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Abstract. Template attacks are widely accepted to be the most pow-
erful side-channel attacks from an information theoretic point of view.
For template attacks, many papers suggested a guideline for choosing
interesting points which is still not proven. The guideline is that one
should only choose one point as the interesting point per clock cycle.
Up to now, many different methods of choosing interesting points were
introduced. However, it is still unclear that which approach will lead to
the best classification performance for template attacks. In this paper,
we comprehensively evaluate and compare the classification performance
of template attacks when using different methods of choosing interest-
ing points. Evaluation results show that the classification performance of
template attacks has obvious difference when different methods of choos-
ing interesting points are used. The CPA based method and the SOST
based method will lead to the best classification performance. Moreover,
we find that some methods of choosing interesting points provide the
same results in the same circumstance. Finally, we verify the guideline
for choosing interesting points for template attacks is correct by present-
ing a new way of conducting template attacks.
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1 Introduction

Side-channel attacks pose a serious threat to modern cryptographic implemen-
tations. The basic idea of these attacks is to determine the key of a crypto-
graphic device by exploiting its power consumption [11], its electromagnetic
radiation [20], its execution time [19], and many more [21]. Traditional security
notions (such as chosen-ciphertext security for public-key encryption schemes)
do not provide any security guarantee against such attacks, and many implemen-
tations of provably secure cryptosystems were broken by side-channel attacks.

Power analysis attacks have received such a large amount of attention because
they are very powerful and can be conducted relatively easily. Therefore, let us



focus exclusively on power analysis attacks. As an important attack of power
analysis attacks, template attacks which belong to profiled side-channel attacks
were firstly proposed by Chari et al. in 2002 [1]. Under the assumption that one
(an actual attacker or an evaluator) has a reference device identical or similar
to the target device, and thus be well capable of characterizing power leakages
of the target device, template attacks are widely accepted to be the strongest
side-channel attacks from an information theoretic point of view [1]. We note
that, template attacks are also important tools to evaluate the physical security
of a cryptographic device.

Template attacks consist of two stages. The first stage is the profiling stage
and the second stage is the extraction stage. In the profiling stage, one captures
some actual power traces from a reference device identical or similar to the target
device and builds templates for each key-dependent operation with the actual
power traces. In the extraction stage, one can exploit a small number of actual
power traces measured from the target device and the templates obtained from
the profiling stage to classify the correct (sub)key.

1.1 Motivations

For real-world implementation of cryptography devices, one side-channel leakage
trace (i.e. one actual power trace for the case of power analysis attacks) usually
contains multiple samples corresponding to the target intermediate value. The
reason is that the key-dependent operations usually take more than one instruc-
tion cycles. In addition, according to Nyquist-Shannon sampling theorem, the
acquisition rate of the signal acquisition device is always set to be several times
faster than the working frequency of the target cryptographic device.

For template attacks to be practical, it is paramount that not all the samples
of an actual power trace are part of the templates. To reduce the number of
samples and the size of the templates, one needs to choose some special samples
as the interesting points in actual power traces. The interesting points are those
points that contain the most information about the characterized key-dependent
operations. For classical template attacks, many papers [2,3,6,9,10,12] suggested
an guideline for choosing interesting points, i.e. one should only choose one point
as the interesting point per clock cycle.

Up to now, many different methods of choosing interesting points were in-
troduced. They are Difference Of Means based method [1] (DOM), Sum Of
Squared Differences based method [10] (SOSD), Correlation Power Analysis based
method (Chapter 6 in [11]) (CPA), Sum Of Squared pairwise T-differences based
method [10] (SOST), Signal-to-Noise Ratios based method (pp. 73 in [11]) (S-
NR), Variance based method [16] (VAR), Mutual Information Analysis based
method [17] (MIA), Kolmogorov-Smirnov Analysis based method [18] (KSA),
and Principal Component Analysis based method [3] (PCA).

On one hand, for the selection of interesting points, an important observation
is that applying different methods of choosing interesting points onto the same
actual power traces may induce different classification performance for template
attacks, even if it is explicitly required that all interesting points selected must
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correspond to the same target intermediate value. On the other hand, although
these methods could also be used to choose interesting points for one stage
attacks (such as differential power analysis), template attacks are two stages
attacks and have completely distinct principle compared with one stage attacks.
Therefore, putting these two things together, it makes a very practical sense to
investigate the question that which method of choosing interesting points will
lead to the best classification performance for template attacks.

Another important question which needs to be considered is as follows. Pre-
vious papers [2, 3, 6, 9, 10, 12] only suggested that one should obey the guideline
of choosing interesting points for template attacks since more points in the same
clock cycle do not provide more information. Moreover, for classical template
attacks, numerical obstacles will arise when inverting the covariance matrix if
one uses more than one point as the interesting point per clock cycle and using
more points leads to poorer classification performance. However, they do not
mean that the guideline for choosing interesting points is proved in a correct
and reasonable way. Firstly, no previous work directly verifies (theoretically or
experimentally) the statement that more points in the same clock cycle do not
provide more information. Secondly, no one clearly gives out what the numeri-
cal obstacles accurately are. Finally, when the numerical obstacles do not exist,
whether or not using more than one point as the interesting point per clock cy-
cle will lead to better classification performance is still unknown (If the answer
is positive, one can further use more than one point as the interesting point
per clock cycle to improve the classification performance of template attacks.).
Therefore, the guideline for choosing interesting points is still not proved. The
question that how to prove the guideline in a correct and reasonable way need
to be answered.

In this paper, we try to answer the above two important questions.

1.2 Contributions

Main contributions of this paper are two-folds. Firstly, we comprehensively e-
valuate and compare the classification performance of template attacks when
using different methods of choosing interesting points. Evaluation results show
that the classification performance of template attacks has obvious difference
when different methods of choosing interesting points are used. The Correlation
Power Analysis based method and the Sum Of Squared pairwise T-differences
based method will lead to the best classification performance. Moreover, some
methods of choosing interesting points leads to the same results in the same
circumstance.

Secondly, we experimentally verify the guideline of choosing interesting points
for template attacks is correct by presenting a new way of conducting template
attacks. Therefore, one should choose just one point as the interesting point per
clock cycle when he conducts template attacks. In this case, the templates size
will be small and the efficiency of the profiling stage will be high.
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1.3 Related Work

Template attacks were firstly introduced in [1]. Answers to some basic and prac-
tical issues of template attacks were provided in [2], such as how to choose
interesting points in an efficient way and how to preprocess noisy data. Efficient
methods were proposed in [9] to avoid several possible numerical obstacles when
implementing template attacks. Hanley et al. [12] presented a variant of template
attacks that can be applied to block ciphers when the plaintext and ciphertex-
t used are unknown. In [8], template attacks were used to attack a masking
protected implementation of a block cipher. Recently, a simple pre-processing
technique of template attacks, normalizing the sample values using the means
and variances was evaluated for various sizes of test data [7]. Gierlichs et al. [10]
made a systematic comparison of template attacks and stochastic model based
attacks [24]. How to best evaluate the profiling stage and the extraction stage of
profiled side-channel attacks by using the information theoretic metric and the
security metric was shown in [22].

Fisher’s Linear Discriminant Analysis (LDA)-based template attacks were
introduced in [4]. This kind of template attacks depends on the condition of
equal covariances [9] (See Section 2.2 for more details.), which does not hold
in most settings. Therefore, it is not a better choice compared with PCA-based
template attacks in most settings [9] and we ignore this kind of attacks here.

1.4 Organization of This Paper

The rest of this paper is organized as follows. In Section 2, we briefly review
the different methods of choosing interesting points, template attacks as well as
PCA-based template attacks. In Section 3, we introduce the classical way and
our new way of conducting template attacks. The two ways are used to show
our contributions. In Section 4, we comprehensively evaluate and compare the
classification performance of template attacks when using different methods of
choosing interesting points. We also correctly prove the guideline for choosing
interesting points for template attacks by our new way in this section. In Section
5, we conclude the paper and show the future work.

2 Preliminaries

In this section, we briefly review the different methods of choosing interesting
points, classical template attacks as well as PCA-based template attacks.

2.1 The Methods of Choosing Interesting Points

Now, we briefly review the different methods of choosing interesting points. They
are DOM, SOSD, CPA, SOST, SNR, VAR, MIA, and KSA. The PCA based
method will be introduced in Section 2.3.

We compute the signal-strength estimate F(t) for every point Pt correspond-
ing to the target intermediate value in actual power traces using the different
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methods of choosing interesting points. Then, the interesting points are chosen
based on the value of the signal-strength estimate F(t).

Assume that there are K key-dependent operations Oi (i = 0, 1, . . . ,K − 1)
corresponding to the target intermediate value of the implementation of the
target cryptographic algorithm (e.g. AES-128). Every key-dependent operation
O can be expressed by a function of the (sub)key key and the input plaintext m,
namely O = g(m, key). One can predicate the hypothetical power consumption
value of the key-dependent operation O = g(m, key) by h(g(m, key)), where h is
a hypothetical leakage function (In this paper, we choose the typical Hamming-
Weight function (pp. 40-41 in [11]) as the leakage function.).

Before introducing specific methods of choosing interesting points, we first
assume that one invokes the implementation of the target cryptographic algo-
rithm n times and obtains n actual power traces (The n actual power traces are
denoted by S1,S2, . . . ,Sn. For a point Pt in the actual power trace Si, its power
consumption value is denoted by Si[Pt].) which are used to choose interesting
points. The n actual power traces are sampled from the implementation with a
fixed key and random input plaintexts. In the scenario of choosing interesting
points for template attacks, one knows the key value and every input plaintexts
for the n invocations (Note that, in the profiling stage, the reference device is
under one’s full control.).

For a fixed point Pt, the power consumption values of the n actual power
traces are stored in the vector R(t) := (S1[Pt], S2[Pt], . . . , Sn[Pt]). The hypo-
thetical power consumption values for the n invocations are stored in the vector
H(n) := (h(g(m1, key)), h(g(m2, key)), . . . , h(g(mn, key))), where mi is the in-
put plaintext of the ith invocation and key is the (sub)key. Let’s define the
sets Gi := {Sj |g(mj , key) = Oi}, i = 0, 1, . . . ,K − 1. For the point Pt, we let

Mi[Pt] :=
∑|Gi|

l=1 Sl[Pt]/|Gi| (i = 0, 1, . . . ,K − 1), where Sl ∈ Gi and the symbol
|Gi| denotes the cardinality of the set Gi. The methods of choosing interesting
points are shown in the following.

DOM In this method,

F(t) =
∑
i ̸=j

Mi[Pt]−Mj [Pt],

where i, j ∈ {0, 1, . . . ,K − 1}.
SOSD This method of choosing interesting points is similar to DOM, but

the signal-strength estimate is computed as follows

F(t) =
∑
i ̸=j

(Mi[Pt]−Mj [Pt])
2,

where i, j ∈ {0, 1, . . . ,K − 1}.
CPA In this method, the signal-strength estimate equals to the Pearson

correlation coefficient between actual power traces and hypothetical power con-
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sumptions. Specifically speaking,

F(t) = ρ(H(n),R(t)) =

∑n
i=1(h(g(mi, key))−H(n)) · (Si[Pt]−R(t))√∑n
i=1(h(g(mi, key))−H(n))2 · (Si[Pt]−R(t))2

,

where H(n) and R(t) respectively denote the mean values of the vectors H(n)
and R(t).

SOST The SOST is based on the T-Test, which is a standard statistical
tool to meet the challenge of distinguishing noisy signals. For a point Pt, let
σ2
i (t) denote the variance of all the sample data Si[Pt], where Si ∈ Gi. The

signal-strength estimate of this method is shown as follows:

F(t) =
∑
i ̸=j

(
Mi[t]−Mj [t]√

σ2
i (t)/|Gi|+ σ2

j (t)/|Gj |

)2

,

where i, j ∈ {0, 1, . . . ,K − 1}.
SNR Signal-to-noise ratios are commonly used in electrical engineering and

signal processing. An SNR is the ratio between the signal and the noise compo-
nent of a measurement. The general definition of SNR in a digital environment
is given in the following:

SNR =
V ar(Signal)

V ar(Noise)
.

In power analysis attacks, for a point Pt, the signal component corresponds
to PCt

exp, which is the component of the power consumption that is exploitable.
The exploitable power consumption PCt

exp is the only component that contains
relevant information for an attacker in a given attack scenario. The total power
consumption of point Pt (denoted by PCt) minus PCt

exp is viewed as the noise
component. Therefore, it has that

F(t) =
V ar(PCt

exp)

V ar(PCt − PCt
exp)

.

The methods of computing V ar(PCt
exp) and V ar(PCt − PCt

exp) can be found
in pp. 73 in [11].

VAR In this method, for point Pt, the signal-strength estimate is computed
as follows

F(t) = V ar(R(t)).

MIA The mutual information [23] between two discrete variables X and Y
is defined to be I(X;Y ) = H(X) −H(X|Y ), where H(X) is the entropy of X,
H(X|Y ) is the conditional entropy of X given Y . One can compute

I(X,Y ) =
∑

x∈X,y∈Y

Pr[X = x, Y = y] · log2
( Pr[X = x, Y = y]

Pr[X = x] · Pr[X = x]

)
.
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In order to choose interesting points for template attacks, we compute

F(t) = I(H(n),R(t)).

KSA The Kolmogorov-Smirnov Analysis is a nonparametric test method,
quantifies a distance between the empirical cumulative distribution function
(CDF) of two random variables to determine the similarity of them. Assume
that the random variable A has n samples (denoted by A1, A2, . . . , An), its em-
pirical CDF is UA(x) =

1
n

∑n
i=1 IAi≤x, where IAi≤x is an indicator function. The

value of IAi≤x is 1 when Ai ≤ x; otherwise, it is 0. Similarly, the empirical CDF
of random variable B is UB(x). The distance between A and B is defined to be
KS(A ∥ B) = supx∈A∪B |UA(x) − UB(x)|, where supx is the supremum of the
set of distances. The signal-strength estimate is computed as follows:

F(t) = E[KS(R(t) ∥ (R(t)|H(n)))].

2.2 Template Attacks

Template attacks consist of two stages. We will introduce the two stages of
template attacks in the following.

The Profiling Stage Assume that there existK different (sub)keys keyi, i =
0, 1, . . . ,K − 1 which need to be classified. Also, there exist K different key-
dependent operations Oi, i = 0, 1, . . . ,K − 1. Usually, one will built K tem-
plates, one for each key-dependent operation Oi. One can exploit some methods
to choose N interesting points (P0, P1, . . . , PN−1). Each template is composed
of a mean vector and a covariance matrix. Specifically speaking, the mean vec-
tor is used to estimate the data-dependent portion of side-channel leakages. It
is the average signal vector Mi = (Mi[P0], . . . ,Mi[PN−1]) for each one of the
key-dependent operations. The covariance matrix is used to estimate the prob-
ability density of the noises at different interesting points. It is assumed that
noises at different interesting points approximately follow the multivariate nor-
mal distribution. A N dimensional noise vector ni(S) is extracted from each
power trace S = (S[P0], . . . , S[PN−1]) representing the template’s key depen-
dency Oi as ni(S) = (S[P0]−Mi[P0], . . . , S[PN−1]−Mi[PN−1]). One computes
the (N×N) covariance matrix Ci from these noise vectors. The probability den-
sity of the noises occurring under key-dependent operation Oi is given by the
N dimensional multivariate Gaussian distribution pi(·), where the probability of
observing a noise vector ni(S) is:

pi(ni(S)) =
1√

(2π)N |Ci|
exp

(
− 1

2
ni(S)C

−1
i ni(S)

T
)

ni(S) ∈ RN . (1)

In equation (1), the symbol |Ci| denotes the determinant of Ci and the symbol
C−1

i denotes its inverse. We know that the matrixCi is the estimation of the true
covariance Σi. The condition of equal covariances [9] means that the leakages
from different key-dependent operations have the same true covariance Σ =
Σ0 = Σ1 = · · · = ΣK−1. In most settings, the condition of equal covariances
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does not hold. Therefore, we only consider the device in which the condition of
equal covariances does not hold.

The Extraction Stage Assume that one obtains t actual power traces (de-
noted by S1,S2, . . . ,St) from the target device in the extraction stage. When the
power traces are statistically independent, one will apply maximum likelihood
approach on the product of conditional probabilities (pp. 156 in [11]), i.e.

keyck := argmaxkeyi

{ t∏
j=1

Pr(Sj |keyi), i = 0, 1, . . . ,K − 1

}
,

where Pr(Sj |keyi) = pf(Sj ,keyi)(nf(Sj ,keyi)(Sj)). The keyck is considered to be
the correct (sub)key. The output of the function f(Sj , keyi) is the index of a
key-dependent operation.

2.3 PCA-based Template Attacks

A more systematic approach of choosing interesting points, which relies on the
data variability, is to choose the interesting points based on Principal Component
Analysis. PCA-based template attacks [3] exploit a continual point fragment
correspond to the target intermediate value in actual power traces (We assume
the length of the continual point fragment is N). This property is different with
classical template attacks which use just one interesting point per clock cycle.
One first computes the empirical covariance matrix, which is given by

ECM =
1

K

K−1∑
i=0

(Mi −M)(Mi −M)T .

The quantity M =
∑K−1

i=0 Mi/K is the average of the mean vectors. Let us
denote the matrixes of eigenvectors and eigenvalues of ECM by U and ∆, i.e.
ECM = U∆UT . The principal directions {wi}Li=1 are the columns ofU that cor-
respond to the L largest eigenvalues of ∆. The corresponding matrix of principal
directions is denoted W ∈ RN×L. The Cumulative Percentage of Total Variation
(CPTV) [13] is often used to determine how many principal directions should
be exploited (i.e. to determine the concrete value of L). One uses projected
mean vectors {WTMT

i }K−1
i=0 and projected covariance matrices {WTCiW}K−1

i=0

to conduct the attacks. The probability of observing a noise vector when one
assumes the key-dependent operation is Oi is computed by

pi(ni(S)) =
exp(−1

2ni(S)W(WTCiW)−1
i (ni(S)W)T )√

(2π)L|WTCiW|
ni(S) ∈ RN . (2)

One classifies the correct (sub)key based on the probability computed by e-
quation (2). One can use the method introduced in paper [9] to compute the
projected mean vectors and the projected covariance matrices. By this, one can
avoid both numerical obstacles and the computation of large covariance matrices.
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3 Strategies to Conduct Template Attacks

In this section, for the purpose of comparison, we will introduce three different
strategies to conduct classical template attacks. The first strategy and the second
strategy are the classical way of conducting classical template attacks but using
different number of interesting points per clock cycle. The third strategy is our
new way of conducting classical template attacks.

Assume that, in one actual power trace, there is a continual point fragment
(P0, P1, . . . , PN−1), which is correspond to the target intermediate value and has
length N . We also assume that these N points are in c continual clock cycles.
Therefore, there are N/c points per clock cycle. Let the symbol P(i,j) denotes

the jth, j ∈ {1, . . . , N/c} interesting point in the ith, i ∈ {1, . . . , c} clock cycle.
For interesting points in the same clock cycle, their orders are determined by the
signal-strength estimate F(t) which is computed by a kind of method of choosing
interesting points.

Note that, PCA-based template attacks exploit the whole continual point
fragment (P0, P1, . . . , PN−1). Therefore, it is no need to choose some specific
points in the N points as the interesting points for this kind of template attacks.

3.1 Strategy 1

In this strategy, one only uses one point as the interesting point per clock cy-
cle and chooses c points {P(1,1), P(2,1), . . . , P(c,1)} from the N continual points
as the c interesting points. Then, one conducts classical template attacks with
templates which are built based on the c interesting points. We call the attacks
with this strategy as “ATTACK-1”.

3.2 Strategy 2

In this strategy, one uses more than one point as the interesting points per clock
cycle. In order to show this strategy more clearly, we take the simplest case as
an example, namely we assume that one uses two points as the interesting points
per clock cycle. Therefore, 2c points are chosen from the N continual points as
the interesting points: {(P(1,1), P(1,2)), (P(2,1), P(2,2)), . . . , (P(c,1), P(c,2))}.

Then, one conducts classical template attacks with templates which are built
based on the 2c interesting points. This means that one needs to compute a (1×
2c) mean vector and a (2c×2c) covariance matrix for each template. We call the
attacks with Strategy 2 as “ATTACK-2”. Note that, the success rate of Strategy
2 will reduce when one uses more than one point as the interesting points per
clock cycle to conduct classical template attacks [2, 9]. Our experiments in the
next section also verified this fact.

3.3 Strategy 3 (Our New Way)

Strategy 3 is our new way of conducting classical template attacks, which is
exploited to correctly and reasonably prove the guideline for choosing interesting
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points for classical template attacks. In our new way, during the profiling stage,
one also uses more than one point as the interesting points per clock cycle. We
also take the simplest case as an example. Therefore, 2c points are chosen from
the N continual points as the interesting points:{

(P(1,1), P(1,2)), (P(2,1), P(2,2)), . . . , (P(c,1), P(c,2))
}
.

Then, one divides the 2c interesting points into two sets. In the first set Set1,
there are c interesting points Set1 = {P(1,1), P(2,1), . . . , P(c,1)}. The rest c inter-
esting points are in the second set Set2 = {P(1,2), P(2,2), . . . , P(c,2)}. Note that,
in each set, any 2 points of the c interesting points are not in the same clock
cycle. In the following, one builds templates in the same way as classical tem-
plate attacks based on the c interesting points in Set1 and obtains a group of
templates (denoted by G1). Similarly, with the same power traces used for ob-
taining G1, one builds templates based on the c interesting points in Set2 and
obtains another group of templates (denoted by G2). At this point, the profiling
stage is finished.

In the extraction stage, after obtaining some power traces from the target
device, one first computes a sequence

SEQ1 =
{
Pr(1, 0),Pr(1, 1), . . . ,Pr(1,K − 1)

}
,

where the value Pr(1, i) represents the probability of the ith (sub)key is the
correct (sub)key1 using G1 and based on the points in Set1 in the same way as
classical template attacks. Then, one sorts the sequence SEQ1 in a decreasing
order (The sorted sequence is denoted by SEQ1′) and computes Index(1, i), i =
0, 1, . . . ,K − 1 for each (sub)key. The value Index(1, i) represents the sequence
number of Pr(1, i) in SEQ1′. Similarly, one computes another sequence

SEQ2 = {Pr(2, 0),Pr(2, 1), . . . ,Pr(2,K − 1)}

using G2 and based on Set2 with the same actual power traces obtained from
the target device. Then, he computes Index(2, i), i = 0, 1, . . . ,K − 1 for each
(sub)key similarly. The candidate value of the correct key is computed by

keyck := argmini

{
Index(1, i) + Index(2, i), i ∈ {0, 1, . . . ,K − 1}

}
.

We call the attacks with our new way as “ATTACK-3”.
Discussions There is a kind of generalization about our new way of con-

ducting template attacks. The generalization is to use more points as the inter-
esting points per clock cycle to conduct our new way. Assume that one uses s
(2 < s ≤ N/c) points as the interesting points per clock cycle, he will divide the
cs interesting points into s different sets and build s different groups of templates
in the profiling stage similarly to the way introduced above. In the extraction
stage, one classifies the correct (sub)key by computing

keyck := argmini

{
Index(1, i) + . . .+ Index(s, i), i ∈ {0, 1, . . . ,K − 1}

}
.

1 In the example of Section 2.2, Pr(1, i) equals to
∏t

j=1 Pr(Sj |keyi).
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In our way, in the same set (e.g. Set1), the points from different clock cycles
have nearly equal informational level. For example, in the first and the second
clock cycle, we respectively choose P(1,1) and P(2,1) (rather than P(2,2), P(2,3), or
P(2,4)) to be the interesting points in Set1. Building templates with interesting
points from different clock cycles but have different informational levels (e.g.
P(1,1) and P(2,4)) will lead to poorer classification performance when excellent
method of choosing interesting points is used.

Note that, in our new way, we do not build templates with interesting points
in the same clock cycle simultaneously. Therefore, the new way completely avoids
the numerical obstacles during inverting the covariance matrix when one uses
more than one point as the interesting point per clock cycle. If the classification
performance of the new way remains almost unchanged when more points are
used as the interesting points per clock cycle, it will demonstrate that more
points in the same clock cycle do not provide more information which can be
exploit to improve the classification performance of classical template attacks.
Furthermore, this means that the guideline for choosing interesting points for
template attacks is correct. Therefore, we can correctly and reasonably prove
the guideline for choosing interesting points for template attacks is correct by
using our new way.

4 Experimental Evaluations

In this section, we will introduce two groups of experiments. In Group 1, we
comprehensively evaluate and compare the classification performance of tem-
plate attacks when using different methods of choosing interesting points. In
Group 2, we verify that the guideline for choosing interesting points for tem-
plate attacks is correct.

For the implementation of a cryptographic algorithm with countermeasures,
one usually first tries his best to use some methods to delete the countermeasures
from actual power traces. If the countermeasures can be deleted, then one tries to
recover the correct (sub)key using classical attack methods against unprotected
implementation. For example, if one has actual power traces with random de-
lays [15], he may first use the method proposed in [14] to remove the random
delays from actual power traces and then uses classical attack methods to recov-
er the correct (sub)key. Moreover, considering actual power traces without any
countermeasures shows the upper bound of the physical security of the target
cryptographic device. Therefore, we take unprotected AES-128 implementation
as example. We tried to attack the outputs of all the S-boxes in the first round of
an unprotected AES-128 software implementation on an typical 8-bit microcon-
troller STC89C58RD+ whose operating frequency is 11MHz. The actual power
traces were acquired with a sampling rate of 50MS/s. The average number of
actual power traces during the sampling process was 10 times.

We generated three sets of actual power traces, Set A, Set B, and Set C. The
Set A captured 20,000 actual power traces which were generated with a fixed
main key and random plaintext inputs. The Set B also captured 20,000 actual
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power traces which were generated with another fixed main key and random
plaintext inputs. The set C captured 40,000 actual power traces which were
generated with a fixed main key and random plaintext inputs. We used the
same device to generate the three sets of actual power traces, which provides
a good setting for the focuses of our research. For our device, the condition
of equal covariances does not hold. This means that the differences between
different covariance matrixes Ci are very evident.

In all our experiments, we chose the same 3 continual clock cycles about the
outputs of all the S-boxes in the first round of the unprotected AES-128 soft-
ware implementation. In each clock cycle, there are 4 points. Therefore, there
are 12 points (denoted by P0, P1, . . . , P11) totally. We implemented all the meth-
ods of choosing interesting points for template attacks including DOM, SOSD,
CPA, SOST, SNR, VAR, MIA, KSA, and PCA. For simplicity, let np denote the
number of actual power traces used in the profiling stage and let ne denote the
number of actual power traces used in the extraction stage. In this paper, we
use the most typical metric success rate [5] as the metric about the classification
performance of template attacks. We only show the evaluation results of the first
S-box. For other S-boxes in the first round of the unprotected AES-128 software
implementation, similar evaluation results were obtained.

4.1 Group 1

We chose interesting points by using the 40,000 actual power traces in Set C.
Note that, PCA-based template attacks exploit the whole continual point frag-
ment (P0, P1, . . . , P11). Therefore, we used the 40,000 actual power traces in
Set C to compute the corresponding matrix of principal directions W for PCA-
based template attacks. In all the following experiments, PCA-based template
attacks used the first 6 principal directions (i.e. L = 6). For our device, the first
6 principal directions are sufficient to ensure the classification performance of
PCA-based template attacks. The CPTV is larger than 0.998 when the first 6
principal directions are used. Using the rest few principal directions only slightly
increase the power of this kind of attacks and it is not necessary to use all the
principal directions [3, 9].

By using the 40,000 actual power traces in Set C, we show the interest-
ing points chosen by different methods except PCA (DOM, SOSD, CPA, SOST,
SNR, VAR, MIA, and KSA) in Table 1. The symbol ”(i, j)” denote the jth inter-
esting point in the ith clock cycle (i.e. P(i,j)). From Table 1, we find that some
methods of choosing interesting points provide the same results in the same
circumstance. For example, Difference Of Means based method and Sum Of
Squared Differences based method provide the same results. Correlation Pow-
er Analysis based method and Sum Of Squared pairwise T-differences based
method provide the same results. Signal to Noise Ratio based method and Vari-
ance based method provide the same results.

We show the success rates of template attacks using different methods of
choosing interesting points. According to the guideline of choosing interesting
points (which will be proven in Group 2), for the above 8 methods, we built
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Table 1. The interesting points chosen by different methods

(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4)

DOM P2 P3 P0 P1 P7 P6 P4 P5 P11 P9 P10 P8

SOSD P2 P3 P0 P1 P7 P6 P4 P5 P11 P9 P10 P8

CPA P3 P2 P1 P0 P6 P5 P4 P7 P9 P11 P10 P8

SOST P3 P2 P1 P0 P6 P5 P4 P7 P9 P11 P10 P8

SNR P0 P2 P3 P1 P7 P4 P6 P5 P11 P9 P10 P8

VAR P0 P2 P3 P1 P7 P4 P6 P5 P11 P9 P10 P8

MIA P2 P3 P1 P0 P6 P5 P7 P4 P9 P11 P10 P8

KSA P2 P3 P1 P0 P6 P5 P7 P4 P9 P11 P8 P10

templates based on the points {P1,1, P2,1, P3,1}, one in each clock cycle. We con-
ducted template attacks using different methods of choosing interesting points
with the same actual power traces both in the profiling stage and the extraction
stage. Specifically speaking, in order to show the success rates of template at-
tacks under different attack scenarios, we respectively chose 10,000 and 20,000
different actual power traces from Set A to build the 256 templates. Template
attacks using the method A to choose the interesting points is denoted by the
symbol “A-TA”.

We tested the success rates of template attacks using different methods of
choosing interesting points when one uses ne actual power traces in the extrac-
tion stage as follows. We repeated the 9 attacks (DOM-TA, SOSD-TA, CPA-TA,
SOST-TA, SNR-TA, VAR-TA, MIA-TA, KSA-TA, and PCA-TA) 1,000 times.
For each time, we chose ne actual power traces from Set B uniformly at random
and the 9 attacks were conducted with the same ne actual power traces. We
respectively recorded how many times the 9 attacks can successfully recover the
correct subkey.

The success rates of template attacks using different methods of choosing
interesting points are shown in Figure 1. The success rates of template attacks
using different methods of choosing interesting points when ne is fixed to 50 are
shown in Table 2. From Figure 1 and Table 2, we find that CPA-based method
and SOST-based method lead to the highest success rates in all cases. When
np is small (e.g. np = 10, 000), PCA-based template attacks lead to the lowest
success rates. When np is large, DOM-based template attacks and SOSD-based
template attacks lead to the lowest success rates.

Table 2. The success rates for the case ne = 50

np DOM SOSD CPA SOST SNR VAR MIA KSA PCA

10, 000 0.55 0.55 0.78 0.78 0.63 0.63 0.75 0.75 0.49

20, 000 0.75 0.75 0.89 0.89 0.77 0.77 0.87 0.87 0.78
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Fig. 1. The experiment results of different methods of choosing interesting points

4.2 Group 2

We correctly and reasonably prove the guideline for choosing interesting points
for template attacks is correct with both the best and the worst methods of
choosing interesting points. Based on the discoveries of the first group of exper-
iments, we chose Correlation Power Analysis based method as the best method
and Difference Of Means based method as the worst method. We also conducted
PCA-based template attacks which also used the same actual power traces both
in the profiling stage and in the extraction stage for the purpose of comparison.

Let “AT1” denote ATTACK-1. Let “AT2 2ppc” and “AT3 2ppc” respective-
ly denote the case of ATTACK-2 and ATTACK-3 using the same 2 points as the
interesting points per clock cycle. Let “AT2 3ppc” and “AT3 3ppc” respectively
denote the case of ATTACK-2 and ATTACK-3 using the same 3 points as the
interesting points per clock cycle. Let “AT2 appc” and “AT3 appc” respectively
denote the case of ATTACK-2 and ATTACK-3 using all the points as the in-
teresting points per clock cycle. Let the symbol “A>B” denotes the case that
Attack A has obvious higher success rate than Attack B. Let the symbol “A≈B”
denotes the case that Attack A has almost the same success rate as Attack B.

For both the two methods of choosing interesting points (CPA and DOM),
we conducted the 8 attacks (AT1, AT2 2ppc, AT2 3ppc, AT2 appc, AT3 2ppc,
AT3 3ppc, AT3 appc, and PCA-TA) with the same actual power traces both in
the profiling stage and the extraction stage. We respectively chose 10,000 and
20,000 different actual power traces from Set A to build the 256 templates for the
8 attacks. We tested the success rates of the 8 attacks when one uses ne actual
power traces in the extraction stage as follows. We repeated the 8 attacks 1,000
times. For each time, we chose ne actual power traces from Set B uniformly at
random and the 8 attacks were conducted with the same ne actual power traces.
We respectively recorded how many times the 8 attacks can successfully recover
the correct subkey.

14



The success rates of the 8 attacks when Correlation Power Analysis based
method was used as the method of choosing interesting points are shown in Fig-
ure 2. From Figure 2, we find that AT1≈AT3 2ppc≈AT3 3ppc≈AT3 appc>AT2
2ppc≈PCA-TA>AT2 3ppc>AT2 appc. When more points are used, the suc-
cess rates of our new way (AT3 2ppc, AT3 3ppc, and AT3 appc) are almost
unchanged as the success rate of ATTACK-1. This discovery shows that more
points in the same clock cycle do not provide more information and the guideline
for choosing interesting points for template attacks is correct.
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Fig. 2. The experiment results of Correlation Power Analysis based method
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Fig. 3. The experiment results of Difference Of Means based method

The success rates of the 8 attacks when Difference Of Means based method
was used as the method of choosing interesting points are shown in Figure
3. From Figure 3, we find that AT3 2ppc≈AT3 3ppc≈AT3 appc>AT1≈AT2
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2ppc≈PCA-TA>AT2 3ppc>AT2 appc. When more points are used, the success
rates of our new way (AT3 2ppc, AT3 3ppc, and AT3 appc) are obvious high-
er than the success rate of ATTACK-1. This discovery shows that Difference
Of Means based method is not a good method to choose interesting points for
template attacks once more. Because the rest points in the clock cycles (i.e.
P(i,2), P(i,3), P(i,4), i = 1, 2, 3) also contain valuable information which can be
exploited to achieve higher success rate.
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Fig. 4. The experiment results for CPA and DOM

In Figure 4, we show the experiment results for AT1 and AT3 2ppc using
Correlation Power Analysis based method as method of choosing interesting
points (respectively denoted by AT1 CPA-TA and AT3 2ppc CPA-TA), AT3
2ppc using Difference Of Means based method as method of choosing interesting
points (denoted by AT3 2ppc DOM-TA). Figure 4 shows that different methods
of choosing interesting points (except PCA) lead to almost the same success
rates when more than one point are used as the interesting points per clock
cycle (by using our new way of conducting template attacks). Therefore, we
suggest that one should obey the guideline for choosing interesting points and
uses the best method of choosing interesting points (CPA or SOST) when he
conducts template attacks. Figure 2 and Figure 3 show that, the classical way
of conducting template attacks (AT2 2ppc, AT2 3ppc, and AT2 appc) achieves
lower success rates when more points are used as the interesting points per clock
cycle. We note that the success rates of the same kind of attack method shown
in the above figures and tables may have slight differences because we conducted
the different groups of experiments independently and respectively even for fixed
np and ne.
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5 Conclusion

We show that Correlation Power Analysis based method and Sum Of Squared
pairwise T-differences based method are the best choices of choosing interesting
points for template attacks. Moreover, we find that some methods of choosing
interesting points will provide the same results. In additional, we correctly and
experimentally prove the guideline for choosing interesting points for template
attacks is correct by presenting a new way of conducting template attacks.
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