
An extended abstract of this paper is published in the proceedings of the 18th International Con-
ference on Practice and Theory of Public-Key Cryptography—PKC 2015. This is the full version.

A Tamper and Leakage Resilient von Neumann Architecture

Sebastian Faust1, Pratyay Mukherjee2, Jesper Buus Nielsen2, and Daniele Venturi3

2Department of Computer Science, Aarhus University
1Security and Cryptography Laboratory, EPFL

3Department of Computer Science, Sapienza University of Rome

February 18, 2015

Abstract

We present a universal framework for tamper and leakage resilient computation on a von
Neumann Random Access Architecture (RAM in short). The RAM has one CPU that accesses
a storage, which we call the disk. The disk is subject to leakage and tampering. So is the bus
connecting the CPU to the disk. We assume that the CPU is leakage and tamper-free. For
a fixed value of the security parameter, the CPU has constant size. Therefore the code of the
program to be executed is stored on the disk, i.e., we consider a von Neumann architecture. The
most prominent consequence of this is that the code of the program executed will be subject to
tampering.

We construct a compiler for this architecture which transforms any keyed primitive into a
RAM program where the key is encoded and stored on the disk along with the program to
evaluate the primitive on that key. Our compiler only assumes the existence of a so-called
continuous non-malleable code, and it only needs black-box access to such a code. No further
(cryptographic) assumptions are needed. This in particular means that given an information
theoretic code, the overall construction is information theoretic secure.

Although it is required that the CPU is tamper and leakage proof, its design is independent
of the actual primitive being computed and its internal storage is non-persistent, i.e., all secret
registers are reset between invocations. Hence, our result can be interpreted as reducing the
problem of shielding arbitrary complex computations to protecting a single, simple yet universal
component.

1

Contents

1 Introduction 2
1.1 Our Model 3
1.2 Motivation and Challenges of our

Model 4
1.3 Our Techniques 6
1.4 Other Related Work 8

2 Preliminaries 9
2.1 Notation 9
2.2 Continuous Non-Malleable Codes . 10

3 A Generic Leakage and Tamper Re-
silient RAM 14

4 Main Theorem 19

5 Hybrid-to-Split-State Emulator 20
5.1 The Hybrid Model 20
5.2 The Emulator 21

6 The Hybrid Scheme 22

A Proof of Theorem 4 27

B Details of Our Hybrid Scheme 30
B.1 A Regular Program for G 30
B.2 The Compiled Program 34
B.3 Analysis 39

1 Introduction

Can cryptographic schemes achieve their security goals when run on non-trusted machines? This
fascinating question has recently resulted in a large body of work that weakens the traditional
assumption of fully trusted computation and gives the adversary partial control over the implemen-
tation. Such partial control can either be passive where the adversary obtains information about
the internal computation, or active where the adversary is allowed to change the secret state and/or
the computation of the scheme.

One general solution to the above question is given by the appealing notion of leakage and tamper
resilient compilers introduced in the pioneering works of Ishai, Prabhakaran, Sahai and Wagner [23,
22]. A compiler takes as input a description of some arbitrary cryptographic functionality GK
and outputs a transformed functionality G′K′ which has the same input/output behavior as GK but
additionally remains secure in a non-trusted environment. For instance, G′K′ may be secure when
the adversary is able to obtain a bounded amount of leakage from the execution of G′K′ , or when he
can change the secret state K′ in some adversarial way. Formally, security is typically modeled by a
simulation-based notion. That is, whatever the adversary can learn by interacting with G′K′ in the
non-trusted environment, he can also achieve by interacting with the original GK when implemented
on a fully trusted device.

Tamper resilient compilers. Two different lines of work investigate methods for tamper resilient
compilers. The first approach designs so-called tamper resilient circuits [22, 19, 10, 25, 11]. That is,
given a functionality GK that, e.g., computes the AES with key K, the compiler outputs a transformed
functionality G′K′ that achieves simulation-based security even if the adversary can tamper with up
to a constant fraction of the wires independently. While these works allow the adversary to tamper
with the entire circuitry, they typically make very strong assumptions on the type of tampering. In
particular, it is assumed that each bit of the computation is tampered with independently (so-called
set/reset and toggle attacks). Also, it is not allowed to re-wire the circuit.

The second approach is based on the notion of non-malleable codes [16]. Informally, a code is
non-malleable w.r.t. a set of tampering functions if the message contained in a codeword modified

2

via a function in the family is either the original message, or a completely “unrelated” value. A
compiler based on non-malleable codes stores the secret key in an encoded form and the compiled
functionality decodes the state each time the functionality wants to access the key. As long as the
adversary can only apply tampering functions from the family supported by the code, the non-
malleability property guarantees that the (possibly tampered) decoded value is not related to the
original key. While non-malleable codes exist for rich families that go far beyond the bit-tampering
adversary discussed above (see, e.g., [16, 26, 15, 1, 6, 7, 17, 18, 2, 9, 8]), the existing compilers based
on non-malleable codes only protect the secret key against tampering attacks. In particular, the
assumption is that the entire circuitry that evaluates the functionality is implemented on a fully
trusted environment and cannot be tampered with.

In this work we show how to significantly weaken the assumption of tamper-proof computation.
Our solution is also based on non-malleable codes and hence can achieve strong protection against
rich families of tampering functions, but simultaneously significantly reduces the assumption on
tamper proof circuitry used by the traditional approach described above. In particular, the tamper-
proof circuitry we use (the so-called CPU) is a small and universal component, whose size and
functionality is independent of the functionality that we want to protect. Notice that this is in con-
trast to the approach described above, which requires a specifically tailored tamper-proof hardware
for each functionality that we intend to protect. Our solution is hence in spirit of earlier works
(e.g., [19]) and reduces the problem of protecting arbitrary complicated computation to shielding a
single, simple component.

One important feature of our construction is to allow tampering with the program code. In
our model the program consists of code built from several instructions such that each instruction
is executed by the tamper-proof CPU sequentially. Notice that tampering with the program (and
hence with the functionality) is allowed as the code is written on the tamperable disk. Hence, the
adversary may attempt to overwrite the code with a malicious program that, e.g., just outputs the
secret key. In our construction we prevent this type of attack by again making sure that any change
of the code will enforce in tampering with the secret key, which itself is protected by a non-malleable
code.

We notice that while our construction works generically for any non-malleable code that satisfies
certain composability properties (as explained in more detail below), we will focus in the following
exposition mainly on non-malleable codes in the split-state setting. In this well-known setting
(c.f. [26, 1, 15, 17, 7]) the codeword consists of two parts and the adversary is allowed to tamper
independently with them in an arbitrary way.

1.1 Our Model

We put forward a generic model of a tamper and leakage resilient von Neumann random access
architecture (alternatively called RAM architecture). To use the established terminology of leakage
and tamper resilient compilers, we phrase the model in terms of computing keyed functionalities
GK(·). However, the model capture arbitrary poly-time computation which keeps a secret state that
is initially K.

RAM schemes. We will use a RAM scheme to denote a RAM architecture R and a compiler
C for R. The RAM R has a disk D and a tamper/leakage-proof CPU that is connected with the
disk through buses. The RAM compiler C takes as input the description of a functionality G and
a key K and outputs an initial encoding of the disk. Inputs to the program are given by writing it

3

on the disk, and outputs are received by reading a special section of the disk. The program runs
in activations. An activation denotes the time period of evaluating GK(·) on some input x. An
activation involves several steps of the CPU. In each step, the CPU loads a constant number of
words from the disk (this might include reading part of the input), executes one computation on the
loaded data, and writes the result back to the disk (this might include writing part of the output).
We stress that our CPU has no persistent internal (secret) storages, i.e., all secret registers are reset
between steps. The CPU contains the following public untamperable components (i) a program
counter pc, (ii) an activation counter ac and (iii) a self-destruct bit B. The activation counter ac is
incremented after each activation, and the program counter pc specifies, during each activation, at
which position of the public disk the CPU shall read the next instruction. The value B is a special
self-destruct bit that is initially set to 0, and can once be flipped by the CPU. Whenever B is set
to 1, the RAM goes into a special “self-destruct” mode where it is assumed to forever output the
all-zero string.

Security. We define security of a RAM scheme via the real-ideal simulation paradigm. In the
real world the compiler C is run in order to produce the initial contents of the disk. As in previous
works on tamper and leakage resilient compilers the pre-processing in the setup is assumed to
be tamper and leakage proof and is executed once at the initialization of the system. Think of
it as the setup running on a separate, possibly more secure machine. In the online phase, the
adversary can specify between steps of the CPU a tampering function Tamper(·) that modifies the
disk: D ← Tamper(D). It can also specify a leakage function Leak and will then be given Leak(D).
Furthermore, the adversary can ask the RAM to perform the next step in the computation (for the
current activation), by running the CPU on the (possibly modified) disk. When requesting the next
step it also specifies a leakage function LeakBs and is given back LeakBs(Bs), where Bs contains the
values that were loaded or stored by the CPU.

Clearly, no computation is secure in the presence of arbitrary leakage and tampering. We
therefore introduce a notion of adversary class to restrict the tampering and leakage queries that
the adversary can submit. We compare the real execution to a mental experiment featuring a
simulator having only black-box access to the original functionality GK(·). We call this an ideal
execution. A RAM scheme is A-secure if for all efficient adversaries from A there exists an efficient
simulator such that for all functionalities G the output distributions of a real and an ideal execution
are computationally close.

We also introduce a notion of secure emulation. An emulator takes as input a RAM scheme
(think of a RAM scheme for an idealised highly secure RAM) and outputs another RAM scheme
(think of a RAM scheme for more real-world-like highly insecure RAM). We define the notion of
security of an emulator such that if one is given a secure RAM scheme for the idealised RAM and
applies a secure emulator, then one gets a secure RAM scheme for the less secure architecture. This
allows to do modular proofs.

1.2 Motivation and Challenges of our Model

On RAM computation vs. circuits. The reasons why we want to lift the study of leakage and
tamper resilience to the RAM setting are motivated by practice. It is well known that computing a
function using a circuit instead of a RAM can yield a quadratic blow-up in complexity. Even worse,
in a setting as ours, where the data (the encoding of K) is already laid out, the complexity can
suffer an exponential blow-up, if a given activation only reads a small part of the key. Furthermore,

4

it seems a simpler task in practice to produce a lot of tamper proof copies of a small universal piece
of hardware than to produce different tamper proof circuits for different desired functionalities.

On the trusted CPU assumption. As non-malleable codes typically do not have any homomor-
phic properties that enable computation,1 we assume a tamper and leakage-proof CPU that carries
out decoding. The CPU is the only part of the computation that is completely trusted. Notice that
while its inputs and outputs may be subject to leakage and tampering attacks, its computation does
not leak and its execution is carried out un-tampered. Our CPU is small and independent of the
functionality to protect: it merely reads a constant number of encodings from disk, decodes them,
executes some instruction (that can be as simple as a NAND operation) and writes the encoded
result back to the disk. Notice that in contrast to earlier work on tamper resilient compilers based
on non-malleable codes [16, 26, 17], we allow tampering with intermediate values produced by the
program code, and in fact even with the program code itself. Our result hence can be interpreted
as a much more granular model of computation than [16, 26, 17].

One may object that given such a powerful tamper-proof component a solution for tamper and
leakage resilience is simple. Let us take a look at an adversary that can apply powerful tampering
functions to the state of the disk between executions of the CPU. To this end, observe that the notion
of non-malleable codes only guarantees that one cannot change the encoded value to some related
value. Nothing, however hinders the adversary to just overwrite an encoding with a valid encoding
of some fixed (known) value. Notice that such an attack may not only make it impossible to achieve
simulation-based security, but moreover can completely break the scheme.2 The adversary can also
copy valid encodings from some place of the computation to different portions. For instance, he
may attempt to copy the encoding of the secret key directly to the output of the program. Our
transformation prevents these and other attacks by tying together all encodings with the secret key
and the description of the compiled functionality. Hence, any attempt to change any intermediate
encoding will destroy the functionality, including the key.

In summary, we show how to reduce the problem of protecting arbitrary computation against
continuous leakage and tampering attacks in the split-state model, to shielding a simple and univer-
sal component. We notice that while our work minimizes the trusted hardware assumption made in
non-malleable code based compilers, our trusted CPU is significantly more complex than tamper-
proof hardware that has been used in works on tamper resilient circuits (cf. Section 1.4 for more
details on this).

On the counters. In our model the CPU has public untamperable counters. The reason is that
in order to tolerate leakage from the buses (connecting the CPU and the disk), we must make
sure that the state of the CPU changes after each step. Otherwise, one may execute the following
“reset-and-leak attack”. The tampering functions can reset the disk to previous states an unbounded
number of times, and without the counters, the CPU is also always in the same state at the start of
an execution, so it would read the same values repeatedly. Notice that, as we allow leakage from the
buses, each time the CPU loads a value it leaks through the bus. So, loading any value repeatedly
an unbounded number of times implies that all the values on the disk could eventually be leaked at
some point. We also stress that we pick a public value for this purpose and not a secret register as

1In fact, a homomorphism would in many cases contradict the non-malleability property of the code.
2Consider a contrived program that outputs the secret key if a certain status bit is set to 0, but otherwise behaves

normally.

5

we want to minimize the assumption on the hardware—and of course secret un-tamperable memory
is a much stronger assumption than public un-tamperable memory.

Moreover, assuming only counters makes our model a strict generalization of the circuit model:
we can make an equivalent circuit where each gate can be thought of as one invocation of the CPU.
Each gate will be identical to the CPU, except that it has the appropriate counters hard-coded into
it. Assuming secret registers would not make such a transformation to circuitry possible.

On the self-destruct bit. In addition to the counter we use a tamper-proof “self-destruct” bit
in our construction. Firstly, such bit is used to serve the same purpose as in the tamper-resilient
compiler of [17]: it acts as a flag indicating that tampering has been detected for the first time and,
if the execution does not stop at this point, the adversary can continue to learn information on
the codeword (eventually recovering the whole codeword) which should, of course, be prevented.3

Moreover, one may notice that without having a self-destruct bit, it is impossible to tolerate leakage
from the buses. Consider, again, the “reset-and-leak attack” described above. The untamperable
program counter enables the CPU to detect that a “reset” has taken place (i.e., values read from the
disk do not match its internal state). However, at this point it is too late: the values were already
on the buses, and hence subject to leakage. In this case the self-destruct bit allows the CPU to stop
execution the first time such tampering is detected.

We also stress that having one bit, which is in fact “one-time writable”, is optimal. Moreover,
this seems as a reasonable hardware assumption: one can think of the CPU having a fuse that it
can blow once (and check if it was ever blown).

On minimizing hardware assumptions. We emphasize that the main goal of this work is to
study feasibility to securely execute any computation in the presence of very strong leakage and
tampering attacks (in particular we consider arbitrary continuous leakage from buses and arbitrary
tampering in the split-state model). We show that indeed this can be achieved by a simple, universal,
constant-size CPU that is fully trusted. The CPU does not keep any secret state, and only has a
short public un-tamperable memory that keeps the program counter (of size logarithmic in the
security parameter) and the self-destruct bit. We notice that one can develop easier solutions if
the CPU can keep a large, mutable, secret state between executions. In this case the CPU could
encrypt the disk and authenticate it using, e.g., a Merkle tree. Of course, keeping a secret state
between executions of the CPU is a much stronger hardware assumption.

1.3 Our Techniques

We construct our RAM scheme in two steps. We first formulate a hybrid model, which is a wishful
RAM architecture where there is no leakage from the disk, no leakage from the bus and where the
only allowed tampering is of the following types: (i) the adversary might copy a word from one
position of the disk to another position on the disk (without looking at the value), and (ii) he might
overwrite a position on the disk with a word of an arbitrary choice. As a first step we show how to
compile securely to this hybrid platform. We then show how to use a non-malleable code to emulate
this platform. Below we first describe the compiler, and then the emulator.

3For example, the tampering function can make the codeword “valid” or “invalid” depending on the first bit of the
codeword, and hence learn the first bit based on the outcome.

6

The compiler. We construct a RAM scheme for the hybrid architecture described above. We
need to mitigate the fact that the adversary can overwrite values and copy them around. At setup,
a secret label L is sampled uniformly at random and stored in the first position of the secret disk.
Then, each value on the disk is “augmented” with the following information: (i) The position j at
which the value was meant to be stored; (ii) The secret label L; and (iii) The values (a, p) of the
activation counter ac and the program counter pc when the value was written on disk. Intuitively,
adding the secret label (which is unknown to the adversary) prevents the adversary from replacing
values from different positions of the secret disk with values that do not have the right label (notice
that this label is long enough such that it cannot be guessed by the adversary). This ensures that
all the values containing the label are either from the pre-processing or computed and stored by
the CPU. Hence, they are in a way “authenticated” by the computation and not introduced by the
adversary. On the other hand, the position j prevents the adversary from copying the corresponding
value to a location different from j, as the CPU will check that j matches the position from which
the value was read.

Note that the adversary can still replace a value at location j with an older value that was stored
at location j before, essentially with the goal of resetting the scheme to a previous valid state. By
checking the values a and p with the current values of the activation and program counters of the
CPU, the CPU can detect such resetting attacks and self-destruct if necessary. Our analysis (see
Section 6) shows that the probability that an adversary manages to replace some value on the
secret disk (putting the correct label) without generating a self-destruct, is exponentially small in
the security parameter. The use of the label to prevent moving and resetting values along with the
structure of the compiled program makes our hybrid compiler so-called c-bounded, as required by
the emulator (see below).

Notice that this compiler uses no cryptography, so it is information-theoretic secure. Hence, if
we can emulate the hybrid architecture with information-theoretic security, the overall security will
be information theoretic!

The emulator. The basic idea of the emulator is simple. Given a RAM scheme for the hybrid
model and a non-malleable code, each value of the disk is encoded using the code. The CPU will
then decode the values after loading them, compute as the CPU of the hybrid scheme and then
encode the results and put them back on disk. Intuitively, a non-malleable code has the property
that if a codeword is changed it either becomes invalid or an encoding of an unrelated value (known
by the adversary). Since codewords can of course be copied around without modifying them, it
seems intuitive that the above emulator should work if the RAM only allows leakage and tampering
that the code is designed to tolerate. We can in fact take this as an informal definition and say that
a given non-malleable code fits a given RAM architecture (given by the CPU and the adversary
class) if for all hybrid schemes the natural emulator sketched above securely emulates the hybrid
scheme. With this definition, we tautologically get that if there is a non-malleable code fitting a
given RAM architecture, then there is also a secure RAM scheme for that architecture, namely
apply the natural emulator to our secure compiler from above.

We exemplify our approach by showing that the split-state continuous non-malleable code
(CNMC) from [17] fits a split-state RAM, where the disk is split into two disks and the adversary
is allowed arbitrary independent tampering of each disk. In contrast to traditional non-malleable
codes, continuous non-malleability guarantees that the code remains secure under continuous at-
tacks without assuming erasures. The natural emulator uses many encodings, so the construction

7

requires also some form of composability of non-malleable codes, where we allow the tampering
function to depend on multiple encodings together. We can show by a generic reduction that
composability is preserved for any continuous non-malleable split-state code.4

We remark that the code construction of [17] is in the common reference string (CRS) model,
meaning that at setup a public string crs is generated and made available to all parties. Importantly,
the security of the code requires that the adversary is not allowed to modify crs. Similarly, when
one uses the code of [17] within our framework, the CRS is assumed to be un-tamperable and chosen
by a trusted party; for instance, it can be chosen at production time and be hard-coded into the
CPU of the RAM. However, the CRS can be public, and in particular the tampering and leakage
from the disks can fully depend on it. Also the CRS is generated once and for all, so it perfectly
matches our assumption of having a universal component (the CPU) that can be used to protect
arbitrary computation. The assumption of having a public un-tamperable CRS is not new; see,
e.g., [24, 26] for further discussion.

Bounding RAM scheme. We show by a reduction to the composable CNMC that there exists
a hybrid simulator, attacking the hybrid scheme and having limited tamper access (only copy and
replace), that produces a distribution that is indistinguishable from the execution of the emulated
RAM scheme in the real world. For this reduction to work, it is important that the hybrid scheme
being emulated has a property called c-boundedness. Informally, this notion says that each value
on the secret disk is touched at most c times, for a constant c. Without this property, the emulator
would touch the corresponding codeword an unbounded number of times, and continuous leakage
from the buses would reveal the entire code. Our compiler is constructed to have this property.
Notice that it is in particular difficult to achieve c-bounded schemes in the presence of tampering,
as the hybrid adversary may several times move a given value to the next position on the secret
disk read by the CPU.

1.4 Other Related Work

Many recent works have studied the security of specific cryptographic schemes (e.g., public key
encryption, signatures or pseudorandom functions) against tampering attacks [4, 3, 24, 29, 5, 13]).
While these works often consider a stronger tampering model and make less assumptions about
tamper-proof hardware, they do not work for arbitrary functionalities.

Leakage and tamper-proof circuits. A large body of work studies the security of Boolean
circuits against leakage attacks [23, 20, 14, 21, 28, 27]. While most works on leakage resilient circuit
compilers require leakage-proof hardware, the breakthrough work of Goldwasser and Rothblum [21]
shows how to completely eliminate leak-proof hardware for leakage in the split-state setting. It is
an interesting open question, if one can use the compiler of [21] to implement our CPU and allow
leakage also from its execution. We emphasize that most of the work on leakage resilient circuit
compilers does not consider tampering attacks.

The concept of tamper resilient circuits has been introduced by Ishai, Prabhakaran, Sahai and
Wagner [22] and further studied in [22, 19, 10, 25, 11]. On the upside such compilers require simpler

4In [9] Coretti et al. show that the information theoretic construction of [16] in the bit-wise tampering (and no
leakage) model is continuously non-malleable, so in that setting our compiler would be information theoretic, albeit
only protecting against a weaker adversary class.

8

tamper-proof hardware,5 but study a weaker tampering model. Concretely, they assume that an
adversary can tamper with individual wires (or constant size gates [25]) independently. That is,
the adversary can set the bit carried on a wire to 1, set it to 0 or toggle its value. Moreover, it is
assumed that in each execution at least a constant fraction of the wires is not tampered at all.6 Our
model considers a much richer family of tampering attacks. In particular, we allow the adversary
to arbitrarily tamper with the entire content of the two disks, as long as the tampering is done
independently. In fact, our model even allows the adversary to tamper with the functionality as the
program code is read from the disk. Translating this to a circuit model would essentially allow the
adversary to “re-wire” the circuit.

Finally, we notice that our RAM model can be thought of, in fact, as a generalization of the
circuit model where the RAM program can be, e.g., a Boolean circuit and the CPU evaluates NAND
gates on encodings.

Concurrent and independent work. A concurrent and independent paper [12] gives a related
result on protecting RAM schemes against memory leakage and tampering. The main difference
with the setting considered in this paper is that their model does not cover “reset attacks”, i.e., the
tampering functions are not allowed to keep a backup storage where previous codewords are stored
and continuously tampered. This is enforced in their construction by assuming perfect erasures.

Technically the solutions are very different. Instead of encoding each element on the disk via
a non-malleable code, the scheme of [12] encodes only the registers of the CPU to virtually equip
it with secret registers, and then uses disk encryption to secure the disk; this can be phrased as
using a non-malleable code with local properties. Finally, the scheme of [12] incorporates directly
an ORAM, whereas we propose to view this as a separate step. First applying an ORAM and then
our compiler will yield a scheme with the same asymptotic complexity of the one in [12]. However,
as long as non-malleable codes are less efficient in practice than symmetric encryption, the scheme
of [12] appears more practical. On the other hand, if we base our construction on an information
theoretically secure code, the whole construction has unconditionally security. The solution in [12]
is inherently computational.

2 Preliminaries

2.1 Notation

For n ∈ N, we write [n] := {1, . . . , n}. Given a set X , we write x← X to denote that element x is
sampled uniformly from X . If A is an algorithm, y ← A(x) denotes an execution of A with input x
and output y; if A is randomized, then y is a random variable.

Let k ∈ N be a security parameter. We use negl(k) to denote a negligible function on k. Given
two random variables X1 and X2, we write X1 ≈c X2 to denote that X1 and X2 are computationally
indistinguishable meaning that for all PPT algorithms A we have that Pr[A(X1) = 1]−Pr[A(X2) =
1] ≤ negl(k).

5To the best of our knowledge each of these compilers requires a tamper-proof gate that operates on at least k
inputs where k is the security parameter. Asymptotically, this is also the case for our CPU, while clearly from a
practical perspective our tamper-proof hardware is significantly more complex.

6In [22, 19] it is allowed that faults are persistent so at some point the entire circuitry may be subject to tampering.

9

2.2 Continuous Non-Malleable Codes

In this paper we consider non-malleable codes in the split-state setting and omit to mention it
explicitly for the rest of the paper. A split-state encoding scheme C = (Init,Encode,Decode),
is a triple of algorithms specified as follows: (1) Init, takes as input the security parameter and
outputs a public common reference string crs ← Init(1k); (2) Encode, takes as input a string
x ∈ {0, 1}`, for some fixed integer `, and the public parameters, and outputs a codeword c =
(c0, c1) ← Encode(crs, x) where c ∈ {0, 1}2n; (3) Decode, takes as input a codeword c ∈ {0, 1}2n
and the public parameters, and outputs a value x = Decode(crs, c) where x ∈ {0, 1}` ∪ {⊥}.
We require that Decode(crs,Encode(crs, x)) = x for all x ∈ {0, 1}` and for all crs ← Init(1k).
Moreover, for any two inputs x0, x1 (|x0| = |x1|) and any efficient function T0,T1 the probability
that the adversary guesses the bit b in the following game is negligible: (i) sample b ← {0, 1} and
compute (c0, c1) ← Encode(crs, xb), and (ii) the adversary obtains Decode∗(T0(c0),T1(c1)), where
Decode∗ is as Decode except that it returns a special symbol same? if (T0(c0),T1(c1)) = (c0, c1).

Next, we recall the notion of continuous non-malleable and leakage resilient codes as introduced
in [17]. Intuitively, a code C is continuously non-malleable if even after continuous tampering
with the the two halves of the codeword the adversary is not able to maul it to an encoding of a
related value. This notion is formalized by the oracle Oqcnm((c0, c1), (·, ·)), which is parametrized
by an encoding (c0, c1) ← Encode(crs, x) for some value x ∈ {0, 1}∗ and takes as input functions
T0,T1 : {0, 1}n → {0, 1}n, where n = |ci|.

Oqcnm((c0, c1), (T0,T1)):
(c′0, c

′
1) = (T0(c0),T1(c1))

If (c′0, c
′
1) = (c0, c1) return same?

If Decode(crs, (c′0, c′1)) = ⊥, return ⊥ and “self-destruct”
Else return (c′0, c

′
1).

By “self-destruct” we mean that once Decode(crs, (c′0, c
′
1)) outputs ⊥, the oracle will answer ⊥ to

any further query. The oracle is superscripted with q which denotes that in one experiment an
oracle can be queried for at most q-times.

In the definition below, we use the leakage oracle Olbcode(cb, ·) (where b ∈ {0, 1}) that can be
queried on leakage function L : {0, 1}n → {0, 1}λ such that λ ≤ lbcode and returns L(cb).7

Definition 1 (CNMLR code). Let C = (Init,Encode,Decode) be an encoding scheme. For any
adversary A consider the following interactive game for a uniform bit b ∈ {0, 1}:

Gamecnmlr,q,lbcode
C,A (b)

Compute crs← Init(1k) and give it to A.
Receive (x0, x1) from A with |x0| = |x1|.
Compute (c0, c1)← Encode(xb).
Compute a bit b′ ← AOlbcode (c0,·),Olbcode (c1,·),Oqcnm((c0,c1),(·,·)).
Output b′.

We say that C is q-continuously non-malleable lbcode-leakage resilient ((lbcode, q)-CNMLR in short),
if for all PPT adversaries A the following holds:

Pr[Gamecnmlr,q,lbcode
C,A (1) = 1]− Pr[Gamecnmlr,q,lbcode

C,A (0) = 1] ≤ negl(k) .

7Notice that our actual definition is stronger and lets the adversary submits multiple functions to the leakage
oracles as long as the total leakage obtained from one oracle is smaller than lbcode.

10

We remark that depending on the actual code the public parameters crs can be empty. However,
whenever present, they are assumed to be untamperable.8

We extend the notion of Definition 1 to a setting where there is a set of encodings rather than
only one encoding and the adversary can adaptively leak and tamper on the encodings jointly. We
will overload notation for ease of description—in particular, we will use the same notation for an
oracle parametrized by a single encoding or a vector of encodings.

Consider a vector x = (x1, . . . , xm) ∈ ({0, 1}∗)m and define the following oracle Oqcnm((c0, c1)).
The oracle is parametrized by m×n matrices (c0, c1) such that c0 = (c10, . . . , c

m
0), c1 = (c11, . . . , c

m
1)

where (ci0, c
i
1) = Encode(crs, xi) (i.e., the i-th row of cb is equal to cib). Furthermore, let mn := |cb|

denote the bit length of cb; then the oracle takes as input functions T0,T1 : {0, 1}mn → {0, 1}n.9

Oqcnm((c0, c1), (T0,T1)):
(c′0, c

′
1) = (T0(c0),T1(c1))

If ∃ i ∈ [m] such that (c′0, c
′
1) = (ci0, c

i
1) return (same?, i)

If Decode(crs, (c′0, c′1)) = ⊥, return ⊥ and “self-destruct”
Else return (c′0, c

′
1).

We also consider a leakage oracle Olbcode(c) which allows leakage from a vector of values. It
limits the possible leakage from each individual value to be less than lbcode bits. It takes as input
an m-dimensional vector c and a set S ⊂ [m] specifying which elements to leak from, along with a
leakage function L : {0, 1}∗ → {0, 1}λ for some λ. It keeps a state what is the current amount of
information (λ1, . . . , λm) that has been leaked. Initially, we set (λ1, . . . , λm) = (0, . . . , 0).

Olb
code(c, (S, L)):
Compute L← L{c[i]}i∈S) and let λ = |L|.
For i ∈ S update λi ← λi + λ.
If λi < lbcode for i = 1, . . . ,m, then return L.
Else return ⊥.

Using the above two oracles, we can now now define our notion of adaptive composable CNMLR
codes. Besides being composable our notion also is adaptive in the sense that after the adversary
interacted with the oracle he can specify new messages that he would like to append to the set of
encodings.

Definition 2 (Adaptive composability). Let C = (Init,Encode,Decode) be a (lbcode, q)-CNMLR
encoding scheme. For some adversary A consider the following interactive game:

8This corresponds to the assumption that the common reference string cannot be modified in the construction
of [17].

9The fact that the tampering function can output a single codeword, instead of m, might seem odd at a first look.
However, this variant is sufficient for our purpose. Moreover, it is easy to see that the more general setting where
the tampering functions can output m codewords, can be emulated by accessing the above oracle Oq

cnm((c0, c1)) for
m times.

11

Gamecomp,q,lbcode
C,A (b)

Compute crs← Init(1k) and obtain (x10, x
1
1)← A(crs). Set c0 = ∅, c1 = ∅

For i = 1, . . . ,m, do the following:
Compute (ci0, c

i
1)← Encode(crs, xib) and update (c0, c1) with ((c0, c

i
0), (c1, c

i
1)).

Receive (xi+1
0 , xi+1

1)← AOlbcode (c0,·),Olbcode (c1,·),Oqcnm((c0,c1),(·,·)), with |xi+1
0 | = |x

i+1
1 |.

Receive a bit b′ ← AOlbcode (c0,·),Olbcode (c1,·),Oqcnm((c0,c1),(·,·)).
Output b′.

We say that C is adaptively m-composable if for all PPT adversary A the following holds:

Pr[Gamecomp,q,lbcode
C,A (1) = 1]− Pr[Gamecomp,q,lbcode

C,A (0) = 1] ≤ negl(k) .

Notice that in each iteration of the loop the domain of the tampering functions that the adversary
submits to the Oqcnm oracle changes. In particular, in the i-th iteration the domain of the functions
T0,T1 is {0, 1}(i−1)n.

In the following, we show that the Definition 2 and Definition 1 are equivalent (asymptotically).
Clearly, adaptive composability implies continuous non-malleability for m = 1. The other direction
follows by the following theorem.

Theorem 1. Let C = (Init,Encode,Decode) be a (lbcode, q)-CNMLR code. Then C is also adaptively
m-composable for any polynomial m = poly(k).

Proof. We assume that there exists a PPT adversary A such that:

Pr[Gamecomp,q,lbcode
C,A (1) = 1]− Pr[Gamecomp,q,lbcode

C,A (0) = 1] > ε (1)

for some ε. The proof is by a hybrid argument where we replace in each hybrid game one of the
loops of Definition 2 with a fixed choice of either xi0 or xi1. More precisely, in hybrid i, we append
in the first j ≤ i iterations of the loop an encoding of xj0, while in the iterations m ≥ j > i, we
append an encoding of xj1. More formally, for any j ∈ [m] we have:

Gamej,q,lbcodeC,A
Compute crs← Init(1k) and obtain (x10, x

1
1)← A(crs). Set c0 = ∅, c1 = ∅

For i = 1, . . . ,m− j do the following:
Compute (ci0, c

i
1)← Encode(xi0) and update (c0, c1) with ((c0, c

i
0), (c1, c

i
1)).

Receive (xi+1
0 , xi+1

1)← AOlbcode (c0,·),Olbcode (c1,·),Oqcnm((c0,c1),(·,·)).
For i = m− j + 1, . . . ,m do the following:

Compute (ci0, c
i
1)← Encode(xi1) and update (c0, c1) with ((c0, c

i
0), (c1, c

i
1)).

Receive (xi+1
0 , xi+1

1)← AOlbcode (c0,·),Olbcode (c1,·),Oqcnm((c0,c1),(·,·)).
Receive b′ ← AOlbcode (c0,·),Olbcode (c1,·),Oqcnm((c0,c1),(·,·)).
Output b′.

Notice that Game0,q,lbcode
C,A ≡ Gamecomp,q,lbcode

C,A (0) and Gamem,q,lbcodeC,A ≡ Gamecomp,q,lbcode
C,A (1). So,

Pr[Gamecomp,q,lbcode
C,A (1) = 1]− Pr[Gamecomp,q,lbcode

C,A (0) = 1] =

Pr[Gamem,q,lbcodeC,A = 1]− Pr[Game0,q,lbcode
C,A = 1] =

m∑
j=1

(
Pr[Gamej,q,lbcodeC,A = 1]− Pr[Gamej−1,q,lbcodeC,A = 1]

)

12

So, by Eq. (1)

∃j ∈ [m] : Pr[Gamej,q,lbcodeC,A = 1]− Pr[Gamej−1,q,lbcodeC,A = 1] >
ε

m
.

Now we construct another PPT adversary B which is trying to distinguish between Gamecnmlr
C,B (0)

and Gamecnmlr
C,B (1) (i.e., its challenge oracles) with black-box access to A. We can assume without

loss of generality that A does not violate the leakage bound. I.e., it never makes the leakage oracle
return ⊥. This frees us from keeping the leakage tallies. The reduction works as follows, where the
description of simulation access to the leakage and tampering oracles is given below.

1. Receive crs from the challenger and obtain (x10, x
1
1)← A(crs).

2. For 1 ≤ i ≤ m− j − 1 do the following:

(a) Compute (ci0, c
i
1)← Encode(xi0) and update (c0, c1) with ((c0, c

i
0), (c1, c

i
1)).

(b) Receive (xi+1
0 , xi+1

1)← ASim−Olbcode (c0,·),Sim−Olbcode (c1,·),Sim−Oqcnm((c0,c1),(·,·))

3. For i = m− j, proceed as follows:

(a) Send (xi0, x
i
1) to the challenger and update (c0, c1) with ((c0, ?), (c1, ?)). Notice that the

challenger will produce an encoding (ci0, c
i
1) ← Encode(xib) and gives B access to it via

its oracles. Notice that (ci0, c
i
1) are only know through the challenge oracles.

(b) Receive (xi+1
0 , xi+1

1)← ASim−Olbcode (c0,·),Sim−Olbcode (c1,·),Sim−Oqcnm((c0,c1),(·,·)).

4. For i = m− j + 1, . . . ,m, proceed as follows:

(a) Compute (ci0, c
i
1)← Encode(xi1) and update (c0, c1) with ((c0, c

i
0), (c1, c

i
1)).

(b) Receive (xi+1
0 , xi+1

1)← ASim−Olbcode (c0,·),Sim−Olbcode (c1,·),Sim−Oqcnm((c0,c1),(·,·)).

5. Receive b′ from ASim−Olbcode (c0,·),Sim−Olbcode (c1,·),Sim−Oqcnm((c0,c1),(·,·)).
6. Return b′.

We now describe how B simulates access to the oracles.

Access to leakage oracle Sim − Olbcode(c0, ·). For the first m − j − 1 rounds B has complete
knowledge of (c0, c1) and hence can easily simulate access to the oracle. For all rounds ≥ m−j
on input a leakage query (S, L), if m − j 6∈ S (i.e., the adversary does not ask for leakage on
the target encoding), then return L{c0[i]}i∈S . If m − j ∈ S, then hard-wire {c0[i]}i∈S\{m−j}
into the description of the leakage function L′(x) and submit it to Olbcode(ci0, ·). Send the value
returned from Olbcode(ci0, ·) to A.

Access to leakage oracle Sim−Olbcode(c1, ·). This is simulated as in the previous step.
Access to tampering oracle Sim − Oqcnm((c0, c1), (·, ·)). For the first m − j − 1 rounds B has

complete knowledge of (c0, c1) and hence can easily simulate access to the oracle. For all
rounds ≥ m − j, B can simulate the tampering oracle Oqcnm((c0, c1), (·, ·)) as follows. Let
(c0, c1) be the vectors kept by B where (c0, c1)[m−j] = (?, ?). On input (T0,T1) that operate
on vectors the adversary hard-wires (c0, c1)[`] (for ` 6= m− j) into T′0 and T′1 respectively. At
position m− j it will use the challenge encoding (cm−j0 , cm−j1).
Next, B submits the such prepared functions T′0 and T′1 to its challenge oracle Oqcnm((cm−j0 ,

cm−j1), (T′0,T
′
1)). Let c′ ∈ {0, 1}2n ∪ {⊥, same?} be the value returned by the oracle. In case

c′ = same?, return (same?,m− j) to A. Else, in case c′ = (c′0, c
′
1) equals (c0, c1)[`] (for some

` 6= m− j), return (same?, `) to A. Otherwise return c′.

13

Now it is easy to see that when the adversary B is in Gamecnmlr
C,B (0), it perfectly simulates

Gamej−1,q,lbcodeC,A and when is in Gamecnmlr
C,B (1), it simulates Gamej,q,lbcodeC,A . So,

Pr[Gamecnmlr
C,B (1) = 1]− Pr[Gamecnmlr

C,B (0) = 1] ≥ ε/m .

Since C is a CNMLR code, we have that ε/m is negligible, from which we get that ε is negligible,
as desired.

3 A Generic Leakage and Tamper Resilient RAM

In this section we describe our model of a generic random access machine (RAM) architecture with
a leakage and tamper resilient CPU and with memory and buses, which are subject to leakage. Our
RAM architecture is meant to implement some keyed functionality GK, e.g., an AES running with
key K taking as input messages and producing the corresponding ciphertexts, but the model also
applies to more general computations. The RAM has one tamperable and leaky disk D, and one
CPU, which has a size independent of the function to be computed. We interchangeably denote
the memory used by the CPU by “disk”, “storage” and “memory”; this might physically be any kind
of storage that the CPU can access. We assume there is a leak-free and tamper-free pre-processing
phase, which outputs an encoding of the functionality GK. One can think of this as a separate phase
where a compiler is run, possibly on a different, more secure machine.

The initial encoding consists of data and instructions, which we store on the disk. The input
and output of the function (that can be chosen by the user of the RAM) is stored in some specific
locations on the disk (say, right after the program). We allow the exact location of the input and
output parameters to be program specific, but assume that access to the disk allows to efficiently
determine the input and output (in case the disk was not tampered). In the online phase, the CPU
loads an instruction and data from the disk (as specified by the instruction). Reading from the disk
might involve reading part of the input. Then it computes and stores back the intermediate results
on the disk, and processes the next instruction. The next instruction is found on the disk at the
location given by a program counter pc, which is incremented by one in each invocation of the CPU
and which is reset when the CPU raises a flag T = 1. Writing to the disk could involve writing
part of the output. The adversary is allowed to tamper and to leak from the disk between each
two invocations of the CPU; furthermore the adversary is allowed to leak from the bus carrying the
information between the CPU and the disk. In the following, we give a formal presentation of our
model.

Specification of RAM. We use parameters w, τ, d, k ∈ N below, where w is the word length,
τ is length of an instruction type, d specifies the number of arguments of an instruction, and k
is the security parameter. We require w ≥ τ + 2kd. We let the disk D be of length 2k. This is
just a convenient convention to avoid specifying a fixed polynomial-size disk. A poly-time program
will access only polynomially many positions in the disk and all positions not yet written are by
convention 0w, so a disk D can at any time be represented by a poly-sized data structure. When we
pass disks around in the below description, we mean that we pass such a poly-sized representation.
We index a disk with i ∈ [2k]. We also index the disk with bit-strings i ∈ {0, 1}∗, by considering
them binary numbers and then taking the result mod 2k. An (τ, d)-bounded instruction I is defined
as a quadruple (Y, I,O,Aux) where, Y ∈ {0, 1}τ , I,O ∈ [2k]d and Aux ∈ {0, 1}w−(τ+2kd). One may

14

think of Y as the type of operation (e.g., a NAND operation) that is computed by the instruction.
The d-tuples I,O define the position on the disk where to read the inputs and where to write the
outputs of the instruction. The string Aux is just auxiliary information used to pad to the right
length. When we do not write it explicitly we assume it is all-0.

Formally, a RAM R is specified by R = (w, τ, d, Init,Random,Compute) and consists of:

1. A disk D ∈ ({0, 1}w)2
k .

2. Init: An algorithm that takes as input the security parameter 1k, and returns a public common
reference string crs← Init(1k) (to be hard-coded into the CPU).

3. CPU: A procedure which is formally written as pseudo-code in Fig. 1. The CPU is connected
to the disk by a bus Bs, which is used to load and store data. It has 2d+1 internal temporary
registers: d+1 input registers (R0, R1, . . . , Rd) and d output registers (O1, . . . , Od); each register
can store w bits. CPU has the public parameters crs hard-coded, and takes as inputs data
sent through the bus, a strictly increasing activation10 counter ac, and a program counter
pc which is strictly increasing within one activation and reset between activations. The CPU
runs in three steps: (i) d loads, (ii) 1 computation and (iii) d stores. In the computation step
CPU calls Random and Compute to generate fresh randomness and evaluate the instruction.

(a) Random: This algorithm is used to sample randomness r.
(b) Compute: This algorithm will evaluate one particular instruction. To this end, it takes

data from the temporary registers (R0, . . . , Rd), the counters ac, pc and the random-
ness r ← Random as input and outputs the data to be stored into the output registers
(O1, . . . , Od), the self-destruct indicator bit B which indicates if CPU needs to stop exe-
cution, and the completion indicator bit T which indicates the completion of the current
activation.

CPU outputs the possibly updated disk D, the self-destruct indicator (B) and the completion
indicator (T). Notice that the CPU does not need to take B and T as input as these bits are
only written.

Running the RAM involves iteratively executing the CPU. In between executions of the CPU we
increment pc. When the CPU returns T = 1 we reset pc = 0 and increment the activation counter
ac. When the CPU returns B = 1, the CPU self-destructs. After this no more execution of the
CPU takes place.

Input and output to the program will be specified via the user/adversary reading and writing
the disk. We therefore need a section of the disk that can be read and written at will. We
call this the public section. We will model this by given the adversary full read/write access to
Dpub = D[0, 2k−1 − 1] and limited access to Dsec = D[2k−1, 2k − 1]. We call Dpub the public disk
and we call Dsec the secret disk. Note that D = Dpub‖Dsec. Also note that the CPU is taking
instructions from the public disk; this means that protecting the access pattern of the program has
to be done explicitly.

RAM schemes. Informally, a RAM compiler C takes as input the description of a functionality
G with secret key K, and outputs an encoding of the functionality itself, to be executed on a RAM
R. Formally, a RAM compiler C for R is a PPT algorithm which takes a keyed-function description

10We call the time in which the RAM computes the output GK(x) for single x one activation, and the time in which
the procedure CPU is run once, one execution.

15

Input: (crs, D, pc, ac, LeakBs)
// Loading...

Parse D[pc] as an instruction (Y, I,O,Aux)
Load R0 ← (Y, I,O,Aux)
Initialize the bus Bs = (pc, R0)
for j = 1→ d do
Let locj = I[j] // Load input from disk at position I[j]
Load Rj ← D[locj]
Set Bs← (Bs, locj , Rj) // Write data from disk to bus

end for
// Computing...

Sample r ← Random
Compute ((O1, . . . , Od), B, T)← Compute(crs, (R0, R1, . . . , Rd), r, pc, ac)

// Storing...
for j = 1→ d do
Let locj = O[j]
Store D[locj]← Oj // Store output on disk at position locj
Set Bs← (Bs, locj , Oj)

end for
Let λBs = LeakBs(Bs) // Compute leakage from the bus
Output: (D, B, T, λBs)

Figure 1: Algorithm CPU

G and a key K ∈ {0, 1}∗ as input, and outputs an encoding of the form ((`P , I, `I , O, `O,X ,Y), ω),
called the program. Here ω = (ωpub, ωsec) such that ωpub, ωsec ∈ ({0, 1}w)` for ` ≤ 2k−1. When we
say that we store ω on the disk we mean that we pad both of ωpub, ωsec with 0s until they have
length 2k−1, giving values ω′pub, ω

′
sec and then we assign ω′pub‖ω′sec to D. We write `P for the program

length, I ≥ `P for the position where the input will be put on the disk, `I for the length of the input,
O ≥ I + `I for the position where the output is put on the disk, and `O for the length of the output
such that O + `O ≤ 2k−1. We think of the positions 0 to `P − 1 as consisting of instructions, but
make no formal requirement. The mappings X ,Y are used to parse the inputs (resp., the outputs)
of the RAM as a certain number of words of length w (resp., as a value in the range of GK).

We introduce a class G of functionalities G that a compiler is supposed to be secure for (e.g.,
all poly-time functionalities) and a class P of programs that a compiler is supposed to compile to
(e.g., all poly-time programs). We use C : G → P to denote that on input G ∈ G, the compiler C
outputs a program in P.

We define a RAM scheme RS as the ordered pair (C,R) such that R is a RAM and C a
compiler for R. The correctness of a RAM scheme is formalized via a game where we compare the
execution of the RAM with the output of the original functionality GK, upon an arbitrary sequence
of inputs (x1, . . . , xN). Below we define what it means for a RAM scheme RS = (C,R) to be correct.
Informally, the definition says that for any tuple of inputs (x1, . . . , xN) the execution of the RAM
R and the evaluation of the function GK have identical output distributions except with negligible
probability. This is formalized below.

16

Definition 3 (Correctness of a RAM Scheme). We say a RAM scheme RS is correct (for function
class G and program class P) if RS.C : G → P, and for any function G ∈ G, any key K ∈ {0, 1}∗,
and any vector of inputs (x1, . . . , xN) it holds that Pr[GameReal

hon (x1, . . . , xN) = 0] ≤ negl(k), where
the experiment GameReal

hon (x1, . . . , xN) is defined as follows:

• Sample crs← R.Init(1k).
• Run the compiler C on crs, (G,K) to generate the encoding ((I, `I , O, `O,X ,Y), ω)← C(crs,

(G,K)), and store it into the disk of R as in D ← ω.
• For i = 1 → N proceed as follows. Encode the input (xi,0, . . . , xi,`I−1) ← X (xi), store it on
the disk D[I + j]← xi,j (for 0 ≤ j < `I) and run the following activation loop:

1. Let ac← i and pc← 0.
2. Run CPU and update the disk (D, B, T)← CPU(crs, D, pc, ac).11

3. If B = 1 return 0 and halt.
4. If T = 0, then increment the program counter pc ← pc + 1 and go to Step 2. If T = 1,

let yi ← Y(D[O], . . . , D[O + `O − 1]). If yi 6= GK(xi), then return 0 and halt.

• Return 1.

Security. We now proceed to define security of a RAM scheme, using the real-ideal paradigm. In
the following we let k denote the security parameter. Consider a RAM scheme RS = (C,R). First
we run C, which takes the description of G and a key K as inputs and generates an encoding of the
form ((I, `I , O, `O,X ,Y), ω). Then we store ω on the disk D and we advance to the online phase
where the adversary A can run R on inputs of his choice. Formally, he is allowed to arbitrarily
read from and write to Dpub and therefore also D[I], . . . , D[I + `I − 1] and D[O], . . . , D[O+ `O− 1].
Moreover, A can tamper with the secret disk D between each execution of the CPU. He specifies a
function Tamper and the effect is that the disk is changes to D ← Tamper(D). The adversary can
also leak from the disk between executions. He specifies a function Leak and he is given Leak(D).
The adversary also decides when the CPU is invoked, and it gets to specify a leakage function
LeakBs for each invocation obtaining λBs as defined in Fig.1. Besides the leakage from the bus, the
procedure CPU is leakage and tamper proof.

We introduce the notion of an adversary class. This is just a subset A of all adversaries. As an
example, A might be the set of A which leak at most 42 bits in total from the disk and which does
the tampering in a split-state manner (more about this in the following).

We write RealRS,A,G(k) for the output distribution in the real execution and we let RealRS,A,G =
{RealRS,A,G(k)}k∈N. For a formal description see Fig. 2. A few remarks to the description are in
order.

• Adaptivity. We stress that by writing the disk, the adversary is allowed to query the RAM
on adaptively chosen inputs. Also note that the adversary can always hard-wire known values
into a tampering command (e.g., values that were already leaked from the disk), and specify a
tampering function that changes the content of the disk depending on the hard-wired values.
• Tampering within executions. Notice that the adversary is not allowed to tamper be-

tween two executions of the CPU. This is without loss of generality, as later we will allow the
adversary to know the exact sequence of locations to be read by the CPU and hence, equiv-
alently, the adversary can just load some location, tamper and then execute before loading

11When we do not specify a leakage function, we assume that it is the constant function outputting the empty
string, and we ignore the leakage in the output vector.

17

1. Initialization: Sample crs← R.Init(1k). Sample the key K according to the distribution
needed by the primitive. Initialize the activation counter ac ← 0, the program counter
pc← 0, the self-destruct bit B← 0, and the activation indicator T← 0.

2. Pre-processing: Sample an encoding by running the compiler (P, ωpub, ωsec) ←
C(crs, (G,K)), where P = (I, `I , O, `O,X ,Y). Store the encoding ω = (ωpub, ωsec) into
the disk D. Give (crs, P, ωpub) to A.

3. Online: Get command CMD from A and act as follows according to the command-type.

(a) If CMD = (STOP,Oreal) then return Oreal and halt.
(b) If CMD = (LEAK, Leak), compute λ← Leak(D) and give λ to A.
(c) If CMD = (TAMPER,Tamper) then modify D using the tampering function: D ←

Tamper(D).
(d) If CMD = (EXEC, Leak, D′) and B = 0 then proceed as follows:

i. Update the public disk Dpub ← D′.
ii. Run CPU and update the disk: (D, B, T, λBs)← CPU(crs, D, pc, ac, Leak).
iii. Give (T, λBs, Dpub) to A.
iv. Check the completion of current activation: If T = 1 then start a new activation

by incrementing the activation counter: ac ← ac + 1 and re-initializing the
program counter: pc← 0.

v. Increment the program counter: pc← pc + 1 and go to Step 3.

Figure 2: Real Execution RealRS,A,G(k)

the next location. This is possible because our RAMs do not allow indirection as in loading
e.g. D[D[127]].
• On the CRS. In case no common reference string is required by the RAM scheme, we simply

assume that R.Init outputs the empty string. In such a case we sometimes avoid to write crs
as input of C, CPU and Compute.

In the ideal execution, the ideal functionality for evaluating G interacts with the ideal adversary
called the simulator S as follows. First sample a key K and repeat the following until a value is
returned: Get a command from S and act differently according to the command-type.

• If CMD = (STOP,Oideal), then return Oideal and halt.
• If CMD = (EVAL, x), give GK(x) to S.

We write IdealS,G(k) for the output distribution in the ideal execution and we let IdealS,G =
{IdealS,G(k)}k∈N.

Definition 4 (Security of a RAM Scheme). We say a RAM scheme RS is A-secure (for function
class G and program class P) if RS.C : G→ P and if for any function G ∈ G and any A ∈ A there
exists a PPT simulator S such that RealRS,A,G ≈c IdealS,G.

We introduce a notion of emulation, which facilitates designing compilers for less secure RAMs
via compilers for more secure RAMs. We call a set S of RAM schemes a class if there exists G
and P such that for all RS ∈ S it holds that RS.C : G → P. We write S : G → P. An emulator
is a poly-time function E : S1 → S2, where S1 and S2 are RAM scheme classes S1 : G → P1 and

18

S2 : G → P2. I.e., given a RAM scheme RS1 ∈ S1 for some function class G, the emulator outputs
another RAM scheme RS2 ∈ S2 for the same function class.

Definition 5 (Secure Emulation). Let S1 : G→ P1 and S2 : G→ P2 be RAM scheme classes and let
E : S1 → S2 be an emulator. We say that E is (A1,A2)-secure if for all RS1 ∈ S1 and RS2 = E(RS1)
and G ∈ G and all A2 ∈ A2 there exists a A1 ∈ A1 such that RealRS1,A1,G ≈c RealRS2,A2,G.

The following theorem is immediate.

Theorem 2. Let E : S1 → S2 be an emulator. If E is (A1,A2)-secure and RS1 ∈ S1 is A1-secure,
then RS2 = E(RS1) is A2-secure.

4 Main Theorem

Our main result is a secure RAM scheme for the so-called split-state model, which we review below.
This particular model can be cast as a special cases of our generic RAM model. We use sp to denote
the components of the split-state model, i.e., RSsp = (Csp,Rsp) and the adversary class is called
Asp.

In the split-state model we consider the secret disk Dsec split into two parts D1 and D2, and
we require that leakage and tampering is done independently on the two parts. I.e., each position
Dsec[i] on the secret disk is split into two parts D1[i] and D2[i] of equal length such that Dsec[i] =
D1[i]‖D2[i]. We let D1 = (D1[2

k−1], . . . , D1[2
k − 1]) and D2 = (D2[2

k−1], . . . , D2[2
k − 1]). The set

Asp consists of all poly-time algorithms which never violate the following restrictions.

Tampering We require that a tampering function is of the form Tampersp = (Tampersp1 ,Tampersp2)
and we let Tampersp(Dpub‖Dsec) = Dpub‖(Tampersp1 (D1),Tampersp2 (D2)). Beside being split
like this, there is no restriction on the tampering, i.e., each part of the secret disk can be
arbitrarily tampered.

Disk leakage We also require that a disk leakage function is of the form Leaksp = (Leaksp1 , Leak
sp
2)

and we let Leaksp(Dpub‖Dsec) = (Leaksp1 (D1), Leak
sp
2 (D2)). Beside being split like this, we

introduce a leakage bound lbdisk and we require that the sum of the length of the leakage
returned by all the leakage functions Leakspi is less than lbdisk.

Bus leakage We require that a bus leakage function is of the form Leaksp = (Leaksp1 , Leak
sp
2). For

a bus (i0, D[i0], i1, D[i1], . . . , i1+2d, D[i1+2d]) we let B = (D[i1], . . . , D[i1+2d]) and we split B
into two parts B1 and B2 by splitting each word, as done for the disk; the returned leakage is
then (i0, i1, i2, . . . , i1+2d, Leak

sp
1 (B1), Leak

sp
2 (B2)). Beside being split like this, we introduce a

leakage bound lbbus and we require that the length of the leakage returned by each function
Leakspi is less than lbbus.

Note that by definition of the bus leakage, the CPU always leaks the program counter and the
memory positions that are being read. Besides this it gives independent, bounded leakage on the
parts of the words read up from the disk. Since the leakage and tamper classes for a split-state
RAM are fully specified by lbdisk and lbbus we will denote the adversary class for a split-state RAM
simply by Asp = (lbdisk, lbbus). Let Ssp denote the class of split-state RAM schemes. We are now
ready to state our main theorem.

Theorem 3 (Main Theorem). Let C be a (lbcode, q)-CNMLR code. There exists an efficient RAM
scheme RS ∈ Ssp and a constant c = O(1) such that RS is (lbdisk, lbbus)-secure whenever lbdisk +
(c+ 1)lbbus ≤ lbcode.

19

The proof of the above theorem follows in two steps. We first define an intermediate model,
which we call the hybrid model, where the adversary is only allowed a very limited form of leakage
and tampering. For this model, we give a hybrid-to-split-state emulator (cf. Theorem 4 in Section 5).
Then, we exhibit a RAM scheme that is secure in the hybrid model (cf. Theorem 5 in Section 6).
Putting the above two things together with Theorem 2 concludes the proof of Theorem 3.

5 Hybrid-to-Split-State Emulator

We introduce an intermediate security model where the adversary is given only limited tamper-
ing/leakage capabilities. We call this model the hybrid model, and a RAM that is secure in this
model is called a hybrid RAM; as for the split-state model, also the hybrid model can be cast as a
special case of our generic RAM model. We use hb to denote the components of the hybrid model,
i.e., RShb = (Chb,Rhb) and we call the adversary class Ahb.

5.1 The Hybrid Model

In the hybrid model the secret disk is not split. However, the tampering is very restricted: we only
allow the adversary to copy values within the secret disk and to overwrite a location of the secret
disk with a known value. In addition very little leakage is allowed. The adversary class Ahb consists
of all poly-time Turing machines never violating the following restrictions.

Tampering We require that each tampering function is a command of one of the following forms.

• If Tamper = (COPY, (j, j′)) for j, j′ ≥ 2k−1, then update D[j′]← D[j].
• If Tamper = (REPLACE, (j, val)) for j ≥ 2k−1 then update D[j]← val.

Disk leakage There is no other disk leakage from the secret disk, i.e., the adversary is not allowed
any disk leakage queries.

Bus leakage There is only one allowed bus leakage function, say Leakhb = L, so this is by definition
the leakage query used on each execution of the CPU. On this leakage query the adversary is
given (i0, i1, i2, . . . , i1+2d).

Note that by definition of the bus leakage, the CPU always leaks the program counter and the
memory positions that are being read. Besides this it is given no leakage. Since the leakage and
tamper classes for a hybrid RAM are implicitly specified, we will denote the adversary class for a
hybrid RAM simply by Ahb.

Bounded-access schemes. We later want to compile programs for the hybrid model into more
realistic models by encoding the positions in the disk using a code. Because of leakage from the
bus, this only works if each value is not read up too many times. We therefore need a notion of
a program for the hybrid model being c-bounding, meaning that such a program reads each value
at most c times, even when the program is under attack by A ∈ Ahb. To define this notion we
use two vectors Q,C ∈ N2k . If the value stored in D[j] is necessarily known by the adversary, then
Q[j] = ⊥. Otherwise, Q[j] will be an identifier for the possibly secret value stored in D[j], and
for an identifier id = Q[j] the value C[id] counts how many times the secret value with identifier
id was accessed by the CPU. Initially Q[j] = ⊥ for all j and C[j] = 0 for all j. After the initial
encoding ω is stored, we set Q[2k−1 + j] = j for j = 0, . . . , |ωsec| − 1. Then let ns← |ωsec|. We use
this counter to remember the identifier for the next secret. During execution, when the adversary

20

executes (COPY, (j, j′)), then let Q[j′] = Q[j]. When the adversary executes (REPLACE, (j, val)), then
let Q[j] = ⊥. When the CPU executes, reading positions i0, i1, . . . , id and writing positions j1, . . . , jd
then proceed as follows. For p = 0, . . . , d, if Q[ip] 6= ⊥, let C[Q[ip]] ← C[Q[ip]] + 1. Then proceed
as follows. If Q[i0] = Q[i1] = · · · = Q[id] = ⊥, then let Q[j1] = · · · = Q[jd] = ⊥. Otherwise, let
(Q[j1], . . . ,Q[jd]) = (ns, . . . , ns + d− 1) and let ns← ns + d. Then for each ji < 2k−1, set Q[ji]← ⊥.

We say that a hybrid RAM scheme RS is c-bounding if it holds for all G ∈ RS.C.G that if
RS.C(G) is executed on RS.R under attack by A ∈ Ahb and the above vectors are computed during
the attack, then it never happens that C[j] > c for any j. Let G denote the class of poly-time
functionalities. We use Shbc : G → Phb

c to denote the class of hybrid RAM schemes which are
c-bounding.

Theorem 4. Let C be a (lbcode, q)-CNMLR code. Let Asp = (lbdisk, lbbus) be a split-state adversary
class such that lbdisk + (c + 1) · lbbus ≤ lbcode. Then there exists an (Ahb,Asp)-secure emulator
E : Shbc → Ssp.

5.2 The Emulator

The proof of Theorem 4 can be found in Appendix A; here we provide only a high-level overview.
The goal of the emulator E is to transform a hybrid RAM scheme RShb = (Chb,Rhb) ∈ Shbc into a
split-state RAM scheme E(RShb) = RSsp = (Csp,Rsp). In particular, the emulator needs to specify
transformations for the components of RShb. This includes the contents of the disk as well as the way
instructions are stored and processed by the CPU. Below, we give an overview of the construction
of the emulator.

We emulate a program as follows E(`P , I, `I , O, `O,X ,Y, ωhb) = (`P , I, `I , O, `O,X ,Y, ωsp),
where we simply let ωsp

pub be ωhb
pub. Then for each j ∈ [0, |ωhb

sec|], let ω
sp
sec[j] = (ωsp

sec,1[j], ω
sp
sec,2[j])

be an encoding of ωhb
sec[j] (computed using a CNMLR code, see Section 2). The CPU Computesp

runs as follows. It reads up the same instruction Dhb[pc] that Computehb would. Then for each addi-
tional position Dhb[i] read up, if i < 2k−1 it lets vi = Dhb[i] and if i ≥ 2k−1 it lets (v1,i, v2,i) = Dhb[i]
and decodes (v1,i, v2,i) to vi. If any decoding fails, then Computesp self-destructs. Otherwise it runs
Computehb on the vj values. Finally, it encodes all values vj to be stored on Dsp

sec and writes them
back to disk. Then values vj to be stored on Dsp

pub are stored in “plaintext” as vj .

Security of emulation. To argue security of emulation, we need to show that for all adversaries
A ∈ Asp there exists a simulator B ∈ Ahb able to fake A’s view in a real execution with RSsp given
only its limited leakage/tampering capabilities (via REPLACE and COPY commands). The simulator
B runs A as a sub-routine, and works in two phases: the pre-processing and the online phase.
Initially, in the pre-processing B samples crs and creates encodings of 0 for all the values on the
secret disk using the CNMLR code, and puts dummy encodings (v1, v2) ← Encode(crs, 0) on the
corresponding simulated virtual disks. For the positions on the public disk, the simulator can put
the correct values, which is possible as it can read ωhb

pub from Dhb
pub and ωhb

pub = ωsp
pub. Depending on

the queries in the online phase B will update these virtual disks in the following. TAMPER queries are
simulated easily by applying the corresponding tamper functions to the current state of the virtual
disks D1 and D2. Notice that also the leakage from the disks and the buses will essentially be done
using the contents of the virtual disks. Hence, the main challenge of the simulation is how to keep
these virtual disks consistent with what the adversary expects to see from an EXEC query. This is
done by a rather involved case analysis and we only give the main idea here.

21

We distinguish the case when all the values on the disk that are used by the CPU to evaluate the
current instruction are public (corresponding to the case Q[j1] = · · · = Q[jd] = ⊥ in the definition
of c-bounded) and the case where some are secret. The first case may happen if the adversary A
replaces the contents of the secret disks with some encoding of his choice by tampering. Notice that
in this case the simulation is rather easy as B “knows” all the values and can simulate the execution
of the CPU (including the outputs and the new contents of the disks). If, on the other hand,
some values that are used by the CPU in the current execution are secret, then B’s only chance to
simulate A is to run CPUhb in the hybrid game. The difficulty is to keep the state of the secret
hybrid disk Dhb consistent with the contents of the virtual disks D1, D2 maintained by A. This is
achieved by careful book-keeping and requires B to make use of his REPLACE and COPY commands
to the single secret disk Dhb. The simulator B manages this book-keeping by using two records: (i)
the vector S that stores dummy encodings (v1, v2) corresponding to values unknown to B (either
generated during the pre-processing, or resulting from an evaluation of CPUhb on partially secret
inputs); (ii) the backup storage BP that B maintains on the hybrid disk Dhb that stores a copy
of all values that are unknown to the adversary (essentially, the values on BP correspond to the
values that the dummy encodings in S where supposed to encode). Then the simulator can always
copy the corresponding secret value to the position on Dhb, which corresponds to the value that
should have been inside the encoding on the same position on the two virtual disks. The trick is
that each secret value, i.e., a value that would have an identifier in the definition of c-boundedness,
has an associated dummy encoding generated by the simulator and a corresponding value on Dhb

pub.
The simulator uses the book-keeping to keep these values “lined up”. All other encodings were not
generated by the simulator, and can therefore be decoded to values independent of the values in
the dummy encodings. These therefore correspond to public values. A reduction to continuous
non-malleability then allows to replace the 0’s in the dummy encoding by the correct values on
Dhb.

6 The Hybrid Scheme

In this section we describe an O(1)-bounding, RAM scheme RShb = (Chb,Rhb) that is secure in
the hybrid model. Recall that a hybrid schemes RShb consists of a hybrid RAM Rhb and a hybrid
compiler Chb which takes a functionality G with secret key K and outputs an encoding of the form
(P, ωhb) to be executed on Rhb. The RAM Rhb consists of a CPU CPUhb, which is specified by two
functions Randomhb and Computehb. Below, we present an outline of our hybrid RAM scheme RShb

and refer the reader to Appendix B for the details.

Overview. We assume G is described by a “regular program” (i.e., a sequence of instructions) for
computing GK in a “regular” RAM (i.e., a RAM with a disk and a CPU without any security). This
regular program essentially “encodes” the original functionality in a format that is compatible with
the underlying RAM; for example the key is parsed as a sequence of words that are written in the
corresponding locations of the disk. The RAM needs to be neither tamper nor leakage resilient, and
the “regularity” essentially comes from the fact that it emulates GK correctly and has no pathological
behaviour, like overwriting the key during an activation. We also need that it reads each value O(1)
times. It is easy to see that one can always translate the functionality into such a regular program,
generically, using, e.g., a bounded fan-out circuit layed out as a RAM program. We refer the reader
to Appendix B.1 for the complete specifications.

22

Let G be the class of poly-time keyed functions G· (each described a regular program as outlined
above). We show the following theorem.

Theorem 5. There exists an Ahb-secure RAM scheme RShb = (Chb,Rhb) for function class G and
program class Phb

c for c = O(1).

The hybrid scheme. Our hybrid compiler Chb takes as input G ∈ G and is supposed to produce
a compiled program (during the pre-processing phase) to be run by the hybrid RAM Rhb (during the
on-line phase). The compiled program is placed on the disk from which CPUhb reads in sequence.
Our CPU CPUhb = (Computehb,Randomhb) will be deterministic, and hence Randomhb just outputs
the empty string at each invocation. This means that we only have to specify the compiler Chb and
the function Computehb for a complete specification of RShb.

Recall that the adversary in a hybrid execution is only allowed a limited form of tampering, by
which he can copy values within the secret disk and replace some value with a known one. The main
idea will be to store the regular program (and all intermediary values) in the disk; each value will
be stored in a special “augmented” form. The augmentation includes: (a) A secret label L (sampled
once and for all at setup, and thus unknown to the adversary); (b) The position j at which the value
is stored; (c) The current values (a, p) of the activation and program counters (ac, pc) when the
value was written. Intuitively, the secret label ensures that the adversary cannot use the “replace”
command as that would require to guess the value of the label. On the other hand the position j
will allow the CPU to check that it loaded a value from the right position, preventing the adversary
to use the “copy” command to move values created by the CPU (or at setup) to another location.
Finally, the pair (a, p) prevents the adversary from swapping values sharing the same L and the
same j (i.e., trying to reset the CPU by forcing it the CPU to re-use a previously encoded value).

Whenever algorithm Computehb of the CPU loads some instruction, it uses the above augmented
encodings to check that it is loading the right instruction, that the correct location was read, that
the label matches, and that the counters are consistent; if any of the above fails, it self-destructs.
Otherwise, it runs the specific instruction of the emulated regular program, and writes the resulting
value to the disk (in the augmented form). A detailed description can be found in Appendix B.2.

Analysis. Next, we turn to a high-level overview of the security proof (the actual proof can be
found in Appendix B.3). Our goal is to prove that the above RAM scheme is secure in the hybrid
model, namely for all adversaries B ∈ Ahb attacking the RAM scheme in a real execution, there
exists a simulator S faking the view of B only given black-box access to the original functionality
GK.

As a first step, we prove that the probability by which the adversary succeeds in using a “replace”
command to write some value on the disk with the correct secret label, and having the CPU read
this value without provoking a self-destruct, is essentially equal to the probability of guessing the
secret label (which is exponentially small). This means we can assume that all the values put on
the disk using a “replace” command do not contain the secret label. In each execution our CPU
CPUhb will check that all loaded values contain the same label, and will write back values where the
augmentation contains this label. It then follows that all values containing the secret label in the
augmentation were written by the pre-processing or by CPUhb, and it also follows that all values
not having the secret label in the augmentation are known by the adversary: they were put on disk
using a REPLACE command or computed by CPUhb on values known by the adversary. We then
argue that CPUhb (by design) will never write two values V 6= V ′ sharing the same augmentation

23

(j, L, a, p). This is because the augmentation includes the strictly increasing pair (a, p), and we
also prove that CPUhb can predict what (a, p) should be for all loaded values in all executions. It
follows from an inductive argument that all values containing the secret label in the augmentation
are correct. Hence all values on the disk are either correct secret values or incorrect values known
by the adversary. So, when CPUhb writes a result to the disk, it is either an allowed output or a
value already known by the adversary. From the above intuition, it is straight-forward, although
rather tedious, to derive a simulator.

References

[1] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. IACR Cryptology ePrint Archive, 2013:201, 2013.

[2] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.
Explicit non-malleable codes resistant to permutations and perturbations. IACR Cryptology
ePrint Archive, 2014:316, 2014.

[3] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure
against related-key attacks. In CRYPTO, pages 666–684, 2010.

[4] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In EUROCRYPT, pages 491–506, 2003.

[5] Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security beyond the linear
barrier: Ibe, encryption and signatures. In ASIACRYPT, pages 331–348, 2012.

[6] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In ICS, pages
155–168, 2014.

[7] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. In TCC, pages 440–464, 2014.

[8] Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Venturi. Self-destruct non-
malleability. Cryptology ePrint Archive, Report 2014/866, 2014. http://eprint.iacr.org/.

[9] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit to multi-
bit public-key encryption via non-malleable codes. In TCC, 2015. To appear.

[10] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-rate tamper-
ing. In CRYPTO, pages 533–551, 2012.

[11] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits and protocols against
1/poly(k) tampering rate. In TCC, pages 540–565, 2014.

[12] Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally decodable
and updatable non-malleable codes and their applications. In TCC, 2015. To appear.

[13] Ivan Damgård, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Bounded tamper
resilience: How to go beyond the algebraic barrier. In ASIACRYPT (2), pages 140–160, 2013.

24

http://eprint.iacr.org/

[14] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without computational
assumptions. In TCC, pages 230–247, 2012.

[15] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-
source extractors. In CRYPTO (2), pages 239–257, 2013.

[16] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS,
pages 434–452, 2010.

[17] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous
non-malleable codes. In TCC, pages 465–488, 2014.

[18] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-
malleable codes and key-derivation for poly-size tampering circuits. In EUROCRYPT, pages
111–128, 2014.

[19] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits: How to trade
leakage for tamper-resilience. In ICALP (1), pages 391–402, 2011.

[20] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan. Pro-
tecting circuits from leakage: the computationally-bounded and noisy cases. In EUROCRYPT,
pages 135–156, 2010.

[21] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage. In FOCS,
pages 31–40, 2012.

[22] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits II: Keeping
secrets in tamperable circuits. In EUROCRYPT, pages 308–327, 2006.

[23] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO, pages 463–481, 2003.

[24] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with tamperable
and leaky memory. In CRYPTO, pages 373–390, 2011.

[25] Aggelos Kiayias and Yiannis Tselekounis. Tamper resilient circuits: The adversary at the gates.
In ASIACRYPT (2), pages 161–180, 2013.

[26] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model.
In CRYPTO, pages 517–532, 2012.

[27] Eric Miles and Emanuele Viola. Shielding circuits with groups. In STOC, pages 251–260, 2013.

[28] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A formal secu-
rity proof. In EUROCRYPT, pages 142–159, 2013.

[29] Hoeteck Wee. Public key encryption against related key attacks. In Public Key Cryptography,
pages 262–279, 2012.

25

Pre-processor: The pre-processor Csp = E(Chb) runs as follows: Sample (P, ωhb
pub, ω

hb
sec) ←

Chb(crs, (G,K)). Output (P, ωsp
pub, ω

sp
sec), where the content of the public section ωsp

pub and
the secret section ωsp

sec = (ωsp
sec,1, ω

sp
sec,2) are detailed below.

Secret Disk: The secret disk of the hybrid pre-processing is encoded by encoding each mem-
ory position using the non-malleable code: For i = 0, . . . , |ωhb

sec|−1, let vi = ωhb
sec[i], sample

(v1,i, v2,i)← Encode(crs, vi) and set ωsp
sec,1[i] = v1,i and set ωsp

sec,2[i] = v2,i.
Public Disk: Let ωsp

pub = ωhb
pub. For an instruction of the compiled form (Y, I,O) =

E(Yhb, Ihb,Ohb), we let E−1(Y, I,O) = (Yhb, Ihb,Ohb). For an input X not of the compiled
form, we let E−1(X) = sd, where sd is some fixed input not of the form (Yhb, Ihb,Ohb).
Note that if and when the CPU of the hybrid scheme reads up sd it will self-destruct,
see Fig. 1.

CPU: The compiled CPU (Randomsp,Computesp) = E(Randomhb,Computehb)
works as follows: Randomsp = Randomhb and ((O1, . . . , Od), B, T) ←
Computesp(crs, (R0, R1, . . . , Rd), r, pc, ac) is specified by:

1. If E−1(R0) = sd, then self-destruct. Otherwise, compute (Yhb, Ihb,Ohb) = E−1(R0),
and set Rhb0 = (Yhb, Ihb,Ohb).

2. For j = 1 . . . , d, let lochbj = Ihb[j]. If lochbj < 2k−1, then let Rhbj = Rj . If lochbj ≥
2k−1, then let (v1,j , v2,j) = Rj . Let vj = Decode(crs, (v1,j , v2,j)). If vj = ⊥, then
self-destruct. Otherwise, let Rhbj = vj .

3. Compute ((Ohb1 , . . . , O
hb
d), B, T)← Compute((Rhb0 , R

hb
1 , . . . , R

hb
d), r, pc, ac).

4. For j = 1 . . . , d, let locj = Ohb[j]. If lochbj < 2k−1, then set Oj ← Ohbj . If
lochbj ≥ 2k−1, then let vj = Ohbj , sample (v1,j , v2,j) ← Encode(crs, vj), and let
Ohbj ← (v1,j , v2,j).

Dimensions: The length of the public sectors of the disks will be the same. The size of the
secret disk of the split-state RAM is double the size of the one for the hybrid RAM. The
word size of the produced RAM will be large enough to hold an encoding under C as
produced by the underlying non-malleable code.

Figure 3: The Emulator, E

26

A Proof of Theorem 4

A formal description of the emulator E can be found in Fig. 3. The simulator B that we need to
exhibit for proving Theorem 4 is depicted in Fig. 4 (pre-processing) and Fig. 5 (online). To conclude
the proof we need to show that the view produced by the hybrid simulator B ∈ Ahb, interacting with
A in RealRShb,B,G(k), is computationally indistinguishable from the view that A ∈ Asp obtains in
a real execution RealRSsp,A,G(k). We do so via a reduction to the adaptive composability property
of the CNMLR code C (cf. Definition 2).

Reduction to the CNMLR code. The reductionR (depicted in Fig. 6-7) has access to the leak-
age oraclesOlbcode(c1, ·),Olbcode(c2, ·) and tamper oracleOqcomp((c1, c2), (·, ·)) from Gamecomp,q,lbcode

C,R (b)
(where b is a random bit). The main difficulty is to make sure that R indeed can virtually run the
hybrid simulator B in a way that is consistent with the encodings that are produced inside the target
oracles Olbcode(c1, ·),Olbcode(c2, ·) and Oqcomp((c1, c2), (·, ·)). To this end, R first runs the hybrid com-
piler to obtain (P, ωhb

pub, ω
hb
sec)← Chb(G,K). During the following execution of the game, the reduc-

tion R ensures that what is stored inside its challenge oracles Olbcode(c1, ·),Olbcode(c2, ·),Oqcomp((c1,
c2), (·, ·)) can be kept consistent with the contents on the hybrid secret disk ωhb

sec (and hence with
the simulated virtual disks D1, D2). R uses so-called disk reconstruction functions Dconi that take
as input a set of encodings ci (this is the current state of the target oracles) and reconstructs the
content of the corresponding secret disks Di. Given such functions Dconi, simulating the TAMPER

and LEAK queries can be easily done by concatenating the tamper and leakage functions submit-
ted by A with the current disk reconstruction functions Dconi. One main tedious difficulty in
the reduction is to continuously update the disk reconstruction functions such that they are con-
sistent with what the adversary A expects to see. For instance, if A asks for a TAMPER query
(Tamper1,Tamper2) then Dconi is updated by concatenating Tamperi with the current Dconi, i.e.,
we get Dcon′i = Dconi ◦ Tamperi for all i ∈ {1, 2}. The full details about how R maintains Dconi
are given in Fig. 6-7.

One can verify that if in the simulation we initialize the secret disks D1, D2 with encodings of
the correct secret values, then the simulator B from Fig. 4–5 produces exactly the distribution as
in RealRSsp,A,G . Hence, the reduction will essentially run the code of B and submit to its target
oracles inputs of the form (0, ωhb[j]) in each iteration of the loop. Depending on the challenge bit
b, the reduction either simulates RealRShb,B,G (if b = 0) or RealRSsp,A,G (if b = 1), i.e., we have:

Gamecomp,q,lbcode
C,R (0) ≡ RealRShb,B,G

Gamecomp,q,lbcode
C,R (1) ≡ RealRSsp,A,G .

Security of the emulator E now follows from the adaptive composability of the underlying CNMLR
code (see Theorem 1).

Computing the leakage bound. We finally argue about why our reduction satisfies the leakage
bounds of the target oracles. First, observe that since RShb is c-bounding we have that except with
negligible probability the simulator B would access each value at most c times. By construction,
this means that each encoding in the reduction will be part of at most c leakage queries to simulate
the execution of the bus—we elaborate on this claim below. Each such leakage query leaks at most
lbbus bits, for a total of c · lbbus. Furthermore, each encoding might enter into the leakage queries to

27

Pre-processing: The hybrid game will sample (P, ωhb
pub, ω

hb
sec) ← Chb(G,K), give (P, ωhb

pub)

to the simulator B, and store ωhb on Dhb. The simulator passes (P, ωhb
pub) to A. The

simulator B has to create simulated disks (D1, D2) defining D
sp
sec. This is done as follows.

Sample crs ← Init(1k). For j = 0, . . . , |ωhb
sec| − 1, sample (v1,j , v2,j) ← Encode(crs, 0),

let S[j] = (v1,j , v2,j), D1[j] = v1,j and D2[j] = v2,j , and then choose a backup location
BP(j) on the secret disk such that Dhb

sec[BP(j)] is never accessed by RShb or A, and issue
the command (COPY, j,BP(j)) to create a back up of the value Dhb

sec[j] = ωhb
sec[j]. Notice

that in this way the simulator B keeps a copy of the original secret value that (v1,j , v2,j) is
supposed to encode (instead of 0 as after the pre-processing of B). Finally, let ns = |ωhb

sec|.

Figure 4: The Simulator, BA, pre-processing

simulate leakage form the disk, but at most lbdisk bits are needed for this. Finally, in the activation
where the self-destruct happens the reduction might request further lbbus bits of leakage. Hence,
except with negligible probability the reduction R requests at most (c + 1)lbbus + lbdisk bits of
leakage from each encoding. Then use that (c+ 1)lbbus + lbdisk ≤ lbcode, where lbcode is the leakage
tolerated by the CNMLR code C.

Now, let us explain why RShb being c-bounding implies that except with negligible probability
the simulator B will access each value in ci at most c times when simulating the EXEC command.
Notice that the query to the leakage oracle occurs in Step 4e in Figure 7 and only if the execution
was secret. Here the leakage function Leak′i needs to compute Bi. The value Bi contains values
written on the bus during the reading phase and the writing phase.

Let us start by discussing the writing phase, as this is the easier case. Here Leak′i computes
the disk D′i = Dcon′i(ci) as it looked after the writing phase, and adds to Bi each vi = Di[loc

hb
j]

from the writing phase. Notice that, however, for each Di[loc
hb
j] there exists an index g defined in

Step 4d such that Di[loc
hb
j] = ci[g] and this g can clearly be computed by R. Hence R can compute

D′i = Dcon′i(ci): The leakage function simply adds each new ci[g] from Step 4d to Bi. This brings
the leakage tally for ci[g] up to at most lbbus, as it is a fresh encoding and hence was not accessed
before. Note that in the hybrid model the counter C[g] is set to 1. In particular, the leakage tally
of ci[g] is less than C[g] · lbbus.

As for the the writing phase, the leakage function first computes the disk Di = Dconi(ci) as it
looked at the reading phase and then adds to Bi each value vi = Di[loc

hb
j]. Note, however, that

some of these values were computed by R already in Step 4b. Namely, the reduction made the
tampering query (T1,T2), where Ti(ci) = Dconi(ci)[loc

hb
j]. The reply is either (same?, g), ⊥ or a

valid encoding. We look at each case separately:

• If the reply was not (same?, g) or ⊥, then the reply from the tampering oracle was exactly
(v1, v2) = (Dcon1(c1)[loc

hb
j],Dcon2(c2)[loc

hb
j]). Hence the reduction can hard-code the value

vi into the leakage query Leaki and add it to Bi as the value Di[loc
hb
j] = vi.

• If the reply was (same?, g), then by construction of the function Ti(ci) = Dconi(ci)[loc
hb
j], we

have that (D1[loc
hb
j], D2[loc

hb
j]) is one of the encodings created by the game by request of the

reduction, and the reduction knows which one, namely the g-th one.12 So, the leakage function
12Here we use the ‘stronger’ property of the CNMC code which ensures that the oracle returns not only the symbol

28

Online: Given a command CMD from A the simulator B acts as follows:

1. If CMD = (STOP,Oreal) then issue command (STOP,Oreal) and halt.
2. If CMD = (LEAK, (Leak1, Leak2)), proceed as follows. Compute Λ ←

Leak(Dsp
pub, D1, D2) using the simulated virtual disks and give Λ to A.

3. If CMD = (TAMPER, (Tamper1,Tamper2)) then proceed as follows. Compute (Dsp
pub,

D1, D2)← (Dsp
pub,Tamper1(D1),Tamper2(D2)).

4. If CMD = (EXEC, (Leak1, Leak2), D
′) and B = 0 then do the following:

(a) Let Dsp
pub ← D′. If E−1(Dsp[pc]) = sd, then self-destruct. Otherwise, compute

(Yhb, Ihb,Ohb) = E−1(Dsp[pc]), and set Rhb0 = (Yhb, Ihb,Ohb).
(b) For j = 1 . . . , d, let lochbj = Ihb[j]. If lochbj < 2k−1, then let Rhbj = Dsp[locj]. If

lochbj ≥ 2k−1, then let (v1,j , v2,j) = (D1[loc
hb
j], D2[loc

hb
j]). If ∃g : (v1,j , v2,j) =

S[g], then issue the command (COPY, (BP(g), lochbj)) to put back in Dhb[lochbj]
the value that (v1,j , v2,j) should have been an encoding of. If @g : (v1,j , v2,j) =
S[g], then compute vj = Decode(crs, v1,j , v2,j). If vj = ⊥, then simulate a
self-destruct (by ignoring all future EXEC commands). Otherwise, issue the
command (REPLACE, (lochbj , vj)) to put in Dhb[lochbj] the value that (v1,j , v2,j)
is an encoding of.

(c) Issue the command CMD = (EXEC, D′) to run CPUhb, which replaces the existing
disks by the modified output: (Dhb

pub, D
hb
sec, B, T) ← CPUhb(Dhb

pub, D
hb
sec, pc, ac).

This also updates Dsp
pub as we identify Dsp

pub = E(Dhb
pub).

(d) Update the simulated disks D1 and D2. For j = 1 . . . , d, let lochbj = Ohb[j].
How we process each lochbj depends on whether the above execution was a
secret execution (i.e., Q[lochb1] = . . . = Q[lochbd] = ⊥ see Section 5.1) or not.

public: If lochbj ≥ 2k−1, then let vj = Dhb[lochbj],a sample (v1,j , v2,j) ←
Encode(crs, vj) and let (D1[loc

hb
j], D2[loc

hb
j])← (v1,j , v2,j).

secret : If lochbj ≥ 2k−1, then sample (v1,j , v2,j) ← Encode(crs, 0) and let
(D1[loc

hb
j], D2[loc

hb
j]) ← (v1,j , v2,j). Then let S[ns] ← (v1,jv2,j), pick a

fresh back-up location BP(ns), issue the command (COPY, lochbj ,BP(ns)) to
back up the value that (v1,j , v2,j) should have been an encoding of, and then
let ns← ns + 1.

(e) Finally simulate the leakage Λ1 = Leak1(B1) and Λ2 = Leak2(B2) by computing
Bs = (B1, B2) as in a real execution, but using the above simulated values. In
particular, Bi 3 vj for all (v1,j , v2,j) = (D1[loc

hb
j], D2[loc

hb
j]) from the reading

and all (v1,j , v2,j)← Encode(crs, 0) from the writing.
aWhen the execution is public, then B knows all inputs to the CPU and hence can compute all the outputs

and thus Dhb[locj]. This is not completely true, as the CPU could be randomized. However, in that case B
could first run the CPU by issuing the command (EXEC). Then it could internally run Random and Compute
to recompute the CPU on the same inputs, but with fresh randomness. Then it can use REPLACE commands
to write the resulting outputs to their respective locations. Since the CPU cannot keep any information about
the randomness used in previous executions, this simulation will result in exactly the same distribution, and
now B knows the values it needs.

Figure 5: The Simulator, BA, online

29

Pre-processing: Sample (P, ωhb
pub, ω

hb
sec) ← Chb(G,K) and give (P, ωhb

pub) to A. Let Dsp
pub =

E(ωhb
pub) andDhb

sec = ωhb
sec. Create virtual disksD1 = ωsp

sec,1 andD2 = ωsp
sec,2 “inside the leak-

age oracles” Olbcode(c1, ·) and Olbcode(c2, ·) by maintaining disk reconstruction functions
Dcon1, Dcon2 such that Di = Dconi(ci). Initially Dconi is the function outputting 0 on
all inputs j. We elaborate on how to maintain Dconi below. For j = 0, . . . , |ωhb

sec|−1, out-
put (0, ωhb

sec[j]) to the game Gamecomp,q,lbcode
C,R (b) to make it create an encoding (v1,j , v2,j)

of either 0 or ωhb
sec[j] and add v1,j to c1[j] and v2,j to c2[j].

Notice that the record S kept by B in Figure 4 is now represented by (c1, c2): We will
maintain the invariant that whenever B samples (v1, v2) and stores it in S[g], the reduction
makes an encoding query to its challenge oracle as specified in Definition 2, and this will
be the g-th such query, such that (c1[g], c2[g]) = (v1, v2).
Update the disk reconstruction functions Dcon1, Dcon2 as follows: Let Dconi be the
function before the above initial encodings were computed; set Dcon′i = Dconi, except
that (Dcon′i(ci))[j] = ci[j] for j = 0, . . . , |ωhb

sec| − 1. Furthermore, for each j, let BP(j) be
the back-up location chosen by B; simulate the commands (COPY, (j,BP(j))) by setting
Dhb

sec[BP(j)] = Dhb
sec[j].

Figure 6: The Reduction RA, pre-processing

can compute Dconi(ci)[loc
hb
j] as Dconi(ci)[loc

hb
j] = ci[g], and here only these encodings

ci[g] are accessed. Hence each of them has their leakage tally increased by at most lbbus.
Notice that when the tampering returns (same?, g), then the reduction simulates the command
(COPY, (BP(g), lochbj)) by setting Dhb[lochbj] ← Dhb[BP(g)], which results in the value that
(c1[g], c2[g]) should have been an encoding of to be placed in Dhb[lochbj], which is later read
up by the CPU in Step 4c. In the hybrid model, this would result in the counter C[g] for
that value to be incremented by one. Hence the leakage tally for each element stays below
C[g] · lbbus ≤ c · lbbus.
• If the reply was ⊥, then there is no way around computing Di = Dconi(ci) (and then comput-

ing Bi from Di). I.e., the leakage function in the worst case accessed all encodings, as it might
need to know the entire ci to compute Di = Dconi(ci). This can, however, happen at most
once as the CPU can self-destruct at most once. This one extra “full disk” possible leakage of
at most lbbus bits is why we get the bound lbdisk + (c+ 1)lbbus as opposed to lbdisk + clbbus.

B Details of Our Hybrid Scheme

B.1 A Regular Program for G

For simplicity we will assume to have a “regular” program for computing GK through a “regular”
RAM, i.e., a random access machine with one public disk, one CPU and no secret disk. Such a
regular RAM is not assumed to be neither leakage nor tamper resilient and, as we argue below, it
can be assumed generically. All we require is that it computes GK. In Section B.2 we will compile
such a regular program into a hybrid RAM-scheme secure in the hybrid model (which can in turn

same? but also the index with which the tampered value matches.

30

Online: Get command CMD from A and act as follows according to the command-type:

1. If CMD = (STOP,Oreal) then output Oreal and halt.
2. If CMD = (LEAK, (Leak1, Leak2)), then compute submit to Olbcode(ci, ·) the function

Leak′i = Leaki ◦Dconi. Let Λ be the value returned by the oracle; forward (Dhb
pub,Λ)

to A.
3. If CMD = (TAMPER, (Tamper1,Tamper2)), virtually modify the disk Di ←

Tamperi(Di) by modifying the function Dconi as follows: Dconi ← Tamperi ◦Dconi.
4. If CMD = (EXEC, (Leak1, Leak2), D

′) and B = 0 then do the following:
(a) Let Dsp

pub ← D′. If E−1(Dsp[pc]) = sd, then self-destruct. Otherwise, compute
(Yhb, Ihb,Ohb) = E−1(Dsp[pc]), and set Rhb0 = (Yhb, Ihb,Ohb).

(b) For j = 1 . . . , d, let lochbj = Ihb[j]. If lochbj < 2k−1, then let Rhbj =

Dhb[lochbj]. If lochbj ≥ 2k−1, then submit the tampering query (T1,T2), where
Ti(ci) = Dconi(ci)[loc

hb
j]. If the reply is (same?, g), simulate the command

(COPY, (BP(g), lochbj)) by setting Dhb[lochbj] ← Dhb[BP(g)]. If the reply is ⊥,
then simulate a self-destruct. Otherwise, compute v = Decode(crs, v1, v2) and
simulate the command (REPLACE, (lochbj , v)) by setting Dhb[lochbj]← v.

(c) Compute (Dhb
pub, D

hb
sec, B, T)← CPUhb(Dhb

pub, D
hb
sec, pc, ac). Update pc and ac and

in case the self-destruct flag is set, simulate a self-destruct. LetDsp
pub = E(Dhb

pub).
(d) For j = 1 . . . , d, let lochbj = Ohb[j]. How we process each lochbj depends on

whether the above execution was a secret execution or not.
public If lochbj ≥ 2k−1, then let v = Dhb[lochbj], sample (v1, v2)← Encode(crs, v)

and update Dconi to Dcon′i = Dconi, except that (Dcon′i(ci))[loc
hb
j] = vi.

secret If lochbj ≥ 2k−1, then issue (0, Dhb[lochbj]) to make Gamecomp,q,lbcode
C,R (b)

generate an encoding (v1,g, v2,g)—assume this was the g-th such request.
As a result vi,g is added to ci[g]. Define Dcon′i = Dconi, except that
(Dcon′i(ci))[loc

hb
j] = ci[g]. Let BP(g) be the backup location used by

B; simulate the command (COPY, (lochbj ,BP(g))) by setting Dhb[BP(g)]←
Dhb[lochbj].

(e) Finally simulate the leakage Λ1 = Leak1(B1) and Λ2 = Leak2(B2) by computing
Bs = (B1, B2) as in a real execution. If the execution was public the reduction
knows all the values needed for doing this. If the execution was secret, the
leakage will be computed with the aid of the leakage oracles. In particular,
for i = 1, 2, submit to Olbcode(ci, ·) the function Leak′i which first computes the
disk Di = Dconi(ci) and then adds to Bi each value vi = Di[loc

hb
j]. Next,

the function computes D′i = Dcon′i(ci) and adds each vi = Di[loc
hb
j] from the

writing phase to Bi. Hence, it returns Λi = Leaki(Bi).

Figure 7: The Reduction, RA, online

31

be transformed into a secure RAM-scheme via the emulator of Section 5).
Suppose the RAM has word size w. In the description below the term size refers to the number

of words, and the term position refers to the location of a word in the RAM. A program for a
regular RAM with word size w is specified by (`R,K, `K , I, `I , G, `G, O, `O,K,X ,X−1,Y,Y−1, g, (ι0,
. . . , ι`G−1)), where `R is the size of the RAM, K is the position in the RAM where the key is stored,
`K is the length of the key (such that 0 ≤ K and K+ `K ≤ `R), I is the position in the RAM where
the input x is put, `I is the length of the input (such that 0 ≤ I and I + `I ≤ `R), G is the position
in the RAM where the instructions are put, `G is the number of instructions (such that 0 ≤ G and
G + `G ≤ `R), O is the position in the RAM where the output y is to be put, `O is the length of
the output (such that 0 ≤ O and O + `O ≤ `R). Furthermore, K : {0, 1}∗ → ({0, 1}w)`K parses a
key into words, X : {0, 1}∗ → ({0, 1}w)`I parses an input into words, X−1 : ({0, 1}w)`I → {0, 1}∗ is
a decoder such that X−1Xx = x, Y : ({0, 1}w)`O → {0, 1}∗ takes an output represented as words
and reconstructs it, Y−1 is a simulator discussed below, g = {gG}G∈{0,1}γ is a family of functions,
for some fixed constant γ, where for each G ∈ {0, 1}γ the function gG : {0, 1}w × {0, 1}w → {0, 1}w
specifies the functionality of the instruction labelled by G. Each instruction is of the form ιi =
(Gi, ai, bi, ci), where Gi ∈ {0, 1}γ is a type of an instruction and 0 ≤ ai, bi, ci < `R are memory
positions. All the functions should be in PPT.

We call JK = {K, . . . ,K + `K − 1} the key positions, JI = {I, . . . , I + `I − 1} the input
positions, JG = {G, . . . , G + `G − 1} the instruction positions, and JO = {O, . . . , O + `O − 1}
the output positions. We call JW = {j|∃i ∈ {0, . . . , `G − 1} s.t. (ιi = (·, ·, ·, j))} the intermediary
positions.

Consider the following execution game, taking as input a key K and any tuple (x0, . . . , x`I−1) ∈
({0, 1}w)`I , where R[i] refers to the i-th location in the disk of the RAM.

1. Let (K0, . . . ,K`K−1) = K(K) and for 0 ≤ i < `K update R[K + i]← Ki.
2. for 0 ≤ i < `I update R[I + i]← xi.
3. In sequence for i = 0, . . . , `P −1, proceed as follows: Parse ιi = (Gi, ai, bi, ci) and then update
R[ci]← gGi(R[ai], R[bi]).

4. Let y = Y(R[O], . . . , R[O + `O − 1]).

We make the following requirements:

Strong Correctness: For any (x0, . . . , x`I−1) and any K let y be computed as in the execu-
tion game. Then it is always the case that y = GK(X−1(x0, . . . , x`I−1)). Note that for
(x0, . . . , x`I−1) = X (x) we have that X−1(x0, . . . , x`I−1) = x such that y = GK(x). However,
here we need the stronger property where we do not assume that (x0, . . . , x`I−1) = X (x) for
some x.

Output Simulatability: For any (x0, . . . , x`I−1) and any K let y = GK(X−1(x0, . . . , x`I−1)). Then
it holds that the random variable corresponding to (R[O], . . . , R[O + `O − 1]) in a random
run of the execution game and the random variable corresponding to Y−1((x0, . . . , x`I−1), y)
have the same distribution. The reason for this requirement is that we want to avoid that the
representation of the output leaks anything extra than the output itself. Hence we require
that the adversary could compute the representation from just the output. The reason why
we give (x0, . . . , x`I−1) as input to the simulator is that it does not hurt, as the adversary
already knows this values.

Write before read: In the execution game, the RAM never reads a position which was not written.

32

Load Input: For i = 0, . . . , `I − 1, set the instruction at position pc = i as

ωhb
pub[pc] := (load_input, (2k−1, I + i), (2k−1, 2k−1 + I + i) .

The purpose of this instruction is to move the i-th word of the input from the public disk
to the secret disk. Note that the instruction reads at Dhb[2k−1] = ωhb

sec[0] to get the label
L used to store the input in the correct augmented form.

Lift Key: For i = 0, . . . , `K − 1, set the instruction at position pc = `I + i as

ωhb
pub[pc] := (lift_key, (2k−1, 2k−1 +K + i), (2k−1, 2k−1 +K + i) .

The purpose of this instruction is to increment the activation value associated to the i-th
word of the secret key on the secret disk.

Compute: For i = 0, . . . , `G − 1, let ιi = (Gi, ai, bi, ci). Then set the instruction at position
pc = `I + `K + i as

ωhb
pub[pc] := (Gi, (2

k−1, 2k−1 + ai, 2
k−1 + bi, 2

k−1 + j), (2k−1, 2k−1 + ci, 2
k−1 + j) ,

where j = G + i. The purpose of this instruction is to execute instruction number i.
Note that the instruction reads at Dhb[2k−1 + G + i] = ωhb

sec[G + i], as here we store a
copy of the instruction (Gi, ai, bi, ci) (to detect tampering of the public disk).

Reveal Output: For i = 0, . . . , `O − 1, set the instruction at position pc = `I + `K + `G + i
as

ωhb
pub[pc] := (reveal_output, (2k−1, 2k−1 + i), (2k−1, i) .

The purpose of this instruction will be to move the i-th word of the output to the public
disk.

Done: Let pc = `I + `K + `G + `O. Set

ωhb
pub[pc] := (done, 2k−1, 2k−1) .

This is a sentinel instruction.

Figure 8: The Compiler, Public Disk.

33

Label the Parameters: Pick a uniformly random label L ∈ {0, 1}κ for κ = k + 1. Set

ωhb
sec[0] := (0, L,−1,−1, (K, `K , I, `I , G, `G, O, `O)) .

Key: Let (K0, . . . ,K`K−1) = K(K) and for 0 ≤ i < `K , set the value at position j = K + i as

ωhb
sec[j] := (2k−1 + j, L,−1, `I + i,Ki) .

Compute: For i = 0, . . . , `G − 1, let ιi = (Gi, ai, bi, ci), set the value at position j = G+ i as

ωhb
sec[j] := (2k−1 + j, L,−1, `I + `K + i, (Gi, ai, bi, ci)) .

This value will be used to verify the instruction from the public disk (to detect tampering).

Figure 9: The Compiler, Secret Disk.

Don’t overwrite: |JK ∪JI ∪JG ∪JW | = `K + `I + `G + `G. This implies that the program never
overwrites positions of the key, input or instructions and never writes the same intermediary
position twice.

Reserve nought: 0 6∈ JK ∪ JI ∪ JG ∪ JW ∪ JO. This implies that the starting location, namely
the 0-th one, is reserved for some special purpose (to be specified later).

Reserved tokens: For all instructions ιi we assume that

Gi 6∈ {load_input, lift_key, reveal_output, done}.

This means that the labels specifying the type of an instruction cannot be of the above reserved
type (which will be used to serve specific operational purposes).

Constant Fan-Out: There exists a constant α such that in the execution game, the RAM never
reads a given position more than α times.

It is easy to verify that the above is without loss of generality, and that one can construct such a
regular program for all functions.

B.2 The Compiled Program

The main idea behind the compiler is to store the program and all the intermediary values on the
secret disk.13 Each value V on the disk will be stored along with some augmentation.

Specifically, in the preprocessing a uniformly random string L ∈ {0, 1}κ, that we call the label
from now on, is chosen and stored in position 0 on the secret disk. All other values V will have
a type (j, L, a, p, V), which we call augmented value. Here, j is the position at which the value is
stored, i.e., ωhb

sec[j] = (j, L, a, p, V), L is the secret label, a is the value of the activation counter ac
and p is the value of the program counter pc when V was written, and V is the value itself. Adding
the secret label L (unknown to the adversary A) to the augmented value prevents the adversary

13Note that the program is stored both in the secret and in the public disk. On the one hand, it is important to
keep it in the public disk as otherwise the simulator could never know the current location of the secret disk which
is being accessed at a certain time. On the other hand, it is necessary to store the program into the secret disk as
well, so that tampering the program in the public disk will be detected.

34

Yhb = load_input: If not (Ihb,Ohb) = ((2k−1, j), (2k−1, 2k−1 + j)), for some j, then self-
destruct. Try to parse the input values as follows:

(0, L, a, pc− 1, (K, `K , I, `I , G, `G, O, `O))← Rhb1 // read label from Dhb
sec

x← Rhb2 // read input from Dhb
pub

If the parsing or any of the following tests fail, then self-destruct:

• 0 ≤ pc < `I // CPU supposed to load input
• j = I + pc // correct position is read
• a = ac or (a = ac− 1 and pc = 0) // counters are consistent

Otherwise, set

Ohb1 ← (0, L, ac, pc, (K, `K , I, `I , G, `G, O, `O)) // write label back to Dhb
1

Ohb2 ← (j, L, ac, pc, x) // store input in augmented form

Yhb = lift_key: If not (Ihb,Ohb) = (2k−1, 2k−1 + j), (2k−1, 2k−1 + j), for some j, then self-
destruct. Try to parse the input values as follows

(0, L, ac, pc− 1, (K, `K , I, `I , G, `G, O, `O))← Rhb1 // read label from Dhb
sec

(j, L, ac− 1, pc, z)← Rhb2 // read key from Dhb
sec

If the parsing or any of the following tests fail, then self-destruct:

• `I ≤ pc < `I + `K // CPU supposed to lift key
• j = K + p, where p = pc− `I // correct position is read

Otherwise, set

Ohb1 ← (0, L, ac, pc, (K, `K , I, `I , G, `G, O, `O)) // write back label to Dhb
sec

Ohb2 ← (j, L, ac, pc, z) // write key to Dhb
sec (after updating ac)

Figure 10: Computehb, Part I.

35

Yhb = G 6∈ {load_input, lift_key, reveal_output, done}: If not (Ihb,Ohb) = ((2k−1, 2k−1 +
ai, 2

k−1 +bi, 2
k−1 + j), (2k−1, 2k−1 +ci), 2

k−1 + j)), for some ai, bi, j, ci, then self-destruct.
Try to parse the input values as follows:

(0, L, ac, pc− 1, (K, `K , I, `I , G, `G, O, `O))← Rhb1 // read label from Dhb
sec

(ai, L, ac, ·, A)← Rhb2 // read input from Dhb
sec

(bi, L, ac, ·, B)← Rhb3 // read input data from Dhb
sec

(j, L, ac− 1, pc, H)← Rhb4 // read instruction from Dhb
sec

If the parsing or any of the following tests fail, then self-destruct:

• `I + `K ≤ pc < `I + `K + `G // CPU supposed to compute
• j = G+ p, where p = pc− `I − `K // instruction read from correct position
• H = (G, ai, bi, ci) // instruction at Dhb

pub matches the one read from Dhb
sec

Otherwise, set C := gG(A,B); and let // compute according to the G-type

Ohb1 ← (0, L, ac, pc, (K, `K , I, `I , G, `G, O, `O)) = // write back label to Dhb
sec

Ohb2 ← (ci, L, ac, pc, C) // write computed value to Dhb
sec

Ohb3 ← (j, L, ac, pc, H) // write back instruction to Dhb
sec (updating counters)

Figure 11: Computehb, Part II.

36

Yhb = reveal_output: If not (Ihb,Ohb) = ((2k−1, 2k−1 + j), (2k−1, j)), for some j, then self-
destruct. Try to parse the input values as follows:

(0, L, ac, pc− 1, (K, `K , I, `I , G, `G, O, `O))← Rhb1 // read label from Dhb
sec

(j, L, ac, ·, y)← Rhb2 // read output from Dhb
sec

If the parsing or any of the following tests fail, then self destruct:

• `I + `K + `G ≤ pc < `I + `K + `G + `O; // CPU supposed to reveal output
• j = O + p, where p = pc− `I − `K − `G // position is consistent

Otherwise, set

Ohb1 ← (0, L, ac, pc, (K, `K , I, `I , G, `G, O, `O)) // write back label to Dhb
sec

Ohb2 ← y // write output to Dhb
pub (remove augmentation).

Yhb = done: If not (Ihb,Ohb) = (2k−1, 2k−1), for some j, then self-destruct. Try to parse the
input values as follows:

(0, L, ac, pc− 1, (K, `K , I, `I , G, `G, O, `O))← Rhb1 // read label from Dhb
sec

If the parsing or any of the following tests fail, then self destruct:

• pc = `I + `K + `G + `O. // CPU supposed to terminate

Otherwise, set

Ohb1 ← (0, L, ac, pc, (K, `K , I, `I , G, `G, O, `O)) // write back label to Dhb
sec

and end the activation.

Figure 12: Computehb, Part III

37

from using the REPLACE command to write anything of the form (·, L, ·, ·, ·) to the secret disk. Hence
all such values are from the pre-processing, or computed and stored by the CPU. Having j in the
augmented value prevents the adversary from using the COPY command to move an augmented value
of the form (j, L, ·, ·, ·) to another memory position, as we will ask the CPU to check that j matches
the position from which the augmented value was read.

This means that the attack possibilities of the adversary are reduced to replacing a value
(j, L, ·, ·, V) at memory position j with an older value of the form (j, L, ·, ·, V ′). By adding a
and p to the augmentations we can allow the CPU to detect such a reset attack as follows: We
ensure that for every a and p the CPU writes a unique value, of the form (j, L, a, p, ·), only once.
This way the CPU can use j and the current values of the counters ac and pc to recover the values
a and p, and check that these values match with the values of a and p stored in ωhb

sec[j]. The above
ensures that each value V occurring at ωhb

sec[j] = (j, L, a, p, V) is the correct value V for memory
position j and the current activation and program step. This property is maintained inductively.

The compiler Chb is given in Fig. 8–9. Recall that each instruction has a type (Yhb, Ihb,Ohb);
we call (Ihb,Ohb) the IO pattern of the instruction. Algorithm Computehb is given in Fig. 10–12.
As our hybrid CPU is deterministic, Randomhb always outputs the empty string. In the description
self-destruct means set all registers to 0, raise the self-destruct flag, and terminate. A few remarks
are in order:

• Writing back the label. Notice that, in each execution, the CPU not only reads the label
from the location (1, 0) (i.e., position number 0 of the secret disk) but also writes the label
back into location (1, 0) afterwards. This is necessary to ensure that the same content at (0, 1)
is not being read “too many” times (which is achieved by the c-bounding property). Whenever
the CPU writes into (1, 0), irrespective of the actual value, the content is overwritten. (Recall
that in order to protect against replacing attacks the secret label has to match at each CPU
execution.) Therefore, overwriting each time ensures that the same value is being read at
most once.
• Updating counters. Notice that we update the activation counter (ac) only in the following

cases:

1. load_input (c.f. Fig. 10): When a = ac− 1 and pc = 0. This is the first time the CPU
loads the label in one activation, and therefore we have to update the value corresponding
to the activation counter inside the augmented encoding of the label. Once it is updated
there is no more change, as for pc > 0 the CPU ensures that a = ac.

2. lift_key (c.f. Fig. 10): This is done because, before using the key, we have to update
the value of the activation counter in the augmented encoding of the key.

3. compute instruction G (c.f. Fig. 11): Whenever some instruction with type G is com-
puted, the activation counter is increased in the augmented encoding of the instruction
stored in the secret disk; this ensures that each instruction is executed only once in one
activation.

The program counter pc is updated only inside the augmented encoding of the label, during
each execution of the CPU; this follows by the fact that the CPU accesses the label whenever
run, and accesses all the other values once.
• Implicit checking of the label. Note that, in the description of Computehb, there is no

explicit check of the labels. The check is done implicitly by attempting to parse the content of
the input registers in the specified format. For example, in case the CPU parses two registers

38

successfully as (·, L, ·, ·, ·) and (·, L, ·, ·, ·), then the label in the two registers must match.

B.3 Analysis

We imagine the values in the secret disks being partitioned into so-called domains, labeled by
δ ∈ {0, 1}κ. If a value of the form (j, δ, . . .) is stored into the secret disk, then we say that it is
stored in the domain δ. Notice that the pre-processing stores all the values in the domain L, for a
uniformly random L that is unknown to the adversary. We call this particular domain indexed by
the secret label L the secret domain.

In the following analysis, we are going to use the following crucial properties of CPUhb. One can
easily verifies that these properties hold by the construction of Computehb (c.f. Fig. 10–12):

1. If in a single execution the values read from the secret disk Dhb
sec by the CPU do not come

from the same domain, then the CPU self-destructs.
2. If in a single execution all the values read from the secret disk by the CPU are from the same

domain δ, then all the values written to the secret disk by the CPU in that activation are
written to domain δ.

3. The values that the CPU writes to the public disk Dhb
pub do not depend on the domain the

CPU reads from Dhb
sec. More precisely, changing only the domain δ in all the values read from

the secret disk to some δ′ 6= δ will not change the value CPU writes into Dhb
pub.

We do a hybrid proof, starting from the real execution (in the hybrid model) and ending with
the ideal execution. We prove a series of technical lemmas, and in between we use the insight of
the lemma to define an indistinguishable hybrid distribution. We will define the simulator, which
simulates the view of the modified adversary only given the access to the ideal functionality, at the
end of this sequence of hybrid distributions.

Let B ∈ Ahb be any adversary attacking our hybrid RAM-scheme in the game RealRShb,B,G(k).
We are going to define the eventMIX that happens when the adversary B uses the REPLACE command
to write a value into the secret domain and this value is subsequently read by CPUhb. More precisely,
the adversary gives a REPLACE command with a value of the form (·, L, · · ·) for the value L placed as
the secret label in the pre-processing and later the CPU reads from a position where that particular
(·, L, · · ·) is stored. We define DESTRUCT to be the event that the CPU self-destructs.

Lemma 6. The probability of MIX ∧ ¬DESTRUCT is at most 2−κ+1 irrespective of the strategy of
the adversary B.

Proof. We first argue that it is sufficient to prove that as long as MIX and DESTRUCT did not occur
the probability that MIX occurs in the next command and DESTRUCT does not is at most 2−κ+1.
Then we prove this fact.

Assume we can prove that as long as MIX and DESTRUCT did not occur the probability that
MIX ∧ ¬DESTRUCT occurs in the next step is at most 2−κ+1. Consider then the first step in
which MIX occurs. Then clearly MIX did not occur in an earlier step. Also, since the step was
reached, we have that DESTRUCT did not occur in an earlier step either. So, in all earlier steps,
MIX and DESTRUCT did not occur. Hence, we know that in the current step the probability that
MIX ∧ ¬DESTRUCT occurs is at most 2−κ+1. However, by assumption, we know that MIX occurs,
so either MIX ∧ ¬DESTRUCT or MIX ∧ DESTRUCT will occur. If MIX ∧ DESTRUCT occurs, then
there will be no more steps, as we self-destruct. Hence, the event MIX ∧ ¬DESTRUCT occurs the

39

first time where MIX occurs, or never. And, the first time MIX occurs, the event MIX∧¬DESTRUCT
occurs with probability at most 2−κ+1, as argued above.

By MIX and DESTRUCT not occurring and Property 1 above, we see that the CPU only ever
read values from the same domain in a single execution. So, by Property 2, the CPU never in a
single invocation read values from the secret domain and then stored to another domain. Since the
CPU has no memory between invocations it follows that no information about L was ever written to
a domain which is not the secret domain. So, by additionally using Property 3, we see that as long
as MIX and DESTRUCT did not occur, the adversary has no information on L. Since the guessing
probability of L starts out at 2−κ right after the pre-processing, it follows that as long as MIX and
DESTRUCT did not occur, the guessing probability of L in the view of the adversary is at least 2−κ.

There are, however, other ways that adversary can learn information about L. It can write a
value (j′, L′, . . .) to some position j′ on the secret disk and then execute the CPU on position j′ and
some position j where a value (j, L, . . .) is stored which contains the secret label L. We call this a
mixing attack. By property 1 above, if the CPU does not self-destruct after a mixing attack, then
L′ = L, so the one bit of information about whether the CPU self-destructs or not will depend on
L.

It is not hard to see that if the adversary performs a mixing attack, then the event MIX occurs.
We now analyse the average guessing probability of L after mixing attacks. We first look at what
happens at the first mixing attack and we do a case analysis on L′ = L and L′ 6= L. Let g denote
the guessing probability of L in the view of the adversary before the first mixing attack.

• If L′ = L in a mixing attack, then the adversary guessed L as L′ = L occurs in (j′, L′, . . .); so
this case occurs with probability at most g. After this event the average guessing probability
is clearly 1, and can never never become higher.
• If L′ 6= L in a mixing attack, then the adversary ruled out the value L′. For all labels L′′,

let p(L′′) be the probability in the view of the adversary that L = L′′ before the mixing
attack and let q(L′′) be the probability in the view of the adversary that L = L′′ after
the mixing attack. We have that q(L′) = 0 and q(L′′ 6= L′) = p(L′′)/(1 − p(L′)). Hence
maxL′′ q(L

′′) ≤ maxL′′ p(L
′′)/(1− p(L′)) = g(1− p(L′))−1 ≤ g(1− g)−1.

It follows that after the first mixing attack it holds that either (with probability g) the adversary
can guess L with probability 1 or (with probability at most (1− g)) the adversary can guess L with
probability at most g(1− g)−1. So, by the law of total probability, after the first mixing attack the
probability that the adversary can guess L is at most g · 1 + (1− g) · g(1− g)−1 = 2g.

Note then that this probability cannot increase further by making further mixing attacks.
Namely, if the first mixing attack is with L′ 6= L, then the CPU self-destructs, and hence no
further mixing attacks are possible. And, if L′ = L, then the adversary has just learned L and
the guessing probability increased to its maximal value 1. This means that the average guessing
probability of L in the view of the adversary after mixing attacks is 2g = 21−κ.

Now, for an adversary B attacking RShb, let B1 be a corresponding adversary which runs exactly
as B except that it never uses the REPLACE command to the secret disk. Instead, B1 internally keeps
track of the effect the REPLACE commands would have had on Dhb

sec. In doing this, it keeps track of
the record Q 14 defined within the hybrid model—it is easy to see that B can efficiently compute

14Recall that Q[i] is an identifier keeping track of whether the value at location i of the secret disk is known to the
adversary or not.

40

1. Initially, let Q[i] = > for all i, except that Q[0] = ⊥, and Q[j] = ⊥ for all key positions j
and all code positions j. We use Q[i] = > to represent Q[i] 6= ⊥, as we are not interested
in the exact value of Q[i] when Q[i] 6= ⊥.

2. Receive (P, ωhb
pub) and Ω and input them to B. Then run B.

3. When B outputs (STOP, z), then output (STOP, z).
4. When B outputs (REPLACE, (j, z)), then update V[j]← z and Q[j]← ⊥.
5. When B outputs (COPY, (j, j′)), update Q[j′]← Q[j] and if Q[j] = ⊥, then V[j′]← V[j].
6. When B makes the command (EXEC, D′), then let Dhb

pub ← D′ be the modified public disk;
inspect Dhb[pc] to obtain the next instruction Suppose that, for the current execution,
(i0, . . . , ig) are the positions to be read on the secret disk and (j0, . . . , jh) are the positions
to be written on the secret disk.

(a) If Q[i0] = · · · = Q[ig] = ⊥, which means all the values to be read are “known” (i.e.,
this is a public execution), then proceed as follows:
• Use V[i0], . . . ,V[ig] together with the values read from the public disk via the

current instruction, ac and pc to compute the values to store into the output
registers Ohb1 , . . . , O

hb
d ; note that these values are exactly the same values that

CPUhb would have computed on (EXEC, D′).
• Update Q by setting Q′[j0] = · · · = Q′[jh] := ⊥.
• Similarly, update V as follows: for a = 0, . . . , h, we set V[ja] to hold the value

that CPUhb would have written to Dhb
sec[ja], namely V[ja] := Ohba

• Finally, for all positions in Dhb
pub where CPU

hb would have written, if any, update
the public disk consistently.

(b) Otherwise, this is a secret execution and we proceed as follows:
i. If Q[i0] 6= ⊥, . . . ,Q[ig] 6= ⊥, then output (EXEC, D′). Then set Q[j1] = · · · =

Q[jh] := >.
ii. Else, there exists a and b such that Q[ia] 6= ⊥ and Q[ib] = ⊥. In that case,

simulate a self-destruct (by ignoring this and all future EXEC commands).

Figure 13: B1

an exact copy of Q. From the definition of Q, we observe that if Q[j] = ⊥, then the value in Dhb
sec[j]

is efficiently computable by B. This holds because such value was either: (1) put in Dhb
sec[j] by a

REPLACE command, (2) copied to Dhb
sec[j] from Dhb

sec[i], where Dhb
sec[i] is efficiently computable, or (3)

computed by the CPU by a run of Computehb on inputs which were all efficiently computable by
B (notice that our CPU is deterministic). It follows that B can efficiently compute Dhb

sec[j] for all
j where Q[j] = ⊥. For all j where Q[j] = ⊥ we will let B1 compute the value which would have
been in Dhb

sec[j], had the REPLACE commands of B been executed. Additionally, B1 will make sure
that for all j where Q[j] 6= ⊥, it keeps in Dhb

sec[j] the value that would have been in Dhb
sec[j] if the

REPLACE commands of B had been executed. B1 maintains another record called V to store the
known values—i.e., whenever it sets Q[j] to ⊥, it updates V[j] accordingly. The details are given in
Figure 13.

Consider the following event E, defined in both B and B1: there exist two positions j, j′ in Dhb
sec

from which CPUhb reads in an execution, such that the Q[j] = ⊥ and Q[j′] 6= ⊥. Notice that,

41

for B1, the event E happens in Step 6(b)ii. By construction, if E does not occur, then B1 and B
will output exactly the same value. However, until E occurs it holds for all values Dhb

sec[j] where
Q[j] 6= ⊥ that Dhb

sec[j] is a value computed during the pre-processing (alternatively a value copied
or computed from such values). That is, if Q[j] 6= ⊥ then Dhb

sec[j] is in the secret domain L. On
the other hand Q[j′] = ⊥ implies that the content of Dhb

sec[j
′] is known to the adversary, and hence

the value is in the public domain L′ . Hence, when E occurs, we have that CPUhb reads from two
domains L and L′. In such a case, by Property 1 of CPUhb, DESTRUCT occurs if L 6= L′. On the
other hand, if L = L′ the CPU does not self-destruct in RealRShb,B,G(k), and hence MIX occurs,
which in turn implies that MIX ∧ ¬DESTRUCT occurred. Using Lemma 6 (recall that κ = k + 1)
we can conclude that: {

RealRShb,B,G(k)
}
k∈N
≈2−k

{
RealRShb,B1,G(k)

}
k∈N

.

In the following we can therefore assume an adversary B1 which does not use the REPLACE

command on the secret disk.

Lemma 7. Let L be the secret label. Assume an adversary of the form B1. Then for all (j, L, a, p)
there can not exist two different values v and v′ (6= v) such that both (j, L, a, p, v) and (j, L, a, p, v′)
are written to the secret disk Dhb

sec.

Proof. By assumption, the adversary B1 never replaces values on the secret disk, it at most copies
them around. By construction, all the values of the form (j, L, a, p, ·) written by the CPU have
a = ac and p = pc, and these change between invocations of the CPU. So, the only way two
values of the form (j, L, a, p, v) and (j, L, a, p, v′ 6= v) could be written is that this happens in the
same invocation of the CPU. In the following we use the requirements of the regular program (c.f.
Section B.1). To conclude the proof, we considering a single execution of CPUhb in all possible cases:

1. load_input: CPUhb writes in locations 0 and j but we have j 6= 0 as j ≥ I > 0 by Reserve
Nought

2. lift_key: CPUhb writes in locations 0 and j but we have j 6= 0 as j > 0 by Reserve Nought.
3. compute G: CPUhb writes to locations 0, ci, j. Here we have ci 6= 0 and j 6= 0 by Reserve

Nought. Furthermore, ci 6= j by No Overlap.
4. done: In done we only write one value to the secret disk.

Now, for an adversary B1 attacking RShb without REPLACE commands to the secret disk, let B2
be a corresponding adversary which runs exactly as B1 except that it (i) ignores all COPY commands,
and (ii) ignores all modifications to the public disk Dhb

pub in positions j where j 6∈ {I, . . . , I+ `I −1};
note that such an adversary is not allowed to replace any value computed during pre-processing in
Dhb

pub. Instead B2 keeps track of (i) which values would currently have been on the secret disk had
the COPY command been performed, and (ii) the state of the public disk had the modification been
applied. Towards this, B2 maintains a record ω̃hb

pub corresponding to ωhb
pub (c.f. Fig. 4). When B1

makes an EXEC command, then B2 checks two things: (i) whether there is any replacement of the
values put during pre-processing in Dhb

pub, i.e., if ω̃
hb
pub 6= ωhb

pub; (ii) whether the current location to be
read from Dhb

sec is copied from another position, i.e., the position or the counters in the augmented
encoding fails to match, and COPY was already executed. If any of the above two checks fails, B2
simulates a self-destruct by ignoring all future EXEC commands. Otherwise B2 also outputs an EXEC

command.

42

Lemma 8. The following holds:{
RealRShb,B1,G(k)

}
k∈N

=
{
RealRShb,B2,G(k)

}
k∈N

.

Proof. By Lemma 7, we know that for each (j, L, a, p) at most one value of the form (j, L, a, p, v)
was ever written to the secret disk. So, if we can show that the CPU correctly predicts the correct
value of ωhb

pub[pc] and the correct tuple (j, L, a, p) for all the values (j, L, a, p, v) that it reads up from
the secret disk, and that it actually performs the correct checks for these values, then we know that
the first time that RealRShb,B1,G(k) would have resulted in reading up an incorrect value from the
public disk or an ill-formed tuple (j, L, a, p, v), the CPU would self-destruct, which is exactly how
we simulate.

Clearly, for the labeled parameters the CPU can correctly predict that it should get an encoding
of the form (0, L, ac, pc− 1) and indeed it self-destructs if it does not.

By construction, for pc 6∈ {G, . . . , G+`G−1}, the values (j, L, a, p, . . .) that the CPU expects to
read from the secret disk and also the instruction read from the public disk are uniquely given by ac,
pc, L and the (correct) parameters (K, `K , I, `I , G, `G, O, `O) retrieved form ωhb

sec[0]. For example,
for pc ∈ {K, . . . ,K+ `K−1}, the CPU can use K and `K to see that the label should be lift_key,
which implies that the correct instruction should be (lift_key, (2k−1, 2k−1+j), (2k−1, 2k−1+j)) for
j = K+pc−`I . From this the CPU knows that it should read a value of the form (j, L, ac−1, pc, . . .).
Since there is at most one such value, if the CPU does not self-destruct it is because it read up the
correct value.

For pc ∈ {G, . . . , G+ `G−1} we have that, in a manner similar as above, the values j and L can
be deduced from ac, pc and (K, `K , I, `I , G, `G, O, `O); similarly the position j and the expected
tuple (j, L, ac−1, pc, . . .) can be deduced from ac, pc, L and (K, `K , I, `I , G, `G, O, `O). Hence if the
CPU does not self-destruct then (j, L, ac−1, pc, H) is the correct value and henceH = (Gi, ai, bi, ci).
This implies that the check H = (G, ai, bi, ci) guarantees that the instruction on the public disk was
correct. The latter in turn implies that if the CPU does not self-destruct then (ai, L, ac, ·, A) and
(bi, L, ac, ·, B) are the correct values. Note that we here use additionally that no two values of the
form (j, L, ac, ·, ·) are stored for j ∈ {G, . . . , G+ `G − 1}. This follows from Don’t overwrite, which
guarantees that within a single activation ac, no two instructions write to the same position.

We are now looking at an adversary B2 which never touches the secret disk and which only
chooses values for the input positions namely {I, . . . , I + `I − 1} on the public disk. Consider the
following simulator S2:

1. Initialize ωhb
pub as the preprocessing would have done.

2. Run B2 until it executed command (EXEC, D′) exactly `K times. Simulate by doing nothing.
3. For the next `I commands (EXEC, D′) executed by D2, simulate the modified public disk by

setting ωhb
pub[I + i]← xi for all i = 0, . . . , `I − 1.

4. Let x = X−1(x0, . . . , x`I−1) and query the ideal model to learn y = GK(x).
5. Execute command (EXEC, D′) exactly `G times. Simulate by doing nothing.
6. Compute (y0, . . . , y`O−1) = Y−1((x0, . . . , x`I−1), y).15

15Here we make use of the fact that the simulator Y−1 gets the tuple (x0, . . . , x`I−1) as additional input. We
emphasize that the simulator S3 also works in case Y−1 does not get (x0, . . . , x`I−1) as input. However, since giving
this tuple to Y−1 does not weaken the security definition, and moreover it makes the description of S3 simpler, we
prefer to use the first formulation.

43

7. Let i = 0. As long as i < `O, run B2 to make it give the command (EXEC). In response to this
update ωhb

pub[O + i]← yi, and let i← i+ 1.
8. Run B2 until it executed the command (EXEC) once. Then restart from Step 2.

It follows from Output Simulatability that{
RealRShb,B2,G(k)

}
k∈N

= {IdealS2,G(k)}k∈N .

We can then construct the final simulator as follows, from B, construct B1, from this B1 construct
B2, and from this B2 get S2 and let S = S2. It is a corollary to the above analysis that{

RealRShb,B,G(k)
}
k∈N
≈2−k {IdealS,G(k)}k∈N .

This show that the hybrid RAM-scheme RShb is secure. Observe that because RShb self-destructs
the first time it reads up a value from the secret domain which is not the correct value, and since the
correct values are touched at most α times by Constant Fan-Out, it follows that to prove that the
scheme is (α+ 1)-bounding, it is sufficient to prove that it is (α+ 1)-bounding against an adversary
of the form B2. In RealRShb,B2,G(k) all values at input positions are written once and then read
at most α times. Values at key positions and code positions are written once and read once, and
α + 1 ≥ 2. Values at intermediary positions are written once and read at most α times. This
concludes the proof of Theorem 5.

44

	Introduction
	Our Model
	Motivation and Challenges of our Model
	Our Techniques
	Other Related Work

	Preliminaries
	Notation
	Continuous Non-Malleable Codes

	A Generic Leakage and Tamper Resilient RAM
	Main Theorem
	Hybrid-to-Split-State Emulator
	The Hybrid Model
	The Emulator

	The Hybrid Scheme
	Proof of Theorem 4
	Details of Our Hybrid Scheme
	A Regular Program for G
	The Compiled Program
	Analysis

