on the circuit
thus obtained. We tried to run the smallest Naïve Bayes instance, the Nursery dataset from our evaluation, which has
only 3 possible values for each feature, but we ran out of memory during the circuit generation phase on a powerful
machine with 256GB of RAM.

Hence, we had to reduce the classification problem to only 3 classes (versus 5). Then, the circuit generation took
more than 2 hours with FairplayMP, and the time to run the classification with TASTY was 413196 msec (with no
network delay), which is ≈ 500 times slower than our performance (on the non-reduced classification problem with 5
classes). Thus, our specialized protocols improve performance by orders of magnitude.

11 Conclusion
In this paper, we constructed three major privacy-preserving classifiers as well as provided a library of building blocks
that enables constructing other classifiers. We demonstrated the efficiency of our classifiers on real datasets.

20

References
[AB06] Shai Avidan and Moshe Butman. Blind vision. In Computer Vision–ECCV 2006, pages 1–13. Springer,

2006.

[AB07] Shai Avidan and Moshe Butman. Efficient methods for privacy preserving face detection. In Advances in
Neural Information Processing Systems: Proceedings of the 2006 Conference, page 57, 2007.

[AD01] Mikhail J Atallah and Wenliang Du. Secure multi-party computational geometry. In Algorithms and Data
Structures, pages 165–179. Springer, 2001.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer
and extensions for faster secure computation. In CCS, pages 535–548, 2013.

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the sulq framework.
In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 128–138. ACM, 2005.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: A system for secure multi-party
computation. In CCS, pages 17–21, 2008.

[BFK+09] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and
Thomas Schneider. Secure evaluation of private linear branching programs with medical applications. In
Computer Security–ESORICS 2009, pages 424–439. Springer, 2009.

[BFL+09] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Annika Paus, A-R Sadeghi, Thomas Schneider, and
Vladimir Kolesnikov. Efficient privacy-preserving classification of ecg signals. In Information Forensics
and Security, 2009. WIFS 2009. First IEEE International Workshop on, pages 91–95. IEEE, 2009.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In ITCS, pages 309–325, 2012.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling from a
fixed-key blockcipher. In IEEE SP, pages 478–492, 2013.

[BL13] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[BLN13] Joppe W. Bos, Kristin Lauter, and Michael Naehrig. Private predictive analysis on encrypted medical data,
2013.

[BN06] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 1.
springer New York, 2006.

[Can98] Ran Canetti. Security and composition of multi-party cryptographic protocols. JOURNAL OF
CRYPTOLOGY, 13:2000, 1998.

[CMS11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical risk
minimization. J. Mach. Learn. Res., 12, 2011.

[DGK07] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. Efficient and secure comparison for on-line auctions.
In Information Security and Privacy, pages 416–430. Springer, 2007.

[DGK09] Ivan Damgard, Martin Geisler, and Mikkel Kroigard. A correction to’efficient and secure comparison for
on-line auctions’. International Journal of Applied Cryptography, 1(4):323–324, 2009.

[DHC04] Wenliang Du, Yunghsiang S Han, and Shigang Chen. Privacy-preserving multivariate statistical analysis:
Linear regression and classification. In Proceedings of the 4th SIAM International Conference on Data
Mining, volume 233. Lake Buena Vista, Florida, 2004.

21

[EFG+09] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald Lagendijk, and Tomas Toft.
Privacy-preserving face recognition. In Privacy Enhancing Technologies, pages 235–253. Springer, 2009.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[GLLM05] Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. On private scalar product computation
for privacy-preserving data mining. In Information Security and Cryptology–ICISC 2004, pages 104–120.
Springer, 2005.

[GLN13] Thore Graepel, Kristin Lauter, and Michael Naehrig. Ml confidential: Machine learning on encrypted data.
In Information Security and Cryptology–ICISC 2012, pages 1–21. Springer, 2013.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker keeping secret
all partial information. In STOC, pages 365–377. ACM, 1982.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC, pages 218–229,
1987.

[Gol04] Oded Goldreich. Foundations of Cryptography - Basic Applications. Cambridge University Press, 2004.

[Hal13] Shai Halevi. Helib - an implementation of homomorphic encryption. https://github.com/shaih/HElib,
2013.

[HKoS+10] Wilko Henecka, Stefan K ögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. Tasty:
Tool for automating secure two-party computations. In CCS, pages 451–462, 2010.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer – efficiently.
In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes in
Computer Science, pages 572–591. Springer Berlin Heidelberg, 2008.

[Kil05] Eike Kiltz. Unconditionally secure constant round multi-party computation for equality, comparison, bits
and exponentiation. IACR Cryptology ePrint Archive, 2005:66, 2005.

[KSS] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. A systematic approach to practically
efficient general two-party secure function evaluation protocols and their modular design. page 2013.

[KSS09] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. Improved garbled circuit building
blocks and applications to auctions and computing minima. In In Cryptology and Network Security (CANS,
2009.

[LLM06] Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. Cryptographically private support vector machines.
In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 618–624. ACM, 2006.

[LP00] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Advances in Cryptology—CRYPTO
2000, pages 36–54. Springer, 2000.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In Moni Naor, editor, Advances in Cryptology - EUROCRYPT 2007, volume
4515 of Lecture Notes in Computer Science, pages 52–78. Springer Berlin Heidelberg, 2007.

[LP08] Yehuda Lindell and Benny Pinkas. Secure multiparty computation for privacy-preserving data mining,
2008.

22

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation. J.
Cryptol., 22:161–188, April 2009.

[LT05] Hsiao-Ying Lin and Wen-Guey Tzeng. An efficient solution to the millionaires’ problem based on
homomorphic encryption. In Applied Cryptography and Network Security, pages 456–466. Springer,
2005.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay-secure two-party computation
system. In USENIX Security Symposium, pages 287–302, 2004.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
pages 223–238, 1999.

[RR07] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In NIPS, 2007.

[SG11] Anima Singh and John Guttag. Cardiovascular risk stratification using non-symmetric entropy-based
classification trees. In NIPS workshop on personalized medicine, 2011.

[SG13] Anima Singh and John Guttag. Leveraging hierarchical structure in diagnostic codes for predicting
incident heart failure. In ICML workshop on role of machine learning in transforming healthcare, 2013.

[SSW10] Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. Efficient privacy-preserving face
recognition. In Information, Security and Cryptology–ICISC 2009, pages 229–244. Springer, 2010.

[SV11] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Cryptology ePrint
Archive, Report 2011/133, 2011.

[TRMP12] Sebastian Tschiatschek, Peter Reinprecht, Manfred Mücke, and Franz Pernkopf. Bayesian network
classifiers with reduced precision parameters. In Machine Learning and Knowledge Discovery in
Databases, pages 74–89. Springer, 2012.

[Veu11] Thijs Veugen. Comparing encrypted data. http://msp.ewi.tudelft.nl/sites/default/
files/Comparing%20encrypted%20data.pdf, 2011.

[VJ01] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features. In
Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference on, volume 1, pages I–511. IEEE, 2001.

[VKC08] Jaideep Vaidya, Murat Kantarcıoğlu, and Chris Clifton. Privacy-preserving naive bayes classification. The
International Journal on Very Large Data Bases, 17(4):879–898, 2008.

[WGH12] Jenna Wiens, John Guttag, and Eric Horvitz. Learning evolving patient risk processes for c. diff
colonization. In ICML, 2012.

[WY04] Rebecca Wright and Zhiqiang Yang. Privacy-preserving bayesian network structure computation on
distributed heterogeneous data. In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 713–718. ACM, 2004.

[Yao82] Andrew C. Yao. Protocols for secure computations. In FOCS, pages 160–164, 1982.

[ZW05] Zhiqiang Yang1 Sheng Zhong and Rebecca N Wright. Privacy-preserving classification of customer data
without loss of accuracy. In SIAM International Conference on Data Mining (SDM), Newport Beach.
Citeseer, 2005.

23

http://msp.ewi.tudelft.nl/sites/default/files/Comparing%20encrypted%20data.pdf
http://msp.ewi.tudelft.nl/sites/default/files/Comparing%20encrypted%20data.pdf

A Comparison protocols

A.1 Comparison with unencrypted inputs
Our protocol for comparing with encrypted inputs is Protocol 7 and here is some intuition. We follow the main idea
from Veugen [Veu11] (found in Section 2.1): compute 2l + b− a (over encrypted data) and check the l + 1-th bit (the
bit corresponding to the power 2l). If it is 1, it means that b ≥ a, else b < a.

We also assume that the encryption scheme is additively homomorphic. In [Veu11] (Section 2.1), Veugen presents a
solution for a similar problem except that A only gets the encrypted bit, not in the clear. So we modify his protocol in
Protocol 7.

In the description of protocol 7, N is the modulus associated with Paillier’s cryptosystem.

Protocol 7 Comparing encrypted data
Input A:JaK and JbK, the bit length l of a and b, the secret key SKQR, public key PKP
Input B:Secret key SKP , public key PKQR, the bit length l
Output A:(a ≤ b)

1: A: JxK← JbK · J2lK · JaK−1 mod N2

2: A chooses a random number r ← (0, 2λ+l) ∩ Z
3: A: JzK← JxK · JrK mod N2 . Blind x
4: A sends JzK to B
5: B decrypts JzK
6: A: c← r mod 2l

7: B: d← z mod 2l

8: With A, B privately computes the encrypted bit [t′] such that t = (d < c) using DGK
9: A encrypts rl and sends [rl] to B

10: B encrypts zl
11: B: [t]← [t′] · [zl] · [rl]
12: B: sends [t] to A
13: A decrypts and outputs t

We will show the correctness of the protocol and then give a proof of security in the honest-but-curious model using
modular composition. For the correctness, we just modify the proof of [Veu11].

Proposition A.1. Protocol 7 is correct and secure in the honest-but-curious model.

See proof in Appendix C.

A.2 Reversed encrypted comparison
We constructed Protocol 8 which is the same as Protocol 7, except that the roles of A and B are exchanged in Steps 8– 13.

Proposition A.2. Protocol 8 is secure in the honest-but-curious model.

The proof is in Appendix C.

24

Protocol 8 Reversed comparing encrypted data
Input A:JaK and JbK, public keys PKQR and PKP
Input B:Secret keys SKP and SKQR
Output B:(a ≤ b)

Run Steps 1– 7 of Protocol 7.
8: With B, A privately computes the encrypted bit [t′] such that t′ = (d < c) using DGK
9: B encrypts zl and sends [zl] to A

10: A encrypts rl
11: A: [t]← [t′] · [zl] · [rl]
12: A: sends [t] to B
13: B decrypts and outputs t

B Preliminaries for proofs

B.1 Secure two-party computation framework
All our protocols are two-party protocols, which we label as party A and party B. In order to show that they do private
computations, we work in the honest-but-curious (semi-honest) model as described in [Gol04].

Let f = (fA, fB) be a (probabilistic) polynomial function and Π a protocol computing f . A and B want to
compute f(a, b) where a is A’s input and b is B’s input, using Π and with the security parameter λ. The view of
party A during the execution of Π is the tuple VA(λ, a, b) = (1λ; a; rA;mA

1 , . . . ,m
A
t) where r is A’s random tape

and mA
1 , . . . ,m

A
t are the messages received by A. We define the view of B similarly. We also define the outputs of

parties A and B for the execution of Π on input (a.b) as OutputΠA(λ, a, b) and OutputΠB(λ, a, b), and the global output
as OutputΠ(λ, a, b) = (OutputΠA(λ, a, b),OutputΠB(λ, a, b)).

To ensure security, we have to show that whatever A can compute from its interactions with B can be computed
from its input and output, which leads us to the following security definition.

Definition B.1. The two-party protocol Π securely computes the function f if there exists two probabilistic polynomial
time algorithms SA and SB such that for every possible input a, b of f ,

{SA(1λ,a, fA(a, b)), f(a, b)} ≡c
{VA(λ, a, b),OutputΠ(λ, a, b)}

and

{SB(1λ,a, fB(a, b)), f(a, b)} ≡c
{VB(λ, a, b),OutputΠ(λ, a, b)}

where ≡c means computational indistinguishability against probabilistic polynomial time adversaries with negligible
advantage in the security parameter λ.

To simplify the notation (and the proofs), hereinafter we omit the security parameter. As we mostly consider
deterministic functions f , we can simplify the distributions we want to show being indistinguishable (see [Gol04]):
when f is deterministic, to prove the security of Π that computes f , we only have to show that

SA(a, fA(a, b)) ≡c VA(a, b)

SB(b, fB(a, b)) ≡c VB(a, b)

Unless written explicitly, we will always prove security using this simplified definition.

25

B.2 Modular Sequential Composition
In order to ease the proofs of security, we use sequential modular composition, as defined in [Can98]. The idea is
that the parties run a protocol Π and use calls to an ideal functionality f in Π (e.g. A and B compute f privately by
sending their inputs to a trusted third party and receiving the result). If we can show that Π respects privacy in the
honest-but-curious model and if we have a protocol ρ that privately computes f in the same model, then we can replace
the ideal calls for f by the execution of ρ in Π; the new protocol, denoted Πρ is then secure in the honest-but-curious
model.

We call hybrid model with ideal access to f1, . . . , fm or (f1, . . . , fm)-hybrid model the semi-honest model
augmented with an incorruptible trusted party T for evaluating functionalities f1, . . . , fm. The parties run a protocol Π
that contain calls to T for the evaluation of one of f1, . . . , fm. For each call, each party sends its input and wait until
the trusted party sends the output back. We emphasize on the fact that the parties must not communicate until receiving
T ’s output (we consider only sequential composition). Ideal calls to the trusted party can be done several times, even
for the same function, but each call is independent: T does not maintain state between two calls.

Let Π be a two-party protocol in the (f1, . . . , fm)-hybrid model. Let ρ1, . . . , ρm be real protocols (i.e. protocols in
the semi-honest model) computing f1, . . . , fm and define Πρ1,...,ρm as follows. All ideals calls of Π to the trusted party
for fi is replaced by a real execution of ρi: if party Pj has to compute fi with input xj , Pj halts, starts an execution of
ρi with the other parties, gets the result βj when ρi concludes, and continues as if βj was received from T .

Theorem B.2. [Can98] (Theorem 5) restated as in [LP08] (Theorem 3) – Let f1, . . . , fm be two-party probabilistic
polynomial time functionalities and ρ1, . . . , ρm protocols that compute respectively f1, . . . , fm in the presence of
semi-honest adversaries.

Let g be a two-party probabilistic polynomial time functionality and Π a protocol that securely computes g in the
(f1, . . . , fm)-hybrid model in the presence of semi-honest adversaries.

Then Πρ1,...,ρm securely computes g in the presence of semi-honest adversaries.

B.3 Cryptographic assumptions
Assumption 1. (Quadratic Residuosity Assumption – from [GM82]) Let N = p× q be the product of two distinct odd
primes p and q. Let QRN be the set of quadratic residues modulo N and QNRN be the set of quadratic non residues
(i.e. x ∈ QNRN if x is not a square modulo N and its Jacobi symbol is 1).
{(N,QRN) : |N | = λ} and {(N,QNRN) : |N | = λ} are computationally indistinguishable with respect to

probabilistic polynomial time algorithms.

Assumption 2. (Decisional Composite Residuosity Assumption – from [Pai99]) Let N = p × q, |N | = λ be the
product of two distinct odd primes p and q. A number z is said to be a N -th residue modulo N2 if there exists a number
y ∈ ZN2

z = yN mod N2

N -th residues are computationally indistinguishable from non N -th residues with respect to probabilistic polynomial
time algorithms.

For further explanations about the last assumption, used for the FHE scheme, we refer the reader to [BGV12].

Assumption 3. (RLWE) For security parameter λ, let f(x) = xd + 1 where d is a power of 2. Let q ≥ 2 be an integer.
Let R = Z[x]/(f(x)) and let Rq = R/qR. Let χ be a distribution over R. The RLWEd,q,χ problem is to distinguish
between two distributions: In the first distribution, one samples (ai, bi) uniformly from R2

q . In the second distribution,
one first draws s← Rq uniformly and then samples (ai, bi) ∈ R2

q by sampling ai ← Rq uniformly, ei ← χ, and setting
bi = ai.s+ ei.

The RLWEd,q,χ assumption is that the RLWEd,q,χ problem is infeasible.

26

C Proofs

C.1 Comparison protocols

Proof of Proposition A.1 . Correctness As a and b are l bits integers, x = 2l + b−a is a l+ 1 bits integer and its most
significant bit (the l + 1-th bit) is 1 iff a ≤ b. What protocol 7 actually does is computing this bit. The computations are
done over encrypted data, using Paillier’s encryption scheme. In the rest of the proof, we will do as if the data were not
encrypted under Paillier. The correctness will hold as long as we do not experience carry-overs modulo N . In particular,
this implies that l+ 1 + λ < log2N . For operations over bits using QR, we don’t have this problem as we are operating
on F2.

Again, since x is a l+ 1 bit number, its most significant bit is x÷ 2l where ÷ denotes the integer division. We have
x = 2l(x÷ 2l) + (x mod 2l) where 0 ≤ (x mod 2l) < 2l. As z = x+ r,

z = 2l(z ÷ 2l) + (z mod 2l)

= 2l((x÷ 2l) + (r ÷ 2l)) + ((x mod 2l) + (r mod 2l))

Hence, z ÷ 2l = x÷ 2l + r ÷ 2l if (x mod 2l) + (r mod 2l) < 2l and z ÷ 2l = (x÷ 2l) + (r ÷ 2l) + 1 otherwise.
More generally, z ÷ 2l = (x÷ 2l) + (r ÷ 2l) + t′ where t′ = 0⇔ (x mod 2l) + (r mod 2l) < 2l.

We can also notice that, if t′ = 0, z mod 2l = (x mod 2l) + (r mod 2l) and z mod 2l = (x mod 2l) + (r mod
2l)− 2l otherwise. As a consequence,

t′ = 0⇔ z mod 2l = (x mod 2l) + (r mod 2l)

⇔ z mod 2l ≥ (r mod 2l)

In the end, as x÷ 2l is either 0 or 1, we can compute everything modulo 2

x÷ 2l = (z ÷ 2l)− (r ÷ 2l)− t′ mod 2

= zl ⊕ rl ⊕ t′

Security We suppose that the encrypted bit [t′] is ideally computed (using calls to a trusted party in the hybrid model).
We show that the protocol is secure in this model and conclude using the sequential modular composition theorem.

A’s view is VA = (JaK, JbK, l, SKQR,PKP ; r, coins; [t]) where SKQR is the secret key for the QR cryptosystem,
PKP is the public key for Paillier’s cryptosystem, and coins are the random coins used for the encryptions of 2l, r and
rl. Given (JaK, JbK, l, SKQR,PKP , a ≤ b), we build the simulator SA:
1. Compute [t̃] an encryption of the bit (a ≤ b) under QR.
2. Pick r̃ ← (0, 2λ+l) ∩ Z.

3. Let c̃oins be random coins for two Paillier encryptions and one QR encryption.

4. Output (JaK, JbK, l, SKQR,PKP ; r̃, c̃oins; [t̃])

The distributions VA(JaK, JbK, l, SKQR,PKQR,SKP ,PKP) and SA(JaK, JbK,SKQR,PKP , a ≤ b) are exactly the same
because the randomness is taken from the same distribution in both cases, and the QR cyphertext encrypts the same bit.

B’s view is VB = (PKQR,SKP , l, JzK; coins; [t′], [rl]) where coins are the random coins used for the encryption of
zl. The simulator SB(PKQR,SKP , l) runs as follows:
1. Pick z̃ ← (0, 2λ+l) ∩ Z.
2. Encrypt z̃ under Paillier: Jz̃K.
3. Generate [t̃′] and [r̃l], two encryptions of random bits under QR

4. Let c̃oins be random coins for one QR encryption.

5. Output (PKQR,SKP , l, Jz̃K; c̃oins; [t̃′], [r̃l])

27

The random tapes coins and c̃oins are generated in the exact same manner and independently from any other
parameter, so

(PKQR,SKP , Jz̃K; c̃oins; [t̃′][r̃l])

= (PKQR,SKP , Jz̃K; coins; [t̃′][r̃l])

Recall that z = x + r mod N where x is an l bits integer and r is an l + λ bits integer. But as we chose
l + 1 + λ < log2N , we have z = x+ r. The distribution of z̃ is statistically indistinguishable from the distribution of
z (the distributions are distinguishable with an advantage of 2−λ at most).

We also directly have that (SKP , Jz̃K) ≡s (SKP , JzK) and as a consequence, as the distribution of z̃ and z is
independent from t̃′ and r̃l,

(PKQR,SKP , Jz̃K; coins; [t̃′], [r̃l])

≡s (PKQR,SKP , JzK; coins; [t̃′], [r̃l])

By semantic security of QR,

(PKQR,SKP , l, JzK; coins; [t̃′], [r̃l])

≡c (PKQR,SKP , l, JzK; coins; [t′], [rl])

and

SB(PKQR,SKP , l)

≡c VB(JaK, JbK, l, SKQR,PKQR,SKP ,PKP)

We conclude the proof of security using modular sequential composition. We replace the ideal calls for computing
the encrypted bit [t′] by the provable secure DGK protocol and invoke Theorem B.2 to prove security in the semi-honest
model.

Proof of Proposition A.2. The proof of security is similar to the one of Proposition A.1. Again we first suppose that [t′]
is ideally computed (hybrid model).

A’s view is VA = (JaK, JbK, l,PKQR,PKP ; r, coins; [t′], [zl]) where PKQR is the public key for the QR cryptosystem,
PKP is the public key for Paillier’s cryptosystem and coins is the random tape used for the Paillier encryptions of r and
2l, and the QR encryption of rl.

Given (JaK, JbK,PKQR,PKP), we build the simulator SA:
1. Pick r̃ ← (0, 2λ+l) ∩ Z.
2. Generate [t̃′] and [z̃l], two encryptions of random bits under QR

3. Let c̃oins be random coins for two Paillier encryptions and one QR encryption.

4. Output (JaK, JbK, l,PKQR,PKP ; r̃, c̃oins; [z̃l])

For both cases (A’s view and the simulator SA), r and r̃ are taken from the same uniform distribution over
(0, 2λ+l) ∩ Z, and coins and c̃oins are random tapes of the same length, so

SA(JaK, JbK,PKQR,PKP)

= (JaK, JbK, l,PKQR,PKP ; r, coins; [z̃l])

By semantic security of the QR cryptosystem, we conclude with the computational indistinguishability of SA and VA
distributions:

SA(JaK, JbK,PKQR,PKP)

= (JaK, JbK, l,PKQR,PKP ; r, coins; [z̃l])

≡c (JaK, JbK, l,PKQR,PKP ; r, coins; [zl])

= VA(JaK, JbK, l, SKQR,PKQR,SKP ,PKP)

28

B’s view is VB = (SKQR,SKP , JzK, [t]; coins) where SKQR is the secret key for the QR cryptosystem, SKP is
the secret key for Paillier’s cryptosystem, and coins are the random coins necessary for the QR encryption of zl. The
simulator SB(SKQR,SKP , a ≤ b) runs as follows:
1. Compute [t̃] an encryption of the bit (a ≤ b) under QR.
2. Pick z̃ ← (0, 2λ+l) ∩ Z.
3. Encrypt z̃ under Paillier: Jz̃K.

4. Let c̃oins be random coins for one QR encryption.

5. Output (SKQR,SKP , l, Jz̃K, [t̃]; c̃oins)

Once again, the distributions of coins and c̃oins are identical:

(SKQR,SKP , l, Jz̃K, [t̃]; c̃oins)

= (SKQR,SKP , l, Jz̃K, [t̃]; coins)

Recall that z = x + r where x is an l bits integer and r is an l + λ bits integer. The distribution of z̃ is statistically
indistinguishable from the distribution of z. We also directly have that (SKP , Jz̃K) ≡s (SKP , JzK) and as a consequence,
as the distribution of z̃ and z is independent from t̃′,

(SKQR,SKP , l, Jz̃K, [t̃]; coins)

≡s (SKQR,SKP , l, JzK, [t̃]; coins)

Moreover, by construction, (SKQR, [t̃]) = (SKQR, [a < b]) and

(SKQR,SKP , l, JzK, [t̃]; coins)
= (SKQR,SKP , l, JzK, [a < v]; coins).

Finally, we have

SB(SKQR,SKP , a ≤ b)
≡s VB(JaK, JbK, l, SKQR,PKQR,SKP ,PKP).

Again, we conclude the proof of security using modular sequential composition. We replace the ideal calls for
computing the encrypted bit [t′] by the provable secure DGK protocol and invoke Theorem B.2 to prove security in the
semi-honest model.

C.2 Argmax

Proof of Proposition 4.1. Correctness To prove correctness, we have to show that the following invariant holds: at
the end of the loop for iteration i, m is the maximum of {aπ(j)}1≤j≤i and aπ(i0) = m.

If this holds, at the end of the loop iterations aπ(i0) is the maximum of {aπ(j)}1≤j≤k = {aj}1≤j≤k, hence
i0 = argmaxj aπ(j) and π−1(i0) = argmaxj aj .

At initialization (line 4), the invariant trivially holds as the family {aπ(j)}1≤j≤i contains only one element.
Suppose the property is true for iteration i− 1. Let us distinguish two cases:

• If bi is true (i.e. m ≤ aπ(i)), max{aπ(j)}1≤j≤i−1 ≤ aπ(i), as the invariant holds for the previous iteration, and then
max{aπ(j)}1≤j≤i = aπ(i).
Then i0 is set to i, vi = a′i and (xi, yi) = (0, 1). As a consequence, m is set by A to

vi − xi.ri − yi.si = a′i − si = aπ(i)

We have clearly that aπ(i0) = aπ(i) = m and m = max{aπ(j)}1≤j≤i, the invariant holds at the end of the i-th
iteration in this case.

29

• If bi is false (m > aπ(i)), max{aπ(j)}1≤j≤i−1 > aπ(i) and max{aπ(j)}1≤j≤i = max{aπ(j)}1≤j≤i−1 = m.
Then i0 is not changed, vi is set to m′i and (xi, yi) = (1, 0). As a consequence,

vi − xi.ri − yi.si = m′i − ri = m

m is unchanged. As both m and i0 stayed the same and max{aπ(j)}1≤j≤i = max{aπ(j)}1≤j≤i−1, the invariant
holds at the end of the i-th iteration in this case.

Security We prove security in the hybrid model where line 5 of the protocol is ideally executed: we ask a trusted party
T to compute the function f(JxK, JyK, l, SKQR,PKQR,SKP ,PKP) in the f -hybrid model where

f(JxK, JyK, l, SKQR,PKQR,SKP ,PKP)

=
(fA(x, y, l,SKQR,PKQR,SKP ,PKP);

fB(JxK, JyK, l, SKQR,PKQR,SKP ,PKP))

and f computes the function of Protocol 8, i.e. fA returns nothing and fB returns the bit x ≤ y.
We will conclude using Theorem B.2.

A’s view is

VA =({JaiK}ki=1, l,PKQR,PKP ;π, {ri}ki=2, {si}ki=2, coins; {JviK}ki=2, {(JxiK, JyiK)}ki=2, π(argmax
i

ai))

where coins is the random tape for encryptions. To simulate A’s real view, the simulator SA does the following on input
(Ja1K, . . . , JakK, l,PKQR,PKP , argmaxi ai):
1. Picks a random permutation π̃ of {1, . . . , k}
2. Picks k − 1 random integers r̃2, . . . , r̃k in (0, 2)l+λ ∩ Z
3. Picks k − 1 random integers s̃2, . . . , s̃k in (0, 2)l+λ ∩ Z
4. Generates k − 1 random Paillier encryptions Jṽ2K, . . . , JṽkK.

5. Generates k − 1 random bits b̃i and encryptions (Jx̃iK, JỹiK) = (Jb̃iK, J
¯̃
ibK)

6. Generate a random tape for 2(k − 1) Paillier encryptions c̃oins
7. Outputs

({JaiK}ki=1, l,PKQR,PKP ; π̃, {r̃i}ki=2, {s̃i}ki=2, c̃oins; {JṽiK}ki=2, {(Jx̃iK, JỹiK)}ki=2, π̃(argmax
i

ai))

We define the following hybrids:
• H0 = VA(Ja1K, . . . , JakK, l, SKQR,PKQR,SKP ,PKP)

• H1 = ({JaiK}ki=1, l,PKQR,PKP ;π, {ri}ki=2, {si}ki=2, coins; {JṽiK}ki=2, {(Jx̃iK, JỹiK)}ki=2, π(argmaxi ai))

• H2 = ({JaiK}ki=1, l,PKQR,PKP ;π, {r̃i}ki=2, {s̃i}ki=2, c̃oins; {JṽiK}ki=2, {(Jx̃iK, JỹiK)}ki=2, π(argmaxi ai))

• H3 = SA(Ja1K, . . . , JakK, l,PKQR,PKP , argmaxi ai)

By semantic security of Paillier’s cryptosystem,

({JaiK}ki=1, l,PKQR,PKP ;π, {ri}ki=2, {si}ki=2;

{JviK}ki=2, {(JxiK, JyiK)}ki=2, π(argmax
i

ai))

≡c
({JaiK}ki=1, l,PKQR,PKP ;π, {ri}ki=2, {si}ki=2;

{JṽiK}ki=2, {(Jx̃iK, JỹiK)}ki=2π(argmax
i

ai))

and H0 ≡c H1 as π(argmaxi ai) = i0

30

Given that the r̃i, s̃i and c̃oins are generated according to the same distribution as ri, si (uniform over (0, 2)l+λ ∩Z)
and coins (random tape for 2(k − 1) Paillier encryptions), and that they are completely independent from the ṽi or π,
the hybrids H1 and H2 are equal.

Similarly, the distribution of (π, π(argmaxi ai)) and
(π̃, π̃(argmaxi ai)) are exactly the same. As π and π̃ are independent from the other parameters, we also haveH2 = H3.

Hence, we showed that

VA({JaiK}ki=1, l, SKQR,PKQR,SKP ,PKP)

≡c SA({JaiK}ki=1, l,PKQR,PKP , argmax
i

ai).

B’s view is

VB = (SKP ,SKQR, l; coins; {bi}ki=2, {Jm′iK}ki=2, {Ja′iK}ki=2)

where coins are the random coins for k − 1 Paillier cyphertext refresh. The simulator SB(SKP ,SKQR, l) runs as
follows:
1. Generates a random permutation π̃ of {1, . . . , k}
2. Set JãiK = JiK
3. Run the protocol with the JãiK as input data, π̃ as the permutation, and same parameters otherwise. Let

(SKP ,SKQR, l; c̃oins; {bi}ki=2, {Jm̃′iK}ki=2, {Jã′iK}ki=2) be B’s view of this run.
4. Outputs

(SKP ,SKQR, l; c̃oins; {bi}ki=2, {Jm̃′iK}ki=2, {Jã′iK}ki=2)

Let p : {ai}1≤i≤k 7→ {1, . . . , k} be the function that associates ai to its rank among the ai (in ascendent order).
Let us fix the permutation π for a while and define the following hybrids:
0. H0 = VB({JaiK}ki=1, l, SKQR,PKQR,SKP ,PKP)

1. H1 = VB({Jp(a1)K}ki=1, l, SKQR,PKQR,SKP ,PKP)

We will show that these hybrids are statistically equal for every permutation π.
As p(.) is a map that does not change the order of the ai, we have that for all i, j, ai ≤ aj ⇔ p(ai) ≤ p(aj). As

a consequence, for a given permutation π, the bits bi do not change if we replace the ai by p(ai). Similarly, the way
the a′i and m′i are generated for H0 and H1 is the same: blinding by adding random noise from (0, 2λ+l ∩ Z). Thus,
H0 ≡s H1.

Now, we want to show that H1 ≡s SB(SKP ,SKQR, l) - we do not fix π anymore. Let π0 be the permutation such
that p(ai) = π0(i). We can then rewrite H1 as

H1 = VB(Jπ0(1)K, . . . , Jπ0(k)K, l, SKQR,PKQR,SKP ,PKP)

As π̃ and π ◦ π0 are statistically indistinguishable, we have H1 ≡s SB(SKP ,SKQR, l): recall that SB’s output is the
view of B when the protocol is run with the set {ai = i} as input set and π̃ as the permutation. Hence

VB(Ja1K, . . . , JakK, l, SKQR,PKQR,SKP ,PKP)

≡s SB(SKP ,SKQR, l)

We conclude the proof of security using modular sequential composition. We replace the ideal calls for computing
the encrypted bits bi by the provable secure Protocol 8 and invoke Theorem B.2 to prove security in the semi-honest
model.

31

C.3 Changing the encryption scheme

Proof of Proposition 4.2. In this protocol the computed function is probabilistic, and we have to show security according
to the full definition (cf. section B.1). The function is f :

f(JcK1,PK1,PK2,SK1,SK2) = (JcK2, ∅)

For the sake of simplicity, we do not take into account the randomness used for the encryptions of r for A and c′ for B.
As before, the distribution of these coins for one party is completely independent of the other elements to be taken in
account in the simulations, so we just do not mention them in security proof.

A’s view is VA = (PK1,PK2, JcK1; r; Jc′K2). A’s output is JcK2. The simulator SA(PK1,PK2, JcK1) runs as follows:
1. Picks uniformly at random r̃ ←M and c̃′ ←M .
2. Generates the encryption Jc̃′K2 of c̃′ under E2.
3. Outputs (PK1,PK2, JcK1; r̃; Jc̃′K2).

r and r̃ are taken from the same distribution, independently from any other parameter, so

{(PK1,PK2, JcK1; r̃; Jc̃′K2); f(JcK1,PK1,PK2,SK1,SK2)}
= {(PK1,PK2, JcK1; r; Jc̃′K2); f(JcK1,PK1,PK2,SK1,SK2)}

(c′ depends on r but does not appear in the previous distributions). By semantic security of scheme E2 we have that

{(PK1,PK2, JcK1; r; Jc̃′K2); f(JcK1,PK1,PK2,SK1,SK2)}
≡c {(PK1,PK2, JcK1; r; Jc′K2); JcK2}

and so

{SA(JcK1,PK1,PK2), f(JcK1,PK1,PK2,SK1,SK2)}
≡c {VA(JcK1,PK1,PK2,SK1,SK2),Output(JcK1,PK1,PK2,SK1,SK2)}

B’s view is VB = (SK1,SK2; Jc+ rK1). We build a simulator SB(SK1,SK2):
1. Picks a random c̃←M .
2. Encrypt c̃ under E1.
3. Outputs (SK1,SK2, Jc̃K1).

Again, the distribution of c̃ and c + r are identical, so the real distribution {(SK1,SK2; Jc + rK1); JcK2} and the
ideal distribution {(SK1,SK2; Jr̃K1); f(JcK1,PK1,PK2,SK1,SK2)} are statistically indistinguishable.

C.4 Computing dot products
Proof of Proposition 4.3. As B does not receive any message, its view only consists in its input and its random tape
used for the encryptions. Hence the simulator SB simply generate random coins and

SB(y,SKP) = (y,SKP ; coins) = VB(x, y, SKP ,PKP).

where rand are the random coins.

A’s view is VA = (x,PKP ; rA; Jy1K, . . . , JynK). On input (x,PKP , JvK), the simulator SA does the following:
1. Generates n encryptions of 0 using Paillier: c1, . . . , cn.

2. Generates the random coins necessary for a Paillier re-randomization and put them in c̃oins.

32

3. Outputs (x,PKP ; c̃oins; c1, . . . , cn).

coins and c̃oins come from the same distribution, independently from other parameters. Thus,

{(x,PKP ; c̃oins; c1, . . . , cn); J〈x, y〉K}
= {(x,PKP ; coins; c1, . . . , cn); J〈x, y〉K}

and by semantic security of Paillier,

{(x,PKP ; coins; c1, . . . , cn); J〈x, y〉K}
≡c {(x,PKP ; coins; Jy1K, . . . , JynK); JvK}

i.e., when f is f(x, y,SKP ,PKP) = (J〈x, y〉K, ∅)

{SA(x,PKP , JvK); f(x, y, SKP ,PKP)}
≡c {VA(x, y,SKP ,PKP);Output(x, y, SKP ,PKP)}

C.5 Classifiers

Hyperplane decision

Proof of Proposition 5.1. The client’s view is

VC = (PKP ,PKQR, x; {JviK}ki=1, i0).

The simulator SC , on input (PKP ,SKQR, x, k
∗) where k∗ = argmax

i∈[k]

〈wi, x〉 does the following:

1. Generate k random Paillier encryptions JṽiK
2. Output (PKP ,SKQR, x; {JṽK}ki=1, k

∗)

As the index i0 that the client receives is its output, and as Paillier’s cryptosystem is semantically secure, the
distributions SC = (PKP ,SKQR, x; {JṽK}ki=1, k

∗) and VC = (PKP ,SKQR, x; {JviK}ki=1, i0) are computationally
indistinguishable.

As the server views nothing but its inputs (the server does not receive any message in the hybrid model), we use for
the trivial simulator that just outputs its inputs for the proof of security.

As Protocols 1 and 3 are secure in the honest-but-curious model, we obtain the security of the hyperplane decision
protocol using modular sequential composition (Theorem B.2).

Bayes classifier

Proof of Proposition 6.1. The client’s view is

VC = (PKP ,SKQR, x; JP K, {JTi,jK}, i0).

The simulator SC , on input (PKP ,SKQR, x, imax) where imax = argmaxj P(C = cj |X = x),

• generates tables of random Paillier encryptions JP̃ K and {JTi,jK};
• outputs (PKP ,SKQR, x; JP̃ K, {JT̃i,jK}, imax).

33

As the integer i0 that the client receives is its output, and as Paillier’s cryptosystem is semantically secure,
the distributions SC = (PKP ,SKQR, x; JP̃ K, {JT̃i,jK}, imax) and VC = (PKP ,SKQR, x; JP K, {JTi,jK}, i0) are
computationally indistinguishable.

Again, as the server views nothing but its inputs (the server does not receive any message in the hybrid model), we
use the trivial simulator that outputs its inputs and the random coins for the encryption for the proof of security.

As Protocol 1 is secure in the honest-but-curious model, we obtain the security of the hyperplane decision protocol
using modular sequential composition (Theorem B.2).

Decision tree

Proof of Proposition 7.1. The proof of security for the server is very easily obtained using modular sequential
composition of the comparison protocol and Protocol 2: in the hybrid model, the client receives nothing but the
encrypted result.

For the client also the proof is trivial, using modular sequential composition and the semantical security of QR and
of the FHE scheme: the encryptions of bits bi are computational indistinguishable from random bits whether they are
encrypted under QR or the FHE scheme.

34

	Introduction
	Related work
	Privacy-preserving training
	Privacy-preserving classification
	Work related to our building blocks

	Background and definitions
	Classification in machine learning algorithms
	Cryptographic preliminaries
	Cryptosystems
	Cryptographic assumptions
	Adversarial model

	Notation

	Building blocks
	Comparison
	Comparison with unencrypted inputs (Row 1)
	Comparison with encrypted inputs (Rows 2, 3)
	Reversed comparison over encrypted data (Row 4, 5)
	Negative integers comparison and sign determination

	`39`42`"613A``45`47`"603Aargmax over encrypted data
	Changing the encryption scheme
	XOR with Paillier.

	Computing dot products
	Dealing with floating point numbers

	Private hyperplane decision
	Secure Naïve Bayes classifier
	Preparing the model
	Protocol

	Private decision trees
	Polynomial form of a decision tree
	Private evaluation of a polynomial
	Formal description

	Combining classifiers with AdaBoost
	Implementation
	Evaluation
	Using our building blocks library
	Building a multiplexer classifier
	Viola and Jones face detection

	Performance evaluation setup
	Building blocks performance
	Comparison protocols
	`39`42`"613A``45`47`"603Aargmax

	Classifier performance
	Comparison to generic two-party tools

	Conclusion
	Comparison protocols
	Comparison with unencrypted inputs
	Reversed encrypted comparison

	Preliminaries for proofs
	Secure two-party computation framework
	Modular Sequential Composition
	Cryptographic assumptions

	Proofs
	Comparison protocols
	Argmax
	Changing the encryption scheme
	Computing dot products
	Classifiers

