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Abstract. Template Attacks are widely accepted to be the most pow-
erful side-channel attacks from an information theoretic point of view.
For Template Attacks, many papers suggested an accepted guideline for
choosing interesting points. The accepted guideline is that one should on-
ly choose one point as the interesting point per clock cycle. Up to now,
many different methods of choosing interesting points were introduced.
However, it is still unclear that which method will lead to the best classi-
fication performance for Template Attacks. In this paper, we comprehen-
sively evaluate and compare the classification performance of Template
Attacks when using different methods of choosing interesting points. E-
valuation results show that the classification performance of Template
Attacks has obvious difference when different methods of choosing in-
teresting points are used. The CPA based method and the SOST based
method will lead to the best classification performance. Moreover, we
find that some of the methods of choosing interesting points provide the
same results in the same circumstance. Finally, we correctly and exper-
imentally prove the accepted guideline for choosing interesting points
for Template Attacks is correct by presenting a new way of conducting
Template Attacks.
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1 Introduction

Side-channel attacks are one of the most important threats against modern cryp-
tographic implementations. The basic idea of these attacks is to determine the
key of a cryptographic device by exploiting its power consumption [11], its elec-
tromagnetic radiation [20], its execution time [19], and many more [21]. Tra-
ditional security notions (such as chosen-ciphertext security for public-key en-
cryption schemes) do not provide any security guarantee against such attacks,



and many implementations of provably secure cryptosystems were broken by
side-channel attacks.

Power analysis attacks have received such a large amount of attention be-
cause they are very powerful and can be conducted relatively easily. Therefore,
let us focus exclusively on power analysis attacks. As an important method of
Power Analysis Attacks, Template Attacks were firstly proposed by S. Chari et
al. in 2002 [1]. Template Attacks are profiled side-channel attacks. Under the
assumption that one (an actual attacker or an evaluator) has a reference device
identical or similar to the targeted device, and thus be well capable of char-
acterizing power leakages of the targeted device, Template Attacks are widely
accepted to be the strongest side-channel attacks from an information theoretic
point of view [1]. We note that, Template Attacks are also important tools to
evaluate the physical security of a cryptographic device.

Template Attacks consist of two stages. The first stage is the profiling stage
and the second stage is the extraction stage. In the profiling stage, one captures
some actual power traces from a reference device identical or similar to the
targeted device and builds templates for each key-dependent operation with the
actual power traces. In the extraction stage, one can exploit a small number
of actual power traces measured from the targeted device and the templates
obtained from the profiling stage to classify the correct (sub)key.

Motivations Note that for real-world implementation of cryptography de-
vices, one side-channel leakage trace (i.e. one actual power trace for the case
of power analysis attacks) usually contains multiple samples corresponding to
the targeted intermediate value. The reason is that the key-dependent opera-
tions usually take more than one instruction cycles. In addition, according to
Nyquist-Shannon sampling theorem, the acquisition rate of the signal acquisi-
tion device is always set to be several times faster than the working frequency
of the targeted cryptographic device.

For Template Attacks to be practical, it is paramount that not all the samples
of an actual power trace are part of the templates. To reduce the number of
samples and the size of the templates, one needs to choose some special samples
as the interesting points in actual power traces. The interesting points are those
time samples that contain the most information about the characterized key-
dependent operations. For classical Template Attacks, many papers [2,3,5,10,12]
suggested an accepted guideline for choosing interesting points. The accepted
guideline is that one should only choose one point as the interesting point per
clock cycle.

Up to now, many different methods of choosing interesting points were in-
troduced. They are Difference Of Means based method [1] (DOM), Sum Of
Squared Differences based method [10] (SOSD), Correlation Power Analysis based
method (Chapter 6 in [11]) (CPA), Sum Of Squared pairwise T-differences based
method [10] (SOST), Signal-to-Noise Ratios based method (pp.73 in [11]) (S-
NR), Variance based method [16] (VAR), Mutual Information Analysis based
method [17] (MIA). Kolmogorov-Smirnov Analysis based method [18] (KSA),
and Principal Component Analysis based method [3] (PCA). On one hand, for



the selection of interesting points, an important observation is that applying dif-
ferent methods of choosing interesting points onto the same actual power traces
may induce different classification performance for Template Attacks, even if it
is explicitly required that all interesting points selected must correspond to the
same targeted intermediate value. On the other hand, although these methods
could also be used to choose interesting points for one stage attacks (Such as
Differential Power Analysis), Template Attacks are two stages attacks and have
distinct principle compared with one stage attacks. Therefore, putting these two
things together, it makes a very practical sense to investigate the question that
which method of choosing interesting points will lead to the best classification
performance for Template Attacks.

Another important question which needs to be considered is as follows. Pre-
vious papers [2,4] suggested that one should obey the accepted guideline for
choosing interesting points for Template Attacks since more points in the same
clock cycle do not provide more information. Moreover, for classical Template
Attacks, numerical obstacles will arise when inverting the covariance matrix if
one uses more than one point as the interesting point per clock cycle and us-
ing more points leads to poorer classification performance for Template Attacks.
However, these do not mean that the accepted guideline for choosing interesting
points is proved in a correct and reasonable way. First, no previous work directly
verifies (theoretically or experimentally) the statement that more points in the
same clock cycle do not provide more information. Second, no one clearly gives
out what the numerical obstacles accurately are. Finally, when the numerical
obstacles do not exist, whether using more than one point as the interesting
point per clock cycle will lead to better classification performance is still un-
known (If the answer is positive, one can further use more than one point as
the interesting point per clock cycle to improve the classification performance of
Template Attacks.). Therefore, the accepted guideline for choosing interesting
points is still not proved in a correct and reasonable way.

In this paper, we try to answer the above two important questions.

Contributions Main contributions of this paper are two-folds.

Firstly, we comprehensively evaluate and compare the classification perfor-
mance of Template Attacks when using different methods of choosing interesting
points. Evaluation results show that the classification performance of Template
Attacks has obvious difference when different methods of choosing interesting
points are used. The Correlation Power Analysis based method and the Sum Of
Squared pairwise T-differences based method will lead to the best classification
performance. Moreover, some methods of choosing interesting points will lead to
the same results in the same circumstance.

Secondly, we correctly and experimentally prove the accepted guideline for
choosing interesting points for Template Attacks is correct by presenting a new
way of conducting Template Attacks.

Related Work Template Attacks were firstly introduced in [1]. Answers to
some basic and practical issues of Template Attacks were provided in [2], such as
how to choose interesting points in an efficient way and how to preprocess noisy



data. Efficient methods were proposed in [4] to avoid several possible numerical
obstacles when implementing Template Attacks. N. Hanley et al. [12] presented
a variant of Template Attacks that can be applied to block ciphers when the
plaintext and ciphertext used are unknown. In [8], Template Attacks were used to
attack a masking protected implementation of a block cipher. Recently, a simple
pre-processing technique of Template Attacks, normalizing the sample values
using the means and variances was evaluated for various sizes of test data [7].
B. Gierlichs et al. [10] made a systematic comparison of Template Attacks and
Stochastic Model based Attacks [24]. How to best evaluate the profiling stage
and the extraction stage of profiled side-channel attacks by using the information
theoretic metric and the security metric was shown in [22].

LDA-based Template Attacks were introduced in [9]. However, this kind of
Template Attacks depends on the condition of equal covariances [4] (Please see
Section 2.1.1 for more details.), which does not hold in most settings. Therefore,
it is not a better choice compared with PCA-based Template Attacks (Please
see Section 2.3 for more details.) in most settings [4] and we ignore this kind of
attacks here.

Organization of This Paper The rest of this paper is organized as fol-
lows. In Section 2, we briefly review the different methods of choosing interesting
points, Template Attacks as well as PCA-based Template Attacks. In Section 3,
we introduce the classical way and our new way of conducting Template Attacks.
The two ways are used to show our contributions. In Section 4, we comprehen-
sively evaluate and compare the classification performance of Template Attacks
when using different methods of choosing interesting points. We also correctly
prove the accepted guideline for choosing interesting points for Template Attacks
by our new way in this section. In Section 5, we conclude the paper and show
the future work.

2 Preliminaries

In this section, we briefly review the different methods of choosing interesting
points, Template Attacks as well as PCA-based Template Attacks.

2.1 The Methods of Choosing Interesting Points

Now, we briefly review the different methods of choosing interesting points. They
are DOM, SOSD, CPA, SOST, SNR, VAR, MIA, and KSA. The Principal Com-
ponent Analysis based method (PCA) will be introduced in Section 2.3.

We compute the signal-strength estimate F(t) for every point P; correspond-
ing to the targeted intermediate value in actual power traces using the different
methods of choosing interesting points. Then, the interesting points are chosen
based on the value of the signal-strength estimate F(¢).

Assume that there are K key-dependent operations O; (i = 0,1,..., K — 1)
corresponding to the targeted intermediate value of the implementation of the



targeted cryptographic algorithm (e.g. AES-128). Every key-dependent opera-
tion O can be expressed by a function of the (sub)key key and the input plaintext
m, namely O = g(m, key) (For example, when one chooses the outputs of the S-
boxes (denoted by Sbox) in the first round of the AES-128 implementation as the
targeted intermediate value, O = Sbox(m @ key).). One can predicate the hypo-
thetical power consumption value of the key-dependent operation O = g(m, key)
by h(g(m, key)), where h is a hypothetical leakage function (In this paper, we
choose the typical Hamming Weight function (pp.40-41 in [11]) as the leakage
function.).

Before introducing specific methods of choosing interesting points, we first
assume that one invokes the implementation of the targeted cryptographic algo-
rithm n times and obtains n actual power traces (The n actual power traces are
denoted by S1,Ss,...,S,. For a point P, in the actual power trace S;, its power
consumption value is denoted by S;[P;].) which are used to choose interesting
points. The n actual power traces are sampled from the implementation with a
fixed key and random input plaintexts. In the scenario of choosing interesting
points for Template Attacks, one knows the key and every input plaintexts for
the n invocations (Note that, in the profiling stage, the reference device is under
one’s full control.).

For a fixed point P;, the power consumption values of the n actual power
traces are stored in the vector R(t) := (S1[P], S2[P], ..., Sn[P:]). The hypo-
thetical power consumption values for the n invocations are stored in vector
H(n) := (h(g(mq, key)), h(g(ma, key)), ..., h(g(my, key))), where m; is the in-
put plaintext of the i’ invocation and key is the (sub)key. Let’s define the
sets G; = {S;|g(m;,key) = O;},i = 0,1,..., K — 1. For the point P, we let
M;[P] =S98, [P]/1Gy| (i =0,1,...,K — 1), where S; € G; and the symbol
|G;| denotes the cardinality of the set G;. The methods of choosing interesting
points are shown in the following.

DOM In this method,

F(t) =Y M;[P] — M;[P),
1#]
where 7,7 € {0,1,..., K —1}.
SOSD This method of choosing interesting points is similar to DOM, but
the signal-strength estimate is computed as follows

F(t) =Y _(Mi[P] — M;[P))?,
1#]
where 7,7 € {0,1,..., K —1}.
CPA In this method, the signal-strength estimate equals to the Pearson
correlation coefficient between actual power traces and hypothetical power con-
sumptions. Specifically speaking,

i1 (Mg(mi, key)) — H(n)) - (Si[P] — R(t))
t

)

T (hlgmi,key)) — H@)? - (Si[7] - R(D)?



where H(n) and R(¢) respectively denote the mean values of the vectors H(n)
and R(t).

SOST The SOST is based on the T-Test, which is a standard statistical
tool to meet the challenge of distinguishing noisy signals. For a point P;, let
02(t) denote the variance of all the sample data S;[FP], where S; € G;. The
signal-strength estimate of this method is shown as follows:

M;[t] - M;lt] ?
F(t) = :
; <¢az<t>/|ai| + a§<t>/|Gj|>

where 7,7 € {0,1,..., K — 1}.

SNR Signal-to-noise ratios are commonly used in electrical engineering and
signal processing. An SNR is the ratio between the signal and the noise compo-
nent of a measurement. The general definition of SNR in a digital environment
is given in the following:

Var(Signal)

SN = Var(Noise)

In case of a power analysis attack, for a point P;, the signal corresponds to
PC”ézp7 which is the component of the power consumption that is exploitable.
The exploitable power consumption PCémp is the only component that contains
relevant information for an attacker in a given attack scenario. The total power
consumption of point P; (denoted by PC*) minus PCY, , is viewed as the noise
component. Therefore, it has that

F(r) — Var(PCY,,)
(1) = Var(PC* — PCt,,)’

where the variances are computed based on the n actual power traces.
VAR In this method, for point P;, the signal-strength estimate is computed
as follows
F(t) = Var(R(t)).

MIA The mutual information [23] between two discrete variables X and YV
is defined to be I(X;Y) = H(X) — H(X|Y), where H(X) is the entropy of X,
H(X|Y) is the conditional entropy of X given Y. One can compute

PriX =z,Y =] )

IXY)= 3 PlX=2Y =yl lown(5rr =7 prx 23]

zeX,yeY
In order to choose interesting points for Template Attacks, we compute
F(t) = I(H(n), R(t)).

KSA The Kolmogorov-Smirnov Analysis is a nonparametric test method,
quantifies a distance between the empirical cumulative distribution function



(CDF) of two random variables to determine the similarity of them. Assume
that the random variable A has n samples (denoted by Ay, As, ..., A,), its em-
pirical CDF is Ua(z) = 2 3% | I, <4, where I4,<, is an indicator function. The
value of I4,< is 1 when A; < x; otherwise, it is 0. Similarly, the empirical CDF
of random variable B is Ug(x). The distance between A and B is defined to be
KS(A || B) = supyecaup|Ua(x) — Up(x)|, where sup, is the supremum of the

set of distances. The signal-strength estimate is computed as follows:

F(t) = E[KSR() || (R(t)[H(n)))]-

2.2 Template Attacks

Template Attacks consist of two stages. The first stage is the profiling stage and
the second stage is the extraction stage. We will introduce the two stages in the
following.

The Profiling Stage Assume that there exist K different (sub)keys key;, i =
0,1,..., K — 1 which need to be classified. Also, there exist K different key-
dependent operations O;, i = 0,1,..., K — 1. Usually, one will built K tem-
plates, one for each key-dependent operation O;. One can exploit some methods
to choose N interesting points (P, Py, ..., Py_1). Each template is composed
of a mean vector and a covariance matrix. Specifically speaking, the mean vec-
tor is used to estimate the data-dependent portion of side-channel leakages. It
is the average signal vector M; = (M;[FPo],. .., M;[Pn—_1]) for each one of the
key-dependent operations. The covariance matrix is used to estimate the prob-
ability density of the noises at different interesting points. It is assumed that
noises at different interesting points approximately follow the multivariate nor-
mal distribution. A N dimensional noise vector n;(S) is extracted from each
power trace S = (S[Fo],...,S[Pn_1]) representing the template’s key depen-
dency O; as n;(S) = (S[Fo] — M;[P), ..., S[Pn-1] — M;[Pn_1]). One computes
the (N x N) covariance matrix C; from these noise vectors. The probability den-
sity of the noises occurring under key-dependent operation O; is given by the
N dimensional multivariate Gaussian distribution p; (), where the probability of
observing a noise vector n;(S) is:

1 1

pi(ni(S)) = Weacp(— Sn(S)C'ni(8)7) my(S) e RV, (1)

In equation (1), the symbol |C;| denotes the determinant of C; and the symbol
C; ! denotes its inverse. We know that the matrix C; is the estimation of the true
covariance ¥;. The condition of equal covariances [4] means that the leakages
from different key-dependent operations have the same true covariance X =
39 =31 = -+ = Xg_1. In most settings, the condition of equal covariances
does not hold. Therefore, in this paper, we only consider the device in which the
condition of equal covariances does not hold.

The Extraction Stage Assume that one obtains ¢ power traces (denoted
by S1,S2,...,S;) from the targeted device in the extraction stage. For example,



when the power traces are statistically independent, one will apply maximum
likelihood approach on the product of conditional probabilities (pp.156 in [11]),
ie.

t
keyer 1= argma:ckeyl{ H Pr(S;lkey;),i =0,1,..., K — 1},
j=1
where Pr(S;lkeyi) = pys; key) (Mf(s; key:)(Sj))- The keyy is considered to be
the correct (sub)key. The output of the function f(S;,key;) is the index of a
key-dependent operation. For example, when the output of the first S-box in the
first round of AES-128 is chosen as the targeted intermediate value, one builds
templates for each output of the S-box. In this case, f(S;, key;) = Sbox(m; &
key;), where m; is the input plaintext corresponding to the power trace S;.

2.3 PCA-based Template Attacks

A more systematic approach of choosing interesting points, which relies on the
data variability, is to choose the interesting points based on Principal Compo-
nent Analysis (PCA). PCA-based Template Attacks [3] exploit a continual point
fragment correspond to the targeted intermediate value in actual power traces
(We assume the length of the continual point fragment is N.). One first computes
the empirical covariance matrix, which is given by
=
ECM = — ZO (M; — M)(M; — M)
=

The quantity M = ZZK:BI M, /K is the average of the mean vectors. Let us
denote the matrixes of eigenvectors and eigenvalues of ECM by U and A,
i.e. ECM = UAU”. The principal directions {w;}%, are the columns of U
that correspond to the L largest eigenvalues of A. The corresponding matrix
of principal directions is denoted W € RN*E. The Cumulative Percentage of
Total Variation (CPTV) [13] is often used to determine how many principal
directions should be exploited (i.e. to determine the concrete value of L). One
uses projected mean vectors {WTM? fi 61 and projected covariance matrices
{WTCiW}iIi 61 to conduct the attacks. Specifically speaking, the probability of
observing a noise vector when one assumes the key-dependent operation is O; is
computed by

exp(— %ni(S)W(WTCiW)Z—_l (n;(S)W)T)
Jenrwiew

pi(ni(S)) = n(S) eRY. (2

One classifies the correct (sub)key based on the probability computed by equa-
tion (2). One can use the method introduced in paper [4] to compute the pro-
jected mean vectors and the projected covariance matrices. Using this method,
one can avoid both numerical obstacles and the computation of large covari-
ance matrices. We uses this advanced method to conduct PCA-based Template
Attacks in this paper.



3 Strategies to Conduct Template Attacks

In this section, for the purpose of comparison, we will introduce three different
strategies to conduct Template Attacks. The first strategy and the second strat-
egy are the classical way of conducting Template Attacks but using different
number of interesting points per clock cycle. The third strategy is our new way
of conducting Template Attacks.

Assume that, in one actual power trace, there is a continual point fragment

(Po, Pr1,...,Pn_1),

which is correspond to the targeted intermediate value and has length N. We also
assume that these N points are in ¢ continual clock cycles. Therefore, there are
N/c points per clock cycle. Let the symbol P; ;) denotes the gt je{1,...,N/c}
interesting point in the i*", i € {1,...,¢} clock cycle. For interesting points in
the same clock cycle, their orders are determined by the signal-strength estimate
F(¢) which is computed by a kind of method of choosing interesting points. For
example, when one uses Correlation Power Analysis based method, he computes
the coefficient of correlation of each point in the clock cycle. The point with the
highest coefficient of correlation is set to be P(; 1) and the point with the lowest
coefficient of correlation is set to be P(; n/c)-

3.1 Strategy 1

In this strategy, one only uses one point as the interesting point per clock cycle
and chooses ¢ points {P1 1), P2,1);-- -, Pe,1)} from the N continual points as
the c¢ interesting points. Then, one conducts classical Template Attacks with
templates which are built based on the ¢ interesting points. We call the attack
with this strategy as “ATTACK-1”.

3.2 Strategy 2

In this strategy, one uses more than one point as the interesting points per clock
cycle. In order to show this strategy more clearly, we take the simplest case as
an example. We assume that one uses two points as the interesting points per
clock cycle. Therefore, 2¢ points are chosen from the N continual points as the
interesting points: {(P(1,1)7 P(LQ)), (P(Q,l), P(ng))7 ey (P(CJ), P(C,Q))}.

Then, one conducts classical Template Attacks with templates which are
built based on the 2c¢ interesting points. This means that one needs to compute
a (1 x 2¢) mean vector and a (2¢ x 2¢) covariance matrix for each template.
We call the attack with Strategy 2 as “ATTACK-2". Note that, the success rate
of Strategy 2 will reduce when one uses more points as the interesting points
per clock cycle to conduct Template Attacks [2,4]. Our experiments in the next
section also verified this fact.



3.3 Strategy 3 (Our New Way)

Strategy 3 is our new way of conducting Template Attacks, which is exploited to
correctly prove the accepted guideline for choosing interesting points for Tem-
plate Attacks. In our new way, during the profiling stage, one uses more than
one point as the interesting points per clock cycle. We also take the simplest
case as an example. Therefore, 2¢ points are chosen from the N continual points
as the interesting points:

{(Pa1), Pa,2), (Po1ys P2y, - - (P, Peg)) }-

Then, one divides the 2¢ interesting points into two sets. In the first set Setl,
there are c interesting points Setl = {P(1,1)7 Poyy, -, P(c,1)}~ The rest ¢ inter-
esting points are in the second set Set2 = {P1 9), P2,2), - - -, Pc,2)}. Note that,
in each set, any 2 points of the ¢ interesting points are not in the same clock
cycle. But the 2 points (P 1), P;,2)), 4 € {1,2,...,c} are in the same clock cy-
cle. In the following, one builds templates in the same way as classical Template
Attacks with the ¢ interesting points in Setl and obtains a group of templates
(denoted by G1). Similarly, with the same power traces used for obtaining G1,
one builds templates with the ¢ interesting points in Set2 and obtains another
group of templates (denoted by G2). At this point, the profiling stage is finished.
In the extraction stage, one first computes a sequence

{Pr(1,0),Pr(1,1),...,Pr(1,K — 1)},

where the value Pr(1,4) represents the probability of the i*" (sub)key is the cor-
rect (sub)key (In the example of Section 2.2, Pr(1, 7) equals to H;Zl Pr(S;|key;).)
using G1 with some actual power traces obtained from the targeted device in the
same way as classical Template Attacks. Then, one sorts the sequence in decreas-
ing order and computes Index(1,4), i = 0,1,..., K —1 for each (sub)key. The val-
ue Index(1,%) represents the sequence number of Pr(1,4) in the sorted sequence.
Similarly, one computes another sequence {Pr(2,0),Pr(2,1),...,Pr(2, K — 1)}
using G2 with the same actual power traces obtained from the targeted device.
Then, he computes Index(2,), i =0,1,..., K — 1 for each (sub)key. The candi-
date value of the correct key is computed by

keyer = argmini{lndex(l,i) + Index(2,14),7 € {0,1,..., K — 1}}

We call the attack with our new way as “ATTACK-3”.

Discussions There is a kind of generalization about our new way of con-
ducting Template Attacks. The generalization is to use more points as the in-
teresting points per clock cycle to conduct our new way. Assume that one uses s
(2 < s < N/c) points as the interesting points per clock cycle, he will divide the
cs interesting points into s different sets and build s different groups of templates
in the profiling stage similarly to the way introduced above. In the extraction
stage, one classifies the correct (sub)key by computing

keyer = argmini{lndex(l,i) + ...+ Index(s,i),i € {0,1,..., K — 1}}

10



In our way, in the same set (e.g. Setl), the points from different clock cycles
have nearly equal informational level. For example, in the first and the second
clock cycle, we respectively choose Py 1y and P31y (rather than Py 9), P2 3), or
P3.4)) to be the interesting points in Setl. Building templates with interesting
points from different clock cycles but have different informational levels (e.g.
P1,1y and Pz 4y) will lead to poorer classification performance.

Note that, in our new way, we do not build templates with interesting points
in the same clock cycle simultaneously. Therefore, the new way completely avoids
the numerical obstacles during inverting the covariance matrix when one uses
more than one point as the interesting point per clock cycle. If the classification
performance of the new way remains almost unchanged when more points are
used as the interesting points per clock cycle, it will demonstrate that more points
in the same clock cycle do not provide more information which can be exploit to
improve the classification performance of Template Attacks. Furthermore, this
means that the accepted guideline for choosing interesting points for Template
Attacks is correct. Therefore, we can correctly prove the accepted guideline for
choosing interesting points for Template Attacks is correct by using our new
way.

4 Experimental Evaluations

In this section, we will introduce two groups of experiments. In the first group of
experiments (denoted by Group 1), we comprehensively evaluate and compare
the classification performance of Template Attacks when using different methods
of choosing interesting points. In the second group of experiments (denoted by
Group 2), we correctly prove that the accepted guideline for choosing interesting
points for Template Attacks by using our new way.

For the implementation of a cryptographic algorithm with countermeasures,
one usually first tries his best to use some methods to delete the countermea-
sures from actual power traces. If the countermeasures can be deleted, then
one tries to recover the correct (sub)key using classical attack methods against
unprotected implementation. For example, if one has actual power traces with
random delays [15], he may first use the method proposed in [14] to remove the
random delays from actual power traces and then uses classical attack methods
to recover the correct (sub)key. The methods of deleting countermeasures from
actual power traces are beyond the scope of this paper. Moreover, considering
actual power traces without any countermeasures shows the upper bound of the
physical security of the targeted cryptographic device. Therefore, we take un-
protected AES-128 implementation as example. We tried to attack the outputs
of all the S-boxes in the first round of an unprotected AES-128 software imple-
mentation on an typical 8-bit microcontroller STC89C58RD+ whose operating
frequency is 11MHz. The actual power traces were acquired with a sampling
rate of 50MS/s. The average number of actual power traces during the sampling
process was 10 times.
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We generated three sets of actual power traces, Set A, Set B, and Set C. The
Set A captured 20,000 actual power traces which were generated with a fixed
main key and random plaintext inputs. The Set B also captured 20,000 actual
power traces which were generated with another fixed main key and random
plaintext inputs. The set C captured 40,000 actual power traces which were
generated with a fixed main key and random plaintext inputs. We used the
same device to generate the three sets of actual power traces, which provides
a good setting for the focuses of our research. For our device, the condition
of equal covariances does not hold. This means that the differences between
different covariance matrixes C; are very evident (can easily be observed from
visual inspection).

In all our experiments, we chose the same 3 continual clock cycles about the
outputs of all the S-boxes in the first round of the unprotected AES-128 software
implementation. In each clock cycle, there are 4 points. Therefore, there are 12
points (denoted by (Py, Pi, ..., Pi1)) totally. We implemented all the methods of
choosing interesting points for Template Attacks including DOM, SOSD, CPA,
SOST, SNR, VAR, MIA, KSA, and PCA.

In all the experiments, PCA-based Template Attacks used the first 6 principal
directions (i.e. L = 6 Please see Section 2.2 for more details.). For our device, the
first 6 principal directions are sufficient to ensure the classification performance
of PCA-based Template Attacks. The CPTV is larger than 0.997 when the first 6
principal directions are used. Using the rest few principal directions only slightly
increase the power of this kind of attacks and it is not necessary to use all the
principal directions [3,4]. For simplicity, let np denote the number of actual power
traces used in the profiling stage and let ne denote the number of actual power
traces used in the extraction stage. In this paper, we use the most typical metric
success rate [6] as the metric about the classification performance of Template
Attacks. We only show the evaluation results of the first S-box. For other S-boxes
in the first round of the unprotected AES-128 software implementation, similar
evaluation results were obtained by us for both the two groups of experiments.

4.1 Group 1

We chose interesting points by using the 40,000 actual power traces in Set C.
In Table 1, we show the interesting points chosen by different methods (DOM,
SOSD, CPA, SOST, SNR, VAR, MIA, and KSA) by using the 40,000 actual
power traces in Set C. In Table 1, the symbol “(i,5)” denote the j interesting
point in the i" clock cycle (i.e. P(; j)).

From Table 1, we find that some methods of choosing interesting points
provide the same results in the same circumstance. For example, Difference Of
Means based method and Sum Of Squared Differences based method provide the
same results. Correlation Power Analysis based method and Sum Of Squared
pairwise T-differences based method provide the same results. Signal to Noise
Ratio based method and Variance based method provide the same results.

We will show the success rates of Template Attacks using different methods
of choosing interesting points. According to the accepted guideline for choosing
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Table 1. The interesting points chosen by different methods

[ (D)2 [EH[EH][22)][23)][2H][GDH]B2)]B3)][(B4)]
DOM PQ P3 P() P1 P7 PG P4 P5 Pll P9 PlO P8
SOSD| P, | P | P | A || PP | Ps | P | Ps || Pii| Py | Pro| Ps
CPA P3 P2 Pl P() P6 P5 P4 P7 PQ P]_l PlO P8
SOST | Ps P P Py Ps Ps Py Pr Py | Piu | Pio | Bs
SNR | Py | P | Ps | P || PP | P | Ps | Ps || Pii| P | Pio| Ps
VAR | Py | P» | P P P | Pr | Ps | Ps || Pu| Po | Pio| Bs
MIA | P | Ps [P | P || Bs | P | PP | P || Po| Pi| Piol| Ps
KSA | P | P | P | P || Ps | P | P | P || Po | Pul| Ps | Prio

interesting points (In the second group of experiments, we will prove the accepted
guideline is correct.), for the above 8 methods of choosing interesting points, we
built templates based on the points { P 1), P(2,1), P(3,1)}, one in each clock cycle.
We conducted Template Attacks using different methods of choosing interesting
points with the same actual power traces both in the profiling stage and the
extraction stage. Specifically speaking, we respectively chose 10,000, 15,000, and
20,000 different actual power traces from Set A to build the 256 templates using
different methods of choosing interesting points. Template Attacks using the
method A to choose interesting points is denoted by the symbol “A-TA”. We
tested the success rates of Template Attacks using different methods of choosing
interesting points when one uses ne actual power traces in the extraction stage
as follows. We repeated the 9 attacks (DOM-TA, SOSD-TA, CPA-TA, SOST-
TA, SNR-TA, VAR-TA, MIA-TA, KSA-TA, and PCA-TA) 1,000 times. For each
time, we chose ne actual power traces from Set B uniformly at random and the
9 attacks were conducted with the same ne actual power traces. We respectively
recorded how many times the 9 attacks can successfully recover the correct
subkey.

The success rates of Template Attacks using different methods of choosing
interesting points are shown in Figure 1. The success rates of Template Attacks
using different methods of choosing interesting points when ne is fixed to 50 are
shown in Table 2.

09 0]

03] o]

o]
07|
206

2 08 206

@ 04| @ 04| @ 04 4
Ny o o
(a) np =10,000 (b) np =15,000 (¢) np =20,000

Fig. 1. The experiment results of different methods of choosing interesting points
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From Figure 1 and Table 2, we find that CPA-based method and SOST-based
method lead to the highest success rates in all cases. When np is small (e.g.
np = 10,000), PCA-based Template Attacks lead to the lowest success rates.
When np is large, DOM-based Template Attacks and SOSD-based Template
Attacks lead to the lowest success rates.

Table 2. The success rates for the case ne = 50

np | DOM [SOSD| CPA [SOST [ SNR [ VAR | MIA | KSA | PCA |
10,000 | 0.58 | 0.58 [ 0.80 | 0.80 | 0.66 | 0.66 | 0.74 | 0.74 | 0.46
15,000 | 0.69 | 0.69 | 0.87 | 0.87 | 0.74 | 0.74 | 0.84 | 0.84 | 0.70
20,000 | 0.76 | 0.76 | 0.91 | 0.91 | 0.80 | 0.80 | 0.89 | 0.89 | 0.76

4.2 Group 2

We correctly prove the accepted guideline for choosing interesting points for
Template Attacks is correct with both the best and the worst methods of choos-
ing interesting points. Based on the discoveries of the first group of experiments,
we chose Correlation Power Analysis based method as the best method and
Difference Of Means based method as the worst method. We also conducted
PCA-based Template Attacks for the purpose of comparison.

Let “AT1” denote ATTACK-1. Let “AT2 2ppc” and “AT3 2ppc” respective-
ly denote the case of ATTACK-2 and ATTACK-3 using the same 2 points as the
interesting points per clock cycle. Let “AT2 3ppc” and “AT3 3ppc” respectively
denote the case of ATTACK-2 and ATTACK-3 using the same 3 points as the
interesting points per clock cycle. Let “AT2 appc” and “AT3 appc” respectively
denote the case of ATTACK-2 and ATTACK-3 using all the points as the in-
teresting points per clock cycle. Let the symbol “A>B” denotes the case that
Attack A has obvious higher success rate than Attack B. Let the symbol “AxB”
denotes the case that Attack A has almost the same success rate as Attack B.

For both the two methods of choosing interesting points (CPA and DOM),
we conducted the 8 attacks (AT1, AT2 2ppc, AT2 3ppc, AT2 appc, AT3 2ppc,
AT3 3ppc, AT3 appc, and PCA-TA) with the same actual power traces both
in the profiling stage and the extraction stage. We respectively chose 10,000,
15,000, and 20,000 different actual power traces from Set A to build the 256
templates for the 8 attacks. We tested the success rates of the 8 attacks when
one uses ne actual power traces in the extraction stage as follows. We repeated
the 8 attacks 1,000 times. For each time, we chose ne actual power traces from
Set B uniformly at random and the 8 attacks were conducted with the same ne
actual power traces. We respectively recorded how many times the 8 attacks can
successfully recover the correct subkey.

The success rates of the 8 attacks when Correlation Power Analysis based
method was used as the method of choosing interesting points are shown in

14



Figure 2. The success rates of the 8 attacks when Correlation Power Analysis
based method was used as the method of choosing interesting points and ne
is fixed to 50 are shown in Table 3. From Figure 2 and Table 3, we find that
AT1~AT3 2ppc~AT3 3ppc~AT3 appc>AT2 2ppcxPCA-TA>AT2 3ppc>AT2
appc. When more points are used, the success rates of our new way (AT3 2ppc,
AT3 3ppc, and AT3 appc) are almost unchanged as the success rate of ATTACK-
1. This discovery shows that more points in the same clock cycle do not provide
more information and the accepted guideline for choosing interesting points for
Template Attacks is correct.

—an P | = ] o
- = AT2200 - -
AT2 3pp0

- L 09 - 09 o
osf] e i 0s e os /
o ;
o7 = = =AT3 3ppc| P 07| a 07| J
2 06 AT3 appc| 4 D 2 06 a 2 06 /
gosl po| . s / ] /

% 0| 4 % 03

03 03] PV
02 / 2 02|
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“The number of races used in the extracton stage

(a) np =10,000 (b) np =15,000 (c) np =20,000

imber of traces used i

Fig. 2. The experiment results of Correlation Power Analysis based method

Table 3. The success rates for the 8 attacks when ne = 50 (CPA)

| Attacks [ np =10,000 | np = 15,000 | np = 20,000 |

AT1 0.79 0.89 0.91
AT?2 2ppc 0.49 0.70 0.80
AT?2 3ppc 0.28 0.54 0.68
AT2 appc 0.18 0.36 0.53
AT3 2ppc 0.75 0.86 0.89
AT3 3ppc 0.78 0.88 0.91
AT3 appc 0.78 0.88 0.90
PCA-TA 0.49 0.72 0.78

The success rates of the 8 attacks when Difference Of Means based method
was used as the method of choosing interesting points are shown in Figure 3.
The success rates of the 8 attacks when Difference Of Means based method
was used as the method of choosing interesting points and ne is fixed to 50
are shown in Table 4. However, from Figure 3 and Table 4, we find that AT3
2ppc~AT3 3ppcr~AT3 appc>AT1~AT2 2ppc~PCA-TA>AT?2 3ppc>AT?2 appc.
When more points are used, the success rates of our new way (AT3 2ppe, AT3
3ppc, and AT3 appc) are obvious higher than the success rate of ATTACK-1.
This discovery shows that Difference Of Means based method is not a good
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method to choose interesting points for Template Attacks once more. Because
the rest points in the clock cycles (i.e. P(; 2), P;,3), P4y, © = 1,2,3) also contain
valuable information which can be exploited to achieve higher success rate.

ool = = AT2 2ppc| Lo 09| — 4 09|

081 —— AT2 appe =7 e o8] e caid o8]

/ . 4
506 ATS app 4 206 LA 206
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‘The number of races used in the extracton stage The number of races used ion stage The number of races used i

(a) np =10,000 (b) np =15,000 (¢) np =20,000

Fig. 3. The experiment results of Difference Of Means based method

Table 4. The success rates for the 8 attacks when ne = 50 (DOM)

| Attacks [ np=10,000 [ np = 15,000 | np = 20,000 |

AT1 0.59 0.72 0.76
AT?2 2ppc 0.49 0.68 0.76
AT?2 3ppc 0.31 0.54 0.66
AT?2 appc 0.17 0.40 0.49
AT3 2ppc 0.79 0.86 0.88
AT3 3ppc 0.79 0.86 0.89
AT3 appc 0.76 0.84 0.89
PCA-TA 0.49 0.71 0.75

In Figure 4, we show the experiment results for AT1 and AT3 2ppc using
Correlation Power Analysis based method as method of choosing interesting
points (respectively denoted by AT1 CPA-TA and AT3 2ppc CPA-TA), AT3
2ppc using Difference Of Means based method as method of choosing interesting
points (denoted by AT3 2ppc DOM-TA). Figure 4 shows that different methods
of choosing interesting points (except PCA) lead to almost the same success rates
when more than one point are used as the interesting points per clock cycle (by
using our new way of conducting Template Attacks). Therefore, we suggest that
one should obey the accepted guideline for choosing interesting points and uses
the best method of choosing interesting points (CPA or SOST) when he conducts
Template Attacks.

From Figure 2 and Figure 3, we can clearly find that the classical way of
conducting Template Attacks (AT2 2ppe, AT2 3ppc, and AT2 appc) achieves
lower success rates when more points are used as the interesting points per clock
cycle.
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Fig. 4. The experiment results for CPA and DOM

Note that, the success rates of the same kind of attack method shown in the
above figures and tables may have slight differences because we conducted the
different groups of experiments independently and respectively even for fixed np
and ne.

5 Conclusions

In this paper, we show that Correlation Power Analysis based method and Sum
Of Squared pairwise T-differences based method are the best choices of choosing
interesting points for Template Attacks. Moreover, we find that some methods of
choosing interesting points will provide the same results. In additional, we cor-
rectly and experimentally prove the accepted guideline for choosing interesting
points for Template Attacks is correct by presenting a new way of conducting
Template Attacks. In the future, it is necessary to research how to choose inter-
esting points for other profiled side-channel attacks (such as Stochastic Model

based Attacks [24]) and to further verify our results in other devices such as
ASIC and FPGA.
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