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Abstract. We construct O(log1+ε n)-round public-coin concurrent zero knowledge arguments for NP
from standard (against any polynomial-time adversary) collision-resistant hash functions for arbitrarily
small constant ε. Our construction is straight-line simulatable. This is the first public-coin concurrent zero
knowledge protocol based on standard/long-studied assumption that (almost) achieves the best known
round-complexity of its private-coin counterpart [Prabhakaran et al., FOCS 02]. Previously, such public-
coin constructions require either polynomial number of rounds [Goyal, STOC 13], newly-introduced
assumptions [Chung et al., FOCS 13], or stronger model [Canetti et al., TCC 13].

This result has strong consequences: it yields the first (almost) logarithmic round simultaneously
resettable arguments for NP and the first (almost) logarithmic round concurrent multi-party computation
in the single input setting. These results significantly improve over the polynomial round-complexity of
the best known protocols based on standard assumptions in both cases.

Our technical contribution is two-fold. First, we introduce a simulation strategy called clearance that
yields a simulation tree of very special combinatorial structure and enables us to instantiate Barak’s
protocol [Barak, FOCS 01] using the recent Ben-Sasson et al.’s quasi-linear construction of PCP sys-
tem [Ben-Sasson et al., STOC 13] to obtain logarithmic round-complexity; secondly, we show how
to modify Barak’s protocol such that the soundness of overall construction does not rely on the (im-
plicit/explicit) proof of knowledge property of the underlying universal argument/PCP system, which in
turn allows us to benefit from progress on short PCP system of more general types without assuming
stronger/superpolynomial hardness.

1 Introduction

Zero knowledge proof, introduced by Goldwasser et al. in [GMR89], has played a pivotal role in
modern cryptography. It offers a magical method of proving theorems in which the prover reveals
nothing to the verifier but their validity. Shortly afterwards, Brassard et al. [BCC88] defined the
notion of zero knowledge argument whose soundness is only required to hold against polynomial-
time cheating provers; Goldreich et al. [GMW91] showed that every NP language admits a zero
knowledge protocol under standard hardness assumption. These generalizations enable a wide range
of its applications in cryptography.

The original security notions are defined in the standalone setting, where only a single execution
of the protocol is considered. To deal with security concerns arising from in asynchronous networks
like the Internet, Dwork et al. [DNS98] put forward the notion of concurrent zero knowledge. They
consider a setting where multiple executions of the same protocol take place, and a malicious adver-
sary may control the message scheduling and corrupt honest parties. A protocol is called concurrent
zero knowledge if it preserves zero knowledge even in this concurrent setting.

Over the last few decades, concurrent zero knowledge has attracted considerable attention and
stimulated a few ingenious innovations of simulation techniques, such as Richardson and Kilian’s
recursive simulation technique [RK99] and its oblivious version introduced by Kilian and Petrank
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[KP01]. Prabhakaran et al. [PRS02] refined the analysis of the simulator in [KP01] and finally
proved (almost) logarithmic (Õ(log n)) round-complexity is sufficient for concurrent zero knowl-
edge protocol, which almost matches the black-box lower bound of [CKPR01]. To this date, Prab-
hakaran et al.’s upper bound on round-complexity still remains the lowest among all known con-
structions of concurrent zero knowledge based on standard/long-studied assumptions in the plain
model.

In his breakthrough paper, Barak [Bar01] showed how to set up a trapdoor using the code of the
(malicious) verifier and then construct zero knowledge protocol in the “FLS framework” [FLS99].
This non-black-box simulation technique was used to break a number of known lower bounds for
black-box zero knowledge. For instance, it gives rise to constant-round public-coin zero knowl-
edge argument, and the associated simulator proceeds in a straight-line manner and runs in strict
polynomial time. These features have been proved impossible to achieve when using black-box sim-
ulation [GK96, BL04]. Since its introduction, Barak’s technique actually found many applications
beyond zero knowledge.

However, for concurrent zero knowledge, Barak’s non-black-box technique just gave us a bounded-
concurrent zero knowledge argument, here “bounded concurrence” refers to the setting where the
number of concurrent sessions initiated by the malicious verifier is known prior to designing of the
protocol. Though a huge body of work was devoted to study Barak’s non-black-box technique, no
public-coin fully concurrent zero knowledge protocol was known until very recently. In 2013, Goyal
[Goy13] developed an oblivious straight-line simulation and constructed the first public-coin con-
current zero knowledge protocol from the existence of collision-resistant hash functions, which runs
in polynomial rounds. Chung et al. [CLP13b] introduced a new non-interactive argument system
called “P-certificate”, and presented the first public-coin constant-round concurrent zero knowledge
argument with uniform soundness based on the existence of P-certificate. Meanwhile, in the global
hash model, Canetti et al. [CLP13a] showed that public-coin concurrent zero knowledge can be
achieved with O(log1+ε n) round-complexity.

Why public-coin and straight-line simulator? We would like to stress that public-coin and straight-
line simulatable protocols, in which the verifier simply sends independently random coins at each
of his steps, have been found to be more broadly applicable and versatile than “private-coin” prot-
cols. For example, the public-coin proof systems for IP can be transformed into zero knowledge
proofs [BOGG+88]; The transformation in [DL07] of public-coin concurrent zero knowledge into
simultaneously resettable arguments is much simpler than the transformation of [DGS09], and more
importantly, the transformation of [DL07] (together with a technique from [DGS09, DFG+11]) in-
troduces only constant overhead1 in the number of rounds complexity, whereas the transformation
of [DGS09] introduces a polynomial round-complexity overhead. As already mentioned in [Goy13],
the public-coin and straight-line simulatable concurrent protocol can be used to bypass the impos-
sibility results of [Lin08, PTW11] and obtain concurrent secure multiparty computation for some
functionalities beyond zero knowledge.

1.1 Our results

Main result. Assuming that standard (against any polynomial-time adversary) collision-resistant
hash functions exist, we constructO(log1+ε n)-round public-coin and straight-line simulatable con-
current zero knowledge arguments for NP for arbitrarily small constant ε. This is the first public-coin

1 A constant-round instant-dependent resettably-sound resettable WI argument– the main building block in the transfor-
mation of [DL07] – were implicit in the work [DGS09, DFG+11].
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concurrent zero knowledge protocol based on standard assumption that (almost) achieves the best
known round-complexity of the private-coin protocol presented in [PRS02], and significantly im-
proves on the construction of [Goy13] which requires polynomial round-complexity. Our construc-
tion achieves the same round-complexity of the protocol in [CLP13a] but does not rely on either
global hash or super-polynomial hardness. This result is incomparable to the one of [CLP13b]: the
protocol of [CLP13b] obtains constant round-complexity but relies on a newly-introduced assump-
tion and achieves only uniform soundness.

Applications. Our result has strong consequences. Following the transformation from [DL07], it
yields a logarithmic-round simultaneously resettable argument for NP.

Our protocol also has applications beyond zero knowledge. As pointed out in [Goy13, CLP13b],
the public-coin and straight-line simulatable concurrent zero knowledge protocol can be applied to
achieve fully concurrent secure computation in the single input setting (or, more generally, for a fam-
ily of functionalities satisfying some certain property) with essentially the same round-complexity
as the underlying concurrent zero knowledge protocol2. Thus, when our protocol is applied, we ob-
tain an (almost) logarithmic round protocol for concurrent secure computation in the same setting.

These two results significantly improve over the polynomial round-complexity of the best known
protocols based on standard/long-studied assumptions in both cases.

1.2 Technique overview I: Clearance and the combinatorial structure of the simulation tree

Our initial construction, which requires super-polynomial hardness assumption, is basically a multi-
slot version of Barak’s protocol[Bar01], with the following two modifications. First, we replace
the universal argument (UA for short) of [BG08] with Ben-Sasson et al’s construction of almost
UA [BSCGT13]. As we will see, the “short” (quasi-linear) length of the underlying PCP proof of
[BSCGT13] is one of critical properties for the analysis of our simulator to go through. Secondly,
we have the verifier send the hash function α for the universal argument in its first message of
the global protocol. This allows us to borrow an idea from [CLP13a] that enables the simulator to
prepare offline UA.

Roughly, this construction proceeds in three stages. In the first stage the verifier sends two
random hash functions h, α (α will be used for UA) first, and then the prover and the verifier run k
iterations (we call them slots) of the preamble of Barak’s protocol: for each 1 ≤ i ≤ k, the prover
sends a dummy commitment ci, to which the verifier responds with a random string ri; the second
stage3 is an encrypted UA of [BSCGT13] in which the prover proves that one of slots, say (ci, ri),
satisfies the following condition: ci is a commitment to a hash value of some code Π, and, given
input c, Π outputs ri in some super-polynomial time; in the final stage, the prover gives 3-round WI
proof that second stage, either x ∈ L, i.e., the statement in question is true, or the encrypted UA is
acceptable.

The soundness of this protocol follows from previous standard analysis, except that here we
need to assume the underlying hash functions h, α is collision-resistant against super-polynomial
time adversary, due to that the standard analysis of soundness for Barak’s protocol relies on the

2 Actually, Goyal mentioned in [Goy13] that they achieve this result and concurrent blind signature in an unpublished
work. We believe that our protocol can also be applied to obtain concurrent blind signature with significant improve-
ment on the round complexity.

3 Note that this stage slightly differs from the first stage of witness indistinguishable UA of [BG08] where the prover
proves to the verifier via encrypted UA that either the preamble generates an YES instance or x ∈ L. Our construction
of the last two stages follows from the work of [PR05].
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(weak) proof of knowledge property of the underlying UA, and that such property of almost UA of
[BSCGT13] was only established from super-polynomial collision-resistant hash functions. In next
subsection, we will show how to remove the requirement of super-polynomial hardness.

The focus of this subsection is to present a simulation technique for the above protocol. At
a very high level, for each session, our simulator chooses a slot (ci, ri) to prepare a PCP proof
(together with its Merkle hash treee, we ignore the latter for now for simplicity) with respect to this
slot, which will enable it to go through the last two stages in a straight line way. This can be done
by having the simulator commit to hash value of the joint code of itself and the verifier. Observe
that such a joint code will generates the same transcript of concurrent sessions between ci and ri
internally as in the simulation and thus the slot (ci, ri), together with the hash function h in this
session, actually forms an YES instance. A major issue with this approach is, in concurrent setting,
the slot (ci, ri) may cover many UAs of other sessions (By “ slot (ci, ri) covers a message” we mean
this message appears within this slot), which in turn requires our simulator to construct PCP proofs
for (the correctness of) constructions of other PCP proofs, and furthermore, with the quasi-linear
n logO(1) n length PCP in use, a polynomial time simulator could only reconstruct these PCP proofs
up to recursive depth O( logn

log logn). Now, one problem is left:

How to choose a slot of a session for which we construct a PCP proof when we limit recur-
sive depth to O( logn

log logn) and k to logarithm?

Before describing challenges to answer this question, we fix some terminology (some of which are
subject to change as we present our new technique.). We will focus on the first prover step of UA
in which the simulator needs to prepare a PCP proof, and for now we call this step a PCP step. We
call a session solved if the simulator already obtained a PCP proof for some slot which enables it to
complete this session. We say that a slot (cj , rj) is level-0 slot if it does not cover any PCP step, and
that a PCP proof is level-0 PCP proof if it is constructed for a level-0 slot; A slot is called level-i
slot if the highest level PCP proof(s) covered by it is at level i − 1; Similarly, A level-i PCP proof
refers to the one that is constructed for a level-i slot.

The known strategies seem not to be able to solve the above question. Goyal [Goy13] developed
a random marking strategy to select a slot for each session, but it seems that the analysis of this
technique relies intrinsically on the fact there are polynomial number of slots for each session to
bound the failure probability, which is independent of length/efficiency of the underlying PCP proof
system.

One may also wonder if the following naive strategy works: The simulator follows the above
high level idea, and whenever entering the first prover step of UA of a session, it chooses a slot at
lowest level to prepare PCP proof for this session. Again, this one is not as good as it looks like.
Consider the following verifier scheduling (depicted in Fig 1):

An example of verifier scheduling V ∗: Suppose that a malicious verifier V ∗ initiates n · k sessions
and uses the following layered scheduling: at the bottom layer, it executes the first k sessions
sequentially; at the second layer, it executes another k sessions as follows. For each session i
on the second layer, k + 1 ≤ i ≤ 2k, and for all 1 ≤ j ≤ k, V ∗ has its j-th slot, denoted
by (cij , r

i
j), cover the last two stages (called WIUA) of the session j on the bottom layer, and

then completes these k sessions sequentially; Similarly, the verifier arranges the k sessions at
the third layer in the same way except that it has the j-th slot of each of these sessions cover
WIUA of the (k + j)-th session at the second layer, and so on.
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Fig. 1. The scheduling V ∗

It is easy to see that the above simulation strategy does not work for this scheduling: there are
n layers, and for each session at layer l, the lowest level of its slots is level l − 1. This results in
exponentially blow-up of the running time of the simulator.

Our solution is to introduce a technique we call “clearance” into the above simple simulation
strategy. Our simulator proceeds in a straight-line way, whenever it enters the first prover step of
UA of an unsolved session s, it does the following at this single step:
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1. Solve this session: choose a lowest level slot (say, at level i) of this session (If there are several
slots at the same lowest level, it chooses the first one.), construct a PCP proof for this slot, and
store it in a table.
Now this PCP proof is at level-i.

2. Clearance: For every session t for which at least one slot appears in the current history but has
not been solved yet, if the lowest slot of this session so far is at level ≤ i, solve it by using the
above strategy, and store the corresponding PCP proofs in a table.
Note that, after this clearance step, the simulator can simply retrieve the corresponding PCP
proof (and its Merkle hash tree) to complete session t.

We will call the session s (which remains unsolved until the simulator enters its second stage)
normal, and all those sessions being cleared/solved in clearance step lucky.

At first glance, our strategy seems even worse than the above naive one since for a lucky session
the simulator may not use its lowest level slot to construct PCP proof. However, we observe that:

– In the analysis of the simulator’s running time, we just need to care about the time spent on the
prover steps in which the simulator actually constructs PCP proofs. We will call such prover
steps PCP construction step. Observe that PCP construction steps are actually those prover first
steps of UA of normal sessions, and that no lucky session contains PCP construction step (thus
all prover steps of a lucky session are “light”). In a PCP construction step, the highest level PCP
proof is the one for the corresponding normal session.

– Although it may be the case that in a single PCP construction step the simulator needs to con-
struct arbitrarily polynomial number of PCP proofs, as we will see in section 5, the major con-
tributor to the blow-up of the simulator’s running time is the (highest) level of PCP proof, rather
than the number of PCP proofs constructed in this step.

– Furthermore, perhaps surprisingly, using clearance will keep every PCP proof at desirable low
level, and thus even for those lucky sessions the slot we choose for simulation is also at low
level (though this choice may not be optimal). We will discuss this property shortly.

From now on, we call a PCP construction step level-i PCP construction step if the highest
level of PCP proof constructed at this step is i, and a slot level-i slot if the highest level of PCP
construction step covered by it is i− 1.

To take a closer look at our simulation strategy, we now form a simulation tree and examine its
combinatorial structure.

The simulation tree and its structure. Think of a PCP construction step as a node, which (possibly)
contains many PCP proofs. Our simulator proceeds from one node to another in a straight line
manner. We create the parent-child relationship between these nodes as follows. Consider a node u
on level i at which an unsolved normal session, say session s, just arrives its second stage. Denote
by Su the set of sessions that will be solved at node u (thus s ∈ Su), and for each session t ∈
Su, suppose that the slot (cjt , rjt) is the one for which our simulator will construct a PCP proof
for session t, and that cjl is the first one appearing in the simulation path among all those prover
messages in the slots {(cjt , rjt) : t ∈ Su}. Then, when the simulator arrives at u on level i, we set
the node u to be the parent node of all nodes v that:

1. v is covered within cjl and the time when the simulator arrives at the node u; or,
2. v is on level ≤ i− 1 and doesn’t have a parent node yet.
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Note that, in extreme cases, to construct PCP proofs at node u may require the simulator to
reconstruct all PCP proofs within the entire subtree rooted at u.

A general simulation path consists of several consecutive simulation trees. The most compact
simulation tree with k = 3 is depicted in Fig 2, here by “most compact” we mean that, among all
possible simulation paths of the same height, the most compact one achieves the minimum number
of nodes on every level (see section 5 for the analysis).

level 0

level 1

level 2

level 3

cl1 cn1

r l
1 c l

2

cm1

r l2

cl3

rm1
rl3

rn1

c n
2

rn2

Fig. 2. The most compact simulation tree with k = 3. Here, the arrows refer to the real simulation
path, the dashed lines represent parent-child relationship, and each short bold line that lies in a node
represents a PCP proof. In this tree, the session l is normal and gets solved when the simulator
arrives at the first node at level 2, while the sessionm is lucky and is solved by clearance at the same
node with session l. Until the verifier message rn2 , the session n still remains unsolved, but it still
has chance to get solved at lower (than 2) level node.

One striking property of our simulation tree is the following. For a node u, and for a session i
remaining unsolved at u, we denote by niu the number of slots of session i that do not appear before
the node u yet. Then, if the minimum number niu = c among all those session i’s, our simulator will
go through (at least) c nodes at level 0, and build a (sub)tree from this bottom level again.

This property corresponds to an interesting combinatorial structure of the most compact simu-
lation tree, as depicted in Fig 3. Actually, for the most compact tree with height l ≥ 2, as we will
show, the number of nodes at level 0 is exactly equal to

(k + l − 2)(k + l − 1)
(
k+l−3
l−2

)
(l − 1)l

When the slot number of each session k ∈ O(log1+ε n), then the height l of the simulation tree
is bounded by O( logn

log logn) to make sure that the above number is still a polynomial. This is the key
to show that the simulator runs in polynomial time.

For the example of verifier scheduling V ∗ described before, the simulation path is depicted in
Fig 4. This path contains only one tree of height 1. When entering the first prover step of UA in
session k + 1, the simulator constructs a PCP proof for this session, and by clearance strategy, it
also constructs PCP proofs for all other sessions on the second layer (i.e., session k + 2 to session
2k). This forms the only node/PCP construction step at level 1. For session 2k + 1 to session 3k
on layer 3, each of them has the second slot cover the WIUA of session k + 2, in which the first
prover step of UA is a non-PCP-construction-step (since session k + 2 has already been solved),
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level 0

level 1

level 2

level 3

Fig. 3. The combinatorial structure of the most compact simulation tree with height l ≥ 2 (l = 3 in
this example): (1) For every i > 0, the left-most node on level i has k (=3, in this example) children;
and (2) for every node u at level i ≥ 2, and any u’s two consecutive (according to the order of
appearance) child nodes, the subtree T2 rooted at the second child node can be obtained from the
subtree T1 rooted at the first child node by deleting the first branch of T1.

thus by clearance strategy again, at the first prover step of UA in the session 2k + 1, the simulator
will construct PCP proofs for all of them with respect to their second slots, which forms a new node
at level 0. This observation applies to higher layer sessions, and thus all subsequent nodes are at
level 0.

1 2

...

k 2k + 1

3k

3k + 1

4k

... ...

k + 1

2k

Fig. 4. The simulation path for the example of verifier’s scheduling V ∗. In this path, there is only
one tree of height l = 1.

1.3 Technique overview II: Removing the requirement of PoK property from UA/PCP

One slightly annoying problem with the above protocol is that we have to assume super-polynomial
collision-resistant hash functions for the soundness of the protocol to go through. This, as explained
in [BSCGT13], is mainly due to that the PCP proof developed [BSCGT13] does not enjoy implicit
proof of knowledge property.

However, a closer look at the overall zero knowledge construction and its soundness analysis
of [BG08] actually inspires us to modify our initial construction in such a way that the soundness
analysis for the overall protocol does not rely on the knowledge of proof property of the underlying
UA. Recall that in the preamble of zero knowledge protocol in [BG08], the simulator is supposed
to commit to a pair (|ECC(Π)|,MHh(ECC(Π)), where ECC is some error correcting code of
constant relative distance andMHh(ECC(Π)) is the Merkle hash tree value of ECC(Π) via hash
function h, and then proves in UA that the transcript of the preamble stage is an YES instance.

The basic strategy for soundness analysis for the construction of [BG08] is as follows. Suppose
that there is a malicious prover that can cheat with non-negligible probability, then when running
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it twice on the same first two messages (h, c) but difference challenges r, r′, the probability that
the prover gives accepting proofs for both sessions is still high. Note that the (part of) witnesses Π
and Π ′ used by the prover in these two sessions must be different. Now due to the error correcting
property of ECC, the codes ECC(Π) and ECC(Π ′) differ on a constant fraction. Thus, when we
choose a random location and apply the extractor of UA to extract a single bit at this location (and
their corresponding authenticators) for each of ECC(Π) and ECC(Π ′), these two bits will differ
still with high probability, and thus we derive a collision for h.

Our key observation is that the length of the target collision, i.e., a bit of ECC(Π) at a random
location together with its authenticator, can be bound4 by n2. This enables us to prove the knowledge
of the bit and its authenticator via a standard 3-round WI argument of knowledge. For this reason,
we modified our initial protocol in the following way:

1. Add an extra stage between the slots stage and encrypted UA stage of our initial protocol, in
which we have the verifier send a random location j for the string ECC(Π), and then have the
prover response with a commitment cecc to 0n

2
.

In simulation, the simulator in this stage is supposed to commit to (|ECC(Π)|, b||σb), where b
and σb are the j-th bit of ECC(Π) and its corresponding authenticator.

2. Have the prover prove in UA that there is some slot (ci, ri) such that, (1) (h, ci, ri) is an YES in-
stance, and (2) cecc = Com(|ECC(Π)|, b||σb), and ci = Com(|ECCC(Π)|,MHh(ECCC(Π))).

3. In addition to the second part of the OR statement that x ∈ L or the encrypted transcript of
UA is acceptable, we also have the prover prove of knowledge of the content of cecc in the last
3-round WI argument of knowledge.

Suppose now that a cheating prover gives an accepting proof on a false statement x /∈ L. The
soundness of the UA guarantees, when we apply the extractor to the last 3-round WI argument
of knowledge, the extracted content of cecc must be the required information about the program
defined in the relevant slot (ci, ri), i.e., the program committed in ci that actually outputs ri. This, by
standard rewinding technique, finally enables us to derive collisions for the hash function h without
requiring further proof of knowledge property from the underlying UA. As we will see in section
3, if not required to satisfy (weak) proof of knowledge property, the construction of almost UA
in [BSCGT13] is actually built on standard (against polynomial time adversary) collision-resistant
hash functions. This follows directly from the first two step of the proof for establishing weak proof
of knowledge property presented in [BG08].

1.4 Related work

Concurrent zero knowledge in stronger model/under stronger assumptions. Despite great effort
made in the last decades, the round complexity of concurrent zero knowledge is still far from be-
ing well understood. To circumvent the black-box lower bound of [CKPR01], researchers resort to
several stronger models/set-up assumptions, such as the timing model [DNS98], common reference
string model [Dam00], bounded player model [GJO+13], or relax the prover’s security to allow
super-polynomial time simulation [Pas03, Pas03, BS05, PV08]. In the plain model, several new
non-black-box techniques for obtaining constant-round complexity were developed under stronger
(non-standard) assumptions in very recent years. Besides the work of [CLP13b] mentioned before,

4 since the length of Π can be bound by some super-polynomial.
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two other (private-coin) constant-round concurrent zero knowledge arguments, based on knowledge
assumption and differing-input obfuscation respectively, were recently presented in [GS12, PPS13].

Resettability. Another notable security notion stronger than concurrrent zero knowledge is resettable
zero knowledge[CGGM00], for which the malicious verifier is allowed to execute polynomial num-
ber of concurrent sessions with a prover with a fixed random tape. Barak et al. [BGGL01] put for-
ward an analogue notion of resettable-soundness and presented a transformation of public-coin zero
knowledge protocol into a resettably-sound zero knowledge protocol. After the first simultaneously
resettable (resettably-sound resettable zero knowledge) argument was constructed[DGS09], several
new non-black-box techniques were developed and the assumption needed for simultaneously re-
settable arguments was reduced to the mere existence of one-way function [COPV13, BP13]5, but
all these protocols were constructed via the general transformation of [DGS09] and hence require
polynomial number of rounds.

[CGGM00] also introduced the Bare public-key model, aiming at obtaining constant-round re-
settable zero knowledge. As shown in recent work of [DFG+11, COSV12], constant-round simul-
taneously resettable argument can also be achieved in this model. We refer readers to references
therein for many other studies on resettability in the Bare public-key model.

Concurrently self-composable secure computations. The concurrent self-composition6 was later ex-
tended to general two/multi-party computations [Lin03, PR03, Pas04]. These works handle only
bounded concurrency and was recently subsumed by [Goy12], which constructed fully concurrent
secure protocols in the single input setting7. Note that it was showed to be impossible to achieve
fully concurrent security for a large family of functionalities, regardless of the type of simulation
technique used [Lin08]. Due to its public-coin and straight-line (non-black-box) simulation proper-
ties, the very recent construction for concurrent zero knowledge [Goy13] can be applied to achieve
fully concurrently secure protocols with improved (but still polynomial) round complexity over
[Goy12]. Under the newly-introduced assumption (namely the existence of P-certificate), this result
can be achieved with significant improvement on round complexity [CLP13b].

1.5 Rest of the paper

We provide the definition of concurrent zero knowledge in section 2. In section 3, we recall uni-
versal argument and point out that Ben-Sasson et al.’s construction of UA can be based on standard
collision-resistant hash functions if we do not require explicit proof of knowledge property from it.
We present our initial construction based on super-polynomial time collision-resistant hash function
in section 4, and the simulator for this construction in section 5. Our final construction is presented
in section 6.

2 Preliminaries

In this section, we mainly present definition of concurrent zero knowledge argument, and refer
readers to the textbook [Gol01] for some basic definitions of building blocks used in this paper.

5 It is worth noting that [BP12, BP13] developed a non-black-box technique based on the impossibility of general
program obfuscation [BGI+01], instead of the PCP mechanism.

6 This refers to the setting where the same protocol is run many times concurrently. A more general setting of com-
position call universal composition, where a protocol is executed concurrently with arbitrary other protocols, was
introduced by Canetti [Can01].

7 This can be generalized to provide fully concurrently secure protocols for a family of functionalities that enjoy some
certain property (close to bounded pseudoentroy conjecture) [Goy12].
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A function negl(n) is called to be negligible if for every polynomial q(n) there exists a positive
integer N such that for all n ≥ N , it holds that negl(n) ≤ 1/q(n).

For a NP language L, the associated relation RL is defined to be

RL = {(x,w)|x ∈ L;w is a witness for x ∈ L}

.
We will abbreviate probabilistic polynomial-time with PPT. An interactive proof system (P, V )

for a language L is a pair of interactive Turing machines, for which two conditions, called com-
pleteness and soundness, are required to hold. The completeness says honest prover can convince
the verifier of the truth of the truth of the statement being proven, while the soundness prevents
the honest verifier from cheating, that is, it is infeasible for a (even unbounded) prover to make the
verifier accept a false statement.

In this paper, we consider a variant of proof system called argument system, whose soundness
condition is only required to hold against PPT prover strategy. We denote by (P, V )(x) the output
of V at the end of interaction on common input x, and denote by ViewP

V (x) a random variable that
describes the view of the verifier consisting of the common input x, the random tape of V and all
the prover messages it received.

Definition 1. [Interactive Argument] A pair of PPT interactive Turing machines (P, V ) is called
an interactive argument system for language L if the following conditions hold:

– Completeness: For every x ∈ L, Pr[(P, V )(x) = 1] = 1.
– Soundness: For every x /∈ L, and every non-uniform PPT prover P ∗,

Pr[(P ∗, V )(x) = 1] < negl(|x|).

A zero knowledge argument system is an interactive argument for which the view of the (even
malicious) verifier in an interaction can be efficiently reconstructed. In this paper, following the
work of [DNS98], we consider a powerful concurrent (malicious) verifier which interact with a
polynomial number of independent provers over an asynchronous network. The concurrent verifier
is allowed to fully control over the scheduling of all messages in these interactions. We abuse the
notation and denote by ViewP

V (x) also the random variable of the verifier’s view in this concurrent
setting.

Definition 2. [Concurrent zero knowledge] We say that an interactive argument (P, V ) for lan-
guage L is concurrent zero-knowledge if for every polynomial q(·), and every concurrent verifier
V ∗ that opens at most q(n) sessions, there exists a PPT Sq running in time polynomial in q(|x|)
and |x| such that for any x ∈ L, the random ensemble {ViewPV ∗(x)}x∈L is computationally indis-
tinguishable from the random ensemble {Sq(x)}x∈L.

3 Almost universal argument in use

In this section we first recall universal argument of [BG08] and the recent efficient construction of
almost universal argument by Ben-Sasson et al. [BSCGT13]. We will use the latter construction in
our protocol. As mentioned, we will not require (explicit) proof of knowledge property from the
construction of [BSCGT13], which will enable us to base our concurrent zero knowledge argument
on standard (polynomial time) assumption.
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Recall that the universal set SU is the set of all triples {(M,x, t) : ∃ω s.t. ((M,x, t), ω) ∈ RU},
where ((M,x, t), ω) ∈ RU if M accepts (x, ω) within t steps. We denote by TM (x, ω) the running
time of M on input (x, ω). Notice that ((M,x, t), ω) ∈ RU means TM (x, ω) ≤ t.

One virtue of the universal set SU is that, a single argument system for SU can handle any NP
language (which is actually needed in our application), since every NP language L is linear-time
reducible to SU by the mapping x 7−→ (ML, x, 2

|x|), where ML is the corresponding deterministic
polynomial-time machine that decides L.

Definition 3. [Universal argument [BG08]] A universal argument system is a pair of machines
(P, V ) that satisfies the following conditions:

1. Efficient Verification: There exists a polynomial p such that for any y = (M,x, t), the total time
spent by the probabilistic verifier V , on common input y, is at most p(|y|) = p(|M |+|x|+log t).
In particular, all messages exchanged in the protocol have length smaller than p(|y|).

2. Completeness via a relatively-efficient prover: For every ((M,x, t), ω) ∈ RU ,

Pr[(P (ω), V )(M,x, t) = 1] = 1

Furthermore, there exists a polynomial p such that for every ((M,x, t), ω) ∈ RU the total time
spent by P (ω) on common input (M,x, t) is at most p(|M |+ TM (x, ω)) ≤ p(|M |+ t).

3. Computational soundness: For every polynomial-size circuit family {Pn}n∈N , and every (M,x, t) ∈
{0, 1}n \ SU ,

Pr[(P̃n, V )(M,x, t) = 1] < negl(n).

4. A weak proof of knowledge property: For every positive polynomial p there exists a posi-
tive polynomial p′ and a probabilistic polynomial-time oracle machine E such that the fol-
lowing holds: for every polynomial-size circuit family {P̃n}n∈N , and every sufficiently long
y = (M,x, t) ∈ {0, 1}∗ if Pr[(P̃n, V )(M,x, t) = 1] > 1/p(n), then, taken over the random-
ness r for E,

Pr
r

[∃ω = ω1 · · · ωt ∈ RU (y),∀i ∈ [t], EP̃n(y, i, r) = ωi] >
1

p′(n)
,

whereRU (y)
def
= {ω : (y, ω) ∈ RU}.

Recently, Ben-Sasson et al. developed a PCP proof system for NEXT that are both efficient
and amenable to universal arguments, and following the construction of [BG08], they realized the
following almost universal argument.

Definition 4. [Almost universal argument [BSCGT13]] A universal argument system is a pair of
machines (P, V ) that satisfies the following conditions:

1. Efficient Verification: As defined in the item 1 of definition 3.
2. Completeness via a relatively-efficient prover: For every ((M,x, t), ω) ∈ RU ,

Pr[(P (ω), V )(M,x, t) = 1] = 1

Furthermore, there exists a polynomial p such that for every ((M,x, t), ω) ∈ RU the total time
spent by P (ω) on common input (M,x, t) is at most (|M | + TM (x, ω)) · polylog(TM (x, ω)),
i.e., (|M |+ TM (x, ω)) · logO(1) (TM (x, ω)).
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3. Computational soundness: As defined in the item 3 of definition 3.
4. Explicit weak proof of knowledge property: For every two positive polynomials s and p there

exists a positive polynomial p′ and a probabilistic polynomial-time oracle machine E such that
the following holds: for every s-size circuit family {P̃n}n∈N , and every sufficiently long y =
(M,x, t) ∈ {0, 1}∗ if Pr[(P̃n, V )(M,x, t) = 1] > 1/p(n), then the oracle machine E, on input
(y, 1t) and with oracle access to P̃n, outputs a valid witness ω for y with probability greater
than 1/p′(n), i.e.,

Pr
r

[EP̃n(y, 1t, r) = ω ∧ ω ∈ RU (y)] >
1

p′(n)
,

whereRU (y)
def
= {ω : (y, ω) ∈ RU}.

We will use Ben-Sasson et al.’s construction of almost universal argument in our main con-
struction. The simulator for our overall protocol heavily exploits its super efficiency: to prove
the correctness of a T -step computation, the prover runs only in time quasi-linear in T (roughly,
T · logO(1) (T )).

The time efficiency of this construction comes at a price. As mentioned in [BSCGT13], due to
the fact that the PCP proof system of [BSCGT13] is based on techniques that do not enjoy good
local decoding properties, the resulting almost universal argument does not have knowledge extrac-
tor as defined in universal argument of [BG08], where the extractor is required to be an implicit
representation of a valid witness. Instead, in an almost universal argument, the extractor E is an
explicit representation of a valid witness, and needs to take the running time T of the machine M
as input, and runs in polynomial time in T .

Note that in our case, T is a super-polynomial. Thus making use of the proof of knowledge prop-
erty from UA of [BSCGT13] will require to assume super-polynomial time hardness for proving the
soundness of the overall protocol. Fortunately, we find a way to avoid using the proof of knowledge
property of UA in establishing the soundness of our protocol (see section 6), and furthermore, the
soundness of the UA construction of [BSCGT13] can be proven under standard collision-resistant
hash functions against polynomial time adversary.

Theorem 1 ([BG08, BSCGT13]). If there exist standard collision-resistant hash functions against
polynomial time adversary, then the almost UA constructed in [BSCGT13] satisfies condition 1,2,3
of definition 3.

Proof. Note that the almost UA of [BSCGT13] is constructed by plugging the short PCP system of
[BSCGT13] in the UA of Barak and Goldreich. It satisfies the first two conditions unconditionally.

As already mentioned in [BG08], the proof of soundness of UA essentially follows from the
basic soundness condition of the underlying PCP system (rather its (weak) proof of knowledge
property) and standard collision-resistant hash functions. The intuition behind this proof is the fol-
lowing: given a false statement, the PCP system will spread the errors on a large fraction of its
“proof”, and then by picking random leaves in the Merkle hash tree of this “proof” we will obtain
collisions for the underlying hash function from a successful cheating prover with high probability.

The actually proof of soundness based on standard collision-resistant hash functions follows
immediately from the claim 3.5.1 and claim 3.5.2 of [BG08], which are used as the first step in
establishing the explicit proof of knowledge property of UA in [BSCGT13]. In essence, these two
claims say that, given a prover that makes the verifier accept with non-negligible probability, if the
probability (ηα in claim 3.5.2) that the prover gives conflicting answers is noticeable, i.e., larger
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than inverse polynomial, then we can find collisions for the hash function α in use in polynomial
time with non-negligible probability. To establish proof of knowledge property, we need further to
prove that if ηα is smaller than inverse of some polynomial, then we are able to extract (in some
super-polynomial time for the case of [BSCGT13]) a witness for the statement with high probability.
Logically, since in proof of soundness, we start with a false statement, for which no witness exists,
the hypothesis of claim 3.5.2 that ηα is noticeable is true. Thus if there is polynomial time prover that
can break the soundness of UA of [BSCGT13], we can use it to find collisions for α in polynomial
time, which breaks the assumption that α is (standard) collision-resistant. �

4 An initial construction of our protocol

In this section we present an initial construction of concurrent zero knowledge argument based on
collision-resistant hash function against super-polynomial adversary. Since we will improve this
construction and give analysis of soundness for the improved construction later, we will omit the
soundness analysis of this initial construction. The straight-line (non-black-box) simulator and its
analysis, which apply to the later improved construction directly, will be given in next section.

As mentioned in the introduction, this construction is basically a multiple-slot version of Barak’s
protocol [Bar01], with the following two modifications: (1) as in [CLP13a], we replace the UA of
[BG08] with almost UA of [BSCGT13], and (2) we have the verifier send the hash function α for
the universal argument in its first message. The protocol is depicted in Fig 11.

Definition of the language Λ̂ [Bar01]: Let n be security parameter and h ∈ {0, 1}n be a hash
function mapping {0, 1}∗ to {0, 1}n, and let Com be a statistically binding commitment scheme.
We say a triplet (h, c, r) ∈ {0, 1}n × {0, 1}n × {0, 1}n2

is in Λ̂, if there exist a program Π , string
s ∈ {0, 1}poly(n) and a string y such that |y| ≤ |r|/2 = n2/2, such that z = Com(h(Π), s) and
Π(z, y) = r within superpolynomial time (i.e., nω(1)).

Note that the statistically-binding commitment scheme can be based on one-way functions
[Nao91]8, whose existence is implied by the existence of hash functions. We prove the following
theorem.

Theorem 2. If collision-resistant hash functions against super-polynomial time adversary exist,
then, for an arbitrarily small constant ε, the protocol presented in Fig 5 is a O(log1+ε n)-round
concurrent zero knowledge argument.

The completeness of this protocol is obvious. The simulator for our protocol and its analysis
will be presented in the next session.

5 Clearance: A new simulation technique in the concurrent setting

5.1 The simulator

Before describing the simulator we first recall some terminology introduced in the introduction. We
call a session solved if the simulator already obtained a PCP proof and its corresponding Merkle
hash tree for some slot of this session (which enable it to complete this session). In the course of
simulation, a prover step is called PCP construction step if the simulator computes PCP proof(s)

8 The commitment proposed in [Nao91] is actually a two-round scheme, but here we view it as a non-interactive one, as
it simplifies the presentation.
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Common input: x ∈ L (|x| = n).
Auxiliary input to P: w, w ∈ RL(x).

Stage 1

V̂ −→ P̂ : send two random hash functions h←R {0, 1}n and α←R {0, 1}n.

For i ∈ [k], repeat the following two steps sequentially:
P̂ −→ V̂ : send ci = Com(0n). (all commitment schemes Com are statistically-binding.)
V̂ −→ P̂ : send ri ←R {0, 1}n

2

.

Stage 2 (Encrypted Almost UA, α serves as the first message of this UA)

P̂ −→ V̂ : send β′ = Com(0poly(n)).
V̂ −→ P̂ : send γ ←R {0, 1}n

P̂ −→ V̂ : send δ′ = Com(0poly(n)).

Stage 3

P̂ =⇒ V̂ : P̂ and V̂ execute the 3-round witness indistinguishable argument of knowledge [Blu86] in
which P proves the OR of the following statements:

1. ∃ w so that (x,w) ∈ RL.
2. ∃ i and (β, δ, s1, s2) so that β′ = Com(β, s1), δ′ = Com(γ, s2), and (α, β, γ, δ) is an

accepting transcript of the universal argument proving the statement (h, ci, ri) ∈ Λ̂.

Fig. 5. The initial construction of concurrent zero knowledge protocol (P̂ , V̂ )

(and the corresponding Merkle hash tree(s)) at this step. In concurrent executions, if a PCP con-
struction step appears within a slot (cj , rj) of a session then we say the slot (cj , rj) covers this PCP
construction step. We define the level of PCP proofs and of PCP construciton steps as follows.

– Level-0 PCP proof: A PCP proof with respect to a slot (cj , rj) of some session that does not
cover any PCP construction step in the simulation.

– Level-i (i ≥ 1) PCP proof: A PCP proof with respect to a slot (cj , rj) that covers PCP construc-
tion steps in which the highest level of PCP proof(s) constructed is level-(i− 1).

– Level-i (i ≥ 0) PCP construction step: A PCP construction step in which the highest level PCP
proof(s) constructed is at level-i.

– Level-i (i ≥ 1) slot (cj , rj): the slot (cj , rj) is at level i if the highest level PCP construction
step(s) covered by it is at level-(i− 1).

We would like to stress that there is a huge difference between the PCP construction step and
the first prover step in UA. As mentioned before, our simulator construct PCP proof(s) only at the
first prover step of UA of normal sessions (i.e., those sessions remain unsolved until the simulator
enters their second stage), and, due to the clearance technique we introduce, all lucky sessions do
not contain any PCP construction step in the simulation (since their corresponding PCP proofs are
constructed offline at the PCP construction steps of some normal sessions). Thus, the simulation
of lucky sessions are easy and light, and the major contributor to the simulator’s running time is
computation of those heavy PCP construction steps.
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The Next-Message Algorithm NEXT(s,H,M,P, V ∗H ):

1. If the last verifier message in H is a terminate message, simply output (H,M,P, V ∗H );
Otherwise, order all message in H according to their appearance, NEXT(s,H,M,P, V ∗H ) extends H by a new
prover/verifier message pair (p, v) and updates the quadruple (H,M,P, V ∗H ) as follows.

2. If the next prover message p belongs to the Stage 1 of a session, compute p ← Com(h(Π(H,M,P, V ∗H , ·, ·)), s)
(where h is the hash function sent by the verifier in this session, Π(H,M,P, V ∗H , ·, ·) will be defined soon), v ←
V ∗H (p), H← (H, (p, v)) and M← (M, Π(H,M,P, V ∗H , ·, ·)). Output the new quadruple (H,M,P, V ∗H ).

3. If the next prover message p belongs to the stage 2 or stage 3 of a session, and this session was solved already,
compute p using the corresponding PCP proof and its Merkle hash tree values as witness and randomness s (if
needed), v ← V ∗H (p) and H← (H, (p, v)). Output (H,M,P, V ∗H ).

4. If the next prover message p is the first message of the stage 2 of a session, say session t, and this session has not
yet been solved, do the following:
(a) Look at the k slots (c1, r1), (c2, r2), ..., (ck, rk) of session t in the history H and all PCP proofs and their

Merkle hash trees stored in P. Denote by li the level of slot (ci, ri) (i.e. highest level of PCP construction
step(s) covered by (ci, ri) is at level li − 1) for each 1 ≤ i ≤ k. Suppose that the j-th slot (cj , rj) is the first
one that achieves lj = min{l1, l2, ..., lk}, and that cj is the ju-th prover message and the last prover message
before rj is the jv-the prover message according to the order of their appearance in history.
Then, recover the randomness sju for computing cj and sjv for computing the jv-th prover message from
the randomness s, retrieve the corresponding program Π(H′,M′,P′, V ′∗H′ , ·, ·) whose hash value has been
committed in cj from M, construct the level lj PCP proof πt for session t that (h, cj , rj) ∈ Λ using witness
(sju , Π(H′,M′,P′, V ′∗H′ , ·, ·), y = (sjv , jv)), and compute the corresponding Merkle hash tree MH(πt).

(b) CLEARANCE: For every session t′ that has at least one slot appear in H but has not been solved, do the
following: Let (c1, r1), (c2, r2), ..., (ce, re) be the slots of session t′ appeared in H so far. Find the first lowest
level slot, say slot (cd, rd), as above. If the slot (cd, rd) at a level ≤ lj defined above, then construct a PCP
proof πt′ and it Merkle hash tree MH(πt′) for session t′ with respect to the slot (cd, rd) as in step 3(a);
Otherwise, do nothing. (This step ensures that for every session t′ that is solved in this step, the level of its
PCP proof is ≤ lj .)

and then compute the prover message p using (πt,MH(πt)) and randomness s, v ← V ∗H (p), H ← (H, (p, v)),
and add (lj , πt,MH(πt)) and all those PCP proofs and their Merkle hash trees computed in step 3(b) to P. Output
(H,M,P, V ∗H ).

Fig. 6.

The Algorithm SIMULATE(sj , j,H,M,P, V ∗H ):

Extend the current history H to include the prover/verifier message pair (pj , v), where pj is the j-th prover
message in the history:

1. Let the i-th prover message be the last prover message in H. Compute the randomness si+1, si+2, ..., sj (used for
computing the (i+ 1)-th to j-th prover messages): sm ← PRFsm+1(1

n), i+ 1 ≤ m ≤ j − 1;
2. Compute (H,M,P, V ∗H )← NEXT(sj ,NEXT(sj−1, · · ·NEXT(si+1,H,M,P, V ∗H ) · ··));
3. Output H.

Fig. 7.
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We now turn to the simulator. Assume there are total nc prover messages in the concurrent
executions. We order all prover messages according to their order of appearance. We denote by si the
randomness used for computing the i-th prover message. Borrowing an idea from [PRT13, CLP13a],
all these si, 1 ≤ i ≤ nc, are generated by applying a pseudorandom function PRF in a reverse chain
manner: si ← PRFsi+1(1n). Note that, given si, we can recover all randomness used for computing
prover messages prior to the i-th one. As we will see, this allows the simulator to commit to the
code of itself without input of its randomness, which is essential for the proof of zero knowledge to
go through.

The Algorithm Π(H,M,P, V ∗H , ·, ·):

Input: (cj , y = (st, t))
a

Compute H← (H, cj), H← SIMULATE(st, t,H,M,P, V ∗H ), and output the last verifier message rj in H.

a Note that given the history H as input to Π , cj is the next scheduled prover message, and that the input (cj , (st, t))
instructs Π(H,M,P, V ∗H , cj , y) to generate internally the transcript within a slot (cj , rj) of some other sessions, for
which the last prover message is the t-th prover message in the history, and output rj .

Fig. 8.

At a high level, the simulator proceeds in a straight-line manner as follows. It runs the next-
message algorithm NEXT (depicted in Fig 6) to simulate the prover message one by one. On input
a randomness, a triple of tables (H,M,P) and the verifier V ∗H at the current point, NEXT produces
the next prover message p in the following way: If p is a prover message of stage 1 of a session,
NEXT commits to a hash value of a procedure Π (depicted in Fig 8), which basically a joint code
of itself (without input of its randomness) and the verifier (with some semantic modifications), and
stores the new Π in M; If p belongs to stage 2 or 3 of a session, and this session has already been
solved, it fetches the corresponding PCP proof and its Merkle hash tree values from P and computes
this prover message; and if p is first prover message of stage 2 of a session that is not solved yet, it
adopts the solving with clearance strategy presented in the introduction to construct PCP proofs for
this session and some other relevant lucky sessions, and then computes p. See Fig 6 for details.

With the procedure NEXT, we define SIMULATE (depicted in Fig 7) that generates a long
transcript by simply run NEXT in chain, which we use to give a precise definition of the algorithm
Π , as depicted in Fig 8.

Now, the simulator S formally proceeds as follows.

The simulator S:
Compute H← SIMULATE(snc , n

c, x, ∅, ∅, V ∗x ), and output H.

5.2 Analysis of the simulator

Next we prove that the simulator S presented in the preceding section runs in polynomial time and
its output is indistinguishable from real concurrent executions between honest provers and V ∗. This
concludes that the protocol (P̂ , V̂ ) is concurrent zero knowledge.
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A general simulation path consists of a number of consecutive trees (defined in section 1.2), as
in Fig 9 (in Fig 9 we drop out those bold lines, each representing a PCP proof, in the circle.). Recall
that, in extreme cases, when the simulator constructs PCP proofs at a node v (a PCP construction
step), the simulator may need to regenerate the subtree rooted at v. Note also that at a single node,
the simulator may need to construct many PCP proofs.

... ...

Fig. 9. A general simulation path.

The key to analyze the running time of S is to bound the height of these trees in the entire
simulation. We do this by giving lowerbound on the number of nodes at each level of the first
simulation tree of maximum height in the simulation path. Observe that the most compact tree (of
the same height) presented in the introduction achieves such lowerbounds for every level. This is
why we call such a tree “most compact” tree.

Lemma 1. For any tree appearing in the simulation path, its height is bounded by O( logn
log logn).

That is, the highest level of PCP proofs constructed during the entire simulation is bounded by
O( logn

log logn).

Proof. Consider the first simulation tree that achieves the maximum height l in the simulation path.
Let node u on the level l be the root of this tree. We count the number of its children. We first

verify that node u has at least k child nodes at level (l− 1). This can be deduced from the following
reasoning. By the construction of the procedure NEXT, when the simulator arrives at the node
u, there is a normal session t that arrives its stage 2 but has not been solved yet. We claim that
each slot of session t covers at least one node on level (l − 1) (i.e., level-(l − 1) PCP construction
step). Suppose otherwise, if one slot, say slot i, of the session t for which the highest level of nodes
covered by it is ≤ (l − 2), we distinguish the following two cases and show for both cases we will
arrive at contradiction:

– If for every j ≥ i, slot j of session t, the highest level of nodes covered by it is also ≤ (l − 2),
then session t should have been solved at some node at level≤ l− 1, by our simulation strategy
described in step 4(a) of the procedure NEXT;

– If there is j > i, slot j of session t covers a node v at level = (l − 1), then session t should
have been solved at this node by our simulation strategy clearance in step 4(b) of the procedure
NEXT. This means session t is a lucky session, not a normal one.

We now lowerbound the number of nodes at each level in this tree. We use a (l − j + 1)-tuple
(il = u, il−1, il−2, il−3, ..., ij) to describe the location of a node v on level j in the following way9:
the first element il specifies the root node u; suppose the first l− e elements (il, il−1, il−2, ...ie) (for

9 Actually, these tuples only describe nodes appearing before u, and this strengthens our result.
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e > j) specifies a node v′ at level e, the (l− e+ 1)-th element ie−1 specifies the ie−1-th child node
on level e− 1 of v′.

Note that for the node v on level j at location (il = u, il−1, il−2, il−3, ..., ij), if k−
∑l−1

e=j (ie − 1) >
0, then before arriving v the the simulator goes through (il−1 − 1) subtrees rooted at nodes on level
(l−1), then (il−2−1) subtrees rooted at nodes on level (l−2),..., and then (ij−1) subtrees rooted
at nodes on level j (see Fig 2 or 9). For example, in the tree in Fig 10, before arriving the node in
the red box, the simulator goes through those subtrees rooted at those node in dotted boxes.

By our simulation strategy there is a normal session, say session t, that just arrives at its stage 2
but has not been solved yet when the simulator arrives at node v. Note first that if a slot of session
t covers a non-root node in one of above

∑l−1
e=j (ie − 1) subtrees, it must cover (at least) one root

of these subtrees10, since otherwise it should have been solved due to the clearance step of our
simulator.

Note that even if every root of the above
∑l−1

e=j (ie − 1) number of subtrees is covered by a slot
of session t, the session t still has k−

∑l−1
e=j (ie − 1) slots left11, and again, we can distinguish two

cases as above and claim that each of these slots of session t must cover at least one node on level
(j − 1).

We conclude that, for every 1 ≤ j ≤ l − 1, every node v on level j at location (il =
u, il−1, il−2, ..., ij), as long as k −

∑l−1
e=j (ie − 1) > 0, the node v has at least k −

∑l−1
e=j (ie − 1)

child nodes on level (j − 1). This gives us that the total number of nodes on level (j − 1) is at least

∑
{il−1,...,ij}:

∑l−1
e=j(ie−1)<k

1≤ie≤k

k − l−1∑
e=j

(ie − 1)



=
k∑
s=1

s ·

 ∑
{il−1,...,ij}:

∑l−1
e=j(ie−1)=k−s

1≤ie≤k

1


=

k∑
s=1

s ·
(
k − s+ l − j − 1

l − j − 1

)

=
(k + l − j − 1)(k + l − j)

(
k+l−j−2
l−j−1

)
(l − j)(l − j + 1)

When j = 1, then the number of nodes at the bottom level (i.e., level 0) is

10 Note that the height of each of these
∑l−1
e=j (ie − 1) subtrees is smaller than or equal to the height of the preceding

(according to their order of appearance in the simulation) one, and thus if a slot of session t, say slot s, covers a non-
root node of a subtree rooted at node v′, then there are only two cases in which the session t was not solved at node
v′: 1) this slot also covers v′, i.e., the verifier’s message of this slot does not yet appear when the simulator arrives at
node v′, and, 2) the slot covers (at least) the root of the preceding subtree. In the latter case, even the verifier’s message
of slot s appeared before the root v′, session t still would not get solved (with respect to slot s) at v′ because of the
height condition for the clearance step.

11 Note that, by the second condition for parent-child relationship, the first simulation tree of maximum height we con-
sider here is actually the first tree that appeared in the simulation path. Thus, all slots of session t only cover nodes in
this tree.



20

≥
(k + l − 2)(k + l − 1)

(
k+l−3
l−2

)
(l − 1)l

>

(
k + l − 3

l − 2

)
Note that there are only polynomial number of nodes at the level 0. When taking k = O(log1+ε(n)),

in order to make sure
(
k+l−3
l−2

)
is polynomial, it must be the case that l ∈ O( logn

log logn), otherwise, if

there is some super-constant function α(n) such that for infinite n’s, l > α(n) · logn
log logn , then

(
k + l − 3

l − 2

)
≥
(
k + l − 3

l − 2

)l−2
≥
(
c · logε n · log logn

α(n)

)α(n) logn
log logn

−2

≥ (logε n)
α(n) logn

log logn
−2

(when α(n) < log logn)

=
(

2ε log logn
)α(n) logn

log logn
−2

=
nεα(n)

log2ε n

which is a super-polynomial. (Note that the function
(
k+l−3
l−2

)
of l is monotonically increasing,

so it is without loss of generality to make the above requirement α(n) < log logn.)

... ... ...

...

..........

at least k nodes at least k − 1 nodes

at least k − 3 nodes

at least k nodes

... ... ...

...

level l

level l − 1

level l − 2

level l − 3
...

Fig. 10.

�

Given the bound O( logn
log logn) on the height of any tree in the simulation path, we are now ready

to prove that the simulator runs in polynomial time.
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Lemma 2. The simulator S runs in polynomial time.

Proof. Note that, to prove this lemma, it is suffice to prove that the PCP construction step on the
highest level l can be done in polynomial time, since there are only polynomial number of PCP
construction steps in the entire simulation path.

Note that the total running time of S except for all PCP construction steps (i.e., the running time
of V ∗ plus the time spent by S on computing all non-PCP-construction prover steps) can be bounded
by a polynomial T . Consider a tree of height l in the simulation path. We let the total number of PCP
proofs at level i (counting in all nodes on level i in this tree) be nci for some constant ci. Without
loss of generality, we consider the extreme case that to compute a single PCP proof at level i, the
simulator needs to reconstruct all those

∑i−1
j=0 n

cj PCP proofs at level ≤ (i − 1). Note that if the
time spent by the simulator on all PCP proofs at level (i− 1) is ti−1, then the time spent on all PCP
proofs at level i is bounded by

i−1∑
j=0

ncitj logO(1) tj

due to the quasi-linear time of the BSCGT UA/PCP. Note also that t0 is bounded by nc0(T logO(1) T ).
By a simple calculation, we conclude that the running time for all PCP proofs at level l ∈ O( logn

log logn)
is still polynomial in n.

�

The remaining task is then to prove the following lemma.

Lemma 3. The output of S is indistinguishable from the real concurrent interaction between V ∗

and honest provers.

Proof. We again assume that there are only nc number of prover messages queried by V ∗. Consider
the following series of hybrid distributions:

– H(0,0): Hnc ← SIMULATE(snc , n
c, x, ∅, ∅, V ∗x ), i.e., the output of S;

– H(1,0): (Hnc−1,R1,0), where Hnc−1 ← SIMULATE(snc−1, n
c − 1, x, ∅, ∅, V ∗x ),

snc−1 ← PRFsnc (1
n) and R1,0 is the last prover message for which we compute using

truly randomness independent of snc .
– H(1,1)(w): (Hnc−1,R1,1), where (Hnc−1,R1,1) is identical to (Hnc−1,R1,0) except that

in computing R1,1 we use the witness w for x.
– · · ·
– H(i,0)(w): (Hnc−i,Ri,0);
– H(i,1)(w): (Hnc−i,Ri,1), where (Hnc−i,Ri,1) is identical to (Hnc−1,Ri,0) except that

in computing Ri,1 we use the witness w for x.
– H(i+1,0)(w): (Hnc−i−1,Ri+1,0), where Hnc−i−1 ← SIMULATE(snc−i−1, n

c − i −
1, x, ∅, ∅, V ∗x ), snc−i−1 ← PRFsnc−i(1

n) and Ri+1,0 is the remaining transcript for
which we compute using truly randomness independent of snc−i.

– · · ·
Note that H(0,0) is the simulation, and H(nc,nc) is the real interaction. It follows from the pseu-

dorandomness of the function PRF that for each i, H(i,0)(w) and H(i,1)(w) are indistinguishable,
and due to the hiding property and the witness indistinguishability of the stage 3 of the protocol, we
have H(i,1)(w) and H(i+1,0)(w) are indistinguishable.
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Observe further that there are only n2c+1 hybrids. This concludes the proof of this lemma.
�

6 Removing the need for super-polynomial hardness: Our final construction

In this section, we modify the initial protocol to obtain our final construction for concurrent zero
knowledge based on standard/polynomial-time hardness.

As described in the introduction, following [BG08], we modify our initial protocol as follows.
We use error correcting code ECC and Merkle hash tree for computing the commitment in the first
stage, and add an extra stage (directly after the first stage) to the initial protocol in which we have the
verifier send a random location j, and have the prover send back a commitment cecc to 0n

2
; We then

let the prover prove in UA that the content of cecc is actually the j-th bit (and its authenticator) of
ECC(Π) committed in some ci, and the corresponding slot (ci, ri) (together with the hash function
h) forms an YES instance with respect to the language Λ̂ defined for our initial protocol; In the last
stage of 3-round WI argument of knowledge, in addition to the second part of the OR statement that
x ∈ L or the encrypted transcript of UA is acceptable, we also have the prover prove of knowledge
of the content of cecc.

The formal description of the final protocol is depicted in Fig 11. We modify the language Λ̂
accordingly as follows.

Definition of the language Λ: Let n be security parameter and h ∈ {0, 1}n be a hash function
mapping {0, 1}∗ to {0, 1}n, and let Com be a statistically binding commitment scheme. We say a
tuple (h, c, r, j, cecc) ∈ Λ, if there exist (η,Π, σ, y, b, σb) such that the following conditions hold
(here we will ignore the randomness for computing commitments for simplicity):

1. |y| ≤ |r|/2 = n2/2, c = Com(|η|,MHh(η)), Π = ECC−1(η), σ is the authenticator for η12,
and Π on input (c, y) outputs r within super-polynomial time;

2. cecc = Com(|η|, b||σb) and that b is the jm-th bit of η = ECC(Π) and σb is the authenticator
for b, where |η| = 2m and jm is the least significant m bits of j.

Theorem 3. If standard collision-resistant hash functions (against polynomial time adversary) ex-
ist, then, for an arbitrarily small constant ε, the protocol presented in Fig 11 is aO(log1+ε n)-round
concurrent zero knowledge argument.

Proof. Completeness of this protocol is obvious. The zero knowledge property follows from our
simulation strategy with k ∈ O(log1+ε n) presented in previous section with some straightforward
modifications.

The proof of soundness follows essentially from the one for the zero knowledge protocol of
[BG08], except that here we will apply the extractor for the 3-round WI argument to derive a colli-
sion for hash function h. We give details below.

Suppose that there is a prover P ∗ that cheats on a false statement x /∈ L with non-negligible
probability p.

Now consider the following collision finding algorithm CollFinder:

1. Invoke P ∗(x) on input two random hash functions h and α;

12 I.e., σ consists of a sequence of authenticator, each for a bit of η = ECC(Π)
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Common input: x ∈ L (|x| = n).
Auxiliary input to P: w, w ∈ RL(x).

Stage 1

V −→ P : send two random hash functions h←R {0, 1}n and α←R {0, 1}n.

For i ∈ [k], repeat the following two steps sequentially:
P −→ V : send ci = Com(0n). (all commitment schemes Com are statistically-binding.)
V −→ P : send ri ←R {0, 1}n

2

.

Stage 2

V −→ P : send j ←R {0, 1}n.
P −→ V : send cecc = Com(0n

2

).

Stage 3 (Encrypted BSCGT UA, α serves as the first message of this UA)

P −→ V : send β′ = Com(0poly(n)).
V −→ P : send γ ←R {0, 1}n
P −→ V : send δ′ = Com(0poly(n)).

Stage 4

P =⇒ V : P and V execute the 3-round witness indistinguishable argument of knowledge of [Blu86] in
which P proves the OR of the following statements:

1. ∃ w so that (x,w) ∈ RL.
2. Or, the following holds:

(a) ∃ (|η|, b||σb) and s so that cecc = Com((|η|, b||σb), s)
(b) ∃ i and (β, δ, s1, s2) so that β′ = Com(β, s1), δ′ = Com(γ, s2), and

(α, β, γ, δ) is an accepting transcript of the universal argument proving the statement
(h, ci, ri, j, cecc) ∈ Λ.

Fig. 11. The concurrent zero knowledge protocol (P, V )

2. Execute the protocol with P ∗(x) using honest verifier strategy, if the transcript is accepting,
then invoke the extractor for the 3-round WI argument of knowledge to extract a slot index i and
(|η|, b||σb) committed in cecc; if failure, output “ ⊥′′;
Suppose that in this session the random coins that CollFinder chooses in stage 2 is j.

3. Rewind to the point where the commitment ci in slot i just sent, execute this session again using
fresh randomness except for the same j. If the transcript is accepting, then invoke the above
extractor again to extract a slot index i′ and (|η|, b′||σ′b); if failure, output “ ⊥′′;

4. If i = i′, then output b||σb and b′||σ′b; otherwise, output “ ⊥′′.

Denote by (Ri−1, j) randomness used by CollFinder in the first i − 1 slots and the stage 2
respectively. Note that for a p/2 fraction of the (Ri−1, j), P ∗(x) will make the verifier accept with
probability at least p2 . Thus, in step 3, the probability that P ∗(x) gives an accepting proof again with
respect to the same slot i is at least p

2k .
Recall that conditioned on an accepting transcript, the extractor for the underlying 3-round WI

argument of knowledge [Blu86] will extract a witness with probability 1 in expected polynomial
time. Thus, the probability that CollFinder outputs b||σb and b′||σ′b is at least p

2

4k .
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Note that for slot i, with probability 2−n that the randomness ri and r′i used in step 3 and step
3 respectively are equal. and that when ri 6= r′i, the program Π and Π ′ used by P ∗(x) as part of
witness in these two sessions must be different. And, due to the property of error correcting code
ECC, the b||σb and b′||σ′b will differ with constant probability pc.

Observe that, b||σb and b′||σ′b output by CollFinder were used as part of witness by P ∗(x) to give
accepting UA proofs in step 2 and step 3, thus, they are different with probability negligibly close
to pc; otherwise, if they are different with probability at most pc− 1

poly , then P ∗(x) can convince an
honest verifier of a false statement with probability at least 1

2poly , which, by the soundness of UA, is
impossible.

In sum, the algorithm CollFinder, running in expected polynomial time, can output a collision
with probability at least p2

4k ·
1
2n · pc, which breaks the collision-resistance property of the hash

function h.
�
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