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Abstract. Template Attacks are widely accepted to be the most pow-
erful side-channel attacks from an information theoretic point of view.
For classical Template Attacks, several papers suggested that one should
not choose more than one point as the interesting point per clock cycle
when he conducts Template Attacks. Disobeying this constraint leads
to poorer classification performance even if a higher number of interest-
ing points is chosen. A more systematic approach, which relies on the
data variability, is to choose the interesting points based on principal
component analysis (PCA). In this paper, we present a new way of con-
ducting Template Attacks when one uses more than one point as the
interesting point per clock cycle. This new way has better classification
performance compared with classical Template Attacks and PCA-based
Template Attacks. Moreover, the computational price of the new way is
low and practical. Therefore, we suggest that one should use this new
way to better understand practical threats of Template Attacks when
one want to use more than one point as the interesting point per clock
cycle.

Keywords: Side-Channel Attacks, Power Analysis Attacks, Template
Attacks.

1 Introduction

As an important method of Power Analysis Attacks, Template Attacks were
firstly proposed by S. Chari et al. in 2002 [1]. Under the assumption that one
has a reference device identical or similar to the target device, and thus be well
capable of characterizing power leakages of the target device, Template Attacks
are widely accepted to be the strongest side-channel attacks from an information
theoretic point of view [1].

Principally, Template Attacks consist of two stages. The first stage is the
profiling stage and the second stage is the extraction stage. In the profiling stage,
one can accurately characterize signals and noises in different time samples and
builds templates for each key-dependent operation with the reference device. In



the extraction stage, one can exploit a small number of power traces measured
from the target device and the templates to classify the correct (sub)key. We
note that, Template Attacks are also important tools to evaluate the physical
security of a cryptographic device.

Contributions Depending on the measurement setup and the data acquisi-
tion strategy, captured traces can be quite big (i.e. the number of sampled points
is high). For Template Attacks to be practical, it is paramount that not all points
of a trace are part of the templates. To reduce the number of points, one need-
s to choose some interesting points in traces. The interesting points are those
points that contain the most information about the characterized key-dependent
operation(s). For classical Template Attacks, the paper [2] suggested that the
minimum distance between these points should be approximately a clock cycle
or more. This constraint is used to avoid numerical problems when inverting the
covariance matrix, since additional points in the same clock cycle do not provide
additional information. Disobeying this constraint leads to poorer classification
performance even if a higher number of interesting points is chosen [2]. Some
other papers [3,4,15] also recommended to choose at most one interesting point
per clock cycle. According to this guideline, the number of interesting points is
rather limited and depends on the number of clock cycles which are correspond
to the key-dependent operation.

A more systematic approach, which relies on the data variability, is to choose
the interesting points based on principal component analysis (PCA). PCA-based
Template Attacks were investigated in [3]. However, this kind of Template At-
tacks is inefficient [2] due to its high computational requirements and may not
improve the classification performance [7]. Therefore, PCA-Based Template At-
tacks are not used widely in practice.

In this paper, we present a new way of conducting Template Attacks. In this
new way, one also uses more than one point as the interesting point per clock
cycle. The advantages of the new way are as follows:

– Using this new way, one can achieve better classification performance1 com-
pared with classical Template Attacks and PCA-based Template Attacks.

– The computational price of the new way is low and practical.

Therefore, we suggest that one should use this new way to better understand
practical threats of Template Attacks when one want to use more than one point
as the interesting point per clock cycle to conduct this kind of attacks.

Related Work Template Attacks were firstly introduced in [1]. The pa-
per [2] provided answers to some basic and practical issues of Template Attacks,
such as how to choose interesting points in an efficient way and how to preprocess
noisy data. LDA-based Template Attacks were introduced in [12]. However, this
kind of Template Attacks depends on the condition of equal covariances. There-
fore, it is not a better choice compared with PCA-based Template Attacks in

1 In this paper, we use success rate of attacks [6] as a metric about classification
performance.
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most settings [5] and we ignore this kind of attacks here. The paper [15] present-
ed a variation of Template Attacks that can be applied to block ciphers when the
plaintext and ciphertext used are unknown. In [8], Template Attacks were used
to attack a masking protected implementation of a block cipher. In [9], an effi-
cient leakage characterization method was introduced to efficiently characterize
power leakages of the target device. Recently, a simple pre-processing technique
of Template Attacks, normalizing the sample values using the means and vari-
ances was evaluated for various sizes of test data [7]. In [10], the assumption of
Template based DPA was relaxed with machine learning techniques. Also, the
paper [11] relaxed the assumption made in Template Attacks by using a method
based on a semi-supervised learning strategy.

Organization of This Paper The rest of this paper is organized as fol-
lows. In section 2, we review classical Template Attacks as well as PCA-based
Template Attacks. In section 3, we introduce and analyze our new way. The new
way was verified by practical experiments which are introduced in section 4. In
section 5, we conclude the whole paper.

2 Preliminaries

In this section, we briefly review classical Template Attacks and PCA-based
Template Attacks.

2.1 Classical Template Attacks

We will introduce the two stages of classical Template Attacks in the following.

2.1.1 The Profiling Stage In the profiling stage, one has a reference device
identical or similar to the target device. One can use power traces measured from
the reference device to characterize power leakages of the target device.

Let us assume that there exist K different (sub)keys keyi, i = 0, 1, . . . ,K − 1
which need to be classified. Also, there exist K different key-dependent oper-
ations Oi, i = 0, 1, . . . ,K − 1. Usually, one will generate K templates, one for
each key-dependent operation Oi. One can exploit advanced techniques [12, 13]
to choose N interesting points (P1, P2, . . . , PN ). Each template is composed of
a mean vector and a covariance matrix. Specifically, the mean vector is used
to estimate the data-dependent portion of side-channel leakages. It is the aver-
age signal vector Mi = (Mi[P1], . . . ,Mi[PN ]) for each one of the key-dependent
operations. The covariance matrix is used to estimate the probability density
of the noises at different interesting points. It is assumed that noises at dif-
ferent interesting points approximately follow the multivariate normal distri-
bution. A N dimensional noise vector ni(S) is extracted from each trace S =
(S[P1], . . . , S[PN ]) representing the template’s key dependency Oi as ni(S) =
(S[P1] − Mi[P1], . . . , S[PN ] − Mi[PN ]). One computes the (N × N) covariance
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matrix Ci from these noise vectors. The probability density of the noises occur-
ring under key-dependent operation Oi is given by the N dimensional multivari-
ate Gaussian distribution pi(·), where the probability of observing a noise vector
ni(S) is:

pi(ni(S)) =
1√

(2π)N |Ci|
exp

(
− 1

2
ni(S)C

−1
i ni(S)

T
)

ni(S) ∈ RN . (1)

In equation (1), the symbol |Ci| denotes the determinant of Ci and the symbol
C−1

i denotes its inverse.

2.1.2 The Extraction Stage In the extraction stage, one tries to classify the
correct (sub)key with a small number of traces obtained from the target device.

Assume one obtains t traces (denoted by S1, S2, . . . , St) in the extraction
stage. For example, when the traces are statistically independent, one will apply
maximum likelihood approach on the product of conditional probabilities [14],
i.e.

keyck = argmaxkeyi

{ t∏
j=1

Pr(Sj |keyi), i = 0, 1, . . . ,K − 1

}
,

where Pr(Sj |keyi) = pf(Sj ,keyi)(nf(Sj ,keyi)(Sj)). The keyck is considered to be
the correct (sub)key. The output of the function f(Sj , keyi) is the index of a key-
dependent operation. For example, when the output of the first S-box (denoted
by Sbox) in the first round of AES-128 is chosen as the target intermediate value,
one builds templates for each output of the S-box. In this case, f(Sj , keyi) =
Sbox(mj⊕keyi), where mj is the plaintext corresponding to the power trace Sj .

2.2 PCA-based Template Attacks

PCA-based Template Attacks [3] exploit a continual point fragment correspond
to the target intermediate value in traces (We assume the length of the continual
point fragment is N .). One first computes the empirical covariance matrix, which
is given by

ECM =
1

K

K−1∑
i=0

(Mi − M̄)(Mi − M̄)T .

The quantity M̄ = ΣK−1
i=0 Mi/K is the average of the mean vectors. Let us denote

the matrixes of eigenvectors and eigenvalues of ECM by U and ∆, i.e.

ECM = U∆UT .

The principal directions {wi}Li=1 are the columns of U that correspond to the
L largest eigenvalues of ∆. The corresponding matrix of principal directions
is denoted W ∈ RN×L. One uses projected mean vectors {WTMT

i }K−1
i=0 and

projected covariance matrices {WTCiW}K−1
i=0 to conduct the attacks. Specifically
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speaking, the probability of observing a noise vector when one assumes the key-
dependent operation is Oi is computed by

pi(ni(S)) =
exp(− 1

2ni(S)W (WTCiW )−1
i (ni(S)W )T )√

(2π)L|WTCiW |
ni(S) ∈ RN . (2)

One classifies the correct (sub)key based on the probability computed by equa-
tion (2).

3 Our New Way

In this section, for the purposes of comparison, we will introduce three differ-
ent strategies to conduct Template Attacks. The first strategy and the second
strategy are the classical way of conducting Template Attacks but with different
number of interesting points per clock cycle. The third strategy is our new way
of conducting Template Attacks. Finally, we evaluate the computational prices
of the second strategy, the third strategy, and PCA-based Template Attacks.

Assume that, in one trace, there is a continual point fragment (P0, P1, . . . ,
PN−1) which is correspond to the key-dependent operation and has length N .
We also assume that these N points are in c continual clock cycles. Therefore,
there are N/c points per clock cycle. Let the symbol P(i,j) denotes the jth,

j ∈ {1, . . . , N/c} interesting point in the ith, i ∈ {1, . . . , c} clock cycle.
Note that, there are many methods about how to choose interesting points.

For example, difference of means based method [1], sum of squared differences
based method [10], Signal to Noise Ratio based method [14], SOST [10], and
DPA based method [14] etc. The DPA based method is considered to be the
most efficient method to choose interesting points for classical Template Attacks.
However, in this paper, we do not investigate the question about how to choose
a point as the interesting point. In other words, we assume one can choose
interesting points efficiently and effectively.

3.1 Strategy 1

In this strategy, one uses only one point as the interesting point per clock cycle
and chooses c points {

P(1,1), P(2,1), . . . , P(c,1)

}
from the N continual points as the c interesting points. Then, one conducts
classical Template Attacks with templates which are built with the c interesting
points. We call the attack with this strategy as “ATTACK-1”.

3.2 Strategy 2

In this strategy, one uses more than one point as the interesting point per clock
cycle. In order to show this strategy more clearly, we take the simplest case as
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an example, i.e. we assume that one uses two points as the interesting point per
clock cycle. Therefore, 2c points are chosen from the N continual points as the
interesting points:{

(P(1,1), P(1,2)), (P(2,1), P(2,2)), . . . , (P(c,1), P(c,2))
}
.

Then, one conducts classical Template Attacks with templates which are built
with the 2c interesting points. This means that one needs to compute a (1× 2c)
mean vector and a (2c × 2c) covariance matrix for each template. We call the
attack with Strategy 2 as “ATTACK-2”.

Note that, the success rate of Strategy 2 will reduce when one uses more
points as the interesting point per clock cycle to conduct Template Attacks [5].
Our experiments in the next section also verified this fact.

3.3 Strategy 3 (Our New Way)

Strategy 3 is our new way of conducting Template Attacks. In our new way,
during the profiling stage, one uses more than one point as the interesting point
per clock cycle. In order to show our new way more clearly, we also take the
simplest case as an example, i.e. we assume that one uses two points as the
interesting points per clock cycle. Therefore, 2c points are chosen from the N
continual points as the interesting points:{

(P(1,1), P(1,2)), (P(2,1), P(2,2)), . . . , (P(c,1), P(c,2))
}
.

One divides the 2c interesting points into two sets. In the first set, there are c
interesting points:

Set1 =
{
P(1,1), P(2,1), . . . , P(c,1)

}
.

The rest c interesting points are in the second set:

Set2 =
{
P(1,2), P(2,2), . . . , P(c,2)

}
.

Note that, in each set, any two points of the c interesting points are not in
the same clock cycle. But the two points (P(i,1), P(i,2)), i = 1, 2, . . . , c are in
the same clock cycle and contain very similar information. In the following,
one builds templates in the same way as classical Template Attacks with the
c interesting points in Set1 and obtains a group of templates denoted by G1.
Similarly, with the same traces used for obtaining G1, one builds templates with
the c interesting points in Set2 and obtains another group of templates G2. At
this point, the profiling stage is finished.

In the extraction stage, one first computes a sequence{
Pr(1, 0),Pr(1, 1), . . . ,Pr(1,K − 1)

}
using G1 with some traces obtained from the target device in the same way as
classical Template Attacks. The value Pr(1, i) represents the probability of the ith

(sub)key is the correct (sub)key (In the example of section 2.2, Pr(1, i) equals to
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∏t
j=1 Pr(Sj |keyi).). Then, one sorts the sequence {Pr(1, 0),Pr(1, 2), . . . ,Pr(1,K−

1)} in descending order and computes Index(1, i), i = 0, 1, . . . ,K − 1 for each
(sub)key. The value Index(1, i) represents the sequence number of Pr(1, i) in the
sorted sequence. Similarly, one computes another sequence{

Pr(2, 0),Pr(2, 1), . . . ,Pr(2,K − 1)
}

using G2 with the same traces obtained from the target device. Then, he com-
putes Index(2, i), i = 0, 1, . . . ,K − 1 for each (sub)key. The candidate value of
the correct key is computed by

keyck = argmini

{
Index(1, i) + Index(2, i), i ∈ {0, 1, . . . ,K − 1}

}
.

We call the attack with our new way as “ATTACK-3”.

Discussions In our new way, we do not build templates with interesting
points in the same clock cycle simultaneously. Therefore, the new way avoids
the numerical problems when inverting the covariance matrix. The new way will
has higher success rate of attacks because it exploits information from more
points in a trace in spite of the points in the same clock cycle provide very
similar information. The paper [2] claims that “additional points in the same
clock cycle do not provide additional information”. Our experiments in the next
section show that the claim of that paper are not correct. If additional points
in the same clock cycle do not provide additional information, the success rate
of our new way should approximately equal to that of ATTACK-1. However,
evaluation results show that the success rate of our new way is higher than that
of ATTACK-1.

There are two generalizations about our new way of conducting Template
Attacks. The first generalization is to use more points as the interesting point
per clock cycle to conduct our new way of Template Attacks. Assume that one
uses s (2 < s ≤ N/c) points as the interesting point per clock cycle, he will
divide the cs interesting points into s sets and build s groups of templates in the
profiling stage similarly to the way introduced above. In the extraction stage,
one classifies the correct (sub)key by computing

keyck = argmini

{
Index(1, i) + . . .+ Index(s, i), i ∈ {0, 1, . . . ,K − 1}

}
.

The second generalization is as follows. One can use s (2 ≤ s ≤ N/c) points as
the interesting point per clock cycle. For a fixed number of points used as the
interesting point per clock cycle, one uses more than s sets of points to build
templates and conducts our new way similarly as long as any two points in each
set are not in the same clock cycle.

The success rate of our new way will be higher when the two generalizations
are used but the computational price will also be higher. In this paper, we
only consider the first generalization and do not further consider the second
generalization.
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3.4 Computational Price

We evaluate the computational prices of ATTACK-2, ATTACK-3, and PCA-
based Template Attacks (short for PCA-TA) in this subsection. For Template
Attacks, the computational price mainly depends on the size of the mean vector
and the covariance matrix. Therefore, we compare the sizes of the mean vec-
tors and the covariance matrixes to show the computational prices of the three
attacks. We respectively show the sizes of the mean vectors and the covariance
matrixes of the profiling stage and the extraction stage for the three attacks
in Table 1 and Table 2. For ATTACK-2 and ATTACK-3, we assume one us-
es s (2 ≤ s ≤ N/c) points as the interesting point per clock cycle. Hence, for
ATTACK-3, one needs to compute s (1×c) mean vectors and s (c×c) covariance
matrixes.

From Table 1 and Table 2, we find that the computational price of our new
way (ATTACK-3) is much lower than that of classical Template Attacks (Attack-
2) both in the profiling stage and the extraction stage, especially when the
value of c is large. The reason is that the size of the covariance matrix grows
quadratically with the number of interesting points. In the profiling stage, the
computational price of our new way is much lower than that of PCA-based
Template Attacks. But the computational price of our new way is higher than
that of PCA-based Template Attacks in the extraction stage. To sum up, the
global computational price of our new way is low and practical.

Table 1. The Sizes of Mean Vectors And Covariance Matrixes of The Profiling Stage

the sizes of mean vectors the sizes of covariance matrixes

ATTACK-2 1× sc sc× sc

ATTACK-3 s× (1× c) s× (c× c)

PCA-TA 1×N N ×N

Table 2. The Sizes of Mean Vectors And Covariance Matrixes of The Extraction Stage

the sizes of mean vectors the sizes of covariance matrixes

ATTACK-2 1× sc sc× sc

ATTACK-3 s× (1× c) s× (c× c)

PCA-TA 1× L L× L

4 Experiments

In this section, we experimentally evaluate the three strategies introduced in Sec-
tion 3 as well as PCA-based Template Attacks. We tried to attack the output
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of the first S-box in the first round of unprotected AES-128 software imple-
mentation on an typical 8-bit microcontroller STC89C58RD+ whose operating
frequency is 11MHz as an example. The real power traces were acquired with a
sampling rate of 50MS/s. The average number of real power traces during the
sampling process was 10 times. In all the practical experiments, we chose the
continual point fragment using classical DPA based method [14]. The correlation
coefficient of each point in the continual point fragment was larger than 0.7. We
chose the points with high correlation coefficient as the interesting point per
clock cycle.

Let “AT1” denote Attack-1. Let “AT2 2ppc” and “AT3 2ppc” denote case of
ATTACK-2 and ATTACK-3 using the same two points as the interesting point
per clock cycle. Let “AT2 3ppc” and “AT3 3ppc” denote case of ATTACK-2 and
ATTACK-3 using the same three points as the interesting point per clock cycle.
Let “AT2 appc” and “AT3 appc” denote case of ATTACK-2 and ATTACK-
3 using all the points as the interesting point per clock cycle. Let “PCA-TA”
denote PCA-based Template Attacks using six principal directions (i.e. L = 6
Please see Section 2.2 for more details.). We conducted the eight attacks with
same traces both in the profiling stage and the extraction stage. For simplicity,
let np denote the number of traces used in the profiling stage and let ne denote
the number of traces used in the extraction stage.

We used 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 traces to build the
256 templates respectively. The traces were generated with a fixed main key and
random plaintext inputs. We generated additional 20,000 traces with another
fixed main key and random plaintext inputs. The 20,000 traces were used in
the extraction stage. We tested the success rates of the eight attacks when one
uses ne traces in the extraction stage as follows. We repeated the eight attacks
500 times. For each time, we chose ne traces from the 20,000 traces uniformly
at random and the eight attacks were conducted with the same ne traces. We
respectively recorded how many times the eight attacks can successfully recover
the correct subkey. The success rates of the eight attacks are shown in Figure 1.

From Figure 1, we can see that the success rate of ATTACK-3 is higher than
those of ATTACK-1, ATTACK-2, and PCA-based Template Attacks. Therefore,
we prove that PCA-based Template Attacks is not optimal. We also note that,
when more points are used as the interesting point per clock cycle, the success
rate of our new way will be higher while the success rate of classical Template
Attacks will be lower. One cannot expect that the success rate of ATTACK-2 will
be much higher than those of ATTACK-1 and PCA-based Template Attacks. The
reasons are as follows. First, ATTACK-2 only uses very similar information from
the additional points in the same clock cycle. Second, essentially, our new way
does not depend on more advanced method of information extraction compared
with classical Template Attacks.

For other S-boxes in the first round of the unprotected AES-128 software
implementation, similar evaluation results were obtained by us. These evaluation
results show that one can not ignore the additional information provided by the
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Fig. 1. The Practical Experiments Results
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additional points in the same clock cycle because the additional information
can also be exploited to achieve better classification performance of Template
Attacks.

5 Conclusion and Future Work

In this paper, we introduce a new way of conducting Template Attack when one
want to use more than one point as the interesting point per clock cycle. This new
way achieves better classification performance compared with classical Template
Attacks and PCA-based Template Attacks. Moreover, the computational price
of the new way is low and practical. Therefore, we suggest that one should
use this new way to better understand practical threats of Template Attacks
when one want to use more than one point as the interesting point per clock
cycle to conduct this kind of attacks. In the future, it would be interesting
to find quantitative factors about why classical Template Attacks have poorer
classification performance when one uses more than one point as the interesting
point per clock cycle. It is also very necessary to further verify our new way in
other devices such as FPGA and ASIC.
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