
A Tamper and Leakage Resilient Random Access Machine

Sebastian Faust1, Pratyay Mukherjee2, Jesper Buus Nielsen2, and Daniele Venturi3

1EPFL Switzerland
2Aarhus University

3Sapienza University of Rome

May 14, 2014

Abstract

We present a “universal” Random Access Machine (RAM in short) for tamper and leakage
resilient computation. The RAM has one CPU that accesses three storages (called disks in the
following), two of them are secret, while the other one is public. The CPU has constant size for
each fixed value of security parameter k. We construct a compiler for this architecture which
transforms any keyed primitive into a RAM program where the key is encoded and stored on
the two secret disks and the instructions for evaluating the functionality are stored on the public
disk.

The compiled program tolerates arbitrary independent tampering of the disks. That is, the
adversary can tamper with the intermediate values produced by the CPU, and the program code
of the compiled primitive on the public disk. In addition, it tolerates bounded independent
leakage from the disks and continuous leakage from the communication channels between the
disks and the CPU.

Although it is required that the circuit of the CPU is tamper and leakage proof, its design is
independent of the actual primitive being computed and its internal storage is non-persistent,
i.e., all secret registers are reset between invocations. Hence, our result can be interpreted
as reducing the problem of shielding arbitrary complex computations to protecting a single,
simple and “universal” component. As a main ingredient of our construction we use continuous
non-malleable codes that satisfy certain additional properties.

Contents

1 Introduction 2
1.1 Our Model 4
1.2 Our Techniques 6
1.3 Other Related Work 7

2 Preliminaries 8
2.1 Notation 8
2.2 Continuous Non-Malleable Codes . 8

3 Leakage and Tamper Resilient
RAM 10

3.1 The RAM Compiler 13
3.2 The Security Model 14

4 Hybrid-to-Real Emulator 19
4.1 Proof of Theorem 4 21

5 The Hybrid Scheme 26
5.1 A Regular Program for G 27
5.2 The Compiled Program 29
5.3 Analysis 32

A Proof of Theorem 1 42

1 Introduction

Can cryptographic schemes achieve their security goals when run on non-trusted machines? This
fascinating question has recently resulted in a large body of work that weakens the traditional
assumption of fully trusted computation and gives the adversary partial control over the implemen-
tation. Such partial control can either be passive where the adversary obtains information about the
internal computation, or active where the adversary is allowed to change the secret state and/or the
computation of the scheme. While the question of whether cryptography is possible in a non-trusted
environment is interesting by itself, it also has important practical applications for, e.g., protecting
cryptographic implementations against so-called side-channel [27, 28], fault [3, 7, 35, 33] or virus
attacks [32, 21].

One general solution to the above question is given by the appealing notion of leakage and tamper
resilient compilers introduced in the pioneering works of Ishai, Prabhakaran, Sahai and Wagner [24,
23]. A compiler takes as input a description of some arbitrary cryptographic functionality GK and
outputs a transformed functionality G′K′ which has the same input/output behaviour as GK but
additionally remains secure in a partially trusted environment. For instance, G′K′ may be secure
when the adversary is able to obtain a bounded amount of leakage from the execution of G′K′ , or
when he can change the secret state K′ in some adversarial way. Formally, security is typically
modelled by a simulation-based notion. That is, whatever the adversary can learn by interacting
with G′K′ in the non-trusted environment, he can also achieve by interacting with the original GK
when implemented on a fully trusted device.

Tamper resilient compilers. Two different lines of work investigate methods for tamper resilient
compilers. The first approach designs so-called tamper resilient circuits [23, 19, 11, 26, 12]. That is,
given a circuit C[K] that, e.g., computes the AES with key K, the compiler outputs1 a transformed
circuit C ′[K′] that achieves simulation-based security even if the adversary can tamper with up to
a constant fraction of the wires independently. While these works allow the adversary to tamper
with the entire circuitry, they typically make very strong assumptions on the type of tampering. In
particular, it is assumed that each bit of the computation is tampered with independently (so-called
set/reset and toggle attacks).

The second approach is based on the beautiful notion of non-malleable codes [16]. Informally,
a code is non-malleable w.r.t. a set of tampering functions if the message contained in a codeword
modified via a function in the family is either the original message, or a completely “unrelated” value.
A compiler based on non-malleable codes stores the secret key in an encoded form and the compiled
functionality decodes the state each time the functionality wants to accesses the key. As long as
the adversary can only apply tampering functions from the family supported by the code, the non-
malleability property guarantees that the (possibly tampered) decoded value is not related to the
original key. While non-malleable codes exist for rich families that go far beyond the bit-tampering
adversary discussed above (see, e.g., [16, 30, 15, 1, 8, 9, 17, 18, 2, 10]), the existing compilers based
on non-malleable codes only protect the secret key against tampering attacks. In particular, the
assumption is that the entire circuitry that evaluates the functionality is implemented on a fully
trusted environment and cannot be tampered with.

In this work we show how to significantly weaken the assumption of tamper-proof computation.
Our solution is also based on non-malleable codes and hence can achieve strong protection against

1W.l.o.g. we assume that any keyed-functionality GK(·) can be realized by a corresponding Boolean circuit CG [K].

2

rich families of tampering functions, but simultaneously significantly reduces the assumption on
tamper proof circuitry used by the traditional approach described above. In particular, the tamper-
proof circuitry we use (the so-called CPU) is a small and universal component, whose size and
functionality is independent of the functionality that we want to protect. Notice that this is in
contrast to the traditional approach that requires a specifically tailored tamper-proof hardware for
each functionality that we intend to protect. Our solution is hence in spirit with earlier works
(e.g., [19]) and reduces the problem of protecting arbitrary complicated computation to shielding a
single, simple component. While our construction may work generically for non-malleable codes that
satisfy certain properties, in this work we focus on non-malleable codes in the split-state setting.2

In this well-known (considered in [30, 1, 15, 17, 9] etc.) setting the codeword consists of two parts
c0, c1 and the adversary is allowed to tamper independently with them in an arbitrary way.

On the difficulty of computing with non-malleable codes. As non-malleable codes typically
do not have any homomorphic property that enables computation, and in fact in many cases a
simple homomorphism would contradict the non-malleability property of the code, our tamper
proof CPU will carry out the decoding and encoding procedure of the underlying non-malleable
code. Additionally, it will execute a single constant size instruction of the functionality. More
concretely, consider some instruction I with inputs cα = Encode(α) and cβ = Encode(β) (e.g.,
I may be the NAND operation and cα and cβ may be the encodings of two bits α and β), then
informally the tamper proof CPU will carry out the following operations: (i) Decode cα and cβ to
recover the bits α and β; (ii) Compute the instruction I on inputs α and β to obtain the result
γ; (iii) Compute cγ = Encode(γ). Notice that instruction I may be as simple as a single NAND
operation, and hence the size of the CPU is independent of the size of the transformed functionality.

One may think that given such a powerful tamper-proof component a solution for tamper re-
silient computation is simple. Unfortunately, the notion of non-malleable codes only guarantees that
one cannot change the encoded value to some related value. Nothing, however hinders the adver-
sary to just overwrite an encoding with a valid encoding of some fixed (known) value. Notice that
such an attack may not only make it impossible to achieve simulation-based security, but moreover
can completely break the scheme.3 In the split state model where all encodings are stored on two
independent disks, the situation is even more severe as now the adversary can start to copy valid
encodings from some place of the computation to different portions. For instance, he may attempt
to copy the encoding of the secret key directly to the output of the program. Our transformation
prevents these and other attacks by tying together all encodings with the secret key and the de-
scription of the compiled functionality. Hence, any attempt to change any intermediate encoding
will destroy the functionality, including the key.

One important feature of our construction is to allow tampering with the program code. In
our model the program consists of code built from several instructions such that each instruction
is executed by the the tamper-proof CPU sequentially. Notice that tampering with the program
(and hence with the functionality) is allowed as the code is written on the tamperable public disk.
Hence, the adversary may attempt to overwrite the code with a malicious program that, e.g., just
outputs the secret key. In our construction we prevent this type of attack by again making sure

2It would be interesting to analyze if our construction can be extended to work with other (non split-state)
non-malleable codes, as it is the case for the compiler of [16].

3Consider a contrived program that outputs the secret key if a certain status bit is set to 0, but otherwise behaves
normally.

3

that any change of the code will enforce in tampering with the secret key, which itself is protected
by a non-malleable code.

On the difficulty of adding leakage. While the CPU is assumed to be fully trusted, i.e., its
computation neither can be changed nor may it leak information to an adversary, the data read from
and written to the disks may leak. We model this by giving the adversary bounded leakage from
the buses, which are basically the communication channels carrying data, read from and written to
the disks. We emphasize that our leakage model is continuous in the sense that the CPU can be
executed many times and hence over time the leakage from the read/write process may exceed the
size of the disks. It is well known that leakage and tamper resilience do not add up [29]. In fact, it is
easy to construct a scheme that is leakage resilient but completely breaks under limited tampering
attack. In this context, one possible attack that we need to prevent is a so-called resetting attack:
an adversary may keep a copy of the entire disks and re-run the program continuously on the same
state. This may result in loading over and over again the same data, which is eventually revealed
through continuous leakage. As reset attacks seem inherent in a model where both tampering
and leakage is possible (the tampering allows resetting and the leakage enables the adversary to
eventually learn the entire state), we require that the CPU keeps a small (logarithmic in the number
of executions) and public but tamper-proof state—a so-called activation and program counter. Our
construction has then to ensure that the public counters are synchronized with the current state
kept on the disks.

In the next two subsections we provide a high level description of our model and techniques.
For a comparison of our result with other results in the area of tamper resilient cryptography (in
particular with tamper resilient circuits), we refer the reader to Section 1.3.

1.1 Our Model

We put forward a model of a tamper and leakage resilient Random Access Machine (RAM) archi-
tecture, which can implement arbitrary keyed functionalities GK(·).

Split-state RAM schemes. Our split-state RAM schemes consist of a RAM architecture R
and a RAM compiler C. The RAM R has two secret disks SD1,SD2, one public disk PD and a
tamper/leakage-proof CPU that is connected with the disks through buses. The RAM compiler C
takes as input the description of a functionality G and a key K and outputs initial states for the
execution of the program in the RAM architecture. In particular, this consists of the contents for
the public and secret disks. The former contains an encoding of the program code, while the secret
disks keep the encoding of K.

The program runs in activations. An activation denotes the time period of evaluating GK(·) on
some input x, where x is stored on PD. An activation involves several executions of the CPU. In
each execution, the CPU loads a constant number of encodings from the disks (this might include
reading part of the input), executes one computation (including potential decoding and encoding)
on the loaded data, and writes the result back to the disks (this might include writing part of the
output). We stress that our CPU has no persistent internal (secret) storages, i.e., all secret registers
are reset between invocations.

As discussed above, to achieve our strong security guarantee of continuous leakage and split-
state tamper resistance, the CPU contains a public untamperable program counter pc, an activation

4

counter ac and a self-destruct bit B. While the first two are necessary to prevent the reset attack in
the presence of continuous leakage, the self-destruct bit is required for continuous tamper resilience
(this is similar to earlier works that build compilers based on non-malleable codes [17]). The
activation counter ac is incremented after each activation and during each activation the program
counter pc specifies at which position of the public disk the CPU shall read the next instruction.
The value B is a special self-destruct bit that is initially set to 0, and can once be flipped by the
CPU. Whenever B is set to 1, the RAM goes into a special “self-destruct” mode where it is assumed
to forever output the all-zero string.

RAM-simulatability. To define tamper resilience of a RAM-scheme, we introduce a natural
notion of RAM-simulatability for split-state RAM-schemes. At setup, the RAM-compiler is run in
order to produce the initial contents of the public and secret disks. As in previous works on tamper
and leakage resilient compilers the preprocessing in the setup is assumed to be tamper and leakage
proof and is executed once at the initialization of the system. In the online phase, the adversary can
specify between executions a tampering function Tamper(·) that modifies the public disks PD and
the two secret disks SD1,SD2 independently (yet arbitrarily).4 Furthermore, the adversary can ask
the RAM to perform the next step in the computation (for the current activation), by running the
CPU on the (possibly modified) disks. We call this experiment the real execution. We remark that
since the adversary can modify arbitrarily the public disk, our model allows arbitrary tampering
with the program code of the (transformed) functionality.

We compare the real execution to a mental experiment featuring a simulator having only black-
box access to the original functionality GK(·). We call this an ideal execution. A split-state RAM-
scheme is RAM-simulatable if for all efficient adversaries there exists an efficient simulator such that
for all functionalities G the output distributions of a real and an ideal execution are computationally
close.

On the trusted CPU assumption. The CPU is the only part of the computation that is
completely trusted. While its inputs and outputs may be subject to leakage and tampering attacks,
its computation does not leak and its execution is carried out un-tampered. Our CPU is small and
independent of the functionality to protect: it merely reads a constant number of encodings from
disks, decodes them, executes some instruction (that can be as simple as a NAND operation) and
writes the encoded result back to the disks. Notice that in contrast to earlier work on tamper resilient
compilers based on non-malleable codes [16, 30, 17], we allow tampering with intermediate values
produced by the program code, and in fact even with the program code itself. Our result hence
can be interpreted as a much more granular model of computation than [16, 30, 17]. In summary,
we show how to reduce the problem of protecting arbitrary computation against continuous leakage
and tampering attacks in the split-state model to shielding a simple and universal component. We
notice that while our work minimizes the trusted hardware assumption made in non-malleable code
based compilers, our trusted CPU is significantly more complex than tamper-proof hardware that
has been used in works on tamper resilient circuits (cf. Section1.3 for more details on this).

4Note that, since PD is public, it is always possible to tamper jointly with the public disk and either of SDi.

5

1.2 Our Techniques

The description of our RAM-scheme consists of two modular steps. In the first step, we build a
compiler achieving only a weaker form of RAM-simulatability, where the way an adversary can
tamper with the RAM is significantly limited. In the second step, we show how to take a scheme
secure in this “hybrid world” and secure it against the tampering possible in the split-state model via
what we call an emulator. The combination of the two transformations yields our final split-state
RAM-scheme. We first describe the emulator first.

The emulator. The RAM architecture in the hybrid-world only has one secret disk SDh and
one public disk PDh. While the adversary has full read/write access to PDh, he only has limited
tampering access to SDh: he may copy values within SDh itself, and replace parts of SDh with
some known values. We call the modified execution the hybrid execution. We then introduce the
notion of a hybrid-to-real emulator, which is essentially an efficient transformation taking as input
a program secure in the hybrid world and a program secure in the real world, i.e., on the split-state
RAM.

The basic idea of the hybrid emulator is simple. Given a hybrid scheme, each value of the disks
is encoded using a suitable non-malleable code. Our construction uses the recent construction of
continuous non-malleable codes (CNMC) in the split-state setting [17]. In contrast to traditional
non-malleable codes, continuous non-malleability guarantees that the code remains secure under
continuous attacks without assuming erasures. Our construction requires also some form of com-
posability of non-malleable codes, where we allow the tampering function to depend on multiple
encodings together. We can show by a generic reduction that composability is preserved for any
continuous non-malleable split-state code. Finally, the emulator transforms the program code by
a straightforward transformation that guarantees that the required encodings are loaded from the
correct positions of the two secret disks (instead of the single disk in the hybrid scheme).

We show by a reduction to the composable CNMC that there exists a hybrid simulator, attacking
the hybrid scheme and having limited tamper access (only copy and replace), that produces a
distribution that is indistinguishable from the execution of the emulated RAM scheme in the real
world. For this reduction to work, it is important that the hybrid scheme being emulated has a
property called c-boundedness. Informally, this notion says that each value on the secret disk is
touched at most c times, for a constant c. Without this property, the emulator would touch the
corresponding codeword an unbounded number of times, and continuous leakage from the buses
would leak the entire code. Notice that it is in particular difficult to achieve c-bounded schemes
in the presence of tampering, as the hybrid adversary may several times move a given value to the
next position on the secret disk read by the CPU. The proof of the emulator is quite tedious and
requires some careful book-keeping.

The hybrid compiler. We construct a hybrid-scheme that is RAM-simulatable and c-bounded
for a small constant c. The main idea is to store the program and all intermediate values on the
secret disk SDh. At setup, a secret label L is sampled uniformly at random and stored in the
first position of the secret disk. Then, each value on the disk is “augmented” with the following
information: (i) The position j at which the value was meant to be stored; (ii) The secret label
L; and (iii) The values (a, p) of the activation counter ac and the program counter pc when the
value was written on disk. Intuitively, adding the secret label (which is unknown to the adversary)
prevents the adversary from replacing values from different positions of the secret disk with values

6

that do not have the right label (notice that this label is long enough such that it cannot be guessed
by the adversary). This ensures that all the values containing the label are either from the pre-
processing or computed and stored by the CPU. Hence, they are in a way “authenticated” by the
computation and not introduced by the adversary. On the other hand, the position j prevents the
adversary from copying the corresponding value to a location different from j, as the CPU will check
that j matches the position from which the value was read.

Note that the adversary can still replace a value at location j with an older value that was stored
at location j before, essentially with the goal of resetting the scheme to a previous valid state. By
checking the values a and p with the current values of the activation and program counters of the
CPU, the CPU can detect such resetting attacks and self-destruct if necessary. Our analysis (see
Section 5) shows that the probability that an adversary manages to replace some value on the
secret disk (putting the correct label) without generating a self-destruct, is exponentially small in
the security parameter. The use of the label to prevent moving and resetting values along with the
structure of the compiled program makes or hybrid compiler c-bounded, as require by the emulator.

1.3 Other Related Work

Many recent works have studied the security of specific cryptographic schemes (e.g., public key
encryption, signatures or pseudorandom functions) against tampering attacks [5, 4, 25, 36, 6, 13]).
While these works often consider a stronger tampering model and make less assumptions about
tamper-proof hardware, they do not work for arbitrary functionalities.

Leakage and tamper-proof circuits. A large body of work studies the security of Boolean
circuits against leakage attacks [24, 20, 14, 22, 34, 31]. While most works on leakage resilient circuit
compilers require leakage-proof hardware, the breakthrough work of Goldwasser and Rothblum [22]
shows how to completely eliminate leak-proof hardware for leakage in the split-state setting. It is
an interesting open question, if one can use the compiler of [22] to implement our CPU and allow
leakage also from its execution. We emphasize that most of the work on leakage resilient circuit
compilers does not consider tampering attacks (though some of them may be easily extendible in
restricted tampering settings [23]).

The concept of tamper resilient circuits has been introduced by Ishai, Prabhakaran, Sahai and
Wagner [23] and further studied in [23, 19, 11, 26, 12]. On the upside such compilers require much
simpler tamper-proof hardware,5 but study a much weaker tampering model. Concretely, they as-
sume that an adversary can tamper with individual wires (or constant size gates [26]) independently.
That is, the adversary can set the bit carried on a wire to 1, set it to 0 or toggle its value. Moreover,
it is assumed that in each execution at least a constant fraction of the wires is not tampered at
all.6 Our model considers a much richer family of tampering attacks. In particular, we allow the
adversary to arbitrarily tamper with the entire content of the two disks, as long as the tampering is
done independently. In fact, our model even allows the adversary to tamper with the functionality
by putting the program code on the public disk to which the adversary has complete read/write
access. Translating this power to a circuit model would essentially allow the adversary to “re-wire”
the circuit.

5To the best of our knowledge each of these compilers requires a tamper-proof gate that operates on at least k
inputs where k is the security parameter. Asymptotically, this is also the case for our CPU, while clearly from a
practical perspective our tamper-proof hardware is significantly more complex.

6In [23, 19] it is allowed that faults are persistent so at some point the entire circuitry may be subject to tampering.

7

Finally we notice that our RAM model can be thought of, in fact, as a generalization of the
circuit model where the RAM program can be, e.g., a Boolean circuit and the CPU evaluates NAND
gates.

2 Preliminaries

2.1 Notation

For n ∈ N, we write [n] := {1, . . . , n}. Given a set S, we write s ← S to denote that element s is
sampled uniformly from S. If S is an algorithm, y ← S(x) denotes an execution of S with input x
and output y; if S is randomized, then y is a random variable. Let k ∈ N be a security parameter.
We use negl(k) to denote a negligible function on k. Given two random variables X1 and X2, we
write X1

c
≈ X2 to denote that X1 and X2 are computationally indistinguishable meaning that for

all PPT algorithms A we have that Pr[A(X1) = 1]− Pr[A(X2) = 1] ≤ negl(k).

2.2 Continuous Non-Malleable Codes

In this paper we consider non-malleable codes in the split-state setting and omit to mention it
explicitly for the rest of the paper. A split-state encoding scheme C = (Init,Encode,Decode),
is a triple of algorithms specified as follows: (1) Init, takes as input the security parameter and
outputs public parameters Ω ← Init(1k); (2) Encode, takes as input a string x ∈ {0, 1}∗ and the
public parameters, and outputs a codeword c = (c0, c1) ← Encode(Ω, x) where c ∈ {0, 1}2n; (3)
Decode, takes as input a codeword c ∈ {0, 1}2n and the public parameters, and outputs a value
x = Decode(c) where x ∈ {0, 1}∗ ∪ {⊥}. We require that Decode(Ω,Encode(Ω, x)) = x for all
Ω ← Init(1k) and for all x ∈ {0, 1}∗. Moreover, for any two inputs x0, x1 (|x0| = |x1|) and any
efficient function T0,T1 the probability that the adversary guesses the bit b in the following game
is negligible: (i) Sample b ← {0, 1} and compute (c0, c1) ← Encode(Ω, xb), and (ii) the adversary
obtains Decode∗(T0(c0),T1(c1)), where Decode∗ is as Decode except that it returns a special symbol
same? if (T0(c0),T1(c1)) = (c0, c1).

The above one-shot game has been extended to the continuous setting in [17], where the ad-
versary may tamper continuously with the encoding. In contrast to the above game, the adversary
here obtains access to the following tampering oracle Oqcnm((c0, c1), ·), where (c0, c1) is an encoding
of either x0 or x1:

Oqcnm((c0, c1), (T0,T1)):
(c′0, c

′
1) = (T0(c0),T1(c1))

If (c′0, c
′
1) = (c0, c1) return same?

If Decode(Ω, (c′0, c
′
1)) = ⊥, return ⊥ and “self-destruct”

Else return (c′0, c
′
1).

Essentially, the oracle can be queried up to q times with input functions T0,T1 : {0, 1}n → {0, 1}n
and returns either same? (in case (T0(c0),T1(c1)) = (c0, c1)), or ⊥ (in case Decode(Ω, (T0(c0),
T1(c1))) = ⊥), or (T0(c0),T1(c1)) in all other cases. The only additional restriction is that in case
where ⊥ is returned the oracle “self-destructs” and answers all further queries with ⊥. Furthermore,
in the construction of [17] the adversary has access to leakage oracles Olbcode(c0, ·), Olbcode(c1, ·), that
can be queried to retrieve up to lbcode bits of information on each half of the target encoding. The

8

access to the leakage oracles will be useful in our setting to obtain continuous leakage resilience on
the buses.

Below is a formal definition of continuous non-malleable leakage resilient (CNMLR) codes.

Definition 1 (CNMLR code). Let C = (Init,Encode,Decode) be an encoding scheme. For any
adversary A consider the following interactive game for a uniform bit b ∈ {0, 1}:

Gamecnmlr,q,lbcode
C,A (b)

Compute Ω← Init(1k) and give it to A.
Receive (x0, x1) from A with |x0| = |x1|.
Compute (c0, c1)← Encode(xb).
Compute a bit b′ ← AOlbcode (c0,·),Olbcode (c1,·),Oqcnm((c0,c1),(·,·)).
Output b′.

We say that C is q-continuously non-malleable lbcode-leakage resilient ((lbcode, q)-CNMLR in short),
if for all PPT adversaries A the following holds:

Pr[Gamecnmlr,q,lbcode
C,A (1) = 1]− Pr[Gamecnmlr,q,lbcode

C,A (0) = 1] ≤ negl(k) .

We remark that depending on the actual code the public parameters Ω can be empty. However,
whenever present, they are assumed to be untamperable. This corresponds, e.g., to the assumption
that the common reference string cannot be modified in the construction of [17].

Composability. We consider a strengthening of Definition 1, where the adversary is allowed to
tamper with a vector of codewords. Let x = (x1, . . . , xm) ∈ ({0, 1}∗)m be a vector, and define the
following oracle Oqcnm((c0, c1)). The oracle is parametrized by m × n matrices (c0, c1) such that
c0 = (c10, . . . , c

m
0), c1 = (c11, . . . , c

m
1) where (ci0, c

i
1) = Encode(Ω, xi) (i.e., the i-th row of cb is equal

to cib). Furthermore, let mn := |cb| denote the bit length of cb; then the oracle takes as input
functions T0,T1 : {0, 1}mn → {0, 1}n.7

Oqcnm((c0, c1), (T0,T1)):
(c′0, c

′
1) = (T0(c0),T1(c1))

If ∃ i ∈ [m] such that (c′0, c
′
1) = (ci0, c

i
1) return (same?, i)

If Decode(Ω, (c′0, c
′
1)) = ⊥, return ⊥ and “self-destruct”

Else return (c′0, c
′
1).

We also consider a leakage oracle Olbcode(c) which allows leakage from a vector of values. It
limits the possible leakage from each individual value to be less than lbcode bits. It takes as input
an m-dimensional vector c and a set S ⊂ [m] specifying which elements to leak from, along with a
leakage function L : {0, 1}∗ → {0, 1}λ for some λ. It keeps a state what is the current amount of
information (λ1, . . . , λm) that has been leaked. Initially, we set (λ1, . . . , λm) = (0, . . . , 0).

7The fact that the tampering function can output a single codeword, instead of m, might seem odd at a first look.
However, this variant is sufficient for our purpose. Moreover, it is easy to see that the more general setting where
the tampering functions can output m codewords, can be emulated by accessing the above oracle Oqcnm((c0, c1)) for
m times.

9

Olb
code(c, (S, L)):
Compute L← L{c[i]}i∈S) and let λ = |L|
For i ∈ S update λi ← λi + λ
If λi < lbcode for i = 1, . . . ,m, then return L
Else return ⊥.

Using the above two oracles, we can now now define our notion of adaptive composable CNMLR
codes. Besides being composable our notion also is adaptive in the sense that after the adversary
interacted with the oracle he can specify new messages that he would like to append to the set of
encodings.

Definition 2 (Adaptive composability of CNMLR). Let C = (Init,Encode,Decode) be a (lbcode, q)-
CNMLR encoding scheme. For some adversary A consider the following interactive game:

Gamecomp,q,lbcode
C,A (b)

Compute Ω← Init(1k) and obtain (x10, x
1
1)← A(Ω). Set c0 = ∅, c1 = ∅

For i = 1, . . . ,m, do the following:
Compute (ci0, c

i
1)← Encode(Ω, xib) and update (c0, c1) with ((c0, c

i
0), (c1, c

i
1)).

Receive (xi+1
0 , xi+1

1)← AOlbcode (c0,·),Olbcode (c1,·),Oqcnm((c0,c1),(·,·)), with |xi+1
0 | = |x

i+1
1 |.

Receive a bit b′ ← AOlbcode (c0,·),Olbcode (c1,·),Oqcnm((c0,c1),(·,·)).
Output b′.

We say that C is adaptively m-composable if for all PPT adversary A the following holds:

Pr[Gamecomp,q,lbcode
C,A (1) = 1]− Pr[Gamecomp,q,lbcode

C,A (0) = 1] ≤ negl(k) .

Notice that in each iteration of the loop the domain of the tampering functions that the adversary
submits to the Oqcnm oracle changes. In particular, in the i-th iteration the domain of the functions
T0,T1 is {0, 1}(i−1)n.

We argue that Definition 2 and Definition 1 are equivalent (asymptotically). Clearly, adaptive
composability implies continuous non-malleability for m = 1. The other direction follows by the
theorem below (whose proof is given in Appendix A):

Theorem 1. Let C = (Init,Encode,Decode) be a (lbcode, q)-CNMLR code, then C is also adaptively
m-composable for any polynomial m = poly(k).

3 Leakage and Tamper Resilient RAM

Our RAM architecture can implement some keyed functionality GK, e.g., an AES running with
key K taking as input messages and producing the corresponding ciphertexts. The RAM has one
or more independently tamperable and leaky secret storages, one tamperable public storage8 and
one CPU. There is a leak-free and tamper-free pre-processing phase, which outputs an encoding of
the functionality GK. Notice that we do not only encode the key but also the description of the
“program code” describing GK. This will enable us to allow tampering even with the functionality
itself. Looking ahead, our encoding of GK ensures that if the adversary attempts to change the

8The reason for having also a public disk is that we need a public place to put the program for the CPU, such
that our emulator can learn the structure of the compiled program.

10

program code he always also tampers with K. This is achieved by tying together the encodings of
the key and the program code.

The initial encoding consists of secret part(s) (containing data) which we store in the secret
disk(s) and a public part (containing instructions) which is stored on the public disk. The input
and output of the function that can be chosen by the user of the RAM is stored in some specific
locations on the public disk (say, right after the program). We allow the exact location of the input
and output parameters to be program specific, but assume that access to the public disk allows
to efficiently determine the input and output (in case the public disk was not tampered). In the
online phase, the CPU loads an instruction from the public disk and data from the secret disk(s) (as
specified by the instruction). Reading from the public disk might involve reading part of the input.
Then it computes and stores back the intermediate results on the secret disk(s) and the public disk
and processes the next instruction. The next instruction is found on the public disk at the location
given by a program counter pc which incremented by one in each invocation of the CPU and which
is reset when CPU raise a flag T = 1). Writing to the public disk could involve writing part of
the output. The adversary is allowed to tamper with the disks between each two invocations of
the CPU; furthermore the adversary is allowed to leak (independently) from the secret disk(s) and
from the buses carrying the information between the CPU and the secret disks. As the size of the
CPU is independent of the size of the functionality GK, and hence it cannot evaluate the complete
functionality, our model allows the adversary to tamper arbitrary many times with the state of the
RAM during the execution of GK.

In the following, we give a formal presentation of our model. We begin with some basic definitions
that formalize the notion of a program and its instructions.

Definition 3 (Dimension of storage, instructions and programs). Let `, L, τ, d, C, P ∈ N be some
parameters explained below. We say the dimension of a storage S is ` × L if the storage contains
L words and each word is an `-bit string. Each word is located by a unique identifier in {1, . . . , L}.
An (τ, L, d, C)-bound instruction I is defined as a triple (Y, I,O) where, Y ∈ {0, 1}τ , and I,O ∈
({0, . . . , C − 1} × {1, . . . , L})d. A program P of length P is defined as a P -tuple of instructions
(I1, . . . , IP).

One may think of Y as the type of operation (e.g., a NAND operation) that is computed by the
instruction. The d-tuples I,O define the position on the disks where to read the inputs and where
to write the outputs of the instruction. Here, C is a bound on the number of the disks and L is a
bound for the number of positions on the disk. We next describe our RAM architecture generically
for the case of C disks (we will require RAMs with 2 and 3 disks for the remainder of the paper).

Specification of RAM: A Random Access Machine (RAM in short) R is specified by R =
(τ, `, L, d, C, p,Random,Compute) and consists of

1. (SD1,SD2, . . . ,SDC−1) : C − 1 secret storages, each of dimension `× L

2. PD : The public storage of dimension `× p.

3. CPU : A procedure which is formally written as pseudo-code in Algorithm 1. The CPU is
connected to the different disks by buses Bsj , which are used to load and store data. It has
2d+1 internal temporary registers: d+1 input registers (R0, R1, . . . , Rd) and d output registers
(O1, . . . , Od); each register can store ` bits. CPU takes as inputs data send through the buses,

11

Algorithm 1 CPU

Input: (pc, ac,PD,SD1,SD2, . . . ,SDC−1, Leak1, . . . , LeakC−1)
Let D0 = PD;D1 = SD1; . . . ;DC−1 = SDC−1 // Loading...
If D0[pc] is not of the form (Y, I,O) then output

((D0, . . . , DC−1), B = 1, T = 0, ()) // Self-destruct

Let (Y, I,O) = D0[pc]
For j = 1, . . . , C − 1 initialize the bus Bsj = () // Clear the buses
Load R0 ← (Y, I,O)
for j = 1→ d do
Let (srcj , locj) = I[j] // Load input from disk srcj at position locj
Load Rj ← Dsrcj [locj]
If srcj > 0, set Bssrcj ← (Bssrcj , Rj) // Write data from secret disks to buses

end for
// Computing...

Sample r ← Random
Compute ((O1, . . . , Od), B, T)← Compute((R0, R1, . . . , Rd), r, pc, ac)

// Storing...
for j = 1→ d do
Let (tarj , locj) = O[j]
Store Dtarj [locj]← Oj // Store output on disk srcj at position locj
If tarj > 0, set Bstarj ← (Bstarj , Oj)

end for
For j = 1, . . . , C − 1, let λj = Leakj(Bsj) // Compute leakage from the buses
Output: ((D0, . . . , DC−1), B, T, (λ1, . . . , λC−1))

a strictly increasing activation9 counter ac, a program counter pc which is strictly increasing
within one activation and reset between activations. The CPU runs in three steps: (i) d loads,
(ii) 1 computation and (iii) d stores. In the computation step CPU calls Random and Compute
to generate fresh randomness and evaluate the instruction.

(a) Random: This algorithm is used to sample randomness r.

(b) Compute: This algorithm will evaluate one particular instruction. To this end, it takes
data from the temporary registers (R0, . . . , Rd), the counters ac, pc and the random-
ness r ← Random as input and outputs the data to be stored into the output registers
(O1, . . . , Od), the self-destruct indicator bit B which indicates if CPU needs to stop exe-
cution, and the completion indicator bit T which indicates the completion of the current
activation.

CPU outputs the possibly updated storages (PD,SD1,SD2, . . . ,SDC−1), the self-destruct
indicator (B) and the completion indicator (T). Notice that the CPU does not need to take B

9We call the time in which the RAM computes the output GK(x) for single x one activation, and the time in which
the procedure CPU is run once, one execution.

12

and T as input as these bits are only written.

Running the RAM involves iteratively executing the CPU. In between executions of the CPU we
increment pc. When the CPU return T = 1 we reset pc = 0 and increment the activation counter
ac. When the CPU return B = 1 the CPU self destruct. After this no more execution of the CPU
takes place.

Note that our RAM does not explicitly allow indirection, as in loading e.g. D1[D1[127]]. It would
have to do this in two steps: load D1[127] and store it on public disk as an input location as part
of the next instruction, and then have this instruction executed. This is to force that the access
pattern is leaked, as we do not want to assume that our RAM can hide the access pattern.

3.1 The RAM Compiler

From now on we consider a specific architecture where the RAM has two secret disks SD1 and
SD2 and one public disk PD. Informally, a RAM compiler C takes as input the description of a
functionality G with secret key K, and outputs an encoding of the functionality itself, to be executed
trough a RAM R.

Definition 4 (RAM-Compiler). An (`, L, p)-RAM-Compiler C is a PPT algorithm which takes a
keyed-function description G and a key K ∈ {0, 1}∗ as input, and outputs an encoding of the form
((I, `I , O, `O,X ,Y), σ0, σ1, σ2) such that σ0 can be stored into a disk of dimension ` × p and σ1, σ2
can be stored into disks each of dimension `× L.

Here I is the position where the input is put on the public disk, `I is the length of the input, O
is the position where the output is put on the public disk, and `O is the length of the output. The
mappings X ,Y are used to parse the inputs (resp., the outputs) of the RAM as a certain number
of words of length ` (resp., as a value in the range of GK).

We define a RAM-scheme RS as the ordered pair (C,R) such that C(GK) is supposed to be
executed in R. Below we define what it means for a RAM-scheme RS = (C,R) to be correct.
Informally, the definition says that for any tuple of inputs (x1, . . . , xN) the execution of the RAM
R and the evaluation of the function GK have identical output distribution except with negligible
probability. This is formalized in the definition below.

Definition 5 (Correctness of RAM-Scheme). A RAM-Scheme RS is defined as an ordered pair
RS = (C,R) where C is an (`, L, p)-RAM-Compiler and R is a (τ, `, L, d, 3, p,Random,Compute)-
RAM. We say the RAM-scheme RS is correct if for any function G, any key K ∈ {0, 1}∗ and
any vector of inputs (x1, . . . , xN) it holds that Pr[GameReal

hon (x1, . . . , xN) = 0] ≤ negl(k), where the
experiment GameReal

hon (x1, . . . , xN) is defined as follows:

GameReal
hon (x1, . . . , xN): Initialize all the public values T, B, ac, pc to 0. Run the compiler C on

(G,K) to generate the encoding ((I, `I , O, `O,X ,Y), σ0, σ1, σ2) ← C(G,K), and store it into the
disks of R as follows: PD ← σ0, SD1 ← σ1 and SD2 ← σ2. For i = 1→ N do as follows. Encode
the input (xi,0, . . . , xi,`I−1) ← X (xi), store it on the public disk PD[I + j] ← xi,j (for 0 ≤ j < `I)
and run the following activation loop:

1. Run CPU and update the disks (PD,SD1,SD2, B, T)← CPU(pc, ac,PD,SD1,SD2).10

10When we do not specify leakage functions, we assume that they are all the constant function outputting the
empty string, and we ignore the leakage in the output vector.

13

2. If B = 1 return 0.

3. If T = 1 then do as follows:

(a) Let yi ← Y(PD[O], . . . ,PD[O + `O − 1]). If yi 6= GK(xi) then return 0 11.

(b) Otherwise, increment the activation counter ac← ac + 1. If ac = N , then return 1 and
reset the program counter pc ← 0. Exit the activation loop. Otherwise increment the
program counter pc← pc + 1 and continue the activation loop.

3.2 The Security Model

We now proceed to define security of a RAM-Scheme, using the real-ideal world paradigm. In the
following we let k denote the security parameter.

3.2.1 Real Execution TLReallb,qRS,A,G(k)

Consider a RAM-scheme RS = (C,R). First it runs C which takes the description of G and a key
K as inputs and generates encoding of the form ((I, `I , O, `O,X ,Y), σ0, σ1, σ2) such that (σ0, σ1, σ2)
are stored into disks (PD,SD1,SD2) of R respectively. Then it advances to the online phase when
the adversary A gets read/write access to PD, which allows A to run R on inputs of his choice.
Moreover, A can tamper with SD1,SD2 independently between each execution of the CPU. Recall
that our instructions are universal and independent of the size of G, which allows A to tamper
arbitrary many times with SD1,SD2 during an evaluation of GK(·). It gets leakages from disks
SD1,SD2—where the total leakage from each secret disk is bounded by lbdisk bits—and buses12

Bs1,Bs2—where the total leakages from each bus is bounded by lbbus. The procedure CPU is leakage
and tamper proof. See Fig. 1 for a formal description.

A few remarks corresponding to the description are in order.

1. Adaptivity. We stress that by writing the public disk, the adversary is allowed to query
the RAM on adaptively chosen inputs. Also note that the adversary can issue tampering
commands to the public disk and the two secret disks independently. Since PD is public, this
always allows the adversary to tamper with SD1 (or SD2) using hard-wired values from the
public disk.

2. Tampering within executions. Notice that without loss of generality we can assume that
the adversary does not tamper within the execution of the CPU. Since the instructions are
stored in the public disk PD the adversary knows the exact sequence of the locations to be
read by the CPU and hence equivalently the adversary can just load some location, tamper
and then execute before loading the next one. Essentially this is done by prohibiting any
indirect instruction such that e.g. there is an instruction in some location in public disk which
points to the 5-th location on the secret disk SD1 and that 5-th location on SD1 in turn
points to the 8-th location on SD2. In that case it would have been impossible to predict the
whole sequence of locations supposed to be read by the CPU which is undesirable.

11Throughout the paper we, in general, denote the name of the disks by PD,SD1,SD2, . . . and the respective
contents by D0, D1, . . ., however, sometimes we abuse notations and use them interchangeably.

12Buses are the channels modelling the communication between the CPU and the secret disks.

14

In the following we let D0 := PD, D1 := SD1, D2 := SD2 and i ∈ {0, 1, 2} identifies a disk.

1. Initialization: Sample the key K according to the distribution needed by the primitive. Initialize
the activation counter ac ← 0, the program counter pc ← 0, the self-destruct bit B ← 0, the
activation indicator T← 0 and the total leakage count for each disk: lti ← 0 for i ∈ {0, 1, 2}.

2. Pre-processing: Sample an encoding by running the compiler (P, σ0, σ1, σ2) ← C(G,K) (where
P = (I, `I , O, `O,X ,Y)). Store the encoding into disks: D0 ← σ0, D1 ← σ1, D2 ← σ2. Give P to
A.

3. Online: Get command CMD from A and act as follows according to the command-type:

(a) If CMD = (STOP,Oreal) then return Oreal and halt.

(b) If CMD = (LEAK, i, Leak(·)), proceed as follows. If i = 0 then compute λ ← Leak(Di) and
give λ to A. Otherwise, update total leakage, lti ← lti + |Leak|, and if lti ≤ lbdisk then
compute λ← Leak(Di) and give λ to A.

(c) If CMD = (TAMPER, i,Tamper(·)) then modify Di using the tampering function: Di ←
Tamper(Di).

(d) If CMD = (EXEC, Leak1, Leak2) and B = 0 then ignore the command if |Leak1| > lbbus or
|Leak2| > lbbus, and otherwise proceed as follows:

i. Run CPU and replace the existing disks by the modified output: (D0, D1, D2, B, T,Λ)←
CPU(pc, ac, D0, D1, D2).

ii. Give (T,Λ) to A.
iii. Check the completion of current activation: If T = 1 then start a new activation by in-

crementing the activation counter: ac← ac+1 and re-initializing the program counter:
pc← 0

iv. Increment the program counter: pc← pc + 1 and go to Step-3.

Figure 1: Real Execution TLReallb,qRS,A,G(k)

3. Implicitly handling input/output. In the above we do not explicitly handle input/output
because it is taken care of in the tamper query (cf. Step-3(c)) in which the adversary can
place the input on some specific location in the public disk and read the output from that as
well. Also we do not give the public disk explicitly to A as it anyway can access it fully by
the leakage query, which is unrestricted in this case (in Step-3(b) there is no check for i = 0).

3.2.2 Hybrid Execution HybHS,B,G(k)

We propose a hybrid model which is actually an intermediate model between the real and the ideal
one (to be presented next). In the hybrid model there is also a compiler denoted by Ch, which
compiles a keyed-function to some encoding having a particular form to be executed in a hybrid-
RAM denoted by Rh which has a public disk PDh and a CPU also, but only one secret disk SDh

1.
Importantly, in this model the secret disk is leak-free but “limitedly” tamperable such that the
adversary can only copy values within the disk and/or replace elements with a chosen value. The
hybrid-compiler is defined in the same way as the RAM-compiler (c.f. Definition 4) with adequate
modifications.

Definition 6 (Hybrid Compiler). An (`, L, p)-Hybrid-Compiler Ch is a PPT algorithm which

15

takes a keyed-function description G and a key K as input and outputs an encoding of the form
((I, `I , O, `O,X ,Y), ωh

0 , ω
h
1) such that ωh

0 can be stored into a disk of dimension `× p and ωh
1 can be

stored into a disk of dimension `× L.
Similar to the RAM-scheme we define a hybrid scheme HS as the ordered pair (Ch,Rh) such

that Ch(GK) is supposed to be executed in Rh. The definition below specifies correctness of a
hybrid-scheme and is similar to Definition 5.

Definition 7 (Correctness of Hybrid-Scheme). A Hybrid-Scheme HS is defined as an ordered pair
HS = (Ch,Rh) where Ch is an (`, L, p)-Hybrid-Compiler and Rh is a (τ, `, L, d, 2, p,Random,Compute)-
RAM. We say the hybrid-scheme HS is correct if for any function G, any key K and any vector of
inputs (x1, . . . , xN) it holds that Pr[GameHyb

hon (x1, . . . , xN) = 0] ≤ negl(k), where the experiment
GameHyb

hon (x1, . . . , xN) is defined as follows:

GameHyb
hon (x1, . . . , xN): Initialize all the public values T, B, ac, pc to 0. Run the compiler Ch on

(G,K) to generate the encoding ((I, `I , O, `O,X ,Y), ωh
0 , ω

h
1)← Ch(G,K), and store it into the disks

of Rh as follows: PDh ← ωh
0 and SDh

1 ← ωh
1 . For i = 1 → N do as follows. Encode the input

(xi,0, . . . , xi,`I−1) ← X (xi), store it on the public disk PDh[I + j] ← xi,j (for 0 ≤ j < `I), and run
the following activation loop:

1. Run CPUh and update the disks (PDh,SDh
1,SDh

2, B, T)← CPUh(pc, ac,PDh,SDh
1,SDh

2).

2. If B = 1 return 0.

3. If T = 1 then do as follows:

(a) Let yi ← Y(PDh[O], . . . ,PDh[O + `O − 1]). If yi 6= GK(xi) then return 0.
(b) Otherwise, increment the activation counter ac ← ac + 1. If ac = N , then return

1 otherwise reset the program counter pc ← 0. Exit the activation loop. Otherwise,
increment the program counter pc← pc + 1 and continue the activation loop.

Extra-space insensitivity. We need a notion of the security of a scheme not depending too
specifically on the size of the disks. This intuitively means that a hybrid scheme remains RAM-
simulatable (c.f. Definition 10) even if we extend the disk space by any number of words. In our
analysis, the hybrid-to-real emulator will leverage any such hybrid scheme, and our actual hybrid
scheme (cf. Section 5) will have the property of being extra-space insensitive.

Definition 8 (Extra-Space Insensitive). For a hybrid scheme HS and a non-negative integer x,
let HS+x be the same scheme as HS, except that the disks have been extended by x words, i.e.,
`(HS+x) = `(HS) + x. We say that HS is extra-space insensitive if HS+x is RAM-simulatable for
x ∈ N.

Hybrid execution. Let HS = (Ch,Rh) be a hybrid scheme. In the hybrid execution, we first
run the Hybrid-Compiler Ch which takes the description of the function G and a key K as inputs
and generates encoding (ωh

0 , ω
h
1) which are stored into disks (PDh,SDh

1) of Rh respectively. Then it
advances to the online phase, where the adversary B gets full access to PDh. Also it gets write-only
access to SDh

1 in a manner such that it can only (i) copy values within SDh
1; (ii) replace some part

of SDh
1 or PDh with some chosen value.13 The procedure CPUh is leakage and tamper proof.

13Notice that here the adversary B does not have any leakage from the secret disk SDh
1.

16

In the following we let Dh
0 := PDh, Dh

1 := SDh
1 and i ∈ {0, 1} identifies a disk.

1. Initialization: Sample the key K according to the appropriate distribution (needed by the function).
Initialize the activation counter ac← 0, the program counter pc← 0, the self-destruct bit B← 0
and the activation indicator bit T ← 0. Additionally, for each memory position j in Dh

1 keep a
value S[j] ∈ ⊥ ∪ N, with the following definition: if S[j] = ⊥ then the value Dh

1[j] is known to
the adversary. If S[j] = g ∈ N then Dh

1[j] may not be known by the adversary and moreover
Dh

1[j] is the g-th such secret value, numbered in the order of when it was written to the memory,
in a sense made clear below. Initially S[j] = ⊥ for all j. Finally, initialize a record C which in
position g keeps a counter C[g] of how many times the g’th secret value was accessed. Initialize
with C[g] = 0 for all g. Finally, initialize a counter keeping track of the index of the next secret
value ns← 0.

2. Pre-processing: Sample an encoding by running the compiler (P, ωh
0, ω

h
1) ← Ch(G,K) where P =

(I, `I , O, `O,X ,Y). Store the encoding into disks: Dh
0 ← ωh

0, Dh
1 ← ωh

1. Given P to B. While
ns < |ωh

1|, let S[ns] = ns and update ns← ns + 1.

3. Online: Get command CMD from B and act as follows according to the command-type:

(a) If CMD = (STOP,Ohyb) then return Ohyb and halt.

(b) If CMD = (COPY, (j, j′)) then update Dh
1[j′]← Dh

1[j] and S[j′]← S[j].

(c) If CMD = (REPLACE, (i, j, val)) then update Dh
i [j]← val. If i = 1, then update S[j]← ⊥.

(d) If CMD = (EXEC) and B = 0 then do the following:

i. Run CPUh and replace the existing disks by the modified output: (Dh
0, D

h
1, B, T) ←

CPUh(pc, ac, Dh
0, D

h
1). Input T to B.

ii. Check the completion of the current activation: If T = 1 then start a new activation
by incrementing the activation counter: ac ← ac + 1 and re-initializing the program
counter: pc← 0.

iii. Increment the program counter: pc← pc + 1.
iv. Let (src1, loc1), . . . , (srcd, locd) be the memory positions read by the CPU. For all

i ∈ [d], where srci = 1 and S[loci] 6= ⊥, update C[S[loci]]← C[S[loci]] + 1.
v. If there exists i ∈ [d], where srci = 1 and S[loci] 6= ⊥, then proceed as follows: Let

(tar1, loc1), . . . , (tard, locd) be the memory positions written by the CPU. For i ∈ [d],
where tari = 1, do S[loci] = ns, C[S[loci]]← 1, ns← ns + 1. We call this case a secret
execution.

vi. If there does not exists i ∈ [d], where srci = 1 and S[loci] 6= ⊥, then proceed as follows:
For i ∈ [d], where tari = 1, do S[loci]← ⊥. We call this case a public execution.

vii. Go to Step-3.

Figure 2: Hybrid Execution (HybHS,B,G(k))

A complete description can be found in Fig. 2. Below, we elaborately explain the usage of the
records used for book-keeping in Fig. 2. To handle the above copy and replace queries we maintain
two storages namely S[j] and C[j], which are indexed by a location j on the secret disk. S[j] will
keep track of whether a value stored at position j on the secret disk is known to the adversary. If
S[j] = ⊥ then the value SDh

1[j] is necessarily known by the adversary (e.g., this can happen when
the adversary issues a replace query for position j on the secret disk). If S[j] 6= ⊥, then SDh

1[j]
may not be known by the adversary and the value of S[j] specifies “when” SDh

1[j] was written to

17

disk. For instance, initially S[j] = j. On the other hand C[j] is a counter which keeps track of the
number of times the j-th location on the secret disk is accessed by the CPU. Sometimes we will
use C[S[j]] to denote the number of times the value stored at position j on SDh

1 has been accessed.
As there may be many copies of SDh

1[j] the storage C is indexed by the value indexing the secret
values and not the position on the disk. This is important to handle the leakage from the buses in
the real model, because being accessed by the CPU in the hybrid execution is equivalent to leaking
on that value in the real execution.

c-Bounding Hybrid-scheme. We say that a hybrid-scheme HS is c-bounding if for all G and
all PPT adversaries B in HybHS,B,G(k) it holds that the scheme accesses each value on the secret
disk at most c times. More precisely, at any time during the execution and for all j it holds that
C[j] ≤ c. To look ahead if HS is c-bounding then each secret data is touched at most c-times
implying a bounded amount of leakage from the corresponding secrets.

3.2.3 Ideal Execution IdealS,G(k)

In the ideal execution, the ideal functionality for evaluating G interacts with the ideal adversary
namely the simulator S as follows. First sample a key K and then repeat the following until a value
was returned: Get a command from S and act differently according to the command-type.

1. If CMD = (STOP,Oideal), then return Oideal and halt.

2. If CMD = (EVAL, x), give GK(x) to S.

3.2.4 RAM-Simulatability

We now specify what it means for a RAM-scheme to be RAM-simulatable.

Definition 9 (RAM-Simulatability of RAM-Scheme). We say a RAM-scheme RS is RAM-simulatable
against split-state tampering and lb-leakage if for any function G and any PPT adversary A there
exists a PPT simulator S such that{

TLReallb,qRS,A,G(k)

}
k∈N
≈c
{

IdealS,G(k)

}
k∈N

where TLReallb,qRS,A,G(k) and IdealS,G(k) denote the output distributions of the real execution and
the ideal execution (as described above) respectively.

RAM-simulatability will be proven via an intermediate step using the hybrid scheme. The
following two definitions formalize this in a modular way.

Definition 10 (RAM-Simulatability of Hybrid-Scheme). We say a hybrid-scheme HS is RAM-
simulatable if for any function G and any PPT adversary B there exists a PPT simulator S such
that {

HybHS,B,G(k)

}
k∈N
≈c
{

IdealS,G(k)

}
k∈N

where HybHS,B,G(k) and IdealS,G(k) denote the output distributions of the real execution and the
hybrid execution (as described above) respectively.

18

Definition 11 (Hybrid-to-Real Emulator). A (c, lb, q)-bounded hybrid-to-real emulator E is de-
fined as an efficient transformation which transforms any c-bounding, extra-space insensitive hybrid-
scheme HS into a RAM-scheme RS = E(HS) such that for any function G and any PPT adversary
A there exists a PPT (hybrid) adversary B such that:{

TLReallb,qRS,A,G(k)

}
k∈N
≈c
{

HybHS,B,G(k)

}
k∈N

where TLReallb,qRS,A,G(k) and HybHS,B,G(k) denote the output distributions of the real execution and
the hybrid execution (as described above) respectively.

Informally speaking, the above definition says that whatever the adversary A can do in the
real world against the “transformed” RAM scheme RS = E(HS), can be simulated by the hybrid
adversary B in the hybrid world, where B has restricted power.

The following theorem is immediate.

Theorem 2. Assume that E is a (c, lb, q)-bounded hybrid-to-real emulator. Assume that HS is a
RAM-simulatable hybrid scheme and also c-bounding and extra-space insensitive. Let RS = E(HS).
Then RS is RAM-simulatable against split-state q-tampering and lb-leakage.

We are now ready to state our main theorem. The proof follows by putting the following things
together: (i) our construction of a hybrid-to-real emulator (cf. Theorem 4 in Section 4), (ii) our
construction of a hybrid-scheme (cf. Theorem 5 in Section 5) and (iii) Theorem 2 above.

Theorem 3 (Main theorem). Let C be a (lbcode, q)-CNMLR code. Then there exists an efficient
RAM scheme RS and a constant c = O(1) such that RS is RAM-simulatable in split-state tampering
and (lbdisk, lbbus)-leakage for lbdisk + (c+ 1)lbbus ≤ lbcode.

4 Hybrid-to-Real Emulator

We construct an emulator E which for any constant c efficiently transforms a c-bounding, extra-
space insensitive hybrid scheme HS = (Ch,Rh) into a RAM-scheme RS = (C,R). Let C =
(Init,Encode,Decode) be a CNMLR code (cf. Section 2.2). If C tolerates leakage lbcode, then RS
will tolerate any leakage lb = (lbdisk, lbbus) with lbdisk + (c+ 1)lbbus ≤ lbcode. Moreover, RS will be
secure against arbitrary tampering with the secret disks SD1 and SD2 and the public disk PD.

The Emulator E. Recall that the goal of the emulator E is to transform a hybrid RAM scheme
HS = (Ch,Rh) into a RAM-scheme RS = (C,R). In particular, the emulator needs to specify
transformations for the components of HS. This includes the contents of the disks as well as the
way instructions are stored and processed by CPU. We provide an overview of the construction
of the emulator; the details can be found in Fig. 3. For each location of the secret disk of Rh it
encodes the corresponding value with the CNMLR code. Each encoding consists of two halves,
that are stored in the two secret disks SD1, SD2 of R (one half for each disk). Notice that the
instructions that are stored on the public disk PDh in Rh have to be adjusted in order to take care
of the fact that R has two secret disks while Rh only uses a single secret disk SDh

1. This adjustment
is straightforward: each time when an instruction asks the CPU to read from SDh

1 in Rh, in R
we read from the corresponding positions in SD1 and SD2. CPU in R will load the two parts of

19

an encoding from the secret disks and decode the codeword. If the codeword is invalid, i.e., the
decoding outputs ⊥, CPU self-destructs. Otherwise it will use the decoded value and use it as input
for CPUh.

Theorem 4. If C is a (lbcode, q)-CNMLR code, then there exists a (c, lb, q)-bounded hybrid-to-real
emulator for any lb = (lbdisk, lbbus) such that lbdisk + (c+ 1)lbbus ≤ lbcode.

The proof of Theorem 4 can be found in Section 4.1; before coming to the proof, let us discuss
some intuition. We need to show security of the emulator E according to Definition 11. To this
end we prove that for any adversary A that runs in the real world TLReallb,qRS,A,G and attacks the
transformed RAM-scheme RS = E(HS), there exists an adversary (simulator) B that runs in the
hybrid world HybHS,B,G(k) and interacts with the hybrid-scheme HS. The simulator B runs A as a
sub-routine and simulates A’s environment as in TLReallb,qRS,A,G . The main challenge is to simulate
the LEAK/TAMPER queries (to split-state disks SD1,SD2 of R) given only access to the REPLACE and
COPY commands to the single secret disk SDh

1.
The simulation works in two phases: the pre-processing (cf. Figure 4) and the online phase

(cf. Figure 5). In the pre-processing phase the simulator B obtains the content ωh
0 of the public

disk PDh from its challenger and transforms it using the emulator E . The main difficulty is to
simulate the tampering and leakage access to the secret disks SD1 and SD2. Initially, in the pre-
processing B creates encodings of 0 using the CNMLR code, and puts (v1, v2) ← Encode(Ω, 0) on
the corresponding virtual/simulated disks. Depending on the queries in the online phase B will
update these virtual disks in the following. TAMPER queries are simulated easily by applying the
corresponding tamper functions to the current state of the virtual disks SD1 and SD2. Notice
that also the leakage from the disks and the buses will essentially be done using the contents of
the virtual disks. Hence, the main challenge of the simulation is how to keep these virtual disks
consistent with what the adversary expects to see from an EXEC query. This is done by a rather
involved case analysis and we only give the main idea here.

We distinguish the case when all the values on the secret disk that are used to evaluate the
current instruction are public or at least some are secret. The first case may happen if the adversary
A replaces the contents of the secret disks with some encoding of his choice by tampering. Notice
that in this case the simulation is rather easy as B “knows” all the values and can simulate the
execution of CPU (including the outputs and the new contents of the disks). If, on the other hand,
some values that are used by CPU in the current execution are secret, then B’s only chance to
simulate A is to run CPUh on its hybrid challenger. The difficulty is to keep the state of the secret
hybrid disk SDh

1 consistent with the contents of the virtual disks SD1,SD2 maintained by A. This
is achieved by careful book-keeping and requires B to make use of his REPLACE and COPY commands
to the single secret disk SDh

1. The simulator B manages this book-keeping by using two records:
(i) the set S that stores encodings (v1, v2) corresponding to values unknown to B (either generated
during the pre-processing, or resulting from an evaluation of CPUh on partially secret inputs); (ii)
the backup storage BP that B maintains on the hybrid secret disk SDh

1 and stores a copy of all values
that are unknown to the adversary (essentially, the values on BP correspond to the values that the
encodings in S are supposed to encode). Then the simulator can always copy the corresponding
secret value to the position on SDh

1 which corresponds to the value that should have been inside
the encoding on the same position on the two secret virtual disk.

20

Pre-processor: The pre-processor C = E(Ch) runs as follows: Sample (P, ωh
0, ω

h
1)← Ch(G,K). Output

(P, ω0, ω1, ω2), where the computations of the public disk ω0 and the secret disks ω1, ω2 are detailed
below.

Secret Disks: The secret disk of the hybrid pre-processing is encoded by encoding each memory posi-
tion using the CNMC C: Sample Ω ← Init(1k), and for i = 0, . . . , |ωh

1| − 1, let v = ωh
1[i], sample

(v1, v2)← Encode(Ω, v) and set ω1[i] = v1 and set ω2[i] = v2.

Public Disk: Each instruction (Yh, Ih,Oh) from the public disk is compiled as follows:

• The instruction label is compiled as follows: E(Yh) = Yh.

• A memory position (srchj , loc
h
j) is compiled as follows: If srchj = 0, then srcj = 0, locj =

lochj , and E(srchj , loc
h
j) = (srcj , locj). For notational convenience, assume that there are

always p such public positions and that they appear before the secret positions, this can be
accomplished by adding dummy positions. Each secret position, i.e., with srchj = 1, compiles
into two locations (srcj′ , locj′), (srcj′+1, locj′+1) with j′ = 2j−p, srcj′ = 1 and srcj′+1 =
2 and locj′ = locj′+1 = locj . Let E(srchj , loc

h
j) = ((srcj′ , locj′), (srcj′+1, locj′+1)).

• Let Ih = (I1, . . . , Id) and E(Ih) = E(I1)‖ · · · ‖E(Id), i.e., transform each element as above.

• Let Oh = (O1, . . . , Od) and E(Oh) = E(O1)‖ · · · ‖E(Od).

• Let E(Yh, Ih,Oh) = (E(Yh), E(Ih), E(Oh)).

The initial contents of the public disk ωh
0 = (V0, . . . , V`−1) compiles as follows: let E(ωh

0) =
(E(V0), . . . , E(V`−1)), and let ω0 = E(ωh

0). We also define an inverse of the emulator. For an
instruction of the compiled form (Y, I,O) = E(Yh, Ih,Oh), we let E−1(Y, I,O) = (Yh, Ih,Oh). For
an input X not of the compiled form, we let E−1(X) = sd, where sd is some fixed input not of
the form (Yh, Ih,Oh). Note that if and when the CPU of the hybrid scheme reads up sd it will
self-destruct, see line 3 in Algorithm 1.

CPU: The compiled CPU (Random,Compute) = E(Randomh,Computeh) works as follows: Random =
Randomh and ((O1, . . . , O2d−p), B, T)← Compute((R0, R1, . . . , R2d−p), r, pc, ac) is specified by:

1. If E−1(R0) 6= sd, then self destruct. Otherwise, compute (Yh, Ih,Oh) = E−1(R0), and set
Rh0 = (Yh, Ih,Oh).

2. For j = 1 . . . , d, let (srchj , loc
h
j) = Ih[j]. If srchj = 0, then let Rhj = Rj . If srchj = 1, then let

(v1, v2) = (Rj′ , Rj′+1), where j′ = 2j − p. Let v = Decode(Ω, (v1, v2)). If v = ⊥, then self
destruct. Otherwise, let Rhj = v.

3. Compute ((Oh1, . . . , O
h
d), B, T)← Compute((Rh0, R

h
1, . . . , R

h
d), r, pc, ac).

4. For j = 1 . . . , d, let (tarj , locj) = Oh[j]. If tarhj = 0, then set Oj ← Ohj . If tarhj = 1, then
let v = Ohj , sample (v1, v2)← Encode(Ω, v), and let (Oj′ , Oj′+1)← (v1, v2), where j′ = 2j−p.

Dimensions: The length of the disks will be the same. The word size on the public disks will be the
same. The word size of the produced RAM will be large enough to hold an encoding under C as
produced by the above code.

Figure 3: The Emulator, E

4.1 Proof of Theorem 4

A formal description of the emulator E can be found in Fig. 3. The simulator B that we need
to exhibit for proving Theorem 4 is depicted in Fig. 4 (pre-processing) and Fig. 5 (online). To

21

Pre-processing: The hybrid game will sample (P, ωh
0, ω

h
1) ← Ch(G,K) and give P to the simulator B

and store ωh
0 and ωh

1 onDh
0 andDh

1 respectively. The simulator passes P to A. The simulator B can
read all of ωh

0 but nothing of ωh
1 and has to create simulated disks (D0, D1, D2). We will identify

D0 with E(Dh
0) = E(ωh

0). Then create simulated disks D1 and D2 as follows: Let L = |ωh
1|. Then

sample Ω← Init(1k). For j = 0, . . . , L−1, sample (vj,1, vj,2)← Encode(Ω, 0), let S[j] = (vj,1, vj,2),
D1[j] = vj,1 and D2[j] = vj,2, and then choose a backup location BP(j) on the secret disk such
that Dh

1[BP(j)] is never accessed by HS or A,a and issue the command (COPY, j,BP(j)) to create
a back up of the value Dh

1[j] = ωh
1[j]. Notice that in this way the simulator B keeps a copy of the

original secret value that (vj,1, vj,2) is supposed to encode (instead of 0 as after the pre-processing
of B). Finally, let ns = L.

aWe can do this as we assume the hybrid scheme is extra-space insensitive, so we can expand the secret disk
beyond with index space used by HS and A and use this extra space for back-up.

Figure 4: The Simulator, BA, Pre-Processing

conclude the proof we need to show that the view produced by the hybrid simulator B (interacting
with A in HybHS,B,G) is computationally indistinguishable from the view that A obtains in the real
experiment TLReallb,qRS,A,G(k). We do so via a reduction to the adaptive composability property of
the CNMLR code C (cf. Definition 2).

Reduction to the CNMLR code. The reductionR (depicted in Fig. 6-7) has access to the leak-
age oraclesOlbcode(c1, ·),Olbcode(c2, ·) and tamper oracleOqcomp((c1, c2), (·, ·)) from Gamecomp,q,lbcode

C,R (b)
(for a random b ∈ {0, 1}). The main difficulty is to make sure that R indeed can virtually run the
hybrid simulator B in a way that is consistent with the encodings that are produced inside the target
oracles Olbcode(c1, ·),Olbcode(c2, ·) and Oqcomp((c1, c2), (·, ·)). To this end, R first runs the hybrid com-
piler to obtain (P, ωh

0 , ω
h
1)← Ch(G,K). During the following execution of the game, the reduction R

ensures that what is stored inside its challenge oracles Olbcode(c1, ·),Olbcode(c2, ·),Oqcomp((c1, c2), (·, ·))
can be kept consistent with the contents on the hybrid secret disk ωh

1 (and hence with the simulated
virtual disks SD1,SD2). R uses so-called disk reconstruction functions Dconi that take as input a
set of encodings ci (this is the current state of the target oracles) and reconstructs the content of
the corresponding secret disks SDi. Given such functions Dconi, simulating the TAMPER and LEAK

queries can be easily done by concatenating the tamper and leakage functions submitted by A with
the current disk reconstruction functions Dconi. One main tedious difficulty in the reduction is to
continuously update the disk reconstruction functions such that they are consistent with what the
adversary A expects to see. For instance, if A asks for a TAMPER query (Tamper(.), i) then Dconi
is updated by concatenating Tamper with the current Dconi, i.e., we get Dcon′i = Dconi ◦ Tamper.
The full details about how R maintains Dconi are given in Fig. 6-7.

One can verify that if in the simulation we initialize the secret disks SD1,SD2 with encodings
of the correct secret values, then the simulator B from Fig. 4–5 produces exactly the distribution as
in TLReallb,qRS,A,G . Hence, the reduction will essentially run the code of B and submits to its target
oracles inputs of the form (0, ωh

1 [j]) in each iteration of the loop. Depending on the challenge bit b,
the reduction either simulates HybHS,B,G (if b = 0) or TLReallb,qRS,A,G (if b = 1), i.e., we have:

Gamecomp,q,lbcode
C,R (0) ≡ HybHS,B,G and Gamecomp,q,lbcode

C,R (1) ≡ TLReallb,qRS,A,G .

22

Online: Given a command CMD from A the simulator B acts as follows:

1. If CMD = (STOP,Oreal) then issue command (STOP,Oreal) and halt.

2. If CMD = (LEAK, i, Leak(·)), proceed as follows. If i = 0, compute λ ← Leak(Di) and give λ
to A. Otherwise, update the total leakage, lti ← lti + |Leak|, and only if lti ≤ lbdisk then
compute λ← Leak(Di) using the secret disks and give λ to A.

3. If CMD = (TAMPER, i,Tamper(·)) then proceed as follows: If i = 0, then let D0 ← Tamper(D0)
and use REPLACE commands to let Dh

0 = E−1(D0). If i > 0, let Di ← Tamper(Di) for the
simulated disk Di.

4. If CMD = (EXEC, Leak1, Leak2) and B = 0 then do the following:

(a) If E−1(D0[pc]) 6= sd, then self destruct. Otherwise, compute (Yh, Ih,Oh) = E−1(D0[pc]),
and set Rh0 = (Yh, Ih,Oh).

(b) For j = 1 . . . , d, let (srchj , loc
h
j) = Ih[j]. If srchj = 0, then let Rhj = D0[locj]. If

srchj = 1, then let (v1, v2) = (D1[lochj], D2[lochj]). If ∃g : (v1, v2) = S[g], then issue
the command (COPY,BP(g), lochj) to put back in Dh

1[lochj] the value that (v1, v2) should
have been an encoding of. If @g : (v1, v2) = S[g], then compute v = DecodeΩ(v1, v2). If
v = ⊥, then simulate a self destruct (by ignoring all future EXEC commands). Otherwise,
issue the command (REPLACE, 1, lochj , v) to put in Dh

1[lochj] the value that (v1, v2) is an
encoding of.

(c) Issue the command CMD = (EXEC) to run CPUh, which replaces the existing disks by the
modified output: (Dh

0, D
h
1, B, T) ← CPUh(pc, ac, Dh

0, D
h
1). This also updates D0 as we

identify D0 = E(Dh
0).

(d) Then update the simulated disks D1 and D2. For j = 1 . . . , d, let (srchj , loc
h
j) = Oh[j].

How we process each (srchj , loc
h
j) depends on whether the above execution was a secret

execution, in the sense of the case CMD = (EXEC) in Fig. 2.
public: If srchj = 1, then let v = Dh

i [loc
h
j],a sample (v1, v2) ← Encode(Ω, v) and let

(D1[lochj], D2[lochj])← (v1, v2).
secret : If srchj = 1, then sample (v1, v2) ← Encode(Ω, 0) and let (D1[lochj], D1[lochj]) ←

(v1, v2). Then let S[ns] ← (v1, v2), pick a fresh back-up location BP(ns) and issue
the command (COPY, lochj ,BP(ns)) to back up the value that (v1, v2) should have
been an encoding of, and then let ns← ns + 1.

(e) Finally simulate the leakage λ1 = Leak1(Bs1) and λ2 = Leak2(Bs2) by computing Bs1
and Bs2 as in the real world, but using the above simulated values. In particular, Bsi 3 vi
for all (v1, v2) = (D1[lochj], D2[lochj]) from the reading and all (v1, v2)← Encode(Ω, 0)
from the writing.

aWhen the execution is public, then B knows all inputs to the CPU and hence can compute all the outputs
and hence Dh

i [locj]. This is not completely true, as the CPU could be randomized. However, in that case B
could first run the CPU by issuing the command (EXEC). Then it could internally run Random and Compute to
recompute the CPU on the same inputs, but with fresh randomness. Then it can use REPLACE commands to
write the resulting outputs to their respective locations. Since the CPU cannot keep any information about the
randomness used in previous executions, this simulation will result in exactly the same distribution, and now B
knows the values it needs.

Figure 5: The Simulator, BA, Online

Security of the emulator E now follows from the adaptive composability of the CNMLR code.

23

Pre-processing: Sample (P, ωh
0, ω

h
1) ← Ch(G,K) and give P to A. Let D0 = E(ωh

0) and Dh
1 = ωh

1.
Then create virtual disks D1 = ω1 and D2 = ω2 “inside the leakage oracles” Olbcode(c1, ·) and
Olbcode(c2, ·) by maintaining disk reconstruction functions Dcon1, Dcon2 such that Di = Dconi(ci).
Initially Dconi is the function outputting 0 on all inputs j. We elaborate on how to maintain
Dconi below. Let L = |ωh

1|. For j = 0, . . . , L− 1, output (0, ωh
1[j]) to the game Gamecomp,q,lbcode

C,R (b)

to make it create an encoding (vj,1, vj,2) of either 0 or ωh
1[j] and add vj,1 to c1[j] vj,2 to c2[j].

Notice that the record S kept by B in Figure 4 is now represented by (c1, c2): The reduction
maintains the invariant that whenever B would have sampled (v1, v2) and stored it in S[g], the
reduction makes an encoding query to its challenge oracle as specified in Definition 2, and this
will be the g-th query, such that (c1[g], c2[g]) = (v1, v2). Update the disk reconstruction functions
Dcon1, Dcon2 as follows: Let Dconi be the function before the L encodings were made. Then let
Dcon′i = Dconi, except that (Dcon′i(ci))[j] = ci[j] for j = 0, . . . , L − 1. Furthermore, for each j,
let BP(j) be the back-up location chosen by B and simulate the commands (COPY, j,BP(j)) by
setting Dh

1[BP(j)] = Dh
1[j].

Figure 6: The Reduction, RA

Computing the leakage bound. We finally argue about why our reduction satisfies the leakage
bounds of the target oracles. First, observe that since HS is c-bounding we have that except with
negligible probability the simulator B would access each value at most c times. By construction,
this means that each encoding in the reduction will be part of at most c leakage queries to simulate
the execution of the bus—we elaborate on this claim below. Each such leakage query leaks at most
lbbus bits, for a total of c · lbbus. Furthermore, each encoding might enter into the leakage queries to
simulate leakage form the disk, but at most lbdisk bits are needed for this. Finally, in the activation
where the self-destruct happens the reduction might request further lbbus bits of leakage. Hence,
except with negligible probability the reduction R requests at most (c + 1)lbbus + lbdisk bits of
leakage from each encoding. Then use that (c+ 1)lbbus + lbdisk ≤ lbcode, where lbcode is the leakage
tolerated by the CNMLR code C.

Now, let us explain why HS being c-bounding implies that except with negligible probability
the simulator B will access each value in ci at most c times when simulating the EXEC command.
Notice that the query to the leakage oracle occurs in Step 4e in Figure 7 and only if the execution
was secret. Here the leakage function Leak′i needs to compute Bsi. The value Bsi contains values
from the bus of the reading phase and the writing phase.

Let us start by discussing the writing phase, as this is the easier case. Here Leak′i computes
the disk D′i = Dcon′i(ci) as it looked after the writing phase, and adds to Bsi each vi = Di[loc

h
j]

from the writing phase. Notice that, however, for each Di[loc
h
j] there exists an index g defined in

Step 4d such that Di[loc
h
j] = ci[g] and this g can clearly be computed by R. Hence R can compute

D′i = Dcon′i(ci): The leakage function simply adds each new ci[g] from Step 4d to Bsi. This brings
the leakage tally for ci[g] up to at most lbbus, as it is a fresh encoding and hence was not accessed
before. Note that in the hybrid game the counter C[g] is set to 1. In particular, the leakage tally of
ci[g] is less than C[g] · lbbus.

As for the the writing phase, the leakage function first computes the disk Di = Dconi(ci) as it
looked at the reading phase and then adds to Bsi each value vi = Di[loc

h
j]. Note, however, that

some of these values were computed by R already in Step 4b. Namely, the reduction made the
tampering query (T1,T2), where Ti(ci) = Dconi(ci)[loc

h
j]. The reply is either (same?, g), ⊥ or a

24

Online: Get command CMD from A and act as follows according to the command-type:

1. If CMD = (STOP,Oreal) then output Oreal and halt.

2. If CMD = (LEAK, i, Leak(·)), then: If i = 0, compute λ← Leak(Di) and return λ to A. If i > 0,
then update the total leakage, lti ← lti + |Leak|, and if lti ≤ lbdisk then compute λ by
submitting to Olbcode(ci, ·) the function Leak′ = Leak ◦Dconi and return λ = Olbcode(ci, Leak

′)
to A.

3. If CMD = (TAMPER, i,Tamper(·)) and i = 0, let D0 ← Tamper(D0) and Dh
0 ← E−1(D0).

Otherwise, virtually modify the disk Di ← Tamper(Di) by modifying the function Dconi as
follows: Dconi ← Tamper ◦ Dconi.

4. If CMD = (EXEC, Leak1, Leak2) and B = 0 then do the following:

(a) Read the instruction (Y, I,O) = D0[pc]. If the instruction (Y, I,O) is not of the com-
piled form, then self destruct. Otherwise, compute (Yh, Ih,Oh) such that (Y, I,O) =
E(Yh, Ih,Oh), and set Rh0 = (Yh, Ih,Oh).

(b) For j = 1 . . . , d, let (srchj , loc
h
j) = Ih[j]. If srchj = 0, then let Rhj = D0[lochj]. If srchj = 1,

then submit the tampering query (T1,T2), where Ti(ci) = Dconi(ci)[loc
h
j]. If the

reply is (same?, g), simulate the command (COPY,BP(g), lochj) by setting Dh
1[lochj] ←

Dh
1[BP(g)]. If the reply is ⊥, then simulate a self destruct. Otherwise, compute v =

DecodeΩ(v1, v2) and simulate the command (REPLACE, 1, lochj , v) by setting Dh
1[lochj]←

v.
(c) Compute (Dh

0, D
h
1, B, T) ← CPUh(pc, ac, Dh

0, D
h
1). Update pc and ac and if the self

destruct flag is set, simulate a self destruct. Let D0 = E(Dh
0).

(d) For j = 1 . . . , d, let (srchj , loc
h
j) = Oh[j]. How we process each (srchj , loc

h
j) depends on

whether the above execution was a secret execution.
public If srchj = 1, then let v = Dh

i [loc
h
j], sample (v1, v2) ← Encode(Ω, v) and update

Dconi to Dcon′i = Dconi, except that (Dcon′i(ci))[loc
h
j] = vi.

secret If srchj = 1, then issue the encoding request (0, Dh
1[lochj]) to make

Gamecomp,q,lbcode
C,R (b) generate an encoding (vg,1, vg,2) – assume this was the g’th

encoding request. As a result vg,i is added to ci as ci[g]. Define Dcon′i = Dconi
except that (Dcon′i(ci))[loc

h
j] = ci[g]. Let BP(g) be the backup location used by B

and simulate the command (COPY, lochj ,BP(g)) by setting Dh
1[BP(g)]← Dh

1[lochj].
(e) Finally simulate the leakage λ1 = Leak1(Bs1) and λ2 = Leak2(Bs2) by computing Bs1

and Bs2 as in the real world. If the execution was public the reduction knows all the
needed values to do this. If the execution was secret, it will be done inside the leakage
oracles. In particular, for i = 1, 2, submit to Olbcode(ci, ·) the function Leak′i which first
computes the disk Di = Dconi(ci) as it looked at the reading phase and and then adds
to Bsi each value vi = Di[loc

h
j]. Then it computes the disk D′i = Dcon′i(ci) as it looked

after the writing phase and adds each vi = Di[loc
h
j] from the writing phase. Then it

returns λi = Leaki(Bsi).

Figure 7: The Reduction, RA, Online

valid encoding. We look at each case separately:

• If the reply was not (same?, g) or ⊥, then the reply from the tampering oracle was exactly
(v1, v2) = (Dcon1(c1)[loc

h
j],Dcon2(c2)[loc

h
j]). Hence the reduction can hard-code the value

25

vi into the leakage query Leaki and add it to Bsi as the value Di[loc
h
j] = vi.

• If the reply was (same?, g), then since Ti(ci) = Dconi(ci)[loc
h
j], we have that (D1[loc

h
j],

D2[loc
h
j]) is one of the encodings created by the game by request of the reduction, and the

reduction knows which one, namely the g’th one.14 So, the leakage function can compute
Dconi(ci)[loc

h
j] as Dconi(ci)[loc

h
j] = ci[g], and here only these encodings ci[g] are accessed.

Hence each of them has their leakage tally increased by at most lbbus. Notice that when the
tampering returns (same?, g), then the reduction simulates the command (COPY,BP(g), lochj)

by setting Dh
1 [lochj] ← Dh

1 [BP(g)], which results in the value that (c1[g], c2[g]) should have
been an encoding of to be placed in Dh

1 [lochj] and hence read up by the CPU in Step 4c. In
the hybrid game, this would result in the counter C[g] for that value to be incremented by
one. Hence the leakage tally for each element stays below C[g] · lbbus ≤ c · lbbus.

• If the reply was ⊥, then there is no way around computing Di = Dconi(ci) (and then comput-
ing Bsi from Di). I.e., the leakage function in the worst case accessed all encodings, as it might
need to know the entire ci to compute Di = Dconi(ci). This can, however, happen at most
once as the CPU can self-destruct at most once. This one extra “full disk” possible leakage of
at most lbbus bits is why we get the bound lbdisk + (c+ 1)lbbus as opposed to lbdisk + clbbus.

5 The Hybrid Scheme

In this section we describe an O(1)-bounding, extra-space insensitive hybrid scheme HS. Recall
that the hybrid schemes HS consists of a hybrid ram Rh and a hybrid compiler Ch which takes a
functionality G with secret key K and outputs an encoding of the form (P, ωh

0 , ω
h
1) to be placed on

the disks of the RAM. The RAM Rh consists of a CPU CPUh, which is specified by two functions
Random and Compute. Below, we present an outline of our hybrid scheme HS and refer the reader
to the following subsections for the details.

Overview of HS. We start by assuming that we have a “regular program” (i.e., a sequence of
instructions) for computing GK in a “regular” RAM (i.e., a RAM with a public disk and a CPU
without any security). This regular program essentially “encodes” the original functionality in a
format that is compatible with the underlying RAM; for example the key is parsed as a sequence
of words that are written in the corresponding locations of the public disk. The RAM needs to
be neither tamper nor leakage resilient, and the “regularity” essentially comes from the fact that
it emulates GK correctly and has no pathological behaviour, like overwriting the key during an
activation. We also need that it reads each value O(1) times. It easy to see that one can always
translate the functionality into such a regular program, generically, using, e.g., a bounded fan-
out circuit layed out as a RAM program. We refer the reader to Section 5.1 for the complete
specifications.

Now, given such a regular program, our hybrid compiler Ch is supposed to produce a compiled
program (during the pre-processing phase) to be run by the hybrid RAM Rh (during the on-line
phase). The compiled program is placed on the public disk from which CPUh reads in sequence.
Our CPU CPUh will be deterministic, and hence Random just outputs the empty string at each

14Here we use the property of composable CNMLR codes which ensures that the tampering oracle returns not only
the symbol same? but also the index with which the tampered value matches.

26

invocation. This means that we only have to specify the compiler Ch and the function Compute for
a complete specification of HS.

Our hybrid scheme. Recall that the adversary in a hybrid execution is only allowed a limited
form of tampering, by which he can copy values within the secret disk and replace some value with
a known one. The main idea will be to store the regular program (and all intermediary values) in
the secret disk; each value will be stored in a special “augmented” form. The augmentation includes:
(a) A secret label L (sampled once and for all at setup, and thus unknown to the adversary); (b)
The position j at which the value is stored; (c) The current values (a, p) of the activation and
program counters (ac, pc) when the value was written. Intuitively, the secret label ensures that the
adversary cannot use the “replace” command as that would require to guess the value of the label.
On the other hand the position j will allow the CPU to check that it loaded a value from the right
position, preventing the adversary to use the “copy” command to move values created by the CPU
(or at setup) to another location. Finally, the pair (a, p) prevents the adversary from swapping
values sharing the same L and the same j (i.e., resetting by forcing the CPU to re-use a previously
encoded value).

Whenever algorithm Compute of the CPU loads some instruction, it uses the above augmented
encodings to check that it is loading the right instruction, that the correct location was read, that
the label matches, and that the counters are consistent; if any of the above fails, it self-destructs.
Otherwise, it runs the specific instruction of the emulated regular program, and writes the resulting
value to the disk (in the augmented form). A detailed description can be found in Section 5.2 (see
Fig. 8–12). A complete security analysis is given in Section 5.3.

5.1 A Regular Program for G

For simplicity we will assume to have a “regular” program for computing GK through a “regular”
RAM, i.e., a random access machine with one public disk, one CPU and no secret disk. Such a
regular RAM is not assumed to be neither leakage nor tamper resilient and, as we argue below, it
can be assumed generically. All we require is that it computes GK. In Section 5.2 we will compile
this regular program into a hybrid-scheme (which can in turn be transformed into a RAM-scheme
via the emulator of Section 4).

Suppose the RAM has word size w. In the description below the term size refers to the number of
words, and the term position refers to the location of a word in the RAM. A program for a regular
RAM with word size w is specified by (`R,K, `K , I, `I , G, `G, O, `O,K,X ,X−1,Y,Y−1, g, (ι0, . . . ,
ι`G−1)), where `R is the size of the RAM, K is the position in the RAM where the key is stored, `K
is the length of the key (such that 0 ≤ K and K + `K ≤ `R), I is the position in the RAM where
the input x is put, `I is the length of the input (such that 0 ≤ I and I + `I ≤ `R), G is the position
in the RAM where the instructions are put, `G is the number of instructions (such that 0 ≤ G and
G + `G ≤ `R), O is the position in the RAM where the output y is to be put, `O is the length of
the output (such that 0 ≤ O and O + `O ≤ `R). Furthermore, K : {0, 1}∗ → ({0, 1}w)`K parses a
key into words, X : {0, 1}∗ → ({0, 1}w)`I parses an input into words, X−1 : ({0, 1}w)`I → {0, 1}∗ is
a decoder such that X−1Xx = x, Y : ({0, 1}w)`O → {0, 1}∗ takes an output represented as words
and reconstructs it, Y−1 is a simulator discussed below, g = {gG}G∈{0,1}γ is a family of functions,
for some fixed constant γ, where for each G ∈ {0, 1}γ the function gG : {0, 1}w × {0, 1}w → {0, 1}w
specifies the functionality of the instruction labelled by G. Each instruction is of the form ιi =

27

(Gi, ai, bi, ci), where Gi ∈ {0, 1}γ is a type of an instruction and 0 ≤ ai, bi, ci < `R are memory
positions. All the functions should be in PPT.

We call JK = {K, . . . ,K + `K − 1} the key positions, JI = {I, . . . , I + `I − 1} the input
positions, JG = {G, . . . , G + `G − 1} the instruction positions, and JO = {O, . . . , O + `O − 1}
the output positions. We call JW = {j|∃i ∈ {0, . . . , `G − 1} s.t. (ιi = (·, ·, ·, j))} the intermediary
positions.

Consider the following execution game, taking as input a key K and any tuple (x0, . . . , x`I−1) ∈
({0, 1}w)`I , where R[i] refers to the i-th location in the disk of the RAM.

1. Let (K0, . . . ,K`K−1) = K(K) and for 0 ≤ i < `K update R[K + i]← Ki.

2. for 0 ≤ i < `I update R[I + i]← xi.

3. In sequence for i = 0, . . . , `P −1, proceed as follows: Parse ιi = (Gi, ai, bi, ci) and then update
R[ci]← gGi(R[ai], R[bi]).

4. Let y = Y(R[O], . . . , R[O + `O − 1]).

We make the following requirements:

Strong Correctness: For any (x0, . . . , x`I−1) and any K let y be computed as in the execu-
tion game. Then it is always the case that y = GK(X−1(x0, . . . , x`I−1)). Note that for
(x0, . . . , x`I−1) = X (x) we have that X−1(x0, . . . , x`I−1) = x such that y = GK(x). However,
here we need the stronger property where we do not assume that (x0, . . . , x`I−1) = X (x) for
some x.

Output Simulatability: For any (x0, . . . , x`I−1) and any K let y = GK(X−1(x0, . . . , x`I−1)). Then
it holds that the random variable corresponding to (R[O], . . . , R[O + `O − 1]) in a random
run of the execution game and the random variable corresponding to Y−1((x0, . . . , x`I−1), y)
have the same distribution. The reason for this requirement is that we want to avoid that the
representation of the output leaks anything extra to the output. Hence we require that the
adversary could compute the representation from just the output. The reason why we give
(x0, . . . , x`I−1) as input to the simulator is that it does not hurt, as the adversary already
knows this value and it might give a more liberal definition.

Write before read: In the execution game, the RAM never reads a position which was not written.

Don’t overwrite: |JK ∪JI ∪JG ∪JW | = `K + `I + `G + `G. This implies that the program never
overwrites positions of the key, input or instructions and never writes the same intermediary
position twice.

Reserve nought: 0 6∈ JK ∪ JI ∪ JG ∪ JW ∪ JO. This implies that the starting location, namely
the 0-th one, is reserved for some special purpose (to be specified later).

Reserved tokens: For all instructions ιi we assume that

Gi 6∈ {load input, lift key, reveal output, done}.

This means that the labels specifying the type of an instruction cannot be of the above reserved
type (which will be used to serve specific operational purposes).

28

Constant Fan-Out: There exists a constant α such that in the execution game, the RAM never
reads a given position more than α times.

It is easy to verify that the above is without loss of generality, and that one can construct such a
regular program for all functions.

5.2 The Compiled Program

The main idea behind the compiler is to store the program and all the intermediary values on the
secret disk.15 Each value V on the disk will be stored along with some augmentation.

Specifically, in the preprocessing a uniformly random string L ∈ {0, 1}κ, that we call the label
from now on, is chosen and stored in position 0 on the secret disk. All other values V will have
a type (j, L, a, p, V), which we call augmented value. Here, j is the position at which the value is
stored, i.e., ωh

1 [j] = (j, L, a, p, V), L is the secret label, a is the value of the activation counter ac
and p is the value of the program counter pc when V was written, and V is the value itself. Adding
the secret label L (unknown to the adversary A) to the augmented value prevents the adversary
from using the REPLACE command to write anything of the form (·, L, ·, ·, ·) to the secret disk. Hence
all such values are from the pre-processing, or computed and stored by the CPU. Having j in the
augmented value prevents the adversary from using the COPY command to move an augmented value
of the form (j, L, ·, ·, ·) to another memory position, as we will ask the CPU to check that j matches
the position from which the augmented value was read.

This means that the attack possibilities of the adversary are reduced to replacing a value
(j, L, ·, ·, V) at memory position j with an older value of the form (j, L, ·, ·, V ′). By adding a and
p to the augmentations we can allow the CPU to detect such a reset attack as follows: We ensure
that for every a and p the CPU writes a unique value, of the form (j, L, a, p, ·), only once. This way
the CPU can use j and the current values of the counters ac and pc to recover the values a and p,
and check that these values match with the values of a and p stored in ωh

1 [j]. The above ensures
that each value V occurring at ωh

1 [j] = (j, L, a, p, V) is the correct value V for memory position j
and the current activation and program step. This property is maintained inductively.

The compiler Ch is given in Fig. 8–9. Recall that each instruction has a type (Yh, Ih,Oh) (cf.
Definition 3); we call (Ih,Oh) the IO pattern of the instruction. Algorithm Compute is given in
Fig. 10–12. As our hybrid CPU is deterministic, Random always outputs the empty string. In the
description self-destruct means set all registers to 0, raise the self-destruct flag, and terminate. A
few remarks are in order:

• Writing back the label. Notice that, in each execution, the CPU not only reads the label
from the location (1, 0) (i.e., position number 0 of the secret disk) but also writes the label
back into location (1, 0) afterwards. This is necessary to ensure that the same content at (0, 1)
is not being read “too many” times (which is achieved by the c-bounding property). Whenever
the CPU writes into (1, 0), irrespective of the actual value, the content is overwritten. (Recall
that in order to protect against replacing attacks the secret label has to match at each CPU
execution.) Therefore, overwriting each time ensures that the same value is being read at
most once.

15Note that the program is stored both in the secret and in the public disk. On the one hand, it is important to
keep it in the public disk as otherwise the simulator could never know the current location of the secret disk which
is being accessed at a certain time. On the other hand, it is necessary to store the program into the secret disk as
well, so that tampering the program in the public disk will be detected.

29

Load Input: For i = 0, . . . , `I − 1, set the instruction at position pc = i as

ωh
0[pc] := (load input, ((1, 0), (0, I + i)), ((1, 0), (1, I + i))) .

The purpose of this instruction will be to move the i-th word of the input from the public disk to
the secret disk. Note that the instruction reads at ωh

1[0] to get the label L used to store the input
in the correct augmented form.

Lift Key: For i = 0, . . . , `K − 1, set the instruction at position pc = `I + i as

ωh
0[pc] := (lift key, ((1, 0), (1,K + i)), ((1, 0), (1,K + i))) .

The purpose of this instruction will be to increment the activation value associated the ith word
of the secret key on the secret disk.

Compute: For i = 0, . . . , `G − 1, let ιi = (Gi, ai, bi, ci). Then set the instruction at position pc =
`I + `K + i as

ωh
0[pc] := (Gi, ((1, 0), (1, ai), (1, bi), (1, j)), ((1, 0), (1, ci), (1, j))) ,

where j = G + i. The purpose of this instruction will be to execute instruction number i. Note
that the instruction reads at ωh

1[G+ i], as here we store a copy of the instruction (Gi, ai, bi, ci) (to
detect tampering of the public disk).

Reveal Output: For i = 0, . . . , `O − 1, set the instruction at position pc = `I + `K + `G + i as

ωh
0[pc] := (reveal output, ((1, 0), (1, i)), ((1, 0), (0, i))) .

The purpose of this instruction will be to move the ith word of the output to the public disk.

Done: Let pc = `I + `K + `G + `O. Set

ωh
0[pc] := (done, ((1, 0), (1, 0))) .

This is a sentinel instruction.

Figure 8: The Compiler, Public Disk.

• Updating counters. Notice that we update the activation counter (ac) only in the following
cases:

1. load input (c.f. Fig. 10): When a = ac− 1 and pc = 0. This is the first time the CPU
loads the label in one activation, and therefore we have to update the value corresponding
to the activation counter inside the augmented encoding of the label. Once it is updated
there is no more change, as for pc > 0 the CPU ensures that a = ac.

2. lift key (c.f. Fig. 10): This is done because, before using the key, we have to update
the value of the activation counter in the augmented encoding of the key.

3. compute G (c.f. Fig. 11): Whenever some instruction with type G is computed, the
activation counter is increased in the augmented encoding of the instruction stored in
the secret disk; this ensures that each instruction is executed only once in one activation.

The program counter pc is updated only inside the augmented encoding of the label, during

30

Label the Parameters: Pick a uniformly random label L ∈ {0, 1}κ for κ = k + 1. Set

ωh
1[0] := (0, L,−1,−1, (K, `K , I, `I , G, `G, O, `O)) .

Key: Let (K0, . . . ,K`K−1) = K(K) and for 0 ≤ i < `K , set the value at position j = K + i as

ωh
1[j] := (j, L,−1, `I + i,Ki) .

Compute: For i = 0, . . . , `G − 1, let ιi = (Gi, ai, bi, ci), set the value at position j = G+ i as

ωh
1[j] := (j, L,−1, `I + `K + i, (Gi, ai, bi, ci)) .

This value will be used to verify the instruction from the public disk (to detect tampering).

Figure 9: The Compiler, Secret Disk.

each execution of the CPU; this follows by the fact that the CPU accesses the label whenever
run, and accesses all the other values once.

• Implicit checking of the label. Note that, in the description of Compute, there is no
explicit check of the labels. The check is done implicitly by attempting to parse the content of
the input registers in the specified format. For example, in case the CPU parses two registers
successfully as (·, L, ·, ·, ·) and (·, L, ·, ·, ·), then the label in the two registers must match.

Next we state the following theorem about HS.

Theorem 5. The hybrid-scheme HS is an O(1)-bounding, extra-space insensitive hybrid scheme.

We turn to a high-level overview of the security proof (cf. Section 5.3 for a formal proof). Our
goal is to prove that the above hybrid scheme is RAM-simulatable, namely for all adversaries B
attacking the hybrid scheme in a hybrid execution, there exists a simulator S faking the view of B
only given black-box access to the original functionality GK.

As a first step, we prove that the probability by which the adversary succeeds in using a “replace”
command to write some value on the secret disk with the correct secret label, and having the CPU
read this value without provoking a self-destruct, is essentially equal to the probability of guessing
the secret label (which is exponentially small). This means we can assume that all the values put
on the secret disk using a “replace” command does not contain the secret label. In each execution
our CPU CPUh will check that all loaded values contain the same label, and will write back values
where the augmentation contains this label. It then follows that all values with the secret label in
the augmentation were written by the pre-processing or CPUh, and it also follows that all values
not having the secret label in the augmentation are known by the adversary: They were put on
disk using a REPLACE command or computed by CPUh on values known by the adversary. We then
argue that CPUh (by design) will never write two values V 6= V ′ sharing the same augmentation
(j, L, a, p). This is because it includes the strictly increasing (a, p) in the augmentation, and we also
prove that CPUh can predict what (a, p) should be in all loaded values in all executions. It then
follows from an inductive argument that all values containing the secret label in the augmentation
are correct. Hence all values on the secret disk are either correct secret values or incorrect values
known by the adversary. So, when CPUh writes a result to the public disk, it is either an allowed

31

Yh = load input: If not (Ih,Oh) = ((1, 0), (0, j)), ((1, 0), (1, j)), for some j, then self-destruct. Try to
parse the input values as follows

(0, L, a, pc− 1, (K, `K , I, `I , G, `G, O, `O))← Rh1 // read label from SDh
1

x← Rh2 // read input from PDh

If the parsing or any of the following tests fail, then self-destruct:

• 0 ≤ pc < `I // CPU supposed to load input

• j = I + pc // correct position is read

• a = ac or (a = ac− 1 and pc = 0) // counters are consistent

Otherwise, set

Oh1 ← (0, L, ac, pc, (K, `K , I, `I , G, `G, O, `O)) // write label back to SDh
1

Oh2 ← (j, L, ac, pc, x) // store input in augmented form

Yh = lift key: If not (Ih,Oh) = ((1, 0), (1, j)), ((1, 0), (1, j)), for some j, then self-destruct. Try to
parse the input values as follows

(0, L, ac, pc− 1, (K, `K , I, `I , G, `G, O, `O))← Rh1 // read label from SDh
1

(j, L, ac− 1, pc, z)← Rh2 // read key from SDh
1

If the parsing or any of the following tests fail, then self-destruct:

• `I ≤ pc < `I + `K // CPU supposed to lift key

• j = K + p, where p = pc− `I // correct position is read

Otherwise, set

Oh1 ← (0, L, ac, pc, (K, `K , I, `I , G, `G, O, `O)) // write back label to SDh
1

Oh2 ← (j, L, ac, pc, z) // write key to SDh
1 (after updating ac)

Figure 10: Compute, Part I.

output or a value already known by the adversary. From the above intuition, it is straight-forward
although rather tedious to derive a simulator.

5.3 Analysis

We imagine the values in the secret disks being partitioned into so-called domains, labeled by
D ∈ {0, 1}κ. If a value of the form (j,D, . . .) is stored into the secret disk, then we say that it is
stored in the domain D. Notice that the pre-processing stores all the values in the domain L for a
uniformly random L that is unknown to the adversary. We call this particular domain indexed by
the secret label L the secret domain.

In the following analysis, we are going to use the following crucial properties of CPUh. One can
easily verifies that these properties hold by the construction of Compute (c.f. Fig. 10–12):

32

Yh = G 6∈ {load input, lift key, reveal output, done}:
If not (Ih,Oh) = ((1, 0), (1, ai), (1, bi), (1, j)), ((1, 0), (1, ci), (1, j)), for some ai, bi, j, ci, then self-
destruct. Try to parse the input values as follows

(0, L, ac, pc− 1, (K, `K , I, `I , G, `G, O, `O))← Rh1 // read label from SDh
1

(ai, L, ac, ·, A)← Rh2 // read input from SDh
1

(bi, L, ac, ·, B)← Rh3 // read input data from SDh
1

(j, L, ac− 1, pc, H)← Rh4 // read instruction from SDh
1

If the parsing or any of the following tests fail, then self-destruct:

• `I + `K ≤ pc < `I + `K + `G // CPU supposed to compute

• j = G+ p, where p = pc− `I − `K // instruction read from correct position

• H = (G, ai, bi, ci) // instruction at PD matches the one read from SDh
1

Otherwise, set C := gG(A,B); and let // compute according to the G-type

Oh1 ← (0, L, ac, pc, (K, `K , I, `I , G, `G, O, `O)) = // write back label to SDh
1

Oh2 ← (ci, L, ac, pc, C) // write computed value to SDh
1

Oh3 ← (j, L, ac, pc, H) // write back instruction to SDh
1 (updating counters)

Figure 11: Compute, Part II.

1. If in a single execution the values read from the secret disk SDh
1 by the CPU do not come

from the same domain, then the CPU self-destructs.

2. If in a single execution all the values read from the secret disk by the CPU are from the same
domain D, then all the values written to the secret disk by the CPU in that activation are
written to domain D.

3. The values that the CPU writes to the public disk PDh do not depend on the domain it reads
from SDh

1 More precisely, changing only the domain D in all the values read from the secret
disk to some D′ 6= D will not change the value CPU writes into PDh.

We do a hybrid proof, starting from the hybrid scheme and ending with the ideal world. We
prove a series of technical lemmas, and in between we use the insight of the lemma to define an
indistinguishable hybrid distribution. We will define the simulator, which simulates the view of the
modified adversary only given the access to the ideal functionality, at the end of this sequence of
hybrid distributions.

Let B be any adversary attacking our hybrid scheme in the game HybHS,B,G(k). We are going
to define the event MIX that happens when the adversary B uses the REPLACE command to write a
value into the secret domain and this value is subsequently read by CPUh. More precisely, it gives
a REPLACE command with a value of the form (·, L, · · ·) for the value L placed as the secret label
in the pre-processing and later the CPU reads from a position where that particular (·, L, · · ·) is
stored. We define DESTRUCT to be the event that the CPU self-destructs.

33

Yh = reveal output: If not (Ih,Oh) = ((1, 0), (1, j)), ((1, 0), (0, j)), for some j, then self-destruct. Try
to parse the input values as follows

(0, L, ac, pc− 1, (K, `K , I, `I , G, `G, O, `O))← Rh1 // read label from SDh
1

(j, L, ac, ·, y)← Rh2 // read output from SDh
1

If the parsing or any of the following tests fail, then self destruct:

• `I + `K + `G ≤ pc < `I + `K + `G + `O; // CPU supposed to reveal output

• j = O + p, where p = pc− `I − `K − `G // position is consistent

Otherwise, set

Oh1 ← (0, L, ac, pc, (K, `K , I, `I , G, `G, O, `O)) // write back label to SDh
1

Oh2 ← y // write output to PDh (remove augmentation).

Yh = done: If not (Ih,Oh) = ((1, 0)), ((1, 0)), for some j, then self-destruct. Try to parse the input values
as follows

(0, L, ac, pc− 1, (K, `K , I, `I , G, `G, O, `O))← Rh1 // read label from SDh
1

If the parsing or any of the following tests fail, then self destruct:

• pc = `I + `K + `G + `O. // CPU supposed to terminate

Otherwise, set

Oh1 ← (0, L, ac, pc, (K, `K , I, `I , G, `G, O, `O)) // write back label to SDh
1

and end the activation.

Figure 12: Compute, Part III

Lemma 6. The probability of MIX ∧ ¬DESTRUCT is at most 2−κ+1 irrespective of the strategy of
the adversary B.

Proof. We first argue that it is sufficient to prove that as long as MIX and DESTRUCT did not occur
the probability that MIX occurs in the next command and DESTRUCT does not is at most 2−κ+1.
Then we prove this fact.

Assume we can prove that as long as MIX and DESTRUCT did not occur the probability that
MIX ∧ ¬DESTRUCT occurs in the next step is at most 2−κ+1. Consider then the first step in
which MIX occurs. Then clearly MIX did not occur in an earlier step. Also, since the step was
reached, we have that DESTRUCT did not occur in an earlier step either. So, in all earlier steps,
MIX and DESTRUCT did not occur. So, we know that in the current step, the probability that
MIX ∧ ¬DESTRUCT occurs is at most 2−κ+1. However, by assumption, we know that MIX occurs,
so either MIX ∧ ¬DESTRUCT or MIX ∧ DESTRUCT will occur. If MIX ∧ DESTRUCT occurs, then
there will be no more steps, as we self destruct. Hence, the event MIX ∧ ¬DESTRUCT occurs the
first time where MIX occurs, or never. And, the first time MIX occurs, the event MIX∧¬DESTRUCT
occurs with probability at most 2−κ+1, as argued above.

By MIX and DESTRUCT not occurring and Property 1 above, we see that the CPU only ever

34

read values from the same domain in a single execution. So, by Property 2, the CPU never in a
single invocation read values from the secret domain and then stored to another domain. Since the
CPU has no memory between invocations it follows that no information about L was ever written to
a domain which is not the secret domain. So, by additionally using Property 3, we see that as long
as MIX and DESTRUCT did not occur, the adversary has no information on L. Since the guessing
probability of L starts out at 2−κ right after the pre-processing, it follows that as long as MIX and
DESTRUCT did not occur, the guessing probability of L in the view of the adversary is at least 2−κ.

There are, however, other ways that adversary can learn information about L. It can write a
value (j′, L′, . . .) to some position j′ on the secret disk and then execute the CPU on position j′ and
some position j where a value (j, L, . . .) is stored which contains the secret label L. We call this a
mixing attack. By property 1 above, if the CPU does not self-destruct after a mixing attack, then
L′ = L, so the one bit of information about whether the CPU self-destructs or not will depend on
L.

It is not hard to see that if the adversary performs a mixing attack, then the event MIX occurs.
We now analyse the development of the average guessing probability of L after mixing attacks. We
first look at what happens at the first mixing attack and we do a case analysis on L′ = L and
L′ 6= L. Let g denote the guessing probability of L in the view of the adversary before the first
mixing attack.

If L′ = L in a mixing attack, then the adversary guessed L as L′ = L occurs in the command
(j′, L′, . . .), so this case occurs with probability at most g. After this event the average guessing
probability is clearly 1. This can clearly never become higher.

If L′ 6= L in a mixing attack, then the adversary ruled out the value L′. For all labels L′′, let p(L′′)
be the probability in the view of the adversary that L = L′′ before the mixing attack and let q(L′′)
be the probability in the view of the adversary that L = L′′ after the mixing attack. We have that
q(L′) = 0 and q(L′′ 6= L′) = p(L′′)/(1 − p(L′)). Hence maxL′′ q(L

′′) ≤ maxL′′ p(L
′′)/(1 − p(L′)) =

g(1− p(L′))−1 ≤ g(1− g)−1.
It follows that after the first mixing attack it holds that either (with probability g) the adversary

can guess L with probability 1 or (with probability at most (1− g)) the adversary can guess L with
probability at most g(1− g)−1. So, by the law of total probability, after the first mixing attack the
probability that the adversary can guess L is at most g · 1 + (1− g) · g(1− g)−1 = 2g.

Note then that this probability cannot increase further by making further mixing attacks.
Namely, if the first mixing attack is with L′ 6= L, then the CPU self-destructs, and hence no
further mixing attacks are possible. And, if L′ = L, then the adversary has just learned L and the
guessing probability increased to its maximal value 1.

This means that the average guessing probability of L in the view of the adversary after mixing
attacks is 2g = 21−κ.

Now, for an adversary B attacking HS, let B1 be a corresponding adversary which runs exactly
as B except that it never uses the REPLACE command to the secret disk. Instead, B1 internally keeps
track of the effect the REPLACE commands would have had on SDh

1. In doing this, it keeps track of
the record S 16 kept by the game HybHS,B,G(k) – it is easy to see that B could efficiently compute
an exact copy of S. Now from the definition of S, we observe that if S[j] = ⊥, then the value in
Dh

1 [j] is efficiently computable by B as either (1) it was put in Dh
1 [j] by a REPLACE command, (2)

16Recall that S[i] keeps track of the fact if the current value at location i (in the secret disk) is still ‘unknown’ to
the adversary, and if it is then the sequence number indicating the order when it is stored.

35

1. Initially, let S[i] = > for all i, except that S[0] = ⊥, and S[j] = ⊥ for all key positions j and all
code positions j. We use S[i] = > to represent S[i] 6= ⊥, as we are not interested in the exact
value of S[i] when S[i] 6= ⊥.

2. Receive P and Ω and input them to B. Then run B.

3. When B outputs (STOP, z), then output (STOP, z).

4. When B outputs (REPLACE, (1, j, z)), then update V [j]← z and S[j]← ⊥.

5. When B outputs (REPLACE, (0, j, z)), then output (REPLACE, (0, j, z))

6. When B outputs (COPY, j, j′), update S[j′]← S[j] and if S[j] = ⊥, then V [j′]← V [j].

7. When B makes the command (EXEC), then let D0 be the current public disk and inspect D0[pc]
to get the instruction which is about to be executed. Suppose, for this execution, (i0, . . . , ig) be
the positions to be read on the secret disk and (j0, . . . , jh) be the positions to be written on the
secret disk.

(a) If S[i0] = · · · = S[ig] = ⊥, which means all the values to be read are ‘known’ (i.e. this is a
public execution), then proceed as follows:

• Use V [i0], . . . , V [ig] and the values read from the public disk by the current instruction
D0[pc], ac and pc to compute the values to store into the output registers Oh1, . . . , O

h
d

which would be obviously exactly the same values that CPUh would have computed on
(EXEC).

• Update S by setting S′[j0] = · · · = S′[jh] := ⊥.
• Similarly, update V as follows: for a = 0, . . . , h, we update V [ja] to hold the value that

CPUh would have written to D1[ja] namely V [ja] := Oha

• Finally, for all positions in PDh, (if any) where CPUh would have written, compute the
value and use REPLACE command to write (since replacing on PDh is allowed).

(b) Otherwise, this is a secret execution and we proceed as follows:

i. If S[i0] 6= ⊥, . . . ,S[ig] 6= ⊥, then output (EXEC). Then set S[j1] = · · · = S[jh] := >.
ii. Otherwise, there exists a and b such that S[ia] 6= ⊥ and S[ib] = ⊥. In that case, simulate

a self destruct (by ignoring this and all future EXEC commands).

Figure 13: B1

copied to Dh
1 [j] from Dh

1 [i] where Dh
1 [i] was computable, or (3) computed by the CPU by a run of

Compute on inputs which were all computable (notice that our CPU is deterministic). So, B can
efficiently compute Dh

1 [j] for all j where S[j] = ⊥. Now, for all j where S[j] = ⊥ we will let B1
compute the value which would have been in Dh

1 [j], had the REPLACE commands of B been executed.
Additionally, B1 will make sure that for all j where S[j] 6= ⊥, it keeps in Dh

1 [j] the value that would
have been in Dh

1 [j] if the REPLACE commands of B had been executed. B1 maintains another record
called V to store the known values – that is whenever it sets S[j] to ⊥, it updates V [j]. The details
are given in Figure 13.

Let E be an event defined in B and B1, there exist two positions j, j′ in Dh
1 from which CPUh

reads in an execution such that the following happens: S[j] = ⊥ and S[j′] 6= ⊥. Notice that, for B1,
E happens in Step 7(b)ii. By construction, if E does not occur, then B1 and B will output exactly
the same value. However, until E occurs it holds for all values Dh

1 [j] where S[j] 6= ⊥ that Dh
1 [j] is a

36

value put by the pre-processing (alternatively a copied or computed from such values). That is, if
S[j] 6= ⊥ then Dh

1 [j] is in the secret domain L. On the other hand S[j′] = ⊥ implies that the content
of Dh

1 [j′] is known to the adversary and hence the value is in the public domain L′ . Hence, when
E occurs, we have that CPUh reads from two domains L and L′. So, in that case, by Property-1 of
CPUh, DESTRUCT occurs if L 6= L′. On the other hand, if L = L′ the CPU does not self-destruct
in HybHS,B,G(k), then MIX occurs, which in turn implies that MIX∧¬DESTRUCT occurred. Using
Lemma 6 we can conclude that:{

HybHS,B,G(k)

}
k∈N
≈2−k+1

{
HybHS,B1,G(k)

}
k∈N

.

In the following we can therefore assume an adversary B1 which does not use the REPLACE

command on the secret disk.

Lemma 7. Let L be the secret label. Assume an adversary of the form B1. Then for all (j, L, a, p)
there can not exist two different values V and V ′ (6= V) such that both (j, L, a, p, V) and (j, L, a, p, V ′)
are written to the secret disk SDh

1.

Proof. By assumption, the adversary B1 never replaces values on the secret disk, it at most copies
them around. By construction, all the values of the form (j, L, a, p, ·) written by the CPU has a = ac

and p = pc and these change between invocations of the CPU. So, the only way two values of the
form (j, L, a, p, V) and (j, L, a, p, V ′ 6= V) could be written is that it happens in the same invocation
of the CPU. In the following we use the requirements of the regular program (c.f. Section 5.1 17.
Now considering a single execution of CPUh case by case:

1. load input: CPUh writes in locations 0 and j but we have j 6= 0 as j ≥ I > 0 by Reserve
Nought

2. lift key: CPUh writes in locations 0 and j but we have j 6= 0 as j > 0 by Reserve Nought
again.

3. compute G: CPUh writes to locations 0, ci, j. Here we have ci 6= 0 and j 6= 0 by Reserve
Nought. Furthermore, ci 6= j by No Overlap.

4. done: In Done we only write one value to the secret disk.

Now, for an adversary B1 attacking HS without REPLACE commands to the secret disk, let B2 be
a corresponding adversary which runs exactly as B1 except that it (i) ignores all COPY commands
and (ii) ignores all REPLACE commands (0, j, ·), where j 6∈ {I, . . . , I+ `I −1} that is it is not allowed
to replace any pre-processed value in PDh. Instead it keeps track (1) which values currently would
be where on the secret disk had the COPY commands been performed and (2) of the state of the
public disk had the REPLACE commands been executed. For that, B2 maintains a record, namely ω̃h

0

corresponding to the ωh
0

18 (c.f. Fig. 4). When B1 makes an EXEC command, then B2 checks that (i)
17Notice that since the hybrid program depends on the regular program these requirements impose similar restriction

also in the compiled program.
18Recall that ωh

0 is the part, to be stored in PDh, of the initial encoding output by Ch in the pre-processing;
precisely obtained by (P, ωh

0, ω
h
1)← Ch(G,K)

37

if there is any replacement of the pre-processed values in PDh i.e. if ω̃h
0 6= ωh

0 or (ii) if the current
location (say j), to be read from SDh

1, is copied, i.e. the position or the counters in the augmented
value fails to match, had the COPY command been executed. If any of the check fails, B2 simulates
self-destruct by ignoring all future EXEC commands. Otherwise it also output EXEC.

Lemma 8. {
HybHS,B1,G(k)

}
k∈N

=

{
HybHS,B2,G(k)

}
k∈N

.

Proof. By the above lemma (c.f. Lemma 7), we know that for each (j, L, a, p) at most one value
of the form (j, L, a, p, V) was ever written to the secret disk. So, if we can show that the CPU
correctly predicts the correct value of ωh

0 [pc] and the correct value of (j, L, a, p) for all the values
(j, L, a, p, V) that it reads up from the secret disk, and that it actually performs the correct checks
for these values, then we know that the first time that HybHS,B1,G(k) would have resulted in reading
up an incorrect value ωh

0 [pc] or an incorrect (j, L, a, p, V), the CPU would self-destruct, which is
exactly how we simulate.

Clearly, for the labeled parameters the CPU can correctly predict that it should get something
of the form (0, L, ac, pc− 1) and indeed it self-destructs if it does not.

By construction, for pc 6∈ {G, . . . , G+`G−1}, the values (j, L, a, p, . . .) that the CPU expects to
read from the secret disk and also the instruction read from the public disk are uniquely given by ac,
pc, L and the (correct) parameters (K, `K , I, `I , G, `G, O, `O) retrieved form ωh

1 [0]. As an example,
for pc ∈ {K, . . . ,K+`K−1}, it can use K and `K to see that the label should be lift key and then
knows that the instruction should be (lift key, ((1, 0), (1, j)), ((1, 0), (1, j))) for j = K + pc− `I .
From this it knows that it should read a value of the form (j, L, ac − 1, pc, . . .). Since there is at
most one such value, if the CPU does not self-destruct it is because it read up the correct value.
For pc ∈ {G, . . . , G+ `G− 1} it follows in the same manner that j and L follows correctly from ac,
pc and (K, `K , I, `I , G, `G, O, `O), so the position j and the expected pattern (j, L, ac − 1, pc, . . .)
follows correctly from ac, pc, L and (K, `K , I, `I , G, `G, O, `O). Hence if the CPU does not self-
destruct then (j, L, ac − 1, pc, H) is the correct value and hence H = (Gi, ai, bi, ci). Hence the
check H = (G, ai, bi, ci) guarantees that the instruction on the public disk was correct. This in turn
implies that if the CPU does not self destruct then (ai, L, ac, ·, A) and (bi, L, ac, ·, B) are the correct
values. Note that we here use additionally that no two values of the form (j, L, ac, ·, ·) are stored
for j ∈ {G, . . . , G + `G − 1}. This follows from Don’t overwrite, which guarantees that within a
single activation ac, no two instructions write to the same position.

We are now looking at an adversary B2 which never touches the secret disk and which only
replaces values in the input positions namely {I, . . . , I + `I − 1} on the public disk. Since it is
predictable by B2 when the values in the positions {I, . . . , I + `I − 1} are used, we can replace it by
a non-adaptive adversary B3 which is non-adaptive in a sense that it runs all the EXEC commands,
then it runs REPLACE command on the input positions of the public disk PDh and then again the
EXEC command in sequence rather than running them in any order. Moreover, it runs each command
a specific number of times in contrast to B2 which runs any command for any number of times. The
formal description of B3 is given below: as follows within each activation:

1. Execute command (EXEC) exactly `K times.

2. Execute commands (REPLACE, 0, I + i, xi) for i = 0, . . . , `I − 1, in that sequence.

38

3. Execute command (EXEC) exactly `G + `O + 1 times.

The transformation from B2 to B3 works as follows:

• Initialize p = 0. This is a counter keeping track of how many times we “forgot” to increment
pc.

• When B2 issues a (REPLACE, 0, i, V) command, queue the command and don’t issue any com-
mands.

• When pc + p 6∈ {`K , . . . , `K + `I − 1} and B2 issues an EXEC command, do the same.

• When pc + p ∈ {`K , . . . , `K + `I − 1} and B2 issues an EXEC command, then compute i =
pc+ p− `K and compute the value xi that would be at position I + i on the public disk if all
the REPLACE commands in the queue were executed in order from the head and back. Don’t
issue an EXEC command, instead let p← p+ 1.

• When it happens after the above rule that pc + p = `I , then let (x1, . . . , x`I−1) be the
values computed in the above rule. Then execute the commands (REPLACE, 0, I + i, xi) for
i = 0, . . . , `I − 1 and then execute EXEC exactly `I times. Then let p = 0.

It is not hard to see that, by adaptivity the adversary does not gain more power which is not
simulatable by a non-adaptive adversary.19 Hence, we have that{

HybHS,B2,G(k)

}
k∈N

=

{
HybHS,B3,G(k)

}
k∈N

.

We can now focus on how to simulate for an adversary of the form B3.
The simulator S3 works as follows:

1. Initialize ωh
0 as the preprocessing would have done.

2. Run B3 until it executed command (EXEC) exactly `K times. Simulate by doing noting.

3. Run B3 until it executed commands (REPLACE, 0, I+i, xi) for i = 0, . . . , `I−1, in that sequence.
Simulate the i-th replace by setting ωh

0 [I + i]← xi.

4. Let x = X−1(x0, . . . , x`I−1) and query the ideal model to learn y = GK(x).

5. Execute command (EXEC) exactly `G times. Simulate by doing nothing.

6. Compute (y0, . . . , y`O−1) = Y−1((x0, . . . , x`I−1), y).20

7. Let i = 0.

8. As long as i < `O, run B3 to make it give the command (EXEC). In response to this update
ωh
0 [O + i]← yi, and let i← i+ 1.

19Essentially we move to a non-adaptive adversary in order to ease the construction of the simulator which we
describe next.

20Here we make use of the fact that the simulator Y−1 gets the tuple (x0, . . . , x`I−1) as additional input. We
emphasize that the simulator S3 also works in case Y−1 does not get (x0, . . . , x`I−1) as input. However, since giving
this tuple to Y−1 does not weaken the security definition, and moreover it makes the description of S3 simpler, we
prefer to use the first formulation.

39

9. Run B3 until it executed the command (EXEC) once. Then restart from Step 2.

It follows from Output Simulatability that{
HybHS,B3,G(k)

}
k∈N

=

{
IdealS3,G(k)

}
k∈N

.

We can then construct the final simulator as follows, from B, construct B1, from this B1 construct
B2, from this B2 construct B3, and from this B3 get S3 and let S = S3. It is a corollary to the above
analysis that {

HybHS,B,G(k)

}
k∈N

=2−k

{
IdealS,G(k)

}
k∈N

.

This show that HS is RAM simulatable. Notice that we did not use anything assumptions on the
size of the disk, so HS is also extra-space insensitive. Finally, notice that because HS self-destruct
the first time it reads up a value from the secret domain which is not the correct value and because
the correct values by Constant Fan-Out are touched at most α times, it follows that to prove that
the scheme is (α + 1)-bounding, it is sufficient to prove that it is (α + 1)-bounding against an
adversary of the form B3. In HybHS,B3,G(k) all values at input positions are written once and then
read at most α times. Values at key positions and code positions are written once and read once,
and α+ 1 ≥ 2. Values at intermediary positions are written once and read at most α times.

This concludes the proof of Theorem 5.

References

[1] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. IACR Cryptology ePrint Archive, 2013:201, 2013.

[2] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.
Explicit non-malleable codes resistant to permutations. IACR Cryptology ePrint Archive,
2014:316, 2014.

[3] Ross Anderson and Markus Kuhn. Tamper resistance: a cautionary note. In WOEC’96: Pro-
ceedings of the 2nd conference on Proceedings of the Second USENIX Workshop on Electronic
Commerce, pages 1–1, Berkeley, CA, USA, 1996. USENIX Association.

[4] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure
against related-key attacks. In CRYPTO, pages 666–684, 2010.

[5] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: Rka-prps,
rka-prfs, and applications. In EUROCRYPT, pages 491–506, 2003.

[6] Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. Rka security beyond the linear
barrier: Ibe, encryption and signatures. In ASIACRYPT, pages 331–348, 2012.

[7] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of eliminating
errors in cryptographic computations. J. Cryptology, 14(2):101–119, 2001.

[8] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In ITCS,
pages 155–168, 2014.

40

[9] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. In TCC, pages 440–464, 2014.

[10] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit to multi-
bit public-key encryption via non-malleable codes. IACR Cryptology ePrint Archive, 2014:324,
2014.

[11] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-rate tamper-
ing. In CRYPTO, pages 533–551, 2012.

[12] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits and protocols against
1/poly(k) tampering rate. In TCC, pages 540–565, 2014.

[13] Ivan Damgård, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Bounded tamper
resilience: How to go beyond the algebraic barrier. In ASIACRYPT (2), pages 140–160, 2013.

[14] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without computational
assumptions. In TCC, pages 230–247, 2012.

[15] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-
source extractors. In CRYPTO (2), pages 239–257, 2013.

[16] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS,
pages 434–452, 2010.

[17] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous
non-malleable codes. In TCC, pages 465–488, 2014.

[18] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-
malleable codes and key-derivation for poly-size tampering circuits. In EUROCRYPT, pages
111–128, 2014.

[19] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits: How to trade
leakage for tamper-resilience. In ICALP (1), pages 391–402, 2011.

[20] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan. Pro-
tecting circuits from leakage: the computationally-bounded and noisy cases. In EUROCRYPT,
pages 135–156, 2010.

[21] Niklas Frykholm. Countermeasures against buffer over flow attacks. Technical report, RSA
Data Security, Inc., November 2000.

[22] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage. In FOCS,
pages 31–40, 2012.

[23] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits II: Keeping
secrets in tamperable circuits. In EUROCRYPT, pages 308–327, 2006.

[24] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO, pages 463–481, 2003.

41

[25] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with tamperable
and leaky memory. In CRYPTO, pages 373–390, 2011.

[26] Aggelos Kiayias and Yiannis Tselekounis. Tamper resilient circuits: The adversary at the gates.
In ASIACRYPT (2), pages 161–180, 2013.

[27] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In CRYPTO, pages 104–113, 1996.

[28] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In CRYPTO,
pages 388–397, 1999.

[29] Feng-Hao Liu and Anna Lysyanskaya. Algorithmic tamper-proof security under probing at-
tacks. In SCN, pages 106–120, 2010.

[30] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model.
In CRYPTO, pages 517–532, 2012.

[31] Eric Miles and Emanuele Viola. Shielding circuits with groups. In STOC, pages 251–260, 2013.

[32] Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 7(49):File 14, 1996.

[33] Martin Otto. Fault Attacks and Countermeasures. PhD thesis, University of Paderborn, Ger-
many, 2006.

[34] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal secu-
rity proof. In EUROCRYPT, pages 142–159, 2013.

[35] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks. In CHES, pages
2–12, 2002.

[36] Hoeteck Wee. Public key encryption against related key attacks. In Public Key Cryptography,
pages 262–279, 2012.

A Proof of Theorem 1

Theorem 1. Let C = (Init,Encode,Decode) be a (lbcode, q)-CNMLR code, then C is also adaptively
m-composable for any polynomial m = poly(k).

Proof. We assume that there exists a PPT adversary A such that:

Pr[Gamecomp,q,lbcode
C,A (1) = 1]− Pr[Gamecomp,q,lbcode

C,A (0) = 1] > ε (1)

for some ε. The proof is by a hybrid argument where we replace in each hybrid game one of the
loops of Definition 2 with a fixed choice of either xi0 or xi1. More precisely, in hybrid i, we append
in the first j ≤ i iterations of the loop an encoding of xj0, while in the iterations m ≥ j > i, we
append an encoding of xj1. More formally, for any j ∈ [m] we have:

42

Gamej,q,lbcodeC,A
Compute Ω← Init(1k) and obtain (x10, x

1
1)← A(Ω). Set c0 = ∅, c1 = ∅

For i = 1, . . . ,m− j do the following:
Compute (ci0, c

i
1)← Encode(xi0) and update (c0, c1) with ((c0, c

i
0), (c1, c

i
1)).

Receive (xi+1
0 , xi+1

1)← AOlbcode (c0,·),Olbcode (c1,·),Oqcnm((c0,c1),(·,·)).
For i = m− j + 1, . . . ,m do the following:

Compute (ci0, c
i
1)← Encode(xi1) and update (c0, c1) with ((c0, c

i
0), (c1, c

i
1)).

Receive (xi+1
0 , xi+1

1)← AOlbcode (c0,·),Olbcode (c1,·),Oqcnm((c0,c1),(·,·)).
Receive b′ ← AOlbcode (c0,·),Olbcode (c1,·),Oqcnm((c0,c1),(·,·)).
Output b′.

Notice that Game0,q,lbcode
C,A ≡ Gamecomp,q,lbcode

C,A (0) and Gamem,q,lbcodeC,A ≡ Gamecomp,q,lbcode
C,A (1). So,

Pr[Gamecomp,q,lbcode
C,A (1) = 1]− Pr[Gamecomp,q,lbcode

C,A (0) = 1] =

Pr[Gamem,q,lbcodeC,A = 1]− Pr[Game0,q,lbcode
C,A = 1] =

m∑
j=1

(
Pr[Gamej,q,lbcodeC,A = 1]− Pr[Gamej−1,q,lbcodeC,A = 1]

)
So, by Eq. (1)

∃j ∈ [m] : Pr[Gamej,q,lbcodeC,A = 1]− Pr[Gamej−1,q,lbcodeC,A = 1] >
ε

m
.

Now we construct another PPT adversary B which is trying to distinguish between Gamecnmlr
C,B (0)

and Gamecnmlr
C,B (1) (i.e., its challenge oracles) with black-box access to A. We can assume without

loss of generality that A does not violate the leakage bound. I.e., it never makes the leakage oracle
return ⊥. This frees us from keeping the leakage tallies. The reduction works as follows, where the
description of simulation access to the leakage and tampering oracles is given below.

1. Receive Ω from the challenger and obtain (x10, x
1
1)← A(Ω).

2. For 1 ≤ i ≤ m− j − 1 do the following:

(a) Compute (ci0, c
i
1)← Encode(xi0) and update (c0, c1) with ((c0, c

i
0), (c1, c

i
1)).

(b) Receive (xi+1
0 , xi+1

1)← ASim−Olbcode (c0,·),Sim−Olbcode (c1,·),Sim−Oqcnm((c0,c1),(·,·))

3. For i = m− j, proceed as follows:

(a) Send (xi0, x
i
1) to the challenger and update (c0, c1) with ((c0, ?), (c1, ?)). Notice that the

challenger will produce an encoding (ci0, c
i
1) ← Encode(xib) and gives B access to it via

its oracles. Notice that (ci0, c
i
1) are only know through the challenge oracles.

(b) Receive (xi+1
0 , xi+1

1)← ASim−Olbcode (c0,·),Sim−Olbcode (c1,·),Sim−Oqcnm((c0,c1),(·,·)).

4. For i = m− j + 1, . . . ,m, proceed as follows:

(a) Compute (ci0, c
i
1)← Encode(xi1) and update (c0, c1) with ((c0, c

i
0), (c1, c

i
1)).

43

(b) Receive (xi+1
0 , xi+1

1)← ASim−Olbcode (c0,·),Sim−Olbcode (c1,·),Sim−Oqcnm((c0,c1),(·,·)).

5. Receive b′ from ASim−Olbcode (c0,·),Sim−Olbcode (c1,·),Sim−Oqcnm((c0,c1),(·,·)).

6. Return b′.

We now describe how B simulates access to the oracles.

Access to leakage oracle Sim−Olbcode(c0, ·): For the first m − j − 1 rounds B has complete
knowledge of (c0, c1) and hence can easily simulate access to the oracle. For all rounds ≥ m−j
on input a leakage query (S, L), if m − j 6∈ S (i.e., the adversary does not ask for leakage on
the target encoding), then return L{c0[i]}i∈S . If m − j ∈ S, then hard-wire {c0[i]}i∈S\{m−j}
into the description of the leakage function L′(x) and submit it to Olbcode(ci0, ·). Send the value
returned from Olbcode(ci0, ·) to A.

Access to leakage oracle Sim−Olbcode(c1, ·): This is simulated as in the previous step.

Access to tampering oracle Sim−Oqcnm((c0, c1), (·, ·)): For the first m − j − 1 rounds B has
complete knowledge of (c0, c1) and hence can easily simulate access to the oracle. For all
rounds ≥ m − j, B can simulate the tampering oracle Oqcnm((c0, c1), (·, ·)) as follows. Let
(c0, c1) be the vectors kept by B where (c0, c1)[m−j] = (?, ?). On input (T0,T1) that operate
on vectors the adversary hard-wires (c0, c1)[`] (for ` 6= m− j) into T′0 and T′1 respectively. At
position m− j it will use the challenge encoding (cm−j0 , cm−j1).

Next, B submits the such prepared functions T′0 and T′1 to its challenge oracleO
q
cnm((cm−j0 , cm−j1),

(T′0,T
′
1)). Let c′ ∈ {0, 1}2n∪{⊥, same?} be the value returned by the oracle. In case c′ = same?,

return (same?,m− j) to A. Else, in case c′ = (c′0, c
′
1) equals (c0, c1)[`] (for some ` 6= m− j),

return (same?, `) to A. Otherwise return c′.

Now it is easy to see that when the adversary B is in Gamecnmlr
C,B (0), it perfectly simulates

Gamej−1,q,lbcodeC,A and when is in Gamecnmlr
C,B (1), it simulates Gamej,q,lbcodeC,A . So,

Pr[Gamecnmlr
C,B (1) = 1]− Pr[Gamecnmlr

C,B (0) = 1] ≥ ε/m .

Since C is a CNMLR code, we have that ε/m is negligible, from which we get that ε is negligible,
as desired.

44

	Introduction
	Our Model
	Our Techniques
	Other Related Work

	Preliminaries
	Notation
	Continuous Non-Malleable Codes

	Leakage and Tamper Resilient RAM
	The RAM Compiler
	The Security Model

	Hybrid-to-Real Emulator
	Proof of Theorem 4

	The Hybrid Scheme
	A Regular Program for G
	The Compiled Program
	Analysis

	Proof of Theorem 1

