Shadow Numbers Public Key Encryption

John Almeida
john.almeida@unoweb.com
UnoWeb Inc.
www.unoweb.com
P.O. Box 8743
Emeryville, CA 94662

The current paper is part of a pending US patent: US 2011/0026711 A1

Abstract

The present public key encryption in this paper involves the use of two values and they are the shadow's values of a base value, and the base value is derived from the two shadows values. Whenever two integer values (first shadow value and second shadow value) are multiplied producing a product value and the value of one is subtracted from the product value a first base value is derived and it is the first base value of the two shadows values. The derived first base value may be divided by any divisor that it may be divided with which produces a positive integer quotient result and zero for the remainder. All values that are used in the division and the quotient result are bases values for the chosen shadow value-pair. Then one of the base values is chosen along with the two chosen shadows values and they comprise a triplet values that represent the public key to encrypt a message and the private key to decrypt the encrypted message.

Keywords: Shadow number, shadow number system, shadow number algorithm, public key encryption, algorithm, public key, private key, encryption.

1. Introduction

Since the dawn of times humans felt the need to protect sensitive information that only the sender and the intended recipient could've known its contents. Various form of encryption have been devised and used throughout the ages and some common ones involved the scrambling of letters of the message by the sender and only the recipient possessing the knowledge of the method the sender used was able to reassemble the message to its original state. These methods had their weaknesses because the message's deliverer had to be trusted as well. If the message's deliverer knew the method that was used to scramble the message then the message could've been read while in transit from the sender to the recipient. These methods were based on a common encryption and decryption key,
private key. Based on the weakness of private key methods, there always had a need to devise a method that the key used to encrypt the message would've been readily available to the public but the key used to decrypt the message would've only be available to the message's recipient. Based on these requirements, the public key method would've not been compromised by anyone because the public key would've been available to anyone and no need to worry if the message would've been read while in transit because only the intended message's recipient possessed the private key to decrypt the message that was encrypted with the equivalent public key.

In 1976, Diffie and Hellman introduced the concept of two-key cryptosystems [1]. They proposed a method of public-key encryption, wherein each user has both a public and private key, and two users could communicate knowing only each other's public keys. In the public-key system devised by Diffie and Hellman, secrecy and authenticity were provided by two separate transformations. Suppose user A wishes to send a message M to another user B. If A knows B 's public transformation E_{b}, A can transmit M to B in secrecy by sending the ciphertext $C=$ $E_{b}(M)$. On receipt, B deciphers C using $B ' s$ private transformation D_{B}, equation (1):

$$
\begin{equation*}
D_{B}(C)=D_{B}\left(E_{B}(M)\right)=M \tag{1}
\end{equation*}
$$

For authenticity, M must be transformed by A 's own private transformation D_{A}. A sends $C=D_{A}(M)$ to B. On receipt, B uses A 's public transformation E_{A} to compute, equation (2):

$$
\begin{equation*}
E_{A}(C)=E_{A}\left(D_{A}(M)\right)=M \tag{2}
\end{equation*}
$$

Authenticity is provided because only A can apply the transformation D_{A}. [2]

In 1978, Pohlig and Hellman [3] published an encryption scheme based on computing exponentials over a finite field. At about the same time, Rivest, Shamir, and Adleman [4] published a similar scheme, but with a slight twist, a twist that gave the MIT group a method for realizing public-key encryption as put forth by Diffie and Hellman [1].

The Pohlig-Hellman and RSA schemes both encipher a message block by computing the exponential, equation (3):

$$
\begin{equation*}
C=M^{e} \bmod n \tag{3}
\end{equation*}
$$

Where e and n are the key to the enciphering transformation. M is restored by the same operation, but using a different exponent d for the key, equation (4):

$$
\begin{equation*}
M=C^{d} \bmod n \tag{4}
\end{equation*}
$$

The enciphering and deciphering transformations are based on Euler's generalization of Fermat's Theorem [5].

In 1993, Michio Shimada devised an algorithm [6] that uses linear transformation. To encrypt data word of plaintext, it takes the values of $0,1,2, \ldots,(N-1)$, the modulus is set to N. The enciphering is implemented as shown in equation (5):

$$
\begin{equation*}
C=a_{k}\left(\ldots\left(a_{2}\left(a_{1} \cdot M+b_{1} \bmod N\right)+b_{2} \bmod N\right) \ldots\right)+b k \bmod N \tag{5}
\end{equation*}
$$

where $a_{l} \ldots a_{k}$ and $\mathrm{b} 1 \ldots b_{k}$ are cryptographic keys.

Above equation can be rewritten as in equation (6):

$$
\begin{equation*}
C=A \cdot M+B \bmod N \tag{6}
\end{equation*}
$$

In 1999, the Cayley-Purser algorithm [7] was a public-key cryptography algorithm published in early 1999 by 16-year-old Irishwoman Sarah Flannery [8], based on an unpublished work by Michael Purser, founder of Baltimore Technologies, a Dublin data security company. Flannery named it for mathematician Arthur Cayley. It was found to have flaws as a public-key algorithm, but was the subject of considerable media attention.

Like RSA, key generation with Cayley-Purser begins by generating two large primes p and q and their product n, a semi prime. Next, consider $G L(2, n)$, the general linear group of 2×2 matrices with integer elements and modular arithmetic $\bmod n$. For example, if $n=5$, we could write:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
5 & 7
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right]} \\
& {\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
3 & 4 \\
11 & 16
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
1 & 1
\end{array}\right]}
\end{aligned}
$$

This group is chosen because it has large order (for large semi prime n), equal to $\left(p^{2}-1\right)\left(p^{2}-p\right)\left(q^{2}-1\right)\left(q^{2}-q\right)$.
Let χ and α be two such matrices from $G L(2, n)$ chosen such that $\chi \alpha^{-1} \neq \alpha \chi$. Choose some natural number r and compute, equations (7-8):

$$
\begin{align*}
& \beta=\chi^{-1} \alpha^{-1} \chi \tag{7}\\
& \gamma=\chi^{r} \tag{8}
\end{align*}
$$

The public key is n, α, β, and γ. The private key is χ.
Encryption performed by the sender begins by generating a random natural number s and computing, equations (911):

$$
\begin{align*}
& \delta=\gamma^{s} \tag{9}\\
& \epsilon=\delta^{-1} \alpha \delta \tag{10}\\
& \kappa=\delta^{-1} \beta \delta \tag{11}
\end{align*}
$$

As in RSA, to encrypt a message, each message block is encoded as a number and they are placed four at a time as elements of a plaintext matrix $\mu^{\text {. Each }} \mu_{\text {is encrypted using equation (12): }}$

$$
\begin{equation*}
\mu^{\prime}=\kappa \mu \hbar \tag{12}
\end{equation*}
$$

Then μ^{\prime} and ϵ are sent to the receiver.
Decryption is performed by the receiver recovers the original plaintext matrix μ via equations (13-14):

$$
\begin{align*}
& \lambda=\chi^{-1} \epsilon \chi \tag{13}\\
& \mu=\lambda \mu^{\prime} \lambda \tag{14}
\end{align*}
$$

2. Prior solutions

All the prior solutions require the use of large prime numbers and requiring a great deal of processing power to locate them on the fly. Also, most of these algorithms require prime numbers of the same length and therefore making it easier to find one of the prime number and compromising the security of the encryption. Furthermore, some of the currently in use algorithms require exponentiation which is computational extensive and making them less appealing for use in smaller devices with limited computational speed and low battery life.

3. Shadow numbers public key

The solutions offered by prior encryption algorithms requiring the use of prime numbers and repetitive exponentiation limit their use in computing devices with limited processing speed and low battery life, e.g. personal mobile devices.

The proposed solution in this paper uses any kind of positive integer values and not necessarily being prime numbers, thus making the encryption easy of use by simply randomly generating the two shadow's values on the fly. Then using the generated two shadows' values to derive a base value. And finally, using one of the shadow value with the base value as the public encryption key, and the other shadow value with the base value as the private encryption key. The proposed solution is easy to implement and does not require high computational power as compared to any of the other available solutions, thus enabling it to be used in any kind of personal device without slowing down the device, without draining the device's battery and without requiring the randomly chosen shadow's value to be of the same length, therefore increasing the speed and the security of the encryption.

In terms to use the shadow numbering system, a two shadows' values are necessary and they may be any positive integer value and not necessarily prime numbers. After the two chosen values are multiplied, a product is derived and once the value of ' 1 ' is subtracted from the product, a first base value is obtained.

The first shadow value may be any integer value that is greater than ' 1 ' and it may not necessarily be a prime number. The second shadow value may be any integer value that is greater than ' 2 ' and it may not necessarily be a prime number either. Once the first shadow value is multiplied by the second shadow value, a product value is obtained. After the product value is obtained and the value of ' 1 ' is subtracted from the product value, a first base value is obtained.

The base value may be the obtained first base value or any other value that it can be divided with and producing a positive integer quotient value and zero for the remainder. In case the first base value is dividable by any other value, then the divisor value that is used in the division of the first base value and the quotient value of the division, are also bases' values.

For our example let's choose two shadows values: ' 5 ' and ' 3 '. Once they are multiplied the product value of ' 15 ' is obtained. After the value of ' 1 ' is subtracted from the product ' 15 ' the result value of ' 14 ' is obtained. And ' 14 ' is the first base value for the shadows' value-pair of ' 5 ' and ' 3 '. The first base value ' 14 ' is dividable by ' 2 ' and producing a quotient result value of ' 7 '. As in this example, the shadows' value-pair of ' 5 ' and ' 3 ' has three bases values: ' 14 ', ' 7 ' and ' 2 '.

The value to encrypt must be from ' 1 ' to the chosen base value minus ' 1 '. For instance, as in our example, if we choose the base value of ' 14 ', then the value that can be encrypted is from ' 1 ' to ' 13 '. If we choose the base of ' 7 ', then the value that can be encrypted is from ' 1 ' to ' 6 '. If we choose the base value of ' 2 ', only the value of ' 1 ' can be used for encryption. Basically, the chosen base value is of a high value to accommodate large encrypting values. For our example we'll be using the first base value of ' 14 . The shadows value-pair and its corresponding bases values are illustrated at Fig. 1.

Fig. 1 - The shadows' values of 3 and 5 and their corresponding bases' values of 2,7 and 14

The base value is derived with equation (15):

$$
\begin{equation*}
B=(S a . S b)-1 \tag{15}
\end{equation*}
$$

The public key is derived with equation (16):

$$
\begin{equation*}
e=(M . S a) \bmod B \tag{16}
\end{equation*}
$$

The private key is derived with equation (17):

$$
\begin{equation*}
d=(e . S b) \bmod B \tag{17}
\end{equation*}
$$

Let's use an example by applying the values to the prior three equations.

$$
\begin{aligned}
& S a=\text { first shadow } \\
& S b=\text { second shadow } \\
& M=\text { message to encrypt } \\
& e=\text { encrypted message } \\
& d=\text { decrypted message }
\end{aligned}
$$

$$
\begin{aligned}
& S a=5 \\
& S b=3 \\
& M=13
\end{aligned}
$$

The base value:

$$
B=(S a . S b)-1 \Rightarrow(5.3)-1=14
$$

Public key: $S a=5$ and $B=14$

$$
e=(M . S a) \bmod B=>(13.5) \bmod 14=9
$$

Private key: $S b=3$ and $B=14$

$$
d=(e . S b) \bmod B=>(9.3) \bmod 14=13
$$

3.1. Applying exponentiation to shadow's values and the base value

The prior example is of limited use in the science of encryption and decryption since anyone possessing one key pair will be able to easily derive the other key pair and there is remedy.

The solution is to add the base value to the other two shadows' values and then applying a common exponentiation value to both shadows' values and to the base value, let's use the value of ' 3 ' for the exponentiation.

First shadow + Base $=>5+14=19 \Rightarrow(19)^{3}=6859$
Second shadow + Base $=>3+14=17=>(17)^{3}=4913$
Raised Base value $=>(14)^{3}=2744$

Now we have two new shadows and two bases, the new base and the original base.
Raised first shadow: Sar $=6859$
Raised second shadow: $\operatorname{Sbr}=4913$
Raised Base: $B r=2744$
Base: $B=14$

Now we have a new public key: $S a r=6859$ and $B r=2744$, and a new private key: $S b r=4913$ and $B=14$. In our prior equations, after deriving the product between the value to encrypt and the public key's shadow value, a
modulus was taken between the product and the chosen base value, we might do this as well before performing any encryption and we'll perform the same process for the public key and for the private key.

Public key - raised first shadow ($\operatorname{Sar}=6859$ and $B r=2744$): $\operatorname{Sar}=6859=>6859 \bmod 2744=1371$
Raised base: $B r=2744$
Public key is: $\operatorname{Sar}=1371$ and $\mathrm{Br}=2744$

The private key is the second shadow $(S b r=4913)$ and the original Base $(B=14)$ and we may proceed and take the modulus between the second shadow and the base value.

Private key - raised second shadow $(S b r=4913$ and $B=14): S b r=4913=>4913 \bmod 14=13$
Private base: $B=14$
Private key is: $S b r=13$ and $B=14$

Now we may proceed and perform encryption and decryption with the new derived shadow's values and base value using the similar equations.

Value to Encrypt: $M=13$

Public key is: $\operatorname{Sar}=1371$ and $B r=2744$. The encryption is performed with equation (18):

$$
\begin{equation*}
e=(M . \text { Sar }) \bmod B r=>(13.1371) \bmod 2744=1359 \tag{18}
\end{equation*}
$$

Private key is: $S b r=13$ and $B=14$. The decryption is performed with equation (19):

$$
\begin{equation*}
d=(e . S b r) \bmod B=>(1359.13) \bmod 14=13 \tag{19}
\end{equation*}
$$

The private key-pair is the one that has the original base value and the public key-pair is the one with the raised (exponent) shadow and raised based values. The security of the shadow encryption relies in the sense that the private key-pair being the smallest of the two key-pairs, and the public key having the highest value of the two key-pairs, it is quite difficult to derive the private key-pair from the public key-pair. The most probable method to use while trying to break the encryption will be the use of brute force and trying each combination until the private key-pair is found. The use of brute force is time consuming and since the shadow's values used may be in length of hundreds of numbers and not being prime numbers, the combination will be quite large and requiring a great deal of computer processing power.

4. Conclusion

The shadow number public encryption algorithm presented in this paper solves the problems that are found in the currently in use public key algorithms without compromising security and at the same time making it possible to offer public key encryption in broad base electronic devices without high processing power.

References

[1] Diffie, W. and Hellman, M., "New Directions in Cryptography," IEEE Trans. On Info. Theory Vol. IT22(6) pp. 644-654 (Nov. 1976).
[2] Dorothy Elizabeth and Robling Denning, "Cryptography and Data Security," AddisonWesley, pp. 11-12. (1982)
[3] Pohlig, S. and Hellman, M., "An Improved Algorithm for Computing Logarithms over GF(p) and its Cryptographic Significance," IEEE Trans. on Info. Theory Vol. IT-24(1) pp. 106-110 (Jan. 1978).
[4] Rivest, R. L., Shamir, A., and Adleman, L., "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Comm. ACM Vol. 21(2) pp. 120-126 (Feb. 1978).
[5] Dorothy Elizabeth and Robling Denning, "Cryptography and Data Security," AddisonWesley, pp. 101. (1982).
[6] United States Patent US $5,301,235$, "Arrangement for transforming plaintext into ciphertext for use in a data communication system", column 4, Apr. 5, 1994.
[7] http://en.wikipedia.org/wiki/Cayley\�\�\�Purser_algorithm
[8] Sarah Flannery with David Flannery, "In Code", Algonquin Books of Chapel Hill, pp. 274-282. (2002).

