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Abstract. We revisit the problem of finding small solutions to a collection of linear equations
modulo an unknown divisor p for a known composite integer N . In Asiacrypt’08, Herrmann and
May introduced a heuristic algorithm for this problem, and their algorithm has many interesting
applications, such as factoring with known bits problem, fault attacks on RSA signatures, etc. In this
paper, we consider two variants of Herrmann-May’s equations, and propose some new techniques
to solve them. Applying our algorithms, we obtain a few by far the best analytical/experimental
results for RSA and its variants. Specifically,

– We improve May’s results (PKC’04) on small secret exponent attack on RSA variant with
moduli N = prq (r ≥ 2).

– We extend Nitaj’s result (Africacrypt’12) on weak encryption exponents of RSA and CRT-RSA.
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1 Introduction

Lattice-based cryptanalysis is a very useful tool in various cryptographic systems, e.g., histor-
ically, it was used to break the Merkle-Hellman knapsack cryptosystem [18]. The basic idea of
the lattice-based approach is that if the system parameters of the target problem can be trans-
formed into a basis of a certain lattice, one can find some short vectors in the desired lattice
using dedicated algorithms, like the LLL-algorithm [10]. One may then hope that the secret key
can be recovered once the solutions from these short vectors are extracted. Although in most
cases this assumption is not rigorous in theory, it usually works well in practice.

In the above approach, a key step is to construct the desired lattice. In 1997, Coppersmith [3]
presented a subtle lattice construction method, and used it to find small roots of modular
equations of special forms. Since then, this approach has been widely applied in the analysis of
RSA. One of the most important applications is to solve approximate integer common divisor
problem (ACDP), namely, given two integers that are near-multiples of a hidden integer, output
that hidden integer. We note that ACDP was first introduced by Howgrave-Graham [8], which in
turn has many important applications such as building fully homomorphic cryptosystems [20].

Let us briefly explain Howgrave-Graham’s method. First, one reduces ACDP to solving a
univariate modular polynomial:

f(x) = x+ a mod p

where a is a given integer, and p (p ≥ Nβ for some 0 < β ≤ 1) is unknown that divides the
known modulus N . Next he proposed a polynomial-time algorithm to find small roots of the
univariate polynomial over integer. Note that this type of polynomial can also be applied in
other RSA-related problems, such as factoring with known bits problem [11].
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In 2003, May [11] generalized the strategy by using a univariate linear polynomial to an
arbitrary monic modular polynomial of degree δ, i.e. f(x) = xδ + aδ−1x

δ−1 + . . . + a0 mod p
where δ ≥ 1. As an important application, this algorithm can be used to solve the problem of
factoring with known bits on Takagi’s moduli N = prq (r > 1) [19].

On the other hand, in Asiacrypt’08, Herrmann and May [6] extended the univariate linear
modular polynomial to polynomials with an arbitrary number of n variables. They presented
a polynomial-time algorithm to find small roots of linear modular-polynomials f(x1, . . . , xn) =
a0 +a1x1 + · · ·+anxn mod p, where p is unknown and divides the known modulus N . Naturally,
they applied their results to the problem of factoring with known bits for RSA modulus N = pq
where those unknown bits might spread across arbitrary number of blocks of p.

1.1 Our Contributions

In this paper, we focus on two variants of Herrmann-May’s equations. The first is multivariate
linear equations modulo an unknown divisor pv (v ≥ 1) and a known composite integer N
(N ≡ 0 mod pu, u ≥ 1), which can be regarded as a generalization of Herrmann-May’s equations
(u = 1, v = 1). The second is homogenous linear equations modulo an unknown divisor pv (v ≥ 1)
and a known composite integer N (N ≡ 0 mod pu, u ≥ 1), which for u = 1, v = 1 can be seen
as a special case of Herrmann-May’s equations [6] (a0 = 0). Throughout this paper we suppose
that u, v ∈ Z.

More exactly, we investigate the problem of finding small roots of the following two classes
of modular polynomials:

f1(x1, x2, . . . , xn) = a0 + a1x1 + · · ·+ anxn mod pv

f2(x1, x2, . . . , xn) = a1x1 + · · ·+ anxn mod pv

for some unknown divisor pv (v ≥ 1) and known composite integer N (N ≡ 0 mod pu, u ≥ 1). We
solve these two problems by introducing new techniques, which are based on, and in some sense
can be viewed as a generalization of Herrmann-May’s technique [6]. Applying our algorithms,
we obtain better cryptanalytic results for some RSA variants, and we elaborate them below. We
further conjecture that our new algorithms may find new applications in various other contexts.

Small Secret Exponent Attack on Multi-Power RSA. Here, we concentrate on an RSA
variant, namely multi-power RSA, with moduli N = prq (r ≥ 2). Compared to the standard
RSA, the multi-power RSA is more efficient in both key generation and decryption. Besides,
moduli of this type has been applied in many cryptographic designs, e.g., the Okamoto-Uchiyama
cryptosystem [15], or better known via EPOC and ESIGN [4], which uses the modulus N = p2q.

Suppose that the public key is (N, e), where N = prq for some fixed r ≥ 2 and p, q are of the
same bit-size. The secret key d satisfies ed ≡ 1 mod φ(N), where φ(N) is Euler’s φ-function. In

Crypto’99, Takagi [19] showed that when the secret exponent d ≤ N
1

2(r+1) , one can factorize N .
Later in PKC’04, May [12] improved Takagi’s bound to

N
max{ r

(r+1)2
,
(r−1)2

(r+1)2
}

In this paper, we further improve May’s bound to N
r(r−1)

(r+1)2 , which is better than May’s result
when r > 2, and is also independent of the value of public exponent e. Similar as [12], our result
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also directly implies an improved partial key exposure attack for secret exponent d with known
most significant bits (MSBs) or least significant bits (LSBs). Our improvements are based on a
technique for solving our first variant of Herrmann-May’s equations, with the observation that
gcd(ed− 1, N) = pr−1 but N ≡ 0 mod pr.

Weak Encryption Exponents of RSA and CRT-RSA. In Africacrypt’12, Nitaj [14] p-
resented some attacks on RSA and CRT-RSA (the public exponent e and the private CRT-
exponents dp and dq satisfy edp ≡ 1 mod (p−1) and edq ≡ 1 mod (q−1)). His attacks are based
on Herrmann-May’s technique [6] for finding small solutions of modular equations. In particular,
he reduced his attacks to solving bivariate linear modular equations modulo unknown divisors:
ex+ y ≡ 0 mod p for some unknown p that divides the known modulus N .

Noticing that his equations are homogenous, we can actually improve his results with the
technique for solving our second variant of Herrmann-May’s equations. Besides, we extend our
results to modulus N = prq.

Experimental Results. For all these attacks, we carry out experiments to verify the validity
of our algorithms. The results show that our attacks are effective.

2 Preliminary

In this section, we review some useful results.

Lemma 1 (LLL [10]). Let L be a lattice of dimension w. Within polynomial-time, LLL-
algorithm outputs a set of reduced basis vectors vi, 1 6 i 6 w that satisfies

||v1|| 6 ||v2|| 6 · · · 6 ||vi|| 6 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i

We also state a useful lemma from Howgrave-Graham [7]. Let g(x1, · · · , xk) =∑
i1,··· ,ik ai1,··· ,ikx

i1
1 · · ·x

ik
k . We define the norm of g by the Euclidean norm of its coefficient

vector: ||g||2 =
∑

i1,··· ,ik a
2
i1,··· ,ik .

Lemma 2 (Howgrave-Graham [7]). Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be an integer polyno-
mial that consists of at most w monomials. Suppose that

1. g(y1, · · · , yk) = 0 mod pm for | y1 |6 X1, · · · , | yk |6 Xk and

2. ||g(x1X1, · · · , xkXk)|| < pm√
w

Then g(y1, · · · , yk) = 0 holds over integers.

3 The First Variant: Generalized Linear Equations

In this section, we address how to solve f1(x) = a0 + a1x mod pv (v ≥ 1) for some unknown p
where pu divides a known modulus N (i.e. N ≡ 0 mod pu, u ≥ 1). In particular, the result in [8]
can be viewed as a special case of our algorithm when u = 1, v = 1.
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3.1 Our Result

Theorem 1. Let N be a sufficiently large composite integer (of unknown factorization) with a
divisor pu (p ≥ Nβ, u ≥ 1). Let f1(x) ∈ Z[x] be a univariate linear polynomial. Then one can
find all the solutions y of the equation f1(x) = 0 (mod pv) with v ≥ 1, |y| ≤ Nγ if

γ < uvβ2

The time complexity of the algorithm is polynomial in logN .

Proof. Consider the following univariate linear polynomial:

f1(x) = a0 + a1x mod pv

where N is known to be a multiple of pu for known u and unknown p. Here we assume that
a1 = 1, since otherwise we can multiply f1 by a−11 mod N . If this inverse does not exist, one can
factorize N . Let

f(x) = a−11 f1(x) mod N

Define a collection of polynomials as follows:

gk(x) := fk(x)Nmax{d v(t−k)
u
e,0}

for k = 0, . . . ,m and integer parameters t and m with t = τm (0 ≤ τ < 1), which will be
optimized later. Note that for all k, gk(y) ≡ 0 mod pvt.

Let X(X = Nγ) be the upper bound on the desired root y. We built a lattice L of dimension
d = m + 1 using the coefficient vectors of gk(xX) as basis vectors. We sort the polynomials
according to the ascending order of g, i.e., gk < gl if k < l.

From the triangular matrix of the lattice basis, we can easily compute the determinant as
the product of the entries on the diagonal as det(L) = XsN sN where

s =
m∑
k=0

k =
m(m+ 1)

2
=
m2

2
+ o(m2)

sN =

t−1∑
k=0

dv(t− k)

u
e =

vτ2m2

2u
+ o(m2)

To obtain a polynomial with short coefficients that contains all small roots over integer, we
apply LLL basis reduction algorithm to the lattice L. Lemma 1 gives us an upper bound on the
norm of the shortest vector in the LLL-reduced basis, if the bound is smaller than the bound
given in Lemma 2, we can obtain the desired polynomial. We require the following condition:

2
d−1
4 det(L)

1
d <

Nvβτm

√
d

where d = m+ 1. We plug in the value for det(L) and d, and obtain the inequality:

X < 2−
1
2 (m+ 1)−

1
mN2vβτ− vτ

2

u
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Neglecting the quantities that do not depend on N , and setting τ = uβ, we can get the final
result

γ < uvβ2

Since our method modified [8]’s method by using a more ingenious method to choose the ex-
ponents of N , thus the parameters γ, β are independent to the dimension of the constructed
lattice. The complexity of our method is dominated by LLL-algorithm, which is polynomial in
logN .

Eventually, the vector output by LLL-algorithm gives a univariate polynomial g(x) such
that g(y) = 0, then one can find the root of g(x) over the integers. ut

Extension to Arbitrary Degree. We can generalize the result of Theorem 1 to univariate
polynomials of arbitrary degree.

Theorem 2. Let N be a sufficiently large composite integer (of unknown factorization) with a
divisor pu (p ≥ Nβ, u ≥ 1). Let f1(x) ∈ Z[x] be a univariate linear polynomial of degree δ. Then
one can find all the solutions y of the equation f1(x) = 0 (mod pv) with v ≥ 1, |y| ≤ Nγ if

γ <
uvβ2

δ

The time complexity of the algorithm is polynomial in logN .

In the proof of Theorem 2, we use the following collection of polynomials:

gk(x) := xjfk(x)Nmax{d v(t−k)
u
e,0}

for k = 0, . . . ,m, j = 0, . . . , δ− 1 and integer parameters t and m with t = τm (0 ≤ τ < 1). The
rest of the proof is the same as Theorem 1. We omit it here.

Specifically, the result in [13] can be viewed as a special case of our algorithm when u = v.

Extension to More Variables. We can generalize the result of Theorem 1 from univariate
linear equations to an arbitrary number of n variables x1, . . . , xn (n ≥ 2).

Theorem 3. Let N be a sufficiently large composite integer (of unknown factorization) with a
divisor pu (p ≥ Nβ, u ≥ 1). Furthermore, let f1(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a monic linear
polynomial in n(n ≥ 2) variables. Under Assumption 1, we can find all the solutions (y1, . . . , yn)
of the equation f1(x1, . . . , xn) = 0 (mod pv) with v ≥ 1, |y1| ≤ Nγ1 , . . . |yn| ≤ Nγn if

n∑
i=1

γi <
v

u

(
1− (1− u

v
β)

n+1
n − (n+ 1)(1− u

v
β)

(
1− n

√
1− u

v
β

))
The running time of the algorithm is polynomial in logN but exponential in n.

Proof. We define the following collection of polynomials which share a common root modulo pt

gi2,...,in,k = xi22 · · ·x
in
n f

k
1N

max{d v(t−k)
u
e,0}

where ij ∈ {0, . . . ,m} such that
∑n

j=2 ij ≤ m−k, and the parameter t = τm has to be optimized.
The idea behind the above transformation is that we try to eliminate powers of N in the diagonal
entries in order to keep the lattice determinant as small as possible.
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Next we can construct the lattice L using the similar method of Herrmann-May, therefore,
the lattice has triangular form, then the determinant det(L) is then simply the product of the
entries on the diagonal:

det(L) =

n∏
i=1

X
sxi
i N sN

Let d denote the dimension of L, t = r · h + c (h, c ∈ Z and 0 ≤ c < r). A straightforward but
tedious computation yields that

sxi =

(
m+ n

m− 1

)
=

1

(n+ 1)!
mn+1 + o(mn+1)

sN =
t−1∑
k=0

∑
0≤

∑n
j=2 ij≤m−k

dv(t− k)

u
e

=
v

u

(n+ 1)τ − 1 + (1− τ)n+1

(n+ 1)!
mn+1 + o(mn+1)

d =

(
m+ n

m

)
=

1

n!
mn + o(mn)

By ignoring the low-order terms, the necessary condition to obtain n equations over integer from
Lemma 2 is given by

det(L)
1

d−n+1 < Nβτm

Let Xi = Nγi(1 ≤ i ≤ n). Combining the values with the above condition, we obtain

n∑
i=1

γi <
v

u

(
1− (1− τ)n+1

)
− τ(n+ 1)(

v

u
− β)

By setting τ = 1− n
√

1− u
vβ, the condition reduces to

n∑
i=1

γi <
v

u

(
1− (1− u

v
β)

n+1
n − (n+ 1)(1− u

v
β)

(
1− n

√
1− u

v
β

))
The running time is dominated by LLL reduction, therefore, the same as the first approach, the
total running time for this approach is polynomial in logN but exponential in n.

Additionally our attack relies on a well-known assumption which was widely used in the
literature [5,1,6].

Assumption 1 The lattice-based construction yields algebraically independent polynomials. The
common roots of these polynomials can be efficiently computed using the Gröbner basis technique.

ut

3.2 Analysis of Multi-Power RSA

We consider some multi-power RSA schemes with moduli N = prq for r ≥ 2, especially, two
variants of RSA. In the first variant ed ≡ 1 mod pr−1(p− 1)(q − 1), while in the second variant
ed ≡ 1 mod (p − 1)(q − 1). In this section, we focus on the first variant. In Crypto’99, Takagi
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Table 1. Comparisons of May’s Bound, Sarkar’s bound and Ours on δ

r 2 3 4 5 6 7 8 9

May’s bound 0.22 0.25 0.36 0.44 0.51 0.56 0.60 0.64

Sarkar’s bound 0.39 0.41 0.43 0.46 0.48 0.51 0.53 0.54

Our bound 0.22 0.37 0.48 0.55 0.61 0.65 0.69 0.72

[19] proved that when the decryption exponent d < N
1

2(r+1) , one can factorize N in polynomial
time. Later, in PKC’04, May [12] improved Takagi’s bound to

N
max{ r

(r+1)2
,
(r−1)2

(r+1)2
}

Based on the technique of Theorem 1, we can further improve May’s bound to N
r(r−1)

(r+1)2 .

Theorem 4. Let N = prq, where r ≥ 2 is a known integer and p, q are primes of the same
bit-size. Let e be the public key exponent and d be the private key exponent, satisfying ed ≡
1 mod φ(N). Suppose that

d < N
r(r−1)

(r+1)2

Then N can be factored in polynomial time.

Proof. Since φ(N) = pr−1(p− 1)(q − 1), we have the following equation

ed− 1 = kpr−1(p− 1)(q − 1) for some k ∈ N

Then we want to find the root y = d of the polynomial

f1(x) = ex− 1 mod pr−1

with the known multiple (of unknown divisor p) N (N ≡ 0 mod pr). Let d ≈ N δ. Applying
Theorem 1, setting β = 1

r+1 , u = r, v = r − 1, we obtain the final result

δ <
r(r − 1)

(r + 1)2

ut

Recently, Sarkar [17] improved May’s bound for modulus N = prq, however, his method can not
applied for any public key exponents e of arbitrary size. In addition, we get better experimental
results for the case of r > 2.

For small r, we provide the comparison of May’s bound, Sarkar’s bound, and our bound on
δ in Table 1. Note that for r = 2, we obtain the same result as May’s bound.

Similar to the results of [12], the new attack of Theorem 4 immediately implies partial key
exposure attacks for d with known MSBs/LSBs. Following we extend the approach of Theorem
4 to partial key exposure attacks.

Theorem 5 (MSBs). Let N = prq, where r ≥ 2 is a known integer and p, q are primes of
the same bit-size. Let e be the public key exponent and d be the private key exponent, satisfying
ed = 1 mod φ(N). Given d̃ such that

|d− d̃| < N
r(r−1)

(r+1)2

Then N can be factored in polynomial time.

7



Table 2. Experimental Results of the Attack from Theorem 4

N (bit) r e d-pred(bits) (m, t) dim(L) d-exp(bits) time(sec)

1536 2 1536 341 (30, 20) 31 315 2354

2048 3 2048 768 (20, 15) 21 700 671

2048 3 4096 768 (20, 15) 21 700 711

2048 3 2048 768 (40, 30) 41 735 29228

2560 4 2560 1228 (20, 16) 21 1135 628

2560 4 2560 1228 (30, 24) 31 1165 9159

Proof. We have that

e(d− d̃) + ed̃− 1 ≡ 0 mod pr−1

Then we want to find the root y = d− d̃ of the polynomial

f1(x) = ex+ ed̃− 1 mod pr−1

with the known multiple (of unknown divisor p) N (N ≡ 0 mod pr). Applying Theorem 1, setting
β = 1

r+1 , u = r, v = r − 1, we obtain the final result. ut

Theorem 6 (LSBs). Let N = prq, where r ≥ 2 is a known integer and p, q are primes of
the same bit-size. Let e be the public key exponent and d be the private key exponent, satisfying
ed = 1 mod φ(N). Given d0,M with d = d0 mod M and

M > N
3r+1

(r+1)2

Then N can be factored in polynomial time.

Proof. Rewrite d = d1M + d0, then we have

ed1M + ed0 − 1 ≡ 0 mod pr−1

Then we want to find the root y = d1 of the polynomial

f1(x) = eMx+ ed0 − 1 mod pr−1

with the known multiple (of unknown divisor p) N (N ≡ 0 mod pr). Applying Theorem 1 and
setting β = 1

r+1 , u = r, v = r − 1, we obtain the final result. ut

3.3 Experimental Results

We have implemented the attack of Section 3.2 using Magma [21] on a laptop with Intel c©
CoreTM i5-2430M CPU 2.40 GHz, 2 GB RAM. Table 2 shows the experimental results for
multi-power RSA modulus N with 512-bit primes p, q.

We compute the number of bits that one should theoretically be able to attack for dp (column
dp-pred in Table 2). In all the listed experiments, we can recover the factorization of N . Note
that our attack is independent of the value of public exponent e.
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4 The Second Variant: Homogenous Linear Equations

In this section, we study the problem of finding small roots of homogenous linear polynomials
f2(x1, x2) = a1x1 +a2x2 mod pv (v ≥ 1) for some unknown p where pu divides a known modulus
N (i.e. N ≡ 0 mod pu, u ≥ 1). Let (y1, y2) be a small solution of f2(x1, x2). We assume that we
also know an upper bound (X1, X2) ∈ Z2 for the root such that |y1| ≤ X1, |y2| ≤ X2.

4.1 Our Result

Theorem 7. Let N be a sufficiently large composite integer (of unknown factorization) with a
divisor pu (p ≥ Nβ, u ≥ 1). Let f2(x1, x2) ∈ Z[x1, x2] be a homogenous linear polynomial in two
variables. Then one can find all the solutions (y1, y2) of the equation f2(x1, x2) = 0 (mod pv)
(v ≥ 1) with gcd(y1, y2) = 1, |y1| ≤ Nγ1 , |y2| ≤ Nγ2 if

γ1 + γ2 < uvβ2

The time complexity of the algorithm is polynomial in logN .

Proof. Since the proof is similar to that of Theorem 1, we only give the sketch here. Consider
the linear polynomial:

f2(x1, x2) = a1x1 + a2x2 mod pv

where N is known to be a multiple of pu for known u and unknown p. Here we assume that
a1 = 1, since otherwise we can multiply f2 by a−11 mod N . If this inverse does not exist, one can
factorize N . Let

f(x1, x2) = a−11 f2(x1, x2) mod N

Define a collection of polynomials as follows:

gk(x1, x2) := xm−k2 fk(x1, x2)N
max{d v(t−k)

u
e,0}

for k = 0, . . . ,m and integer parameters t and m with t = τm (0 ≤ τ < 1), which will be
optimized later. Note that for all k, gk(y1, y2) ≡ 0 mod pvt. Let X1, X2(X1 = Nγ1 , X2 = Nγ2)
be upper bounds on the desired root (y1, y2). We build a lattice L of dimension d = m+ 1 using
the coefficient vectors of gk(x1X1, x2X2) as basis vectors. We sort the polynomials according to
the order as following: If k < l, then gk < gl.

From the triangular matrix of the lattice, we can easily compute the determinant as the
product of the entries on the diagonal as det(L) = Xs1

1 X
s2
2 N

sN where

s1 = s2 =

m∑
k=0

k =
m(m+ 1)

2
=
m2

2
+ o(m2)

sN =
t−1∑
k=0

dv(t− k)

u
e =

vt2

2u
=
vτ2m2

2u
+ o(m2)

Combining Lemma 2 and Lemma 1, after some calculations, we can get the final result

γ1 + γ2 ≤ uvβ2

The complexity of this method is polynomial in logN .
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The vector output by LLL-algorithm gives a polynomial f
′
(x1, x2) such that f

′
(y1, y2) = 0.

Next we try to extract the secret root: According to Bézot’s theorem, the irreducible polynomial
h(x1, x2) = y1x2 − y2x1 must divide f

′
(x1, x2). Therefore, we can obtain an integer multiple

b · h(x1, x2) = h1x1 + h2x2 of h(x1, x2) by factoring f
′
(x1, x2) into irreducible polynomials over

Q(x1, x2). Since gcd(y1, y2) = 1, we obtain y1 = h1
gcd(h1,h2)

and y2 = h2
gcd(h1,h2)

. ut

Comparisons with Previous Methods. For u = 1, v = 1, the upper bound δ1+δ2 of Theorem
7 is β2, that is exactly May’s results [11] on univariate linear polynomial f(x) = x+ a. Actually
the problem of finding a small root of homogenous polynomial f(x1, x2) can be transformed
to find small rational roots of univariate linear polynomial F (z) i.e. F (x2x1 ) = f(x1, x2)/x1 (the
discussions of the small rational roots can be found in Joux’s book [9]).

Our result improves Herrmann-May’s bound 3β − 2 + 2(1 − β)
3
2 up to β2 if a0 = 0. As a

concrete example, for the case β = 0.5, our method improves the upper size of X1X2 from N0.207

to N0.25.
Another important work to mention is that in [2], Castagnos, Joux, Laguillaumie and Nguyen

also considered homogenerous polynomials. Their algorithm can be directly applied to our attack
scenario. Consider the following bivariate homogeneous polynomial

f(x1, x2) = (a1x1 + a2x2)
u
v mod p

Therefore, their algorithm can only deal with the cases u
v ∈ Z, and our algorithm is simpler and

more effective, specially, for u
v -degree polynomial with 2

u
v monomials (the dimension of lattice

is u
vm), whereas our algorithm is for linear polynomial with two monomials (the dimension of

lattice is m). Besides, in [2], they formed a lattice using the coefficients of g(x, y) instead of
g(xX, yY ). This modification enjoys the benefits in terms of real efficiency, since their lattice
has smaller determinant than in the classical bivariate approach. However, their algorithm fails
when the solutions are significantly unbalanced (X1 � X2). We highlight the idea that the factor
X,Y should not only be used to balance the size of different power of x, y but also to balance
the variables x, y. That is why our algorithm is suitable for this unbalanced attack scenario.

Extension to More Variables. We generalize the result of Theorem 7 from bivariate linear
equations to an arbitrary number of n variables x1, . . . , xn. The following result is similar to
Theorem 3, we only state here.

Theorem 8. Let N be a sufficiently large composite integer (of unknown factorization) with a
divisor pu (p ≥ Nβ, u ≥ 1). Furthermore, let f2(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a homogenous
linear polynomial in n(n ≥ 3) variables. Under Assumption 1, we can find all the solutions
(y1, . . . , yn) of the equation f2(x1, . . . , xn) = 0 (mod pv) (v ≥ 1) with gcd(y1, . . . , yn) = 1,
|y1| ≤ Nγ1 , . . . |yn| ≤ Nγn if

n∑
i=1

γi <
v

u

(
1− (1− v

u
β)

n
n−1 − n(1− v

u
β)

(
1− n−1

√
1− v

u
β

))
The running time of the algorithm is polynomial in logN but exponential in n.

4.2 Applications

In Africacrypt’12 [14], Nitaj presented a new attack on RSA. His attack is based on Herrmann-
May’s method [6] for finding small roots of a bivariate linear equation. In particular, he showed
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that the public modulus N can be factored in polynomial-time for the RSA cryptosystem where
the public exponent e satisfies an equation ex+y ≡ 0 ( mod p) with parameters x and y satisfying

ex+ y 6≡ 0 (mod N) |x| < Nγ and |y| < N δ with δ + γ ≤
√
2−1
2 .

Note that the equation of [14] is homogenous, thus we can improve the upper bound of γ+ δ
using our idea as Theorem 7. In [16], Sarkar proposed another method to extend Nitaj’s weak
encryption exponents, the trick is to consider the fact that Nitaj’s bound can be improved when
the unknown variables in the modular equation are unbalanced (x and y are of different bit-
size). In general, Sarkar’s method is essentially Herrmann-May’s method, whereas our algorithm
is simpler (see Theorem 7). We present our result below.

Theorem 9. Let N = pq be an RSA modulus with q < p < 2q. Let e be a public exponent
satisfying an equation ex+ y ≡ 0 (mod p) with |x| < Nγ and |y| < N δ. If ex+ y 6≡ 0 (mod N)
and γ + δ ≤ 0.25, N can be factored in polynomial-time.

In [14], Nitaj also proposed a new attack on CRT-RSA. Let N = pq be an RSA modulus with

q < p < 2q. Nitaj showed that if e < N
√
2

2 and edp = 1 + kp(p− 1) for some dp with dp <
N

√
2

4√
e

,

N can be factored in polynomial-time. His method is also based on Herrmann-May’s method.
Similarly we can improve Nitaj’s result using our idea as Theorem 7.

Theorem 10. Let N = pq be an RSA modulus with q < p < 2q. Let e be a public exponent
satisfying e < N0.75 and edp = 1 + kp(p− 1) for some dp with

dp <
N0.375

√
e

Then, N can be factored in polynomial-time.

Proof. We rewrite the equation edp = 1 + kp(p− 1) as

edp + kp − 1 = kpp

Then we focus on the equation modulo p

ex+ y = 0 mod p

with a root (x0, y0) = (dp, kp − 1). Suppose that e = Nα, dp = N δ, then we get

kp =
edp − 1

p− 1
<

edp
p− 1

< Nα+δ−0.5

Applying Theorem 7 with the desired equation where x0 = dp < N δ and y0 = kp−1 < Nα+δ−0.5,
setting β = 0.5, u = 1 and v = 1 we obtain

2δ + α < 0.75

Note that gcd(x0, y0) = (dp, kp − 1) = 1, kp < Nα+δ−0.5 < Nα+2δ−0.5 < N0.25 < p, hence
edp + kp − 1 6= 0 mod N . Then we can factorize N with gcd(N, edp + kp − 1) = p. ut

Moreover, we extend small secret exponent attack on Takagi’s scheme [19] with moduli N = prq
(r ≥ 2).
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Table 3. Experimental Results for Weak Encryption Exponents

N (bit) r dp-pred(bits) (m, t) dim(L) dp-exp(bits) time(sec)

1024 1 128 (6, 3) 7 110 <1

1024 1 128 (10, 5) 11 115 <1

1024 1 128 (30, 15) 31 124 340

1536 2 170 (10, 6) 11 140 1

1536 2 170 (30, 20) 31 160 449

2048 3 192 (10, 7) 11 135 1

2048 3 192 (48, 36) 49 180 10584

Theorem 11. Let N = prq be a Takagi’s RSA variant modulus. Let e < (p−1)(q−1), dp < p−1
be a public exponent and private CRT-exponent, satisfying edp = 1 mod (p − 1). Suppose that
p < Nβ, e < Nα, dp < N δ. Then N can be factored in polynomial-time provided that

δ <
rβ2 + β − α

2

Proof. We rewrite the equation edp = 1 + kp(p− 1) as edp + kp− 1 = kpp. Then we focus on the
equation modulo p

ex+ y = 0 mod p

with a root (x0, y0) = (dp, kp − 1). We have p = Nβ, e = Nα and dp = N δ, then we get

kp =
edp − 1

p− 1
<

edp
p− 1

< Nα+δ−β

Applying Theorem 7 with the desired equation where x0 = dp < N δ and y0 = kp− 1 < Nα+δ−β,
setting u = r and v = 1 we obtain

2δ + α < rβ2 + β

Note that gcd(x0, y0) = (dp, kp−1) = 1. Then we can factorize N with gcd(N, edp+kp−1) = p.
ut

4.3 Experimental Results

Table 3 shows the experimental results for multi-power RSA modulus N with 512-bit primes
p, q.

In all of our experiments, we fix e’s length as 512-bit. We also compute the number bits that
one should theoretically be able to attack for dp (column dp-pred of Table 3).

For r = 1, that is actually the attack described in Theorem 10. In [14], the author showed
that for a 1024-bit modulus N , the CRT-exponent dp is typically of size at most 110. We obtain
better results in our experiments as shown in Table 3.
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