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Abstract— Side channel and fault attacks take advantage from 

the fact that the behavior of crypto implementations can be observed 
and provide hints that simplify revealing keys. These attacks are 
normally prepared by analyzing devices that are identical to the real 
target. Here we propose to individualize the design of cryptographic 
devices in order to prevent attacks that use identical devices. We 
implemented three different designs that provide exactly the same 
cryptographic function, i.e. an ECC kP multiplication. The synthesis 
and power simulation results show clear differences in the area 
consumed as well as in the power traces. We envision that this type of 
protection mechanism is relevant e.g. for wireless sensor networks 
from which devices can easily be stolen for further analysis in the 
lab. 
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I.  INTRODUCTION  
With the advent of wireless sensor networks (WSN) and 

their uptake in industry attacks that exploit physical effects, i.e. 
that aim to break crypto-systems by using implementation 
specific information and data respectively are becoming a more 
and more relevant threat. This is due to the fact that devices 
disappearing in a WSN are somewhat normal. I.e. some 
devices are not connected for a while due to bad channel 
conditions. This means a potential attacker can grab devices 
bring them back into his/her lab and run all fancy types of side 
channel attacks. 

Attacking crypto hardware is normally done in a two step 
approach. First a certain number of devices is analyzed in order 
to get familiar with the design and its behavior. As a result the 
attack of the “real” device is simplified by this preparation 
phase. A precondition to run an attack in these two phases is 
that the attacker can get hold of sufficient identical devices. 
This is normally not an issue since ASICs are produced in a 
significant number, and are so cheap that an attacker can easily 
buy as many ASICs as needed. After such a preparation 
stealing devices from a WSN and running an attack is feasible 
and can even go undetected by the owner of the WSN. 

In this paper we propose to individualize crypto devices in 
order to increase the effort of the attacker when it comes to 

preparing attacks and running attacks that rely on using 
identical devices.  

The rest of this paper is structured as follows. In section II 
we introduce our idea as well as the essential basics with 
respect to the crypto graphic operations we use for 
individualizing crypto devices. In addition the implementations 
we realized are described. The results of our evaluation of the 
individualized designs are presented in section III. The paper 
finishes with short conclusions. 

II. INDIVIDUALIZING CRYPTOGRAPHIC DESIGNS 

A. Short description of our idea 
The individualization of the structure of cryptographic 

devices can be an efficient countermeasure against improved 
physical attacks using bridge-based power measurements for 
example with the Wheatstone bridge.  

The idea is that devices with the same functionality can 
have a different i.e. individual structure. Important is that not 
only the chip topology after place-and-route but also the 
number of used gates is individual. This results in an individual 
power consumption, electromagnetic radiation etc. 
Individualizing the structure of cryptographic devices prevents 
for example the improved power analysis attack reported in [1]. 

B. Individualization of GF(2n)-ECC designs  
ECC-designs can be individualized using different 

multiplication methods (MM) for field multiplication. The field 
multiplication can be performed in two steps. The first step is 
the multiplication of two polynomials of length n that results in 
their (2n-1) bits product. The second step is the reduction of 
this polynomial product using the so called irreducible 
polynomial. 

The definition of the polynomial multiplication (i.e. of the 
first step) is often called school or classical multiplication 
method. Its complexity can be given as a number of boolean 
AND and XOR operations, i.e. as the number of used AND 
and XOR gates. To implement the multiplication of n-bit long 
polynomials using classical multiplication method n2 AND and 
(n-1)2 XOR gates are necessary. It is an expensive task with 



respect to time, area and energy because the length of 
multiplicands is typically large (about 200 bit); therefore many 
optimizations have been proposed in the past.  

Many multiplication methods apply segmentation of both 
multiplicands into the same number of parts. The product then 
is calculated as a sum of smaller partial products. Historically, 
the first optimization was the Karatsuba multiplication method 
published in 1962 [2]. This method uses the segmentation of 
polynomials into two terms. The next one was proposed by 
Winograd in 1980 [3]. This method uses the segmentation of 
polynomials into three terms. At the moment there exist more 
than 10 different multiplication formulae. Each multiplication 
formula has its own segmentation of operands, its own number 
of partial products of these short – only one segment long – 
operands and its own number of additions of the obtained 
partial products, i.e. its own complexity. 

Moreover the multiplication methods can be combined. 
Each combination of MMs has also its own complexity. In [4] 
and [5] different multiplication methods were combined with 
the goal to find only one optimal combination, i.e. the 
combination with minimal LUT/gate complexity and energy 
consumption. The set of different combinations is very big. 
This fact can be used for individualizing multiplier designs. In 
addition the selection of the combination of multiplication 
methods can be randomized. 

C. Implemented ECC designs  
To proof our idea of individualizing ECC-Designs we 

implemented and compared three different designs of elliptic 
curve point multiplication or – shortly – the kP operation. We 
implemented the kP-operation using the Montgomery elliptic 
curve point multiplication algorithm in Lopez-Dahab 
coordinates. The implementation details of one of these designs 
are given in [6]. All three designs differ only in their 60-bit 
multiplier:  

• the classical multiplication method was 
implemented for the first design;  

• The second design uses a combination of the 
classical MM and our 4-segment iterative 
Karatsuba MM;  

• the classical MM, our  4-segment iterative 
Karatsuba and our  3-segment iterative Winograd 
multiplication formulae are randomly combined 
for our 3-rd design.  

The details about our iterative 4-segment Karatsuba MM 
and our 3-segment Winograd MM are given in [7] and [8]. We 
do not give the details here for the simplifying the reading. 
Important is only the fact, that the complexity of these MMs is 
different.  

Table I gives a short overview of parameters of used 
multiplication methods. We denote the length of multiplicands 
as n. The partitioning of multiplicands is denoted as the 
number of segments S. In this case the length of segments is 
m=n/S. The number of partial products of m-bit long operands 
that is required by the MM is denoted as the number of partial 
multipliers #PM. The number of XOR gates for the calculation 

of inputs of the partial multipliers and for the accumulation of 
all partial products is denoted as #XOR.  

Note that each partial multiplier (PM) is an independent 
multiplier for m-bit long operands. I.e. any MM can be selected 
to implement it.  

 

 

TABLE I.  SHORT DESCRIPTION OF USED MMS 

MM n S m 
Complexity 

Complexity of PM 
#PM #XOR 

classical 64 1 64 1 0 642 AND, 632 XOR 

iterative 
4-segment 
Karatsuba 

64 4 16 9 34m-11 

The complexity of each of 
the 9 PM depends on the 
MM that implements this 

PM 

iterative 
3-segment 
Winograd 

60 3 20 6 18m-6 

The complexity of each of 
the 6 PM depends on the 
MM that implements this 

PM 
 

The structures of the multipliers listed in Table I are given 
in Fig.1-Fig.3. 

 

Fig. 1. Structure of the n bit multiplier using the classical MM  

 

Fig. 2. Structure of the n bit multiplier using the iterative 4-segment 
Karatsuba MM 

 

Fig. 3. Structure of the n bit multiplier using the iterative 3-segment 
Winograd MM 



As explained above we implemented the classical 60-bit 
multiplier for our first design. Its structure is shown in Fig.1. 
Our second design is the area optimized combination of the 
classical MM and our 4-segment iterative Karatsuba MM. It 
has three hierarchical levels. Its 60-bit multiplier is 
implemented using 4-segment Karatsuba MM (see Fig. 2, 
n=60, m=15), resulting in 9 partial multipliers which again are 
implemented as 4-segment Karatsuba MM (see Fig. 2, n=16, 
m=4), resulting again in 9 partial multipliers which then are 
implemented using the classical MM. Fig. 4 depicts the 
structure of this multiplier. In fig. 4 the green boxes indicate 
which part is implemented using the Karatsuba MM, and the 
yellow boxes indicate where the classical 4-bit multiplier is 
used. 

 

Fig. 4. Structure of the 60 bit multiplier: the area optimized combination of 
the classical MM and the iterative 4-segment Karatsuba MM.  

The combination of MMs used for our 3-rd design was selected 
randomly and is shown in Fig. 5. 

 

Fig. 5. Structure of the 60 bit multiplier: a random combination of 3 MMs. 

Partial multipliers for small length operands in Fig.5 are 
implemented as follows:  

• win_6 using 3-segment Winograd MM (see Fig. 3, 
n=6, m=2); 

• ikm_8 using 4-segment Karatsuba MM (see Fig. 2, 
n=8, m=2);  

• win_9 using 3-segment Winograd MM (see Fig. 3, 
n=9, m=3);  

whereby all multipliers for operands with the length of n≤3 are 
implemented using classical MM. 

III. RESULTS 
The synthesis of all designs and the following analysis of 

their power consumption for our IHP 0.13µ technology [9] 

confirm our assumption: each design has an individual area and 
an individual power consumption (see Table II).  

TABLE II.  AREA AND POWER CONSUMPTION OF THE IMPLEMENTED 
ECC-DESIGNS 

Implemented ECC-Design with 
multiplier using Area Power 

consumption 
1 classical MM 0,331mm2 7,42mW 

2 area-optimized combination 
of MMs 0,280mm2 5,41mW 

3 random combination of MM 0,296mm2 5,36mW 

Fig. 6 shows the first 150 clock cycles of the kP operation. 
The red line depicts the power trace of the design using the 
classical MM only. The green line shows our second ECC-
design with the area optimized multiplier. The violet line 
denotes the power trace of our 3-rd design: this multiplier is the 
random combination of 3 MMs as it was explained above. All 
power traces are simulated using PrimeTime [10] for the IHP 
0.13µ technology.  

 

Fig. 6. Simulation results: first 150 clock cycles of the power traces of all 
three implemented ECC designs  

The simulation results confirm our idea: the shapes of the 
power traces are different for all three designs. Fig. 7 depicts 
the differences in the power consumption1 between all 
combinations of the three designs.  

1 Please note that in [1] the authors compare real devices and provide 
measured voltage traces. In our next research steps we will use the results of 
[1] as a benchmark for the evaluation of our idea. 

                                                           



 

Fig. 7. Differences in power consumption of all combinations of the 
implemented designs 

CONCLUSION 
In this paper we introduced the idea to individualize the 

implementation of crypto operations as a suitable means to 
prevent or at least to increase the effort to run successfully 
specific improved side channel and structure analysis based 
attacks. The background of the idea is straight forward. Side 
channel attacks and fault attacks are exploiting the fact that 
sufficient identical devices are available for preparing an 
attack. If the devices differ such kind of preparation is no 
longer feasible. We selected elliptic curve cryptography, i.e. 
the implementation of the required field multipliers as sample 
application. The advantage of this type of operation is that a 
plethora of different multiplication methods that provide the 
same operation are available. By unifying the interfaces we are 
capable of combining different multiplication methods. These 
multiplication methods can be selected at will or randomly. 
The differences in the observable behavior of the resulting 
multipliers stems from the different complexity of the 
multiplication methods that influence the area needed to 
implement the multipliers as well as the related power 
consumption. We implemented three designs using different 
combinations of three MMs. Our synthesis and simulation 
results show significant variations with respect to area and 
power consumption. The differences in the area reach from 5 
per cent to 18 per cent and in the power consumption from 2 
per cent to 38 per cent. Also the power traces have pretty 
individual shapes. 

In our next research steps we will run experiments using a 
Wheatstone bride set-up to verify that the individualization 
really prevents this type of attacks. We also aim at developing 

a metric that allows to assess how individual power traces 
really are in order to select the designs with the highest level of 
individualization. 

We are aware of the fact that the production of 
individualized designs for ASICs is very expensive. Therefore 
FPGAs can be chosen as a possible implementation platform 
for individualized cryptographic devices. 
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