
AN OPTIMAL REPRESENTATION FOR THE TRACE ZERO SUBGROUP

ELISA GORLA AND MAIKE MASSIERER

Abstract. We give an optimal-size representation for the elements of the trace zero subgroup
of the Picard group of an elliptic or hyperelliptic curve of any genus, with respect to a field

extension of any prime degree. The representation is via the coefficients of a rational function,

and it is compatible with scalar multiplication of points. We provide efficient compression and
decompression algorithms, and complement them with implementation results. We discuss in

detail the practically relevant cases of small genus and extension degree, and compare with
the other known compression methods.

1. Introduction

Public key cryptography provides methods for secure digital communication. Among all pub-
lic key cryptosystems, a relevant role is played by those based on the discrete logarithm problem
(DLP). Such cryptographic systems work in finite groups which must satisfy three basic require-
ments: Computing the group operation must be efficient, the DLP must be hard, and there must
be a convenient and compact representation for the elements.

One such group is the trace zero subgroup of the Picard group of an elliptic or hyperelliptic
curve. Given a curve defined over a finite field Fq and a field extension Fqn |Fq of prime degree
n, the trace zero subgroup consists of all Fqn-rational divisor classes of trace zero. While it has
long been established that the trace zero subgroup provides efficient arithmetic and good security
properties, an efficient representation was only known for special parameters. We bridge this gap
by proposing an optimal-size representation for the elements of trace zero subgroups associated
to elliptic curves and hyperelliptic curves of any genus, with respect to field extensions of any
prime extension degree.

The trace zero subgroup can be realized as the Fq-rational points of the trace zero variety,
an abelian variety built by Weil restriction from the original curve. It was first proposed in the
context of cryptography by Frey [Fre99] and further studied by Naumann [Nau99], Weimerskirch
[Wei01], Blady [Bla02], Lange [Lan01, Lan04], Silverberg [Sil05], Avanzi–Cesena [AC07], Cesena
[Ces08, Ces10], and Diem–Scholten [DS], among others. Although the trace zero subgroup is
a proper subgroup of the Fqn -rational points of the Jacobian of the curve, it can be shown
that solving the DLP in the Jacobian can be reduced to solving the DLP in the trace zero
subgroup. Therefore, trace zero cryptosystems may be regarded as the (hyper)elliptic curve
analog of torus-based cryptosystems such as LUC [SS95], Gong–Harn [GH99], XTR [LV00], and
CEILIDIH [RS03].

The trace zero subgroup is of particular interest in the context of pairing-based cryptography.
Rubin and Silverberg have shown in [RS02, RS09] that the security of pairing-based cryptosys-
tems can be improved by using abelian varieties of dimension greater than one in place of elliptic
curves. Jacobians of hyperelliptic curves and trace zero varieties are therefore the canonical
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examples for such applications. E.g., over a field of characteristic 3, the examples of groups with
largest known security parameter come from trace zero subgroups.

Scalar multiplication in the trace zero subgroup is particularly efficient, due to a speed-up
using the Frobenius endomorphism, see [Lan01, Lan04, AC07]. This technique is similar to
the one used on Koblitz curves [Kob91] and has been afterwards applied to GLV/GLS curves
[GLV01, GLS11], which are the basis for several recent implementation speed records for elliptic
curve arithmetic [LS12, FHLS14, BCHL13]. In [AC07], Avanzi and Cesena show that trace
zero subgroups often deliver better scalar multiplication performance than elliptic curves. E.g.,
scalar multiplication in trace zero subgroups of elliptic curves over a degree 5 extension field is
almost 3 times faster than in elliptic curves, for the same group size. They conclude that trace
zero subgroups are very interesting groups for the design of cryptographic systems based on the
discrete logarithm problem due to their vastly superior arithmetic performance, even though
such systems sacrifice some memory and bandwidth.

In this paper, we solve this problem by providing a representation for the elements of trace
zero subgroups which is both efficiently computable and optimal in size. Since the trace zero
subgroup has about q(n−1)g elements, an optimal-size representation should consist of approxi-
mately log2 q

(n−1)g bits. A natural solution would be representing an element of the trace zero
subgroup via (n − 1)g elements of Fq. Such representations have been proposed by Naumann
[Nau99, Chapter 4.2] for trace zero subgroups of elliptic curves and by Lange [Lan04] for trace
zero varieties associated to hyperelliptic curves of genus 2, both with respect to cubic field ex-
tensions, and by Silverberg [Sil05] and Gorla–Massierer [GM14] for elliptic curves with respect
to base field extensions of degree 3 and 5. A compact representation for Koblitz curves has been
proposed by Eagle, Galbraith, and Ong [EGO11].

In this paper we give a new optimal-size representation for the elements of the trace zero
subgroup associated to an elliptic or hyperelliptic curve of any genus g and any field extension
of prime degree n. It is conceptually different from all previous representations, and it is the
first representation that works for elliptic curves with n > 5, for hyperelliptic curves of genus
2 with n > 3, and for hyperelliptic curves of genus g > 2. The basic idea is to represent a
given divisor class via the coefficients of the rational function whose associated principal divisor
is the trace of the given divisor. Our representation enjoys convenient properties, for example
it identifies well-defined equivalence classes of points, and scalar multiplication is well-defined
on such classes. In the context of a DLP-based primitive, where the only operation required is
scalar multiplication of points, this enables us to compute with equivalence classes of trace zero
elements, and no extra bits are required to distinguish between the different representatives.

We also give a compression algorithm to compute the representation, and a decompression
algorithm to recover the original divisor class. We show that our algorithms are comparable with
or more efficient than all previously known methods, when one compares the total time required
for compression and decompression.

The paper is organized as follows: In Section 2 we give some preliminaries on (hyper)elliptic
curves, the trace zero variety, and optimal representations. In Section 3 we discuss the represen-
tation, together with compression and decompression algorithms, and we specialize these results
to elliptic curves in Section 4. In Section 5 we present some implementation results, as well as
a detailed comparison with the other compression methods. Finally, in the Appendix we give
explicit equations for the relevant cases g = 1, n = 3, 5 and g = 2, n = 3.

Acknowledgements. We thank Tanja Lange for bringing to our attention the work of Blady and
Naumann, and we are grateful to the mathematics department of the University of Zurich for
access to their computing facilities. We also thank the anonymous referee for a number of useful
suggestions, which improved the exposition.



AN OPTIMAL REPRESENTATION FOR THE TRACE ZERO SUBGROUP 3

2. Preliminaries

We start by recalling the definitions and basic facts that we will need in this paper, and fixing
some notation.

2.1. Elliptic and hyperelliptic curves. Let C be a projective elliptic or hyperelliptic curve
of genus g defined over a finite field Fq that has an Fq-rational Weierstraß point. For ease
of exposition, we assume that Fq does not have characteristic 2. By making the necessary
adjustments, the content of this paper carries over to the binary case. If Fq has odd characteristic,
then C can be given by an affine equation of the form

C : y2 = f(x)

with f ∈ Fq[x] monic of degree 2g + 1 and with no multiple zeros. We denote by O the point at
infinity and by DivC the group of divisors on C. Let w be the involution

w : C → C, (X,Y ) 7→ (X,−Y ), O 7→ O.
The Frobenius map on C is defined as

ϕ : C → C, (X,Y ) 7→ (Xq, Y q), O 7→ O.
Both w and ϕ extend to group homomorphisms on DivC .

Let Fqn be an extension field of Fq, n ≥ 1. A divisor D is Fqn-rational if ϕn(D) = D. We
denote by DivC(Fqn) the Fqn -rational divisors on C. DivC(Fqn) is a subgroup of DivC .

Let D1 = a1P1 + . . .+ akPk − aO, D2 = b1P1 + . . .+ bkPk − bO ∈ DivC , ai, bi, a, b ∈ Z+ ∪{0},
be two divisors of degree zero. If ai ≤ bi for all i we write D1 ≤ D2.

As usual in the cryptographic setting, we work in the Picard group Pic0
C of C. This is the

group of degree zero divisor classes, modulo principal divisors. For any D,D1, D2 ∈ DivC , we
write [D] for the equivalence class of D in Pic0

C and D1 ∼ D2 for [D1] = [D2]. The Fqn -rational

divisor class [D] is the equivalence class of the Fqn -rational divisor D. The subgroup of Pic0
C

consisting of the Fqn -rational divisor classes is denoted by Pic0
C(Fqn).

A divisor D = P1 + . . .+ Pr − rO ∈ DivC is semi-reduced if Pi ∈ C \ {O} and Pi 6= w(Pj) for
i 6= j. D is reduced if it is semi-reduced and in addition r ∈ {0, . . . , g}. Notice that D is reduced
with r = 0 if and only if [D] = 0.

It follows from the Riemann–Roch Theorem that every divisor class can be represented by a
unique reduced divisor. For any divisors D1 and D2, we denote by D1 ⊕D2 the reduced divisor
such that [D1 ⊕ D2] = [D1 + D2]. When C is an elliptic curve, then each non-zero element
of Pic0

C is uniquely represented by a divisor of the form P − O with P ∈ C. In fact, we have
C ∼= Pic0

C as groups via P 7→ [P −O]. For elliptic curves, we denote a divisor class by the unique
corresponding P ∈ C. In particular, we denote 0 ∈ Pic0

C by the point O.
There is a one-to-one correspondence between semi-reduced divisors D = P1 + . . .+ Pr − rO

and pairs of polynomials (u, v) such that u is monic, deg v < deg u, and u | v2 − f : Given a
divisor D, then u(x) =

∏r
i=1(x −Xi) and v(x) is the unique polynomial such that v(Xi) = Yi

with multiplicity equal to the multiplicity of Pi in D. The polynomial v(x) may be computed
by solving a linear system. Conversely, given polynomials u, v as above, let D = ∆ − deg(∆)O
where ∆ is the effective divisor with defining ideal I∆ = (u(x), y − v(x)). It is easy to show that
D is semi-reduced. Notice that since u | v2 − f , then y2 − f ∈ (u, y − v). The correspondence
restricts to a correspondence between reduced divisors and pairs of polynomials (u, v) such that
u is monic, deg v < deg u ≤ g, and u | v2 − f .

A commonly used representation for divisor classes is the Mumford representation. An ele-
ment [D] ∈ Pic0

C with D a reduced divisor is represented by the pair of polynomials [u(x), v(x)]
associated to it in the correspondence described in the previous paragraph. The Mumford rep-
resentation is particularly useful when computing with divisor classes, and all algorithms given
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in this paper make use of this representation. If C is an elliptic curve, then the Mumford
representation of P = (X,Y ) ∈ C is [x − X,Y ]. It follows from the definition that the Mum-
ford representation of [0] is [1, 0]. A convenient property of the Mumford representation is that
Fqn -rationality of divisor classes is easily detected: [u, v] ∈ Pic0

C(Fqn) if and only if u, v ∈ Fqn [x].
By definition, a reduced divisor D ∈ DivC(Fqn) with [D] = [u, v] is prime if u ∈ Fqn [x] is an

irreducible polynomial. This is equivalent to the statement that (u, y − v) is a prime ideal of
Fqn [x, y]/(y2−f(x)). Notice that being prime depends on the choice of Fqn . Sometimes we write
a divisor as a sum of prime divisors: D = D1 + . . .+Dt, with Di ∈ DivC(Fqn) prime. The prime
divisors D1, . . . , Dt are unique up to permutation, but not necessarily distinct. If [Di] = [ui, vi]

is the Mumford representation, then u =
∏t

i=1 ui is the irreducible factorization of u ∈ Fqn [x].
Cantor’s Algorithm performs the addition of divisor classes in the Mumford representation.

For elliptic curves and hyperelliptic curves of genus 2, there exist explicit addition formulas that
are easier to use and more efficient than Cantor’s Algorithm (see [Was08] and [Lan05]).

2.2. The trace zero variety and optimal representations. The trace endomorphism in the
divisor group of C with respect to the extension Fqn |Fq is defined by

Tr : DivC(Fqn)→ DivC(Fq), D 7→ D + ϕ(D) + . . .+ ϕn−1(D).

Throughout the paper, we denote by uϕ the application of the finite field Frobenius automor-

phism ϕ : Fq → Fq to the coefficients of a polynomial u. We denote the product uuϕ · · ·uϕn−1

by u1+ϕ+...+ϕn−1

or by N(u), and we call it the norm of u.

Lemma 2.1. The trace homomorphism Tr : DivC(Fqn)→ DivC(Fq) has the following properties:

(i) For any prime divisor D we have Tr−1(Tr(D)) = {D,ϕ(D), . . . , ϕn−1(D)}.
(ii) D ∈ DivC(Fqn)\DivC(Fq) is a prime divisor if and only if Tr(D) ∈ DivC(Fq) is a prime

divisor.

Proof. (i) Let D ∈ DivC(Fqn) be a prime divisor with [D] = [u, v], u ∈ Fqn [x] irreducible.

Then Tr(D) has u-polynomial N(u) = uuϕ · · ·uϕn−1

, where all the uϕ
j

are irreducible over Fqn .

Hence any D′ with Tr(D′) = Tr(D) has to have as u-polynomial one of the uϕ
j

, and therefore
D′ = ϕj(D) for some j ∈ {0, . . . , n− 1}. Conversely, Tr(ϕj(D)) = Tr(D) for all j.

(ii) This is a restatement of the well known fact that that u ∈ Fqn [x] \ Fq[x] is irreducible if

and only if N(u) = uuϕ · · ·uϕn−1 ∈ Fq[x] is irreducible. �

Since the Frobenius map is well-defined as an endomorphism on divisor classes, we also have
a trace endomorphism [Tr] in the Picard group

[Tr] : Pic0
C(Fqn)→ Pic0

C(Fq), [D] 7→ [D + ϕ(D) + . . .+ ϕn−1(D)].

We are interested in the kernel of this map.

Definition 2.2. Let n be a prime number. Then the trace zero subgroup of Pic0
C(Fqn) is

Tn = {[D] ∈ Pic0
C(Fqn) | Tr(D) ∼ 0}.

Using Weil restriction, the points of Tn can be viewed as the Fq-rational points of a g(n− 1)-
dimensional variety defined over Fq, called the trace zero variety. For a proof and more details,
see [ACD+06, Chapters 7.4.2 and 15.3].

Interest in the trace zero variety in the cryptographic context was first raised by Frey in
[Fre99]. The main advantages of working in Tn are that addition in the trace zero subgroup
may be sped up considerably by using the Frobenius endomorphism, and that it yields high
security parameters in the context of pairing-based cryptography, for some values of n and g.
Moreover, the DLP in Pic0

C(Fqn) is as hard as the DLP in Tn. Therefore, working in Tn allows



AN OPTIMAL REPRESENTATION FOR THE TRACE ZERO SUBGROUP 5

us to reduce the key length with respect to Pic0
C(Fqn) without compromising the hardness of the

DLP. In order to reduce the key length however, one needs to find an efficient representation for
its elements. In this paper, we give an optimal one for any g and any prime n.

We start by showing that solving the DLP in Pic0
C(Fqn) can be reduced to solving the DLP

in Tn.

Proposition 2.3. We have a short exact sequence

0 −→ Pic0
C(Fq) −→ Pic0

C(Fqn)
[ϕ−id]−→ Tn −→ 0.

In particular, solving a DLP in Pic0
C(Fqn) has the same complexity as solving a DLP in Tn and

a DLP in Pic0
C(Fq).

Proof. Surjectivity of [ϕ− id] holds according to [ACD+06, Proposition 7.13]. This proves that
we have a short exact sequence as claimed. By the standard reduction obtained by combining
an effective version of the Chinese Remainder Theorem and the Pohlig-Hellman Algorithm, we
may assume without loss of generality that we are solving a DLP of the form a[D] = [D′], where
[D], [D′] ∈ Pic0

C(Fqn) and [D] has prime order. If [ϕ(D) − D] 6= 0, then [ϕ(D) − D] and [D]
have the same order, and the DLP may be mapped to Tn via [ϕ − id] and solved there. Else,
[D] ∈ Pic0

C(Fq). �

Remark 2.4. We stress that the choice of good parameters is crucial for the security of trace
zero cryptosystems. While Lange [Lan04], Avanzi–Cesena [AC07], and Rubin–Silverberg [RS09]
have shown that for certain choices of n and g trace zero subgroups are useful and secure in the
context of pairing-based cryptography, there may be security issues in connection with DLP-based
cryptosystems. For example, Weil descent attacks (see [GHS02, Die03, DS]) and index calculus
attacks (see [Gau09, EGT11, Die11]) may apply. However, Weil descent attacks only apply
to a very small proportion of all curves, and index calculus attacks often have large constants
hidden in the asymptotic complexity analysis, thus making them very hard to realize in practice.
Nevertheless, special care must be taken to choose good parameters and avoid weak curves. E.g.,
for g = 1 and n = 3 and for most curves, computing a DLP in the trace zero subgroup has square
root complexity.

Remark 2.5. As a consequence of the exact sequence in Proposition 2.3 we obtain that the
cardinality of the trace zero subgroup may be computed easily in terms of the coefficients of
the characteristic polynomial, see also [ACD+06, Chapter 15.3.1]. In particular, counting the
number of points in Tn only requires determining the characteristic polynomial of a curve defined
over Fq. Counting the number of points of an elliptic or hyperelliptic curve of, e.g., the same
genus and comparable group size would require determining the characteristic polynomial of a
curve defined over Fqn−1 .

The question of finding an optimal-size representation for the elements of the trace zero
subgroup has been investigated in previous works both for elliptic and hyperelliptic curves, and
it is stated as an open problem in the conclusions of [AC07]. The analogous problem for primitive
subgroups of finite fields leads to torus-based cryptography.

Definition 2.6. A representation of size ` for the elements of a finite set G is a map

R : G −→ F`
2

with the property that an element of F`
2 has at most d inverse images, where d is a constant.

Given g ∈ G, x ∈ ImR, we refer to computingR(g) as compression andR−1(x) as decompression.

By taking d = 1 in the definition, one obtains the intuitive definition of a representation as
an injective map. In this paper, we wish to consider representations which identify at most
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d elements of G, where d is a small constant. In our setup, any representation R induces an
injective representation

R : G/∼ −→ F`
2,

where g ∼ h iff R(g) = R(h) for any g, h ∈ G. We sometimes do not distinguish between R and
R, and say that x ∈ ImR is a representation for the class R−1(x).

Definition 2.7. A representation R : G −→ F`
2 of size ` for the elements of a finite set G is

optimal if
` = log2 |G|+O(1).

Intuitively, a representation is optimal if ` is the smallest possible length of a binary repre-
sentation of the elements of G, up to an additive constant that does not depend on the group
order. Notice that, since log2 |G| − log2 d = log2(|G|/d) ≤ log2 |G/∼| ≤ log2 |G|, one has that

log2 |G| = log2 |G/∼|+O(1)

for any constant d. In particular, the length of an optimal representation for the elements of G
does not depend on d, and Definition 2.7 is well-posed.

Notice moreover that R is an optimal representation for the elements of G if and only if R is
an optimal representation for the elements of G/∼.

Remark 2.8. The problem of representing the elements of Fq via binary strings of length log2 q
is well studied. Therefore, a representation for a set G may be given via R : G −→ Fm

q or more
generally via

R : G −→ Fm
q × Fk

2 .

By definition, such a representation is optimal if

m log2 q + k = log2 |G|+O(1).

In particular, such a representation is optimal if |G| = Θ(qm) and k = O(1).

In this paper, we construct a representation of the form

R : Tn −→ Fn−1
q × F2

with the property that each element in the image has at most ng inverse images. Since |Tn| =
Θ(qn−1), then our representation is optimal according to Definition 2.7.

Example 2.9. The usual representation for points on an elliptic curve E defined over Fq is

R : E(Fq) \ {O} −→ Fq

(X,Y ) 7−→ X.

This is an optimal representation of size log2 q. Optimality follows from Hasse’s Theorem, which
states that |E(Fq)| = Θ(q).

Compression has no computational cost, and decompression is efficient, since Y can be recom-
puted, up to sign, from the equation of the curve at the cost of computing a square root in Fq. For
any X ∈ R(E(Fq)) we have R−1(X) = {(X,Y ), (X,−Y )}, hence the representation identifies
each point with its negative. This is compatible with scalar multiplication, since R(P ) = R(Q)
if and only if R(kP ) = R(kQ), for any P,Q ∈ E and for all k ∈ N.

A simple way to make the above representation injective is to append to the image of each
point an extra bit corresponding to the sign of the y-coordinate. This gives a representation

R′ : E(Fq) −→ Fq × F2

of size log2 q+1, which is still optimal since log2 q+1 = log2 |E(Fq)|+O(1) by Hasse’s Theorem.

This logic can also be applied to higher genus hyperelliptic curves.
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Example 2.10. Let C be a hyperelliptic curve of genus g defined over Fq, and define

R : Pic0
C(Fq) −→ Fg

q × F2

[D] = [u =
∑g

i=0 uix
i, v] 7−→ (u0, . . . , ug−1, δ)

where ui = 0 for i > r = deg u, δ = 1 if r = g, and 0 otherwise. The polynomial u contains all
the information about the x-coordinates of the points Pi in the support of the reduced divisor
D = P1 + . . .+Pr−rO, but not about the signs of the corresponding y-coordinates. Therefore R
identifies divisor classes of the form {[wi1(P1)+wi2(P2)+ . . .+wir (Pr)−rO] | ij ∈ {0, 1}}, hence

up to 2g elements of Pic0
C(Fq). As before, one can use g extra bits to store these signs, making

the representation injective (see Hess–Seroussi–Smart [HSS01]). A different representation for
the elements of Pic0

C(Fq) of size g log2 q + g is given by Stahlke [Sta04].

Remark 2.11. Since Tn ⊂ Pic0
C(Fqn), we may use the representation of Example 2.10 for points

of the trace zero subgroup. However this representation is not optimal for Tn, since it has size
ng log2 q + 1, while log2 |Tn| = (n− 1)g log2 q +O(1).

3. An optimal representation for the trace zero subgroup via rational
functions

In this section, we give an optimal representation for the points of the trace zero subgroup.
A simple example is the case of elliptic curves E and extension degree n = 2, where

T2 = {(X,Y ) ∈ E(Fq2) | X ∈ Fq, Y ∈ (Fq2 \ Fq) ∪ {0}} ∪ {O}.
Hence the x-coordinate of the points of T2 yields an optimal representation (see [GM14, Propo-
sition 2]). This statement can be generalized to higher genus curves when n = 2.

Proposition 3.1. Let C be an elliptic or hyperelliptic curve of genus g ≥ 1 defined over Fq, and

let T2 ⊆ Pic0
C(Fq2) be the trace zero subgroup corresponding to the field extension Fq2 |Fq. Then

(1) T2 = {[u, v] ∈ Pic0
C(Fq2) | u ∈ Fq[x], vϕ = −v}.

Therefore, the map
R : T2 −→ Fg

q × F2

[u, v] 7−→ (u0, . . . , ug−1, δ)

yields an optimal representation for the elements of T2, where u =
∑g

i=0 uix
i is monic of degree

0 ≤ r ≤ g, δ = 1 if deg u = g, and δ = 0 otherwise.

Proof. Let D be a reduced divisor with Mumford representation [u, v]. Then: [D] ∈ T2 if and
only if [D] = [w(ϕ(D))]. Since [w(ϕ(D))] = [uϕ,−vϕ] and both D and w(ϕ(D)) are reduced,
then [D] = [w(ϕ(D))] if and only if u = uϕ and v = −vϕ if and only if u ∈ Fq[x] and vϕ = −v.
This proves equality (1).

Equality (1) allows us to represent [D] = [u, v] ∈ T2 via u, with u ∈ Fq[x] monic of degree r,
0 ≤ r ≤ g. In turn, u may be represented via its g coefficients u0, . . . , ug−1 ∈ Fq, together with
the extra bit δ which indicates whether deg u = g or not. This representation identifies [D] and
its Frobenius conjugate [w(D)] = [ϕ(D)]. Finally, it has length g log2 q + 1 = log2 |T2| + O(1),
hence it is optimal. �

We now proceed to solve the problem in the case when n is any prime. Let D be a reduced
divisor. We propose to represent an element [D] of Tn via the rational function hD on C with
divisor

div(hD) = Tr(D).

Such a function is defined over Fq since Tr(D) is, and it is unique up to multiplication by a
constant. We now establish some properties of hD. In particular, we show that a normalized



8 ELISA GORLA AND MAIKE MASSIERER

form of hD can be represented via g(n − 1) elements of Fq plus an extra bit. This gives an
optimal representation for the elements of Tn, which identifies at most ng divisor classes.

Theorem 3.2. Let D = P1 + . . .+Pr − rO be a reduced divisor such that [D] = [u, v] ∈ Tn, and
let hD ∈ Fq(C) be a function such that div(hD) = Tr(D). Write D = D1 + . . . + Dt, where Di

are reduced prime divisors defined over Fqn . Then:

(i) hD = hD,1(x) + yhD,2(x) with hD,1, hD,2 ∈ Fq[x].

(ii) HD(x) := hD,1(x)2 − f(x)hD,2(x)2 ∈ Fq[x] has degree rn, and its zeros over Fq are
exactly the x-coordinates of the points ϕj(P1), . . . , ϕj(Pr) for j = 0, . . . , n− 1. Equiva-
lently, HD = N(u) where N(u) denotes the norm of u relative to Fqn |Fq.

(iii) deg hD,1 ≤ bnr2 c and deg hD,2 ≤ bnr−2g−1
2 c, where equality holds for the degree of hD,1

if r is even or n = 2, and equality holds for the degree of hD,2 if r is odd and n 6= 2.
(iv) Let F be a reduced divisor. Then hD = hF ∈ Fq(C) if and only if F is of the form

F = ϕj1(D1) + . . .+ϕjt(Dt) for some 0 ≤ j1, . . . , jt ≤ n− 1. In particular, there are at
most ng reduced divisors F such that hF = hD.

Proof. Since [D] ∈ Tn, we have 0 ∼ Tr(D) ∈ DivC(Fq). Hence there exists an hD ∈ Fq(C)
such that div(hD) = Tr(D). The function hD is uniquely determined up to multiplication by a
constant.

(i) The function hD is a polynomial, since it has its only pole at O. Modulo the curve equation
y2 = f(x), the polynomial hD ∈ Fq[x, y] has the desired shape.

(ii) By definition, hD has zeros ϕj(P1), . . . , ϕj(Pr), j = 0, . . . , n−1, and pole nrO. Therefore,
hD ◦ w = hD,1(x) − yhD,2(x) has zeros w(ϕj(P1)), . . . , w(ϕj(Pr)), j = 0, . . . , n − 1 and pole
nrO. Since HD(x) = hD(hD ◦ w) ∈ Fq[x, y]/(y2 − f(x)), then HD has precisely the zeros
ϕj(P1), . . . , ϕj(Pr), w(ϕj(P1)), . . . , w(ϕj(Pr)) for j = 0, . . . , n− 1 and the pole 2nrO. Therefore
HD = N(u), up to multiplication by a constant.

(iii) From the fact that degHD = nr and deg f = 2g + 1, we deduce the bounds on the
degrees. If r or n is even, then bnr2 c = nr

2 and bnr−2g−1
2 c = nr

2 −g−1. Therefore deg(h2
D,1) ≤ nr

and deg(fh2
D,2) ≤ nr − 1 and deg hD,1 = nr

2 . An analogous computation for r and n both odd

shows that in this case deg hD,2 = nr−1
2 − g =

⌊
nr−2g−1

2

⌋
.

(iv) Let F ∈ DivC(Fqn) be a reduced divisor such that hF = hD ∈ Fq(C). Then

Tr(F ) = div(hF ) = div(hD) = Tr(D) ∈ DivC(Fq).

Write Tr(D) = Tr(D1) + . . .+ Tr(Dt) = Tr(F ), where Tr(Di) ∈ DivC(Fq) are prime divisors by

Lemma 2.1 (ii). By Lemma 2.1 (i), Tr−1(Tr(Di)) = {Di, ϕ(Di), . . . , ϕ
n−1(Di)} for all i, hence

F = ϕj1(D1) + . . . + ϕjt(Dt) for some j1, . . . , jt ∈ {0, . . . , n − 1}. The number of such F is at
most nt ≤ ng. �

Remark 3.3. If n = 2 and [D] = [u(x), v(x)] ∈ T2, then hD(x, y) = u(x). Hence Theorem 3.2
recovers the optimal representation from Proposition 3.1.

Remark 3.4. Let D ∈ DivC(Fqn) be a reduced divisor, D = D1 + . . .+Dt with Di ∈ DivC(Fqn)
reduced prime divisors. Notice that not all the divisors F of the form F = ϕj1(D1)+. . .+ϕjt(Dt)
for some j1, . . . , jt ∈ {0, . . . , n − 1} are reduced. E.g., let C be a hyperelliptic curve of genus 2
and let P ∈ C(Fqn)\C(Fq) be a point. Then ϕ(P ) 6= P and D = P +w(ϕ(P ))−2O is a reduced
divisor. But a divisor F = ϕj1(P ) + w(ϕj2(P )) − 2O is reduced if and only if j1 6= j2. Because
of this, when decompressing R([D]) one needs to discard all the divisors classes [F ] ∈ Tn which
have Tr(F ) = Tr(D), but F is not a reduced divisor. In our decompression algorithm, for a given
α = R([D]) we recover one reduced F ∈ DivC(Fqn) such that R([F ]) = α. Such an F uniquely
identifies R−1(R([D])).
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The following corollary clarifies how Theorem 3.2 gives an optimal representation for the
elements of Tn, consisting of (n− 1)g elements of Fq and a bit. Using standard techniques, the
representation may be made injective at the cost of appending g log2 n bits to it.

Corollary 3.5. Let n ≥ 3, let 0 6= D ∈ DivC(Fqn) be a reduced divisor of degree zero such

that [D] = [u, v] ∈ Tn, and let r = deg u. Set d1 =
⌊
ng
2

⌋
and d2 =

⌊
(n−2)g−1

2

⌋
. Let hD =

hD,1(x)+yhD,2(x) ∈ Fq[x, y] be such that div(hD) = Tr(D), where hD,1 = γd1
xd1 + . . .+γ1x+γ0,

hD,2 = βd2
xd2 + βd2−1x

d2−1 + . . .+ β1x+ β0. Let hD,1 be monic if r is even, and hD,2 be monic
if r is odd. If r = g let δ = 1, else let δ = 0. Define:

• If g is even, then

R : Tn −→ F(n−1)g
q × F2

[D] 7−→ (β0, . . . , βd2
, γ0, . . . , γd1−1, δ)

[0] 7−→ (0, . . . , 0).

• If g is odd, then

R : Tn −→ F(n−1)g
q × F2

[D] 7−→ (γ0, . . . , γd1
, β0, . . . , βd2−1, δ)

[0] 7−→ (0, . . . , 0).

Then R is an optimal representation for the elements of Tn, with the property that every element
of ImR has at most ng inverse images.

Proof. It follows from Theorem 3.2 (iii) that

deg hD,1 ≤
⌊rn

2

⌋
≤ d1 and deg hD,2 ≤

⌊
nr − 2g − 1

2

⌋
≤ d2,

hence the polynomials can be written as claimed. Moreover, if g is even and r < g, then

deg hD,1 ≤ b
n(g − 1)

2
c ≤ d1 − 1 and δ = γd1

= 0.

If g = r is even, then hD,1 is monic of degree d1 and δ = γd1
= 1. If instead g is odd and r < g,

then

deg hD,2 ≤ b
n(g − 1)− 2g − 1

2
c ≤ d2 − 1 and δ = βd2

= 0.

Finally, if g = r is odd, then hD,2 is monic of degree d2 and δ = βd2
= 1. Since

d1 + d2 + 1 =
⌊ng

2

⌋
+

⌊
(n− 2)g − 1

2

⌋
+ 1 = (n− 1)g,

then ImR ⊆ F(n−1)g
q × F2 in all cases. R is optimal since (n− 1)g log2 q + 1 = log2 |Tn|+O(1).

Finally, the representation identifies at most ng elements by Theorem 3.2 (iv). �

Remark 3.6. If one chooses to work only with divisors of the form D = P1 + . . .+Pg−gO, then
the last bit in the representation of Corollary 3.5 may be dropped and we have a representation
of size (n− 1)g log2 q. Divisor classes whose reduced representative has this form constitute the
majority of the elements of Tn. Moreover, there are cases in which the trace zero subgroup
consists only of divisor classes represented by reduced divisors of this shape. This is the case
e.g. for elliptic curves, where r = 1 if D 6= 0. Moreover, Lange [Lan04, Theorem 2.2] proves
that for g = 2 and n = 3, all nontrivial elements of T3 are represented by reduced divisors with
r = 2 = g.

In the next theorem we establish some facts that we use for our decompression algorithm.
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Theorem 3.7. Let D = P1 + . . .+Pr − rO be a reduced divisor such that [D] = [u, v] ∈ Tn, and
let hD = hD,1(x) + yhD,2(x) ∈ Fq[x, y] be such that div(hD) = Tr(D). Write D = D1 + . . .+Dt,
where Di are reduced prime divisors defined over Fqn with Mumford representation [Di] = [ui, vi].
Then:

(i) hD,2 ≡ 0 mod ui if and only if w(Di) = ϕj(Dk) for some j ∈ {0, . . . , n − 1} and some
k ∈ {1, . . . , t}.

(ii) Let n 6= 2. Then w(Di) = ϕj(Di) for some j 6= 0 if and only if Di ∈ Pic0
C [2](Fq).

(iii) Let n 6= 2, `,m ≥ 0, and assume that Di 6= w(Di). Then Tr(D) = mTr(Di) +
`Tr(w(Di)) + Tr(G) for some divisor G, where Tr(Di),Tr(w(Di)) 6≤ Tr(G), if and only
if N(ui)

min{`,m} exactly divides hD.

Proof. (i) We have hD,2(x) ≡ 0 mod ui if and only if hD(x, y) ≡ hD,1(x) ≡ hw(D)(x, y) mod ui.
Since Di ≤ Tr(D), this is also equivalent to w(Di) ≤ Tr(D). Since Di is prime, w(Di) is also
prime and w(Di) ≤ Tr(D) if and only if w(Di) = ϕj(Dk) for some j ∈ {0, . . . , n− 1} and some
k ∈ {1, . . . , t} by Lemma 2.1 (i).

(ii) We only prove the nontrivial implication. If w(Di) = ϕj(Di) for some j 6= 0, then

ui ∈ Fq[x] and −ν = νϕ
j

for all coefficients ν of vi. Hence ν2 = (ν2)ϕ
j

, so ν ∈ Fq2j ∩ Fqn = Fq.

Therefore also vi ∈ Fq[x], hence w(Di) = ϕj(Di) = Di ∈ Pic0
C(Fq).

(iii) Let Tr(D) = mTr(Di) + `Tr(w(Di)) + Tr(G) for some effective divisor G, with Tr(Di),
Tr(w(Di)) 6≤ Tr(G). Assume that m ≥ `, since the proof of the other case is similar. Then

div(N(ui)
`hm−`Di

hG) = `Tr(Di) + `Tr(w(Di)) + (m− `) Tr(Di) + Tr(G) = Tr(D) = div(hD),

so hD = N(ui)
`hm−`Di

hG up to multiplication by a constant, hence N(ui)
` | hD. If N(ui) also

divides hm−`Di
hG, then Tr(Di) + Tr(w(Di)) ≤ (m− `) Tr(Di) + Tr(G). Since Tr(w(Di)) 6≤ Tr(G)

is prime by Lemma 2.1 (ii), then Tr(w(Di)) = Tr(Di) and therefore w(Di) = ϕj(Di) for some j.
This yields a contradiction by (i). Therefore, N(ui)

` exactly divides hD.
Conversely, assume that hD = N(ui)

`h for some `, where h is a polynomial and N(ui) - h.
Then Tr(D) = div(hD) = `Tr(Di) + `Tr(w(Di)) + div(h), and Tr(Di) + Tr(w(Di)) 6≤ div(h).
Say e.g. that Tr(w(Di)) 6≤ div(h), and k is maximal such that kTr(Di) ≤ div(h). Then

Tr(D) = `Tr(Di) + `Tr(w(Di)) + kTr(Di) + F = mTr(Di) + `Tr(w(Di)) + F

where m = ` + k and Tr(Di),Tr(w(Di)) 6≤ div(h) − kTr(Di) = F . By Theorem 3.2 (iv),
F = Tr(D)−mTr(Di)− `Tr(w(Di)) = Tr(G), where G is an effective divisor of the form

G = D −
m∑
l=1

ϕal(Di)−
∑̀
l=1

ϕbl(Dj).

�

Remark 3.8. The results in this section may be generalized to elliptic and hyperelliptic curves
over fields of characteristic 2 by defining HD = hD(hD ◦ w). It is easy to check that we obtain
a function hD with the same properties as in Theorem 3.2 and Corollary 3.5. Some caution is
needed in adapting Theorem 3.7.

3.1. Computing the rational function. It is easy to compute hD using Cantor’s Algorithm
(see [Can87]) and a generalization of Miller’s Algorithm (see [Mil04]) as follows. For [D1], [D2] ∈
Pic0

C given in Mumford representation, Cantor’s Algorithm returns a reduced divisor D1 ⊕ D2

and a function a such that D1 + D2 = D1 ⊕D2 + div(a). We denote this as Cantor(D1, D2) =
(D1 ⊕D2, a). For completeness, we give Cantor’s Algorithm in Algorithm 1. Lines 1-3 are the
composition of the divisors to be added, and the result of this is reduced in lines 4-8.
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Algorithm 1 Cantor’s Algorithm including rational function

Input: [u1, v1], [u2, v2] ∈ Pic0
C in Mumford representation

Output: [u, v] in Mumford representation and a such that [u, v] + div(a) = [u1, v1] + [u2, v2]
1: a← gcd(u1, u2, v1 + v2), find e1, e2, e3 such that a = e1u1 + e2u2 + e3(v1 + v2)
2: u← u1u2/a

2

3: v ← (u1v2e1 + u2v1e2 + (v1v2 + f)e3)/a mod u
4: while deg u > g do
5: ũ← monic((f − v2)/u), ṽ ← −v mod ũ
6: a← a · (y − v)/ũ
7: u← ũ, v ← ṽ
8: end while
9: return [u, v], a

The following iterative definition will allow us to compute hD with a Miller-style algorithm.
For a function h we denote by hϕ the application of the Frobenius automorphism ϕ : Fq → Fq

coefficientwise to the function h. The proof of the lemma is standard, and left to the reader.

Lemma 3.9. Let D = [u, v] be a divisor on C, and let Di = ϕi(D) for i ≥ 0. Let h(1) = u as a
function on C, and define recursively the functions

h(i+j) = h(i) · (h(j))ϕ
i

· a−1

where a is given by Cantor’s Algorithm according to

w(D0 ⊕ . . .⊕Di−1) + w(Di ⊕ . . .⊕Di+j−1) = w(D0 ⊕ . . .⊕Di+j−1) + div(a)

for i, j ≥ 1. Then for all i ≥ 1 we have

div(h(i)) = D0 + . . .+Di−1 + w(D0 ⊕ . . .⊕Di−1).

If [D] ∈ Tn, then

h(n−1) = hD.

Algorithm 2 takes as an input the Mumford representation of [D] ∈ Tn and the binary repre-
sentation of n− 1, and returns the function hD.

Algorithm 2 Miller-style double and add algorithm for computing hD

Input: [D] = [u, v] ∈ Tn and n− 1 =
∑s

j=0 nj2
j

Output: hD
1: h← u,R← w(D), Q← w(ϕ(D)), i← 1
2: for j = s− 1, s− 2, . . . , 1, 0 do

3: (R, a)← Cantor(R,ϕi(R)), h← h · hϕi · a−1, Q← ϕi(Q), i← 2i
4: if nj = 1 then

5: (R, a)← Cantor(R,Q), h← h · uϕi · a−1, Q← ϕ(Q), i← i+ 1
6: end if
7: end for
8: return h

Theorem 3.10. Algorithm 2 computes hD correctly. It has an expected complexity of O(nlog2 3)
operations in Fqn asymptotically in n, or O(g4) operations in Fqn asymptotically in g.
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Proof. Correctness of the algorithm follows from Lemma 3.9 for [D] ∈ Tn. We now analyze the
complexity. The algorithm takes log2(n− 1) steps. We concentrate only on the doublings, since
they dominate the complexity of each step. For each i, the crucial operations are the execution of
Cantor’s algorithm and the computation of h(2i) from h(i). According to [Can87], the algorithm
has a complexity of O(g2 log g) field operations. Notice that, while the original algorithm does not
return the function a, it computes it implicitly while computing h(2i). Therefore, the complexity
estimate of [Can87] applies also to the modified version of Cantor’s Algorithm that we use. We
are therefore left with the task of estimating the complexity of computing h(2i) from h(i). We
start with the study of the shape of a, which we will use for the main complexity estimate.

We assume that the input divisors to Cantor’s Algorithm have u-polynomials of degree g, and
that they are coprime, which is true generically. Then, at the end of the composition (after line
3 in Algorithm 1), we have deg u = 2g and a = 1. Let us call [u0, v0] and a0 = 1 the input to the
reduction procedure (lines 4-8 of Algorithm 1), and ui, vi, ai the values of u, v, a after the i-th
iteration of the while loop. Then, following through the algorithm, one can easily check that

(2) ai =

{
u0

(y−v1)(y−v3)···(y−vi−2)
(y+v0)(y+v2)···(y+vi−1) if i is odd

(y−v0)(y−v2)···(y−vi−2)
(y+v1)(y+v3)···(y+vi−1) if i is even.

Since in most cases the degree of u decreases by 2 at each step, as observed already by Cantor
[Can87], and since we assume that u0 has degree 2g, we expect to go through about g/2 reduction
steps. Therefore, a has about g/4 terms in both the numerator and the denominator. Since
deg vi ≤ 2g for all i and computing modulo the curve equation, we get

a =
b(x) + yc(x)

d(x) + ye(x)

where b, c, d, e ∈ Fqn [x] are polynomials of degree in the order of g2.

Next we analyze the computation of h(2i) as h(i) ·(h(i))ϕ
i ·a−1. Notice that h(i) is a polynomial

for all i, since the corresponding principal divisor has its only pole at infinity. Therefore, by using

the curve equation we obtain h(i) = h
(i)
1 + yh

(i)
2 . By an inductive argument, it is easy to show

that ig is a good approximation of the obvious upper bound on the degrees of h
(i)
1 and h

(i)
2 .

Writing h(i) · (h(i))ϕ
i · (d + ye) = h′1 + yh′2 with deg h′1 and deg h′2 in the order of g2 + ig, we

obtain

(h
(2i)
1 + yh

(2i)
2 )(b+ yc) = h′1 + yh′2,

and hence

h
(2i)
1 =

bh′1 − fch′2
b2 − fc2

, h
(2i)
2 =

h′2 − ch
(2i)
1

b

where the divisions are exact, since the results must be polynomials. The most expensive mul-
tiplications involved are those by h′1 and h′2, since those have the largest degree, namely about
g2 + ig. Using Karatsuba multiplication, we can compute the numerators and denominators
above in O((g2 + ig)log2 3) operations. The two long divisions take O(g3(i+ g)) each, since both
numerators have degree in the order of g(i+ g), and both denominators have degree in the order
of g2. Hence the computation of h(2i) takes O(g4 + g3i+ (gi)log2 3) operations.

Finally, we sum over the log2(n− 1) steps to obtain a total complexity of

O

(
log n∑
i=0

(g4 + g32i + (g2i)log 3)

)
= O

(
g4 log n+ g3n+ (gn)log2 3

)
from which the thesis follows. �
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Remark 3.11. It is also possible to determine the coefficients of hD by solving a linear system
of size about gn × gn. Using standard Gaussian elimination techniques, this has complexity
O((gn)3). This is larger in n but smaller in g than the complexity of Algorithm 2. Therefore,
this method is preferable when n is small and g is large.

3.2. Compression and decompression algorithms. We propose the compression and de-
compression algorithms detailed in Algorithms 3 and 4. We denote by lc the leading coefficient
of a polynomial. We only discuss the case n ≥ 3, since in the case n = 2 the representation
consists of u(x) as seen in Proposition 3.1.

The compression algorithm follows immediately from Corollary 3.5 and Algorithm 2. The
strategy of the decompression algorithm is as follows. From the input α = Compress(D), we
recompute hD,1 and hD,2, and then HD. Then we factor HD in order to obtain the u-polynomials
of (one Frobenius conjugate of each of) the Fqn -rational prime divisors in D. This is consistent
with the fact that Tr(D) only contains information about the conjugacy classes of these prime
divisors. Afterwards, we compute the corresponding v-polynomial for each u-polynomial. In this
way, if D = D1 + . . . + Dt is the decomposition of D as a sum of Fqn -rational prime divisors,
for each i ∈ {1, . . . , t} we recover one of the Frobenius conjugates of Di, which we denote by
D′i. The divisor D′1 + . . .+D′t corresponds to the class R−1(α) by Theorem 3.2 (iv). We always
compute a reduced representative D′1 + . . .+D′t of the class R−1(α), as discussed in Remark 3.4.

Algorithm 3 Compression, n ≥ 3

Input: [D] = [u, v] ∈ Tn
Output: Representation (α0, . . . , α(n−1)g) ∈ Fq

(n−1)g × F2 of [D]
1: r ← deg u
2: compute hD(x, y) = hD,1(x) + yhD,2(x) (see Algorithm 2 and Remark 3.11)
3: d1 ← bng2 c
4: d2 ← bng−2g−1

2 c
5: if r even then
6: hD,1 ← hD,1/ lc(hD,1) . Notation: hD,1 = γd1

xd1 + γd1−1x
d1−1 + . . .+ γ1x+ γ0 monic

7: hD,2 ← hD,2/ lc(hD,1) . Notation: hD,2 = βd2
xd2 + βd2−1x

d2−1 + . . .+ β1x+ β0

8: else
9: hD,1 ← hD,1/ lc(hD,2) . Notation: hD,1 = γd1x

d1 + γd1−1x
d1−1 + . . .+ γ1x+ γ0

10: hD,2 ← hD,2/ lc(hD,2) . Notation: hD,2 = βd2x
d2 + βd2−1x

d2−1 + . . .+ β1x+ β0 monic
11: end if
12: if g even then
13: return (β0, . . . , βd2

, γ0, . . . , γd1
)

14: else
15: return (γ0, . . . , γd1 , β0, . . . , βd2)
16: end if

Theorem 3.12. (i) The unique optimal representation from Corollary 3.5 may be com-
puted by Algorithm 3 in O(nlog2 3) operations in Fqn asymptotically in n, or O(g3)
operations in Fqn asymptotically in g.

(ii) Decompression Algorithm 4 operates correctly, i.e. for any input Compress(D), where
[D] ∈ Tn, it returns a reduced divisor D′ such that [D′] ∈ Tn and Compress(D) =
Compress(D′).

(iii) Decompression Algorithm 4 is expected to terminate after O((ng)1+log2 3 log(qnng)) op-
erations in Fqn asymptotically in n and g, where n and g can grow at any rate.
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Algorithm 4 Decompression, n ≥ 3

Input: (α0, . . . , α(n−1)g) ∈ Fq
(n−1)g × F2

Output: one reduced D ∈ DivC(Fqn) such that [D] ∈ Tn has representation (α0, . . . , α(n−1)g)
1: d1 ← bng2 c
2: d2 ← bng−2g−1

2 c
3: if g even then
4: hD,1(x)← α(n−1)gx

d1 + . . .+ αd2+2x+ αd2+1

5: hD,2(x)← αd2x
d2 + αd2−1x

d2−1 + . . .+ α1x+ α0

6: else
7: hD,1(x)← αd1

xd1 + . . .+ α1x+ α0

8: hD,2(x)← α(n−1)gx
d2 + . . .+ αd1+2x+ αd1+1

9: end if
10: HD(x)← hD,1(x)2 − f(x)hD,2(x)2

11: factor HD(x) = U1(x)e1 · . . . · Um(x)em with Ui ∈ Fq[x] irreducible and pairwise distinct,
ei ∈ {1, . . . , gn}

12: L← empty list
13: for i = 1, . . . ,m do
14: if Ui(x) is irreducible over Fqn then . Ui comes from an Fq-rational prime divisor
15: ei ← ei/n
16: end if
17: U(x)← one irreducible factor over Fqn of Ui(x)
18: if hD,2(x) 6≡ 0 mod U(x) then
19: V (x)← −hD,1(x)hD,2(x)−1 mod U(x)
20: append [U(x), V (x)] to L, ei times
21: else . hD,2(x) ≡ 0 mod U(x)
22: if f(x) ≡ 0 mod U(x) then . V (x) = 0 and Di = w(Di)

23: append [U(x), 0], [U(x)ϕ, 0], . . . , [U(x)ϕ
ei−1

, 0] to L
24: else . V (x) 6= 0 and Di 6= w(Di)
25: compute `, h′D such that hD = Ui(x)`h′D and Ui(x) - h′D
26: if ` < ei/2 then
27: V (x)← −h′D,1(x)h′D,2(x)−1 mod U(x)

28: append [U(x), V (x)] to L, ei − ` times
29: append [U(x)ϕ,−V (x)ϕ] to L, ` times
30: else . ` = ei/2

31: V (x)←
√
f(x) mod U(x)

32: append [U(x), V (x)], [U(x)ϕ,−V (x)ϕ] to L, ` times
33: end if
34: end if
35: end if
36: end for . Notation: L = [D1, . . . , Dt]
37: return D = D1 + . . .+Dt

Proof. (i) Correctness and optimality of the representation computed by Algorithm 3 follow from
Corollary 3.5. The complexity of computing the representation is the same as the complexity of
computing hD, which is given in Theorem 3.10 and Remark 3.11.
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(ii) Let D = D1 + . . .+Dt, where Di are reduced prime divisors defined over Fqn . Let [ui, vi]
be the Mumford representation of Di, ui ∈ Fqn [x] irreducible. We have

HD(x) =

t∏
i=1

u1+ϕ+...+ϕn−1

i =

m∏
i=1

Ui(x)ei ,

where Ui ∈ Fq[x] are irreducible and Ui 6= Uj if i 6= j, m ≤ t. Up to reindexing, Ui = ui if

ui ∈ Fq[x] and Ui = N(ui) otherwise, for i ≤ m. If ui ∈ Fq[x], then u1+ϕ+...+ϕn−1

i = uni = Un
i ,

hence n | ei and we replace ei by ei/n, since Tr(Di) = nDi. Notice that by Lemma 2.1 (ii) Ui is
an Fq[x]-irreducible factor of HD(x) independently of whether ui ∈ Fq[x] or not. Notice moreover
that ui ∈ Fq[x] if and only if Ui is irreducible in Fqn [x]. Conversely, Ui is reducible in Fqn [x]
if and only if ui ∈ Fqn [x] is one of its irreducible factors. Summarizing, each Di corresponds
exactly to a set of n Fqn [x]-irreducible factors of HD, and these factors can be correctly grouped
by first computing the Fq[x]-factorization of HD = N(u).

Fix i ∈ {1, . . . ,m} and let U(x) be an Fqn [x]-irreducible factor of Ui(x), i.e., U(x) is a
Frobenius conjugate of ui(x). If Di = w(Di) by definition m = ` and HD = N(u) is divisible by
Um
i and by no higher power of Ui by Theorem 3.7 (iii), hence m = ei.
By Theorem 3.7 (i), if U - hD,2 then ` = 0 and no Frobenius conjugate of w(Di) appears

among D1, . . . , Dt. Moreover, there exist polynomials k(x), l(x) ∈ Fqn [x] such that k(x)hD,2 =
1 + l(x)U(x). Hence k(x)(hD,1(x) + yhD,2(x)) ≡ y + k(x)hD,1 mod U. Since hD,1 + yhD,2 ≡
0 mod (U, y − V ), then y − V ≡ y + k(x)hD,1 mod U , hence

V ≡ −hD,1h
−1
D,2 mod U.

Notice that in this case V 6= 0, since Di 6= w(Di) and m = ei. If U | hD,2, it follows from
Theorem 3.7 (i) that w(Di) = ϕj(Dk) for some 0 ≤ j ≤ n− 1 and 1 ≤ k ≤ t. We distinguish the
cases when Di = w(Di) or Di 6= w(Di).

The case when Di = w(Di) is treated in lines 22–23 of the algorithm. In this case m = ` = ei.
Since Di = w(Di) is equivalent to vi = 0, case (a) can be detected by checking whether U | f . If
this is the case, it suffices to set V = 0.

The other case is treated in lines 25–33 of the algorithm. In this case i 6= k by Theorem
3.7 (i), since n 6= 2. By Theorem 3.2 (ii), Tr(D) = mTr(Di) + `Tr(w(Di)) + Tr(G) where
Tr(Di),Tr(w(Di)) 6≤ Tr(G) and s := min{m, `} may be computed as the exponent for which
Us
i | hD and Us+1

i - hD. Let hD = Us
i h
′
D, h′D = h′D,1 + yh′D,2. Notice that U,Ui - h′D,2, since

Tr(Di) + Tr(w(Di)) 6≤ div(h′D). Then s = m = ` = ei/2 if and only if Tr(Di),Tr(w(Di)) 6≤
div(h′D) if and only if U - V 2 − f , where V = −h′D,1h

′
D,2
−1

mod U . In this case, we can let

V =
√
f mod U and D contains exactly ei/2 Frobenius conjugates of [U, V ] and ei/2 Frobenius

conjugates of [U,−V ]. If instead s = ` < m, then hD = U `
i h
′
D and div(h′D) ≥ Tr(Di), div(h′D) 6≥

Tr(w(Di)). Therefore, U - h′D,2 and V can be computed as V = −h′D,1h
′
D,2
−1

mod U . In this

case, any reduced D′ such that Compress(D) = Compress(D′) contains exactly m = ei − `
Frobenius conjugates of [U, V ] and ` Frobenius conjugates of [U,−V ].

Finally, we show that the D′ returned by Algorithm 4 is reduced. To this end, we check that
the algorithm does not add both a divisor and its involution to the list L, and in particular
when a divisor is 2-torsion, we check that it is added with multiplicity 1. Since for each i such
that U - hD,2 we have computed a unique V 6= 0, we only need to consider the cases where
U | hD,2. In case (a) we have Di = w(Di), and we need to check that D′i, ϕ(D′i), . . . , ϕ

ei−1(D′i)
are distinct, where D′i = [U, 0]. In particular, we check that ei < n. But if D′i, hence Di, were
Fq-rational or ei > n, then D would not be reduced. In case (b) we have Di 6= w(Di) and
hence w(ϕ(Di)) 6= ϕ(Di), so we may add several times D′i = [U, V ] and w(ϕ(D′i)) = [Uϕ,−V ϕ].
Furthermore, we have D′i 6= ϕ(D′i). Indeed, if D′i = ϕ(D′i) then it follows that D′i, Di and Dk
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are Fq-rational. Hence Di = w(Dk), a contradiction to the fact that D is reduced, since i 6= k in
this case.

(iii) We assume that the degrees of hD,1 and hD,2 are maximal, which is the generic case. The
complexity of the algorithm is dominated by the polynomial factorizations. The factorization
of HD, which has degree ng, takes an expected O((ng)1+log2 3 log(qng)) operations over Fq by
[GvzG99, Theorem 14.14]. In the loop over i, a polynomial Ui must be factored over Fqn in each
iteration. Write degUi = ki. Factoring Ui has an expected complexity of O((ki)

1+log2 3 log(qnki))
over Fqn , again by [GvzG99, Theorem 14.14]. Inverting hD,2 modulo U is inO(k2

i ) and is therefore
cheaper. Hence the overall complexity of the loop is

O

(∑̀
i=1

k
1+log2 3
i log(qnki)

)
.

This is largest in the extreme case where ` = 1 and k1 = ng, which yields the statement of the
theorem. �

3.3. Group operation. An important question in the context of point compression is how to
perform the group operation. For some compression methods for (hyper)elliptic curves, formulas
or algorithms for performing the group operation in compressed coordinates are available. For
example, the Montgomery ladder (see [Mon87]) computes the x-coordinate of an elliptic curve
point kP from the x-coordinate of P . This method may be generalized to genus 2 hyperelliptic
curves (see [Gau07]). There is also an algorithm to compute pairings using the x-coordinates of
the input points only (see [GL09]).

In such a situation, the crucial question is whether it is more efficient to perform the operation
in the compressed coordinates, or to decompress, perform the operation in the full coordinates,
and compress again. Implementation practice shows that it is usually more efficient to use the
second method (at least when side-channel attack resistance is not crucial). For example, all
recent speed records for scalar multiplication on elliptic curves have been set using algorithms
that need the full point, in other words with the second approach, see e.g. [BDL+12, LS12,
OLAR13, FHLS14]. Timings typically ignore the additional cost for point decompression, but
there is strong evidence that on a large class of elliptic curves the second approach is faster.
Moreover, Galbraith and Lin show in [GL09] that for computing pairings, the second approach
is faster whenever the embedding degree is greater than 2.

On the basis of these results, we recommend using the second method also when computing
with compressed points of a trace zero subgroup: Decompress the point, perform the operation
in Pic0

C(Fqn), and compress the result. Since our compression and decompression algorithms
are very efficient, this adds only little overhead. Moreover, scalar multiplication is considerably
more efficient for trace zero points than for general points in Pic0

C(Fqn), due to a speed-up using
the Frobenius endomorphism, as pointed out by Frey [Fre99] and studied in detail by Lange
[Lan01, Lan04] and subsequently by Avanzi and Cesena [AC07].

4. Representation for elliptic curves

Elliptic curves are simpler and better studied than hyperelliptic curves. In particular, the
Picard group of an elliptic curve is isomorphic to the curve itself. Therefore one can work with
the group of points of the curve, and point addition is given by simple, explicit formulas. Finding
a rational function with a given principal divisor can also be made more efficient. For all these
reasons, the results and methods from Section 3 can be simplified and made explicit for elliptic
curves.
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Let E : y2 = f(x) denote an elliptic curve defined over Fq. The trace zero subgroup Tn of
E(Fqn) is then the group of all points P with trace equal to zero. We consider only n ≥ 3, and
refer to [GM14] for the case n = 2.

Notation 4.1. Write Pi = ϕi(P ) for i = 0, . . . , n − 1. Let `i(x, y) = 0, i = 1, . . . , n − 2, be the
equation of the line passing through the points P0 ⊕ . . . ⊕ Pi−1 and Pi. Let vi(x, y) = 0, i =
1, . . . , n− 3, be the equation of the vertical line passing through the point P0 ⊕ . . .⊕ Pi.

The following is obtained from Theorems 3.2 and 3.7 in the case that the curve is elliptic. The
proof that hP has the form claimed is an easy calculation, which is left to the reader.

Corollary 4.2. Let n ≥ 3 prime. For any P ∈ Tn \ {O}, let

hP =
`1 · . . . · `n−2

v1 · . . . · vn−3
∈ Fq(E),

where `j and vj are the lines defined in Notation 4.1. Then:

(i) div(hP ) = P0 + . . .+ Pn−1 − nO.
(ii) hP (x, y) = hP,1(x) + yhP,2(x) for some hP,1, hP,2 ∈ Fq[x].

(iii) HP = h2
P,1−fh2

P,2 has degree n, and its zeros are exactly the x-coordinates of P0, . . . , Pn−1.

(iv) deg hP,1 ≤ n−1
2 and deg hP,2 = n−3

2 .

(v) If Q is such that hP = hQ, then Q = ϕj(P ) for some j ∈ {0, . . . , n− 1}.
(vi) hP,2(X) 6= 0 for all x-coordinates of P0, . . . , Pn−1.

Since the exact degree of hP,2 is known, hP can be normalized by making hP,2 monic, as
in Corollary 3.5. One obtains the following optimal representation for trace zero points on an
elliptic curve.

Corollary 4.3. Let n ≥ 3 prime, let d1 = (n−1)/2, d2 = (n−3)/2. Write hP,1 = γd1x
d1 +. . .+γ0

and hP,2 = xd2 + βd2−1x
d2−1 + . . .+ β0. Define

R : Tn \ {O} −→ Fqn−1

P 7−→ (γ0, . . . , γd1
, β0, . . . , βd2−1).

Then R is an optimal representation for the elements of Tn \ {O} and

R−1(R(P )) = {P,ϕ(P ), . . . , ϕn−1(P )} for all P ∈ Tn \ {O}.

One also can give simplified compression and decompression algorithms.

Algorithm 5 Compression for elliptic curves, n ≥ 3

Input: P ∈ Tn
Output: representation (α0, . . . , αn−2) ∈ Fn−1

q of P

1: compute hP (x, y) = hP,1(x) + yhP,2(x)← `1·...·`n−2

v1·...·vn−3
(x, y) (see Algorithm 7) where

2: hP,1(x) = γd1x
d1 + . . .+ γ0 and

3: hP,2(x) = xd2 + βd2−1x
d2−1 + . . .+ β0

4: return (γ0, . . . , γd1 , β0, . . . , βd2−1)

Finally, we discuss how to compute hP for different values of n. Explicit formulas can be com-
puted in the special cases n = 3, 5. We do this in Appendix A. For general n, a straightforward
computation of hP is possible, since Corollary 4.3 contains an explicit formula given in terms
of lines. Such a computation can be made more efficient by employing the usual divide and
conquer strategy. Computing hP via a Miller-style algorithm analogous to Algorithm 2 is also
possible. The latter is advantageous for medium and large values of n, while for small values of
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Algorithm 6 Decompression for elliptic curves, n ≥ 3

Input: (α0, . . . , αn−2) ∈ Fn−1
q

Output: one point P ∈ Tn \ {O} with representation (α0, . . . , αn−2)
1: hP,1(x)← α(n−1)/2x

(n−1)/2 + α(n−3)/2x
(n−3)/2 + . . .+ α1x+ α0

2: hP,2(x)← x(n−3)/2 + αn−2x
(n−5)/2 + . . .+ α(n+3)/2x+ α(n+1)/2

3: HP (x)← hP,1(x)2 − f(x)hP,2(x)2

4: X ← one root of HP (x)
5: Y ← −hP,1(X)/hP,2(X)
6: return P = (X,Y )

n a straightforward computation using a divide and conquer approach seems preferable (unless
explicit formulas are available).

We denote by `P,Q the line through the points P and Q, and by vP the vertical line through
P . All computations are done with functions on E, i.e. in Fqn(E).

Algorithm 7 Miller-style double and add algorithm for computing hP , n ≥ 3

Input: P ∈ Tn \ {O} and n− 1 =
∑s

j=0 nj2
j

Output: hP
1: Q← ϕ(P )
2: h← `P,Q, R← P ⊕Q, Q← ϕ(Q), i← 2
3: if ns−1 = 1 then

4: h← h · `R,Q

vR
, R← R⊕Q, Q← ϕ(Q), i← 3

5: end if
6: for j = s− 2, s− 3, . . . , 1, 0 do

7: h← h · hϕi · vR+ϕi(R)

`w(R),w(ϕi(R))
, R← R⊕ ϕi(R), Q← ϕi(Q), i← 2i

8: if nj = 1 then

9: h← h · `R,Q

vR
, R← R+Q, Q← ϕ(Q), i← i+ 1

10: end if
11: end for
12: return h

The following is an adaptation of Theorem 3.10 to elliptic curves.

Corollary 4.4. (i) The execution of Algorithm 7, and therefore also of compression Algo-
rithm 5, requires an expected O(nlog2 3) operations in Fqn .

(ii) Decompress(Compress(P )) is one of the Frobenius conjugates of P . The expected com-
plexity of decompression Algorithm 6 is O(nlog2 3+1 log n log(nq)) operations in Fqn .

Proof. (ii) Theorem 3.12 (vi) would give a complexity of O(n2+log2 3 log(nq)) operations in Fqn .
However, the situation here is simpler, since HD splits into linear factors over Fqn . Therefore,
we may apply the root finding algorithm of [GvzG99, Algorithm 14.15], which has an expected
complexity of O(nlog2 3+1 log n log(nq)) operations in Fqn . �

Remark 4.5. A more careful analysis of Algorithm 7 shows that the compression complexity
that we give in the previous corollary is not only an asymptotic one, but a rather precise operation
count. Therefore, we can predict the behavior of the compression algorithm for relatively small
values of n. In practice it behaves better than the obvious way of computing hP (i.e. iteratively
multiplying by `i

vi−1
) for n > 10, and better than a divide and conquer approach for n > 20.
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5. Timings and comparison with other representations

Important achievements of this new representation are that it works for any prime n and any
genus and can be made practical for large values of n and/or g. Moreover our decompression
algorithm allows the unique recovery of one well-defined class of conjugates of the original point.
For elliptic curves, such a class consists exactly of the Frobenius conjugates of the original
point, and for higher genus curves, classes are as described in Theorem 3.2 (iv). Identifying
these conjugates is the natural choice from a mathematical point of view, since it respects the
structure of our object and is compatible with scalar multiplication of points.

There are only three other known methods for point compression in trace zero varieties over
elliptic curves, namely [Nau99], [Sil05], and [GM14]. While [Nau99] only applies to extension
degree 3, [Sil05, GM14] can be made practical for n = 3, 5. The approach of [GM14] allows
unique recovery of an equivalence class for n = 3 and for most points for n = 5. The methods of
[Nau99, Sil05] recover sets of points with an unclear mathematical relationship, and they appear
to not be compatible with scalar multiplication. Because of this, they require extra bits to
resolve ambiguity. There is only one known method for point compression in trace zero varieties
over hyperelliptic curves from [Lan04]. This method can be made practical for the parameters
g = 2, n = 3.

One advantage of our representation with respect to the previous ones is that it is the only
one that does not identify the positive and negative of a point, thus allowing a recovery of the
y-coordinate of a compressed point that does not require computing square roots. For small
values of n, this gives a noticeable advantage in efficiency. In addition, our method works for
all affine points on the trace zero variety, without having to disregard a closed subset as is done
in [Sil05, Lan04]. In addition, our compression and decompression algorithms do not require a
costly precomputation, such as that of the Semaev polynomial in [GM14] or the elimination of
variables from a polynomial system in [Lan04].

In terms of efficiency, our compression algorithm is slower than all the other ones for elliptic
curves, but our decompression algorithm is faster in all cases. For g = 1, the time for compression
and decompression together is comparable for n = 3, and smaller for n = 5, than that of [GM14].
That is to say, the faster decompression makes up for the slower compression. Although in this
paper we concentrate on the case of odd characteristic, our method can be adapted to fields of
even characteristic, just like all other methods from [GM14, Sil05, Lan04, Nau99].

We now compare the efficiency of our algorithms with those of [GM14, Sil05, Lan04, Nau99]
in more detail. The comparison of our method with that of [GM14] is on the basis of a precise
operation count, complexity analysis, and our own Magma implementations. Notice that our
programs are straightforward implementations of the methods described here and in [GM14], and
they are only meant as an indication. No particular effort has been put into optimizing them,
and clearly a special purpose implementation (e.g. choosing q of a special shape) would produce
better and more meaningful results. All computations were done with Magma version 2.19.3
[BCP97], running on one core of an Intel Xeon Processor X7550 (2.00 GHz) on a Fujitsu Primergy
RX900S1. Our timings are average values for one execution of the algorithm, where averages are
computed over 10000 executions with random inputs. Our comparison with [Nau99, Sil05, Lan04]
is rougher, since no precise operation counts, complexity analyses or implementations of those
methods are available. Nevertheless, our analysis leads to a meaningful comparison of efficiency
in all cases.

Comparison and Timings for g = 1, n = 3. We compare our method with the most efficient
method from [GM14] (there called “compression in ti”) in terms of operations in Table 1 and tim-
ings in Table 2. We choose arbitrary elliptic curves such that the associated trace zero subgroups
have prime order for fields of 20, 40, 60, and 79 bits. We see that the compression algorithm
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Table 1. Number of operations in Fq for compression/decompression of one
point when g = 1, n = 3

Compression 2S+6M+1I
Compression [GM14] 1M
Full decompression 5S+5M+1I, 1 square root, 2 cube roots
Full decompression [GM14] 4S+3M+2I, 1 square root, 2 cube roots, and 1 square root in Fq3

Decompression x only 5S+4M+1I, 1 square root, 2 cube roots
Decompression x only [GM14] 4S+3M+2I, 1 square root, 2 cube roots

Table 2. Average time in milliseconds for compression/decompression of one
point when g = 1, n = 3

q 220 − 3 240 − 87 260 − 93 279 − 67

Compression 0.01 0.03 0.03 0.04
Compression [GM14] 0.01 0.02 0.03 0.04
Full decompression 0.18 0.71 0.89 1.52
Full decompression [GM14] 0.84 7.62 10.62 17.58
Decompression x only 0.15 0.63 0.87 1.40
Decompression x only [GM14] 0.15 0.68 0.87 1.44

from [GM14] requires fewer operations, but not in a significant way. These small differences are
obviously not measured accurately in our tests. Our measurements for decompression are more
meaningful, however. We compare “full decompression”, where one entire point (including the
y-coordinate) is recomputed. Here, the method of [GM14] is much slower (roughly by a factor
10), due to the necessary square root extraction. This shows one major efficiency advantage of
the approach that we follow in this paper: Recovering the y-coordinate is much faster, since no
square root computation is necessary. For a different point of view, we also compare “decom-
pression in x only”, where no y-coordinate is computed. In this case, the algorithm proposed in
this paper and the one from [GM14] behave similarly.

Naumann [Nau99] does not give explicit compression or decompression algorithms, but he
derives an equation for the trace zero subgroup that might be used for such. The equation is in
the Weil restriction coordinates x0, x1, x2 of the x-coordinate of a trace zero point, and it has
degree 4 in x0 and degree 3 in x1, x2. Therefore, it allows a representation in the coordinates
(x0, x1) or (x0, x2), where decompression could be done by factoring a cubic polynomial in the
missing coordinate, and then recomputing the y-coordinate as a square root. This is clearly more
expensive than the decompression algorithm in this paper, which does not require polynomial
factorization or square root extraction.

In [Sil05], compression is free. The bulk of the work in the decompression algorithm is factoring
a degree 4 polynomial and recomputing the y-coordinate from the curve equation. This is clearly
more expensive than the decompression algorithm in this paper. See [GM14, Section 5] for a
more detailed discussion of the decompression algorithm from [Sil05].

Comparison and Timings for g = 1, n = 5. A similar comparison for extension degree 5 (see
Tables 3 and 4) shows that the compression algorithm proposed in this paper is less efficient than
that of [GM14], but the decompression algorithm is faster. Although the bulk of the work in both
decompression algorithms is polynomial factorization, following the approach proposed in this
paper we have to factor one polynomial of degree 5 over Fq5 , where the algorithm of [GM14] first
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Table 3. Number of operations/complexity for compression/decompression of
one point when g = 1, n = 5

Compression 3S+18M+3I in Fq5

Compression [GM14] 5S+13M in Fq

Full decompression O(log q) operations in Fq

Full decompression [GM14] O(log q) operations in Fq, and 1 square root in Fq5

Decompression x only O(log q) operations in Fq

Decompression x only [GM14] O(log q) operations in Fq

Table 4. Average time in milliseconds for compression/decompression of one
point when g = 1, n = 5

q 210 − 3 220 − 5 230 − 173 240 − 195

Compression 0.21 0.25 0.46 0.80
Compression [GM14] 0.04 0.04 0.05 0.10
Full decompression 0.82 9.39 4.26 10.13
Full decompression [GM14] 5.89 17.90 30.21 63.60
Decompression x only 0.77 9.36 4.01 9.82
Decompression x only [GM14] 5.53 16.48 21.42 45.08

factors a polynomial of degree 6 over Fq, and then at least one polynomial of degree 5 over Fq5 .
For this reason, the decompression algorithm proposed in this paper performs much better than
that of [GM14], regardless of whether we include the recovery of the y-coordinate. Notice that
we again compare with the best method from [GM14], there called “compression/decompression
in the si with polynomial factorization”.

In comparison to [Sil05], our compression algorithm is clearly less efficient, but our decom-
pression method is much more efficient. The decompression algorithm of Silverberg involves
resultant computations and the factorization of a degree 27 polynomial. For more detail, see
[GM14, Section 6].

Timings for g = 1, n > 5. We study the performance of our algorithms by means of exper-
imental results for n > 5. First, for comparison with the last column of Tables 2 and 4, we
give in Table 5 timings for n = 7, 11, 13, 19, 23 and corresponding randomly chosen values of
q, A, and B that produce prime order trace zero subgroups of approximately 160 bits. From the
different values for decompression times (due to the fact that the performance of the polynomial
factorization algorithm in Magma depends heavily on the specific choice of q and n), we see that
there is much room for optimization in the choice of these parameters.

In each case, we choose the fastest method of computing hP during compression. As discussed
in Remark 4.5, this is an iterative approach for n = 7, a divide and conquer approach for
n = 11, 13, 19, and Algorithm 7 for n ≥ 23. During decompression we compute the y-coordinate
of the point as well, since the difference with computing the x-coordinate only is negligible.

We also report that we are able to apply our method to much larger trace zero subgroups and
much larger values of n. More specifically, our implementation works for trace zero subgroups
of more than 3000 bits and for values of n larger than 300. For even larger values of n, the
limitation is not our compression/decompression approach, but rather the fact that the trace
zero subgroup becomes very large, even for small fields.
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Table 5. Average time in milliseconds for compression/decompression of one
point when g = 1, n > 5, log2 |Tn| ≈ 160

n 7 11 13 19 23
q 227 − 27689095 216 − 129 214 − 6113 29 − 55 28 − 117

Compression 1.80 2.84 3.89 8.82 12.90
Full decompression 20.90 10.16 4.03 119.75 58.15

Table 6. Average time in milliseconds for compression/decompression of one
point when g = 2, n = 3

q 25 − 1 28 − 75 210 − 3 213 − 2401 215 − 19

Compression 0.10 0.11 0.19 0.19 0.17
Full decompression 0.28 4.78 19.87 3.07 3.82

Comparison and Timings for g = 2, n = 3. We present timings for trace zero subgroups of 20,
30, 40, 50, 60 bits in Table 6. The reason for testing only such small groups is that it is difficult
to produce larger ones in Magma without writing dedicated code. Since our implementation
serves mostly as a proof of concept and for comparison purposes, we did not put much effort into
producing suitable curves for larger trace zero subgroups.

The representation of [Lan04] consists of 4 (out of 6) Weil restriction coordinates of the coef-
ficients of the u-polynomial of a point, plus two small numbers to resolve ambiguity. Following
the notation of the original paper, we call the transmitted coordinates u12, u11, u10, u02, the two
small numbers a, b, and the dropped coordinates u01, u00. This approach requires as a precom-
putation the elimination of 4 variables from a system of 6 equations of degree 3 in 10 variables.
The result is a triangular system of 2 equations in 6 indeterminates. The compression algorithm
plugs the values of u12, u11, u10, u02 into the system and solves for the two missing values in order
to determine a, b, which in turn determine the roots coinciding with u01, u00. The decompression
algorithm uses a, b to decide which among the solutions of the system are the coordinates it recov-
ers. The advantage of this algorithm is that it works entirely over Fq. Nevertheless, compression
is clearly less efficient than our compression algorithm, since we only need to evaluate a number
of expressions, while Lange has to solve a triangular system, which involves computing roots.
While our decompression algorithm requires the factorization of one or two polynomials, which
has complexity O(log q), Lange’s decompression algorithm solves again the same triangular sys-
tem. Since this involves computing roots in Fq, which has complexity O(log4 q) using standard

methods (and can be as low as O(log2 q) for special choices of parameters, see [BV06]), it is
less efficient than the decompression algorithm proposed in this paper. Notice also that Lange’s
approach does not give the v-polynomial, which needs to be computed separately, adding to the
complexity of decompression.

Timings for g > 2, n > 3. As a proof of concept, we provide timings in Table 7 for trace zero
subgroups of approximately 160 bits when n = 5 and g = 5, 6, . . . , 11. The reason for this choice
is simply that we are able to find suitable curves for these parameters. We stress again that the
limitation here is not our compression method, but finding trace zero subgroups of known group
order, so we expect that our method will work for much larger values of n and g (e.g. we are able
to compute an example for g = 2, n = 23, where the group has 173 bits).
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Table 7. Average time in milliseconds for compression/decompression of one
point when n = 5, g ≥ 5, log2 |Tn| ≈ 160

g 5 6 7 8 9 10 11
q 28 − 5 27 − 27 26 − 23 25 − 1 24 − 5 24 − 5 24 − 5

Compression 6.53 7.48 9.89 11.83 1.90 2.93 3.24
Full decompression 4.35 13.91 12.61 10.27 29.30 33.83 42.97

6. Conclusion

In this paper, we propose a representation of elements of the trace zero subgroup via rational
functions. To the extent of our knowledge, this representation is the only one that works for
elliptic and hyperelliptic curves of any genus and field extensions of any prime degree. Our
representation has convenient mathematical properties: It identifies well-defined classes of points,
it is compatible with scalar multiplication, and it does not discard the v-polynomial of the
Mumford representation (or the y-coordinate of an elliptic curve point), thus saving expensive
square root computations in the decompression process.

Our compression and decompression algorithms are efficient, even for medium to large values
of n and g. For those parameters where other compression methods are available (namely, for very
small n and g), our algorithms are comparable with or more efficient than the previously known
ones, if compression and decompression are considered together. No costly precomputation is
required during the setup of the system.

Our optimal-sized and efficiently-computable representation, together with previous results
on the security and on efficient arithmetic, make trace zero subgroups a very interesting class
of groups in the context of public-key cryptography, especially of pairing-based cryptographic
systems.
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Appendix A. Explicit equations

We compute explicit equations for compression and decompression for the cases when g =
1 and n = 3, 5, or g = 2 and n = 3. We give explicit formulas for compression, while for
decompression we explicitly compute a low degree polynomial, whose roots give the result of the
decompression.

In addition to making the computation more efficient, the results contained in this appendix
allow us to perform precise operation counts, and thus to compare our method to the other ex-
isting compression methods in Section 5. When computing complexities, we count squarings (S),
multiplications (M), and inversions (I) in Fq, but not additions or multiplications by constants.

A.1. Explicit equations for g = 1, n = 3. In this case hP = `1 is a line through the points
P,ϕ(P ), ϕ2(P ). We assume that Fq does not have characteristic 2 or 3 and that E is given by
an equation in short Weierstrass form

E : y2 = x3 +Ax+B.

For simplicity, we also assume that 3 | q − 1 and write Fq3 = Fq[ζ]/(ζ3 − µ) as a Kummer
extension, where µ ∈ Fq is not a third power. Then 1, ζ, ζ2 is a basis of Fq3 |Fq. It is highly likely
that there exists a suitable µ of small size, see [Lan04, Section 3.1]. When working with a field
extension where 3 - q−1, one may use a normal basis, which yields similar but denser equations.

Compression. If P = (X,Y ) /∈ E(Fq), then the equation of hP = `1 is

hP = y + γ1x+ γ0

and Compress(P ) = (γ0, γ1) ∈ F2
q. Let

(3)
X = X0 +X1ζ +X2ζ

2

Y = Y0 + Y1ζ + Y2ζ
2

then a simple computation yields

γ1 =
c1X

2
1Y1 + c2X

2
2Y2

c1X3
1 + c2X3

2

γ0 = −γ1X0 − Y0,

where

c1 = 1− µ(q−1)/3

c2 = µ1+(q−1)/3 − µ = −µc1
are constants and can be precomputed during the setup phase of the algorithm. Hence compres-
sion takes 2S+6M+1I in Fq.

http://eprint.iacr.org/2004/030
http://eprint.iacr.org/2004/030
http://www.emsec.rub.de/media/crypto/attachments/files/2010/04/ms_weika.pdf
http://www.emsec.rub.de/media/crypto/attachments/files/2010/04/ms_weika.pdf


26 ELISA GORLA AND MAIKE MASSIERER

When P ∈ E(Fq), the line `1 is a tangent and we have

γ1 =
3X2 +A

2Y
γ0 = −γ1X − Y.

Notice that such points are in E[3](Fq) and therefore very few.

Decompression. This algorithm computes the polynomial HP and its roots over Fq3 . We have

HP (x) = x3 − γ2
1x

2 + (A− 2γ0γ1)x− γ2
0 +B.

Computing the coefficients of HP therefore takes 2S+1M in Fq. Since the roots of this polynomial

are X,Xq, Xq2 , and using (3), we get

(4)

γ2
1 = X +Xq +Xq2 = 3X0

A− 2γ0γ1 = X1+q +X1+q2 +Xq+q2 = 3X2
0 − 3µX1X2

γ2
0 −B = X1+q+q2 = X3

0 − 3µX0X1X2 + µX3
1 + µ2X3

2 .

Hence one can solve system (4) over Fq, to recover (X0, X1, X2). Since the solutions of the
system are exactly the Frobenius conjugates of X, it suffices to find a single solution. This takes
at most 3S+3M+1I, one square root, and two cube roots in Fq (see [GM14, Section 5]). Notice
that, since this system is so simple, this is more efficient than factoring HP over Fq3 . Finally,
Y = −γ1X − γ0, so recomputing one y-coordinate takes 1M in Fq, and the other ones can be
recovered via the Frobenius map. In total, decompression takes at most 5S+5M+1I, one square
root, and two cube roots in Fq.

A.2. Explicit equations for g = 1, n = 5. We assume that E is given in short Weierstrass
form E : y2 = x3 +Ax+B over a field of characteristic not equal to 2 or 3.

Compression. Let P = (X,Y ) ∈ T5 and denote by λ1, λ2, λ3 the slopes of the lines `1, `2, `3,
respectively. We have

hP =
`1`2`3
v1v2

= (γ2x
2 + γ1x+ γ0) + y(x+ β0),

where

γ2 = −λ1 − λ2 − λ3

β0 = −λ2γ2 + λ1λ3 −Xq2

γ1 = −λ2β0 − γ2X
q2 + λ1X + λ3X

q3 − Y − Y q2 − Y q3

γ0 = γ1(λ2
2 −Xq2) + γ2((X +Xq)(X +Xq −Xq2 − 2λ2

1 + λ2
2) + λ4

1 +A+ λ2
1X

q2)

+λ1λ2λ3(X +Xq2 +Xq3)− λ1λ2Y
q3 − λ1λ3Y

q2 − λ2λ3Y + λ3λ
2
1λ

2
2 + λ3

1λ
2
2 + λ2

1λ
3
2.

Computing λ1, λ2, λ3 takes a total of 3M+3I in Fq5 . Then, β0, γ0, γ1, γ2 can be computed with
a total of 3S+15M in Fq5 . Thus, compression takes a total of 3S+18M+3I in Fq5 .

Decompression. We compute

S1 = γ2
2 − 2β0

S2 = β2
0 +A− 2γ1γ2

S3 = γ2
1 + 2γ0γ2 − 2Aβ0 −B

S4 = Aβ2
0 + 2Bβ0 − 2γ0γ1

S5 = γ2
0 −Bβ2

0
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using 4S+3M in Fq. Then we factor the polynomial HP (x) = x5−S1x
4 +S2x

3−S3x
2 +S4x−S5,

which takes O(log2 q) operations in Fq. Finally, recovering Y costs 1S+3M+1I in Fq5 .

A.3. Explicit equations for g = 2, n = 3. We assume 2, 3 - |Pic0
C(Fq3)| and that the char-

acteristic of Fq is not equal to 2 or 5. A simple transformation yields a curve equation of the
shape

C : y2 = x5 + f3x
3 + f2x

2 + f1x+ f0.

We assume that C is given in this form, which slightly simplifies the equations. Formulas for the
general case can be worked out similarly.

The trace zero variety of hyperelliptic curves of genus 2, with respect to a degree 3 base field
extension, was studied in detail by Lange [Lan01, Lan04]. One of her results is that the Mumford
representation of all non-trivial elements of T3 has a u-polynomial of degree 2.

Theorem A.1 ([Lan04, Theorem 2.2]). Assume that C has genus 2 and that 2, 3 - |Pic0
C(Fq3)|.

Then all non-trivial elements of T3 are represented by reduced divisors of the form

P1 + P2 − 2O /∈ DivC(Fq),

where P1, P2 6= O and P1 6= P2, ϕ(P2), ϕ2(P2).

Corollary A.2. Assume that C has genus 2 and that 2, 3 - |Pic0
C(Fq3)|. Then all non-trivial

elements of T3 are represented by reduced divisors of the form D = P1 + P2 − 2O /∈ DivC(Fq),
and one of the following mutually exclusive facts holds:

(i) P1, P2 ∈ C(Fq3) \ {O} and P1 ∈ {w(ϕ(P2)), w(ϕ2(P2))},
(ii) P1, P2 ∈ C(Fq3) \ {O} and P1 6= P2, ϕ(P2), ϕ2(P2), w(ϕ(P2)), w(ϕ2(P2)),

(iii) P1 ∈ C(Fq6) \ C(Fq3) and P2 = ϕ3(P1).

Let [u, v] be the Mumford representation of [D]. Then in cases (ii) and (iii) the divisor D+ϕ(D)
is semi-reduced and u - hD,2, in particular hD,2 6= 0.

Proof. It is easy to check that (i)-(iii) are mutually exclusive, and that one must be in one of
these situations. We now show that D + ϕ(D) is semi-reduced and u - hD,2. If we are in case
(ii), then clearly D + ϕ(D) is semi-reduced. By contradiction assume that hD,2 ≡ 0 mod u. Let
Pj = (Xj , Yj), j = 1, 2. Pj −O ∈ DivC(Fq3) is a reduced prime divisor. Since hD,2(Xj) = 0, by
Theorem 3.7 (i) we have w(Pj) = ϕi(Pj). Then Xj ∈ Fq3 ∩ Fqi = Fq and Yj ∈ Fq3 ∩ Fq2i = Fq.
Hence D = P1 + P2 − 2O ∈ DivC(Fq), which contradicts Theorem A.1.

Assume now that we are in case (iii). Since D is prime, by Theorem 3.7 (i), u | hD,2 if and only
if w(D) = ϕi(D) for some i = 1, 2. By contradiction, assume this is the case. Then either w(P1) =

ϕi(P1) or w(P1) = ϕi+3(P1). Hence X = Xqj ∈ Fq6∩Fqj ⊆ Fq2 and Y = −Y qj ∈ Fq6∩Fq2j ⊆ Fq2

for some j ∈ {i, i+3}. This shows thatD ∈ DivC(Fq2)∩DivC(Fq3) = DivC(Fq), which contradicts
Theorem A.1. Therefore u - hD,2 and D + ϕ(D) = P1 + ϕ(P1) + ϕ3(P1) + ϕ4(P1)− 4O is semi-
reduced. Notice that P1 6= w(ϕ(P2)) and P2 6= w(ϕ(P1)), since D is reduced. �

Compression. We consider elements 0 6= [D] = [u, v] ∈ T3, D = P1 + P2 − 2O with P1 6=
w(ϕ(P2)), w(ϕ2(P2)) and u, uϕ coprime. The special cases can be worked out separately, and we
do not treat them here.

Proposition A.3. Let 0 6= [D] = [u, v] ∈ T3, D = P1 +P2−2O with P1 6= w(ϕ(P2)), w(ϕ2(P2))
and gcd(u, uϕ) = 1. Let [U, V ] be the Mumford representation of the semi-reduced divisor D +
ϕ(D). Then

hD = y − V where V = su+ v, s ≡ (vϕ − v)/u mod uϕ.
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Proof. The divisor D + ϕ(D) is semi-reduced by Corollary A.2. By Theorem 3.2 (iii), we have
hD = hD,1 + yhD,2 with deg hD,1 = 3 and deg hD,2 ≤ 0. Since hD,2 6= 0 by Corollary A.2, after
multiplication by a constant we have hD = y−γ(x) where γ ∈ Fq[x] of degree 3. If Pi = (Xi, Yi),

then hD(Xqj

i , Y
qj

i ) = 0 and hence γ(Xqj

i ) = Y qj

i for i = 1, 2, j = 0, 1, 2. But V is the unique

polynomial of degree ≤ 3 with V (Xqj

i ) = Y qj

i for i = 1, 2, j = 0, 1, 2, and therefore γ = V .
In order to compute V , observe that it is the unique polynomial V of degree < deg(uuϕ) = 4

such that V ≡ v mod u and V ≡ vϕ mod uϕ. Keeping in mind that u, uϕ are coprime, and using
the Chinese Remainder Theorem (or following the explicit formulas in [Lan05]), we get

V = su+ v where s ≡ (vϕ − v)/u mod uϕ,

as claimed. �

Denoting u(x) = x2+u1x+u0 and v(x) = v1x+v0, we compute the compression (β0, γ0, γ1, γ2, 1)
of D according to the following formulas. We abbreviate

U0 = u0 − uq0, U1 = u1 − uq1, V0 = v0 − vq0, V1 = v1 − vq1.
Then

d = (U1V0 − U0V1)−1

β0 = ((u0u
q
1 − u

q
0u1)U1 − U2

0 )d

γ0 = ((u0v
q
0 − u

q
0v0)U0 + (uq0u1v0 − u0u

q
1v

q
0 − u

q+1
0 V1)U1)d

γ1 = ((u0v
q
1 − u

q
0v1)U0 + (uq1v0 + uq0v

q
1)u1U1 + (uq0u1 − u0u

q
1)V0 + (u0v1 + u1v

q
0)(u2q

1 − u
q+1
1 ))d

γ2 = (((u1 + uq1)U1 − U0)V0 − (u0u1 − uq0u
q
1)V1)d.

Computing these values in the straightforward way takes 2S+32M+1I in Fq3 . This number could
probably be optimized by regrouping the terms in a more sophisticated way.

Decompression. Since decompression is dominated by factoring polynomials, we do not per-
form an exact operation count here. The algorithm computes

S1 = −2γ2 + β2
0

S2 = 2γ1 + γ2
2

S3 = −2γ0 − 2γ1γ2 + β2
0f3

S4 = 2γ0γ2 + γ2
1 − β2

0f2

S5 = −2γ0γ1 + β2
0f1

S6 = γ2
0 − β2

0f0

over Fq to obtain HD = x6 − S1x
5 + S2x

4 − S3x
3 + S4x

2 − S5x+ S6. In almost all cases we are
decompressing a divisor of the shape that we consider above for compression. HD either splits
over Fq into two factors of degree 3, or it is irreducible over Fq. Factoring HD over Fq takes
O(log q) operations in Fq. Then we factor either two polynomials of degree 3 over Fq3 , or one
degree 6 polynomial over Fq3 , in O(log q) operations in Fq3 . In all cases, we then compute the
corresponding v-polynomials. It follows that the overall complexity of decompression is O(log q)
operations in Fq.
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