
Time-Memory Trade-offs for Index Calculus in Genus 3

Kim Laine1 and Kristin Lauter2

1 University of California, Berkeley
2 Microsoft Research, Redmond

Abstract. In this paper, we present a variant of Diem’s Õ(q) index calculus algorithm to attack
the discrete logarithm problem (DLP) in Jacobians of genus 3 non-hyperelliptic curves over a
finite field Fq. We implement this new variant in C++ and study the complexity in both theory
and practice, making the logarithmic factors and constants hidden in the Õ-notation precise. Our
variant improves the computational complexity at the cost of a moderate increase in memory
consumption, but we also improve the computational complexity even when we limit the memory
usage to that of Diem’s original algorithm. Finally, we examine how parallelization can help to
reduce both the memory cost per computer and the running time for our algorithms.

1 Introduction

The discrete logarithm problem (DLP) in the Jacobian of a genus g curve with g > 1 over a
finite field Fq was proposed for use in public key cryptosystems by Koblitz [Kob]. The potential

advantage over elliptic curve cryptosystems comes from the fact that # JacC(Fq) = qg+O(q
2g−1

2 ).
So the underlying finite field can be smaller, while still yielding a group of the same size with
potentially the same security level. In genus 2 there are no known attacks faster than the generic
square root attacks, and the smaller field size and alternate models for the group make the
arithmetic very efficient, even efficient enough to be competitive with elliptic curve cryptography
([BCHL], [BCLS]).
However for curves of very large genus, subexponential index calculus attacks were discovered
by Adleman, DeMarrais, and Huang [ADH], and improved by Gaudry, Enge, and others [Gau],
[Eng], [EG], [VJS]. For small genus but still with g > 3, the expected security was drastically
reduced by attacks, which, although exponential, were so much better than square-root attacks
so as to render the complexity/security trade-off unacceptable (e.g. [Gau], [The], [GTTD], [Nag]).
The case of genus 3 is less clear. The hyperelliptic locus of genus 3 curves is of codimension
1 so almost all genus 3 curves are non-hyperelliptic. The non-hyperelliptic curves are smooth
plane quartics due to the canonical embedding. The rest are hyperelliptic of higher degree. A
double large prime index calculus algorithm ([GTTD]) in the hyperelliptic case reduces the

complexity of the DLP from O(q3/2) using Pollard rho to Õ(q4/3), where Õ hides both constants
and logarithmic factors, but this does not seem to be efficient enough to rule out the use of genus
3 hyperelliptic curves in cryptography. On non-hyperelliptic curves the simpler geometry can be
exploited to yield more efficient attacks. Diem has been developing index calculus algorithms
on Jacobians of low-degree plane curves [Die, Die2], in particular the case of non-hyperelliptic
genus 3 [DT]. These more efficient algorithms show that the complexity of solving the DLP on

a non-hyperelliptic genus 3 Jacobian is at most Õ(q).

But the Õ-notation is often quite misleading, since the hidden constants and logarithmic factors
can be significant for field sizes of practical interest. In this paper, we develop a variant of Diem’s
algorithm which improves the computational complexity at the cost of a moderate increase in
memory consumption. We implemented this new variant in C++ and studied the complexity in
both theory and practice, making the logarithmic factors and constants hidden in the Õ-notation
precise. We found clear estimates for the security of non-hyperelliptic genus 3 Jacobians which
have to be considered when designing genus 3 hyperelliptic cryptosystems, due to possible isogeny
attacks on hyperelliptic Jacobians as given in [Smi].
Perhaps the biggest limitation of all algorithms of this type is that they require massive amounts
of memory. We also study our variant in the case where the memory usage is limited to that
of Diem’s original algorithm, and still find performance improvements. Finally we look at how
parallelization can help to reduce both the memory cost per computer and the running time.

1.1 Overview

Diem’s algorithm works by building a graph (actually a tree) which can be used to construct
relations for the linear algebra stage of the index calculus algorithm. Taking advantage of the



geometry of plane quartic curves, one can pass a line through pairs of points on the curve and
this line then intersects the curve (over an algebraically closed field) in another 2 points. This
gives a relation which holds in the group (the Jacobian of the curve) and can be used in index

calculus. Using a fixed initial factor base of size Õ(q1/2), each pair of factor base elements yields
another two points on the line, and if they are rational over the base field and if one of them is
in the factor base or the tree already and the other is not, then the other point may be added to
the tree and tagged with this relation.
Once the tree is built and has size q3/4, a relation-finding stage commences. The goal of this stage
of index calculus is to produce relations involving only factor base elements, called full relations.
Remaining unused pairs of factor base elements generate additional pairs of points, which, if
they are already in the tree, can be used to trace down to obtain full relations, involving only
factor base elements. The version of Diem’s algorithm from [Die2] is described precisely below in
Section 2.

New variant. A rough description of our new algorithm is as follows. A precise description is
given in the algorithm presented in Section 3, and total time and storage cost is given in Section 4.
We start with an initial factor base of much smaller size, Õ(q1/8), which we then expand into a

full factor base of size Õ(q1/2) as follows.
At the base vertices construction stage, we take all pairs of elements of the initial factor base,
find the other two points on the curve which lie on the line intersecting the factor base points,
and (if they are rational) add one of them to the factor base and one to the graph and call it a
base vertex, connected to the base (special node) of the graph. This stage is very efficient because
it simultaneously builds the factor base and the graph, with very high probability at each step
because it builds the graph as long as not both are in the graph already, and the graph is very
small to begin with.
The next step is to build triangle relations. We take all pairs of base vertices, find the other two
points on the line and the curve, and add one to the factor base, and one to the graph. The one
added to the graph is called a top triangle vertex. At the end of this stage, the graph consists
of many triangles, the bottom two triangle vertices are connected directly to the factor base
(the special node), and the top vertex is connected to the base triangle vertices (with a relation
involving one element of the factor base). At this point, the factor base consists of roughly q1/2

elements, roughly the same as the size of the graph.
The next stage continues graph building while also starting to collect full relations. Essentially
we will build tree branches on top of the top triangle vertices, while also collecting relations.
That way we can make use of relations both when the new points are in the graph and when one
of them is not. We only discard a relation if both of the new points are not in the graph. This
stage terminates when enough full relations have been generated. In Theorem 2 we show that if
the size of the factor base is roughly 4λ4q1/2, the graph grows to size 4λ2q3/4, where λ satisfies
λ exp(4λ8) = q1/8, and the algorithm can be expected to terminate successfully.
For the linear algebra step, we don’t make any specific changes, but we will show that our average
row weight is a constant factor less than that in Diem’s algorithm (Lemma 2), which leads to an
improvement in running time of the linear algebra stage.
Note that for both our algorithm and Diem’s, the entire graph building and relation finding
stages do not use the (expensive) group operation on the Jacobian of the plane quartic curve.
Instead each step requires only finding the other two points of intersection of a line with the
curve. The complexity of this operation is logarithmic in q and in the characteristic 2 case it is
particularly simple, as we explain below. The running time of our algorithm presented here refers
to the characteristic 2 case.

Performance. To understand the overall performance of this type of attack on the discrete
logarithm problem, we must estimate the time and memory costs for both the relation collection
stage and the linear algebra stage. To maximize efficiency, these algorithms are generally designed
so that the time and memory costs in the two stages are relatively balanced. In Table 1, we
estimate the time and memory costs for the relation collection stage of our algorithm for field sizes
of interest, 230 ≤ q ≤ 2240, based on the theoretical results from Theorem 2. Time complexity is
measured in terms of counting the number of field multiplications required, and based on rough
estimates of the parameters for our algorithm where q is in the range of 270 ≤ q ≤ 2120 (see
Remark 1), we estimate the running time to be

≈ 1.23123 · log2
2(q) · q

in the binary case. Table 1 shows for example, that to achieve a 128-bit security level measured
in terms of time complexity, q should be at least 115 bits. This ignores, however, the memory
requirements for these algorithms, which is the size of the graph, Õ(q3/4) for both. Table 2 gives



experimental results, for small q, and shows that in practice the performance of our implemen-
tation of our algorithm matches very well with the theoretical predictions.

Comparison with Diem’s algorithm. Our algorithm gives a constant factor improvement
over Diem’s algorithm in two different ways. First, the time required for the matrix-building
stage is dominated by the graph-building and relation-finding step of our algorithm, and this is
proportional to the square of the size of the factor base. In Lemma 2 we show that the squared
ratio of the size of Diem’s factor base to the size of our factor base approaches 3 (from above)
as q increases. In addition, the graph that we build is wider and not as deep as Diem’s graph,
which leads to an improvement in the row weight of our vectors for the linear algebra stage.
In Lemma 2 we show that we improve the linear algebra stage by a factor which approaches 9
asymptotically as q increases, which is demonstrated in Table 4.
We obtain these improvements at the cost of slightly increasing the size of the graph used in
relation collection, which increases the memory requirements of the algorithm. Our graph size is
roughly 4λ2q3/4 as compared to Diem’s q3/4. Table 1 shows values for λ which are very close to
1 for all q in the range considered. However, we also show that, even if we restrict our graph size
to be the same as Diem’s, we still get an improvement in the running time. Corollary 1 shows
that in the case of restricted graph size our algorithm improves on Diem’s by the same ratios
asymptotically, but the ratios approach 3 and 9 more slowly. This is demonstrated in Table 5.

2 Diem’s Index Calculus

There are several variants of Diem’s index calculus for low degree plane curves. We restrict to
the case of non-hyperelliptic genus 3 curves over finite fields embedded as smooth plane quartics
using the canonical embedding. These are all double large prime index calculus algorithms where
elements of the group are decomposed into sums of factor base elements and at most two non-
factor base elements (large primes). The large primes are then eliminated using various methods
to produce relations consisting only of factor base elements.
Let C be a non-hyperelliptic curve of genus 3 over a finite field Fq. Using the canonical embedding
it can be realized as a smooth plane quartic. Let P0 be an Fq-rational point on C. The algorithms
find x in the DLP

D2 − 3[P0] = x · (D1 − 3[P0])

provided that a solution exists. Here deg(D1) = deg(D2) = 3 and both D1 and D2 are sums of
three Fq-rational points: D1 = [P 1

1 ] + [P 1
2 ] + [P 1

3 ], D2 = [P 2
1 ] + [P 2

2 ] + [P 2
3 ]. For simplicity we

assume that both divisors D2− 3[P0] and D1− 3[P0] live in the same subgroup of prime order p.
Remark that, in general, any Fq-rational divisor can be written in a unique way in the along
P0 maximally reduced form D − `[P0] ([Hes]), where ` ≤ 3 and in the generic case ` = 3. If D
decomposes into a sum of three Fq-rational points, it is called completely split. If the divisor is
not completely split, the standard strategy is to multiply both sides of the DLP by constants
until they become completely split and then proceed as usual. Once the discrete logarithm has
been found, these multipliers must be cancelled. See [Die2] for details. Here is the algorithm as
given in [Die2] with one modification. Diem suggests taking the factor base to be slightly larger
to ensure that the algorithm terminates successfully. The size used below is an absolute minimum
for which we can expect the algorithm to succeed. In practice the size should be slightly bigger.
Choosing the factor base: Choose as set F ⊆ C(Fq) with d((3/2) ln q + 4)1/2 q1/2e elements.
Include the points {P ij } ∪ {P0} in F . The set F is called the factor base. Let L := C(Fq) \ F be
the set of large primes.

Tree building: We constuct a tree T as follows.
Let V = {∗} be the set of vertices of T. Here ∗ denotes a distinguished special vertex. Let
E = ∅ be the set of edges.

for all unordered pairs (F1, F2) ∈ F × F such that F1 6= F2 do

Draw a line through the points F1 and F2. This will intersect the curve C at two other
points L1 and L2.

if L1 and L2 are not both Fq-rational then

Move on to the next pair.

end if

if L1 ∈ V ∪ F and L2 /∈ V ∪ F then

Add a vertex to T labeled L2.

If L1 ∈ V draw an edge to T connecting L1 and L2 and label the edge with the linear
relation [F1] + [F2] + [L1] + [L2] = 0. If L1 ∈ F draw an edge to T connecting ∗ and
L2 and label the edge with the linear relation [F1] + [F2] + [L1] + [L2] = 0.



end if

if #V ≥ dq3/4e then
break (tree building succeeded)

end if

end for

if #V < dq3/4e then
Tree building failed. Restart the algorithm.

end if

Relation search:

for all unordered pairs (F1, F2) ∈ F×F , F1 6= F2, that were not already used in tree building
do

Draw a line through the points F1 and F2. This will intersect the curve C at two other
points L1 and L2.

if L1 and L2 are not both Fq-rational then

Move on to the next pair.

end if

if L1, L2 ∈ V ∪ F then

If one or both of L1, L2 is in V use the tree and the linear relations labeling the edges
to write

[F1] + [F2] + [L1] + [L2] =
∑
F∈F

λF [F ] = 0 .

Record this relation. We call it a full relation.

end if

if the number of full relations found is ≥ #F + 1 then

break (relation search succeeded)

end if

end for

if the number of full relations is ≤ #F then

Restart the algorithm.

end if

Linear algebra step:

Construct a sparse matrix M with #F columns, each column labeled by a point of F .

The first row of M is given by the points in the divisor D1 − 3[P0].

The second row of M is given by the points in the divisor D2 − 3[P0].

for each full relation do

Add a row to M corresponding to the left-hand side of the full relation.

end for

Use sparse linear algebra techniques to find a vector v such that Mv = 0 over the ring Z/pZ
where p is the order of the subgroup of the Jacobian where the DLP was defined. Choose v
to be such that the second component v2 is invertible modulo p.

Output: −v1/v2 modulo p.

Theorem 1 ([Die2]). Under some heuristic assumptions and when q is large enough, after a
constant number of attempts the algorithm terminates successfully and outputs a number x ∈
Z/pZ such that D2 − 3[P0] = x · (D1 − 3[P0]). The complexity of the algorithm is Õ(q).

3 Our Variant

In our version of the algorithm we generate the factor base in a different way. We start with a
much smaller initial set for the factor base of size O(q1/8), and then build up the factor base and
the graph simultaneously at the beginning. This improves the efficiency of the graph-building,
and then after this initial step we build the graph and find full relations simultaneously. As a
result, both the overall relation collection time and the linear algebra stage are improved. Our
algorithm works as follows.

Input:

1) The Jacobian of a smooth plane quartic C over a finite field Fq;
2) An Fq-rational point P0 on the curve;



3) A discrete logarithm problem on the Jacobian

D2 − 3[P0] = x · (D1 − 3[P0])

where deg(D1) = deg(D2) = 3 and both D1 and D2 are sums of three Fq-rational points:

D1 = [P 1
1 ] + [P 1

2 ] + [P 1
3 ] , D2 = [P 2

1 ] + [P 2
2 ] + [P 2

3 ] ;

4) The size p of a prime order subgroup3 containing D2 − 3[P0] and D1 − 3[P0].

Initialization: Let λ be a positive real number satisfying

λ exp
(
4λ8) = q1/8 .

Choose a set RP of d4λ q1/8e Fq-rational points on the curve. Let F be another set of points,
the factor base, and for now let

F := RP ∪ {P ij } ∪ {P0} .

Construction of the base vertices: We construct a graph G as follows.

Let V := {∗} be the set of vertices of the graph G. Here ∗ denotes a distinguished special
vertex. Let E := ∅ be the set of edges.

for all unordered pairs (F1, F2) ∈ RP ×RP such that F1 6= F2 do

Draw a line through the points F1 and F2. This will intersect the curve C at two other
points F and L.

if F and L are Fq-rational, L /∈ V ∪ F and F /∈ V then

Let F := {F} ∪ F and add a vertex to V labeled L.

Add an edge to E connecting ∗ and L and label the edge with the linear relation
[F1] + [F2] + [F ] + [L] = 0. The vertices L constructed here we call base vertices.

end if

end for

Let B denote the set of all base vertices. Note that at this point V = B ∪ {∗}.

Construction of the triangle relations:

for all unordered pairs (B1, B2) ∈ B×B such that B1 6= B2 do

Draw a line through the points B1 and B2. This will intersect the curve C at two other
points F and L.

if F and L are Fq-rational, L /∈ V ∪ F and F /∈ V then

Let F := {F} ∪ F and add a vertex to V labeled L.

Draw a triangle in the graph with corners B1, B2 and L. Label the triangle with the
linear relation [B1] + [B2] + [L] + [F ] = 0. The vertices L constructed here we call top
triangle vertices.

end if

end for

Graph building and relation search:

for all unordered pairs (F1, F2) ∈ F × F such that F1 6= F2 do

Draw a line through the points F1 and F2. This will intersect the curve C at two other
points L1 and L2.

if L1 and L2 are not both Fq-rational then

Move on to the next pair.

end if

if L1 ∈ V \B and L2 /∈ V ∪ F then

Add a vertex to V labeled L2.

Add an edge to E connecting L1 and L2 and label the edge with the linear relation
[F1] + [F2] + [L1] + [L2] = 0.

else if L1, L2 ∈ (V \B) ∪ F then

3 It is not strictly speaking necessary for the subgroup to have prime order, but this will simplify the linear
algebra step and guarantee that the DLP has a solution.



In case L1, L2 ∈ V \ B use the graph and the linear relations labeling the edges to
write

[F1] + [F2] + [L1] + [L2] = λ1[L′1] + λ2[L′2] +
∑
F∈F

λF [F ] = 0

where L′1 and L′2 are top triangle vertices, λi are ±1 and λF are integers. Then use
the triangle relations to substitute L′1 and L′2 with elements of F . In cases where
neither one or exactly one of Li is in V\B we need to perform the above substitution
process only to the one that is in V \B. In any case we obtain a relation involving
only elements of F . Record this relation. We call it a full relation.

end if

if the number of full relations found is ≥ #F + 1 then

break (relation search succeeded)

end if

end for

if the number of full relations is ≤ #F then

Restart the algorithm.

end if

In practice we do not restart the algorithm but instead re-run the for-loop. Almost certainly
it will break very soon after starting and only a few if any duplicate full relations are
produced.

Linear algebra step:
Construct a sparse matrix M with #F columns, each column labeled by a point of F .

The first row of M is given by the points in the divisor D1 − 3[P0].

The second row of M is given by the points in the divisor D2 − 3[P0].

for each full relation do

Add a row to M corresponding to the left-hand side of the full relation

end for

Use sparse linear algebra techniques to find a vector v such that Mv = 0 over the ring Z/pZ
where p is the order of the subgroup of the Jacobian where the DLP was defined. Choose v
to be such that the second component v2 is invertible modulo p.

Output: −v1/v2 modulo p.

Theorem 2. (Heuristic) Under some heuristic assumptions and if q is large enough, after a
constant number of attempts the algorithm terminates and outputs a number x ∈ Z/pZ such that
D2 − 3[P0] = x · (D1 − 3[P0]). The size of the factor base will be approximately 4λ4 q1/2 and the
size of the graph will be approximately 4λ2 q3/4.

Proof. Correctness is easy; see for example [Die2]. It remains to prove that the size of the factor
base is sufficiently large for the algorithm to terminate. The strategy is the following. Let N be
the size of the factor base at the beginning, essentially N = #RP. First we compute the number
of factor base elements and graph vertices produced when constructing the base vertices and the
triangle relations, and express these in terms of N . Next we compute the expected number of
full relations produced in the graph building step when allowing the graph to grown until it has
Nmax vertices. Since we know that the number of full relations needed is #F + 1, we can find an
expression for Nmax in terms of N . Finally we compute the number of factor base pairs needed
to grow the graph to size Nmax. We set this number equal to the number of factor base pairs
available, which yields an equation for N .
Due to the roundabout way of computing the numbers N and Nmax, we need to have an idea
of their sizes beforehand, so that the most significant terms can be computed. For this purpose,
we assume N = O(q1/8), so #F = O(q1/2), and Nmax = O(q3/4), which are in line with Diem’s
choices in [Die2].
By [DT, Prop. 14], a line through two Fq-rational points on the curve intersects the curve at two
other Fq-rational points with probability 1/2 +O(q−1/2).
Suppose RP is a set of N = O(q1/8) random Fq-rational points on the curve. Construction of
the base vertices B produces(

1

2
+O(q−1/2)

)(
N

2

)
=
N2

4
+O(q1/8)

base vertices and equally many factor base elements.



Construction of the triangle relations from the set B produces(
1

2
+O(q−1/2)

)(
#B

2

)
= 4

(
N

4

)4

+O(q3/8)

triangles and equally many factor base elements. At this point we expect to have

#F = 4

(
N

4

)4

+O(q3/8) = 4

(
N

4

)4 (
1 +O(q−1/8)

)
.

We will need to choose N so that in the graph building step we expect to find #F+1 full relations.
To this end, suppose that when the algorithm terminates successfully the number of vertices in
the graph is Nmax = O(q3/4). When the graph building starts we already have approximately
4(N/4)4 vertices in the graph, consisting of the base vertices B and the top triangle vertices. If
the size of the graph at a particular moment is x, the probability of adding a new vertex and
edge to the graph with a particular choice of a pair (F1, F2) ∈ F × F is(

1 +O(q−1/2)
) x
q

(
1− x

q

)
.

Hence, to add one new vertex and edge we need to try approximately(
1 +O(q−1/2)

) 1

(x/q)(1− x/q)

pairs. For each pair we try, the probability of finding a full relation through the process described
in the algorithm is (

1

2
+O(q−1/2)

)(
x

q

)2

so when the size of the graph is increased by one we expect to have found approximately(
1

2
+O(q−1/2)

)
x/q

1− x/q

more full relations.
Once the triangle building step has been completed, the size of the graph is roughly equal to the
number of triangles, which again is roughly equal to the size of the factor base. We denote this
by

N0 = 4

(
N

4

)4

+O(q3/8) .

Note that once the triangles have been constructed, the factor base does not change anymore
and only the graph is built using the factor base. The total number of full relations produced in
the entire graph building step, when the size of the graph is built from N0 to Nmax = O(q3/4), is(

1

2
+O(q−1/2)

) Nmax∑
k=N0

k/q

1− k/q ≈
(

1

2
+O(q−1/2)

)∫ Nmax

N0

x/q

1− x/q dx

=
( q

2
+O(q1/2)

)[
−Nmax

q
− ln

(
1− Nmax

q

)
+
N0

q
+ ln

(
1− N0

q

)]
.

If we expand out the first two terms of the logarithms we see that this is

=
( q

2
+O(q1/2)

)[1

2

(
Nmax

q

)2

+O(q−3/4)

]
=
q

4

(
Nmax

q

)2

+O(q1/4) .

We want this to equal roughly the size of the factor base (or maybe slightly more in practice to
ensure that the algorithm terminates successfully) so we must have

q

4

(
Nmax

q

)2

= 4

(
N

4

)4 (
1 +O(q−1/8)

)
.

From this we can solve

Nmax

4q
=

(
N

4q1/4

)2 (
1 +O(q−1/8)

)
=

(
N

4q1/4

)2

+O(q−3/8) . (1)



With this we are ready to compute the value of N . The number of unordered pairs of factor
base elements needed to build the graph from size N0 to size Nmax = O(q3/4) should equal the
number of pairs available, i.e.

(
#F
2

)
= 8(N/4)8 +O(q7/8). Therefore,

8

(
N

4

)8

+O(q7/8) =
(

1 +O(q−1/2)
) Nmax∑
k=N0

1

(k/q)(1− k/q)

≈
(

1 +O(q−1/2)
)∫ Nmax

N0

1

(x/q)(1− x/q) dx

=
(
q +O(q1/2)

)[
ln

(
Nmax

4q

)
− ln

(
1− Nmax

q

)
− ln

(
N0

4q

)
+ ln

(
1− N0

q

)]
=
(
q +O(q1/2)

)[
ln

(
Nmax

4q

)
− ln

(
N0

4q

)
+O(q−1/4)

]
= −2q ln

(
N

4q1/4

)
+O(q7/8)

where we have used (1). Hence we obtain

4

(
N

4q1/8

)8

+O(q−1/8) = − ln

(
N

4q1/4

)
.

Denoting

λ =
N

4q1/8

this becomes

λ exp
(
4λ8) = q1/8 +O(1) ≈ q1/8 ,

where the approximation makes sense when q is large enough. In practice the error term is
small, even for small field sizes. The function λ exp

(
4λ8
)
− q1/8 is monotonically increasing and

has precisely one positive real root. This is the equation stated in the initialization step of the
algorithm, so if we take N = 4λ q1/8 the algorithm can be expected to terminate successfully.

If q is large, then the size of the factor base will be

#F = 4λ4 q1/2 +O(q3/8) ≈ 4λ4 q1/2

and the size of the graph when the algorithm terminates will be

Nmax = 4λ2 q3/4 +O(q5/8) ≈ 4λ2 q3/4 .

For field sizes of most practical interest (perhaps between 60 and 120 bits) our algorithm has not
much worse storage requirements than Diem’s algorithm but our factor base remains smaller. In
practice the factor base can be taken to be even slightly smaller than 4λ4 q1/2 if we run the graph
building step twice in a row as was explained earlier. We will look at some precise numbers in
the next section.

Specifics of Implementation in Characteristic 2

In our experiments we made an artificial restriction to the case of binary fields in order to be
able to count the number of points on the Jacobian easily. In this case it is easy to perform the
geometric step of the algorithm where a line is drawn through two points on the curve and the
intersection divisor is computed. Indeed, we do this by first constructing an equation for the line,
then solving for one of the variables in terms of the other ones and substituting this into the
equation of the curve to obtain a quartic polynomial in one variable. It is a simple computation to
divide this polynomial by the two linear factors corresponding to the two points we started with.
Finally the quadratic equation can be transformed into an Artin-Schreier equation by a linear
change of variables and the solutions can be immediately written down using Chen’s formulas.
The complexity is logarithmic in q.

For odd characteristic fields one has to compute a square-root in Fq using the Tonelli-Shanks
algorithm to solve the quadratic polynomial, the complexity of which is logarithmic in q.



4 Complexity for Realistic Field Sizes

Relation Collection Time and Total Memory

In our naive implementation the number of field multiplications (in the binary field case) needed
to process each pair of factor base elements as explained above was

Mpair = 7 log2 q + 13 .

This count is an actual count of how many field multiplications are used to process each pair of
points in our code, but it is also a theoretical count of the number of field operations required to
pass a line through two points and intersect it with the curve. There are field inversions involved,
which roughly explains the log q factors. This number could likely be improved in a more robust
implementation. The total number of field multiplications needed was therefore approximately

MTotal ≈Mpair ·

(
#F

2

)
= (7 log2 q + 13) · 8λ8 q .

Remark 1. Locally the numbers λ behave roughly logarithmically as a function of q. If we focus
on the range q ∈ [270, 2120] we can for instance approximate

λ(q) ≈ C logα2 q , where C = 0.62054 , α = 0.12431 .

Then
MTotal ≈ 0.17589 · (7 log2 q + 13) · log0.99448

2 (q) · q ≈ 1.23123 · log2
2(q) · q .

The memory consumption was roughly 370 bytes per graph vertex but our implementation was
not optimized towards saving memory so this number can probably be reduced by a significant
factor. Moreover, every vertex data must contain the coordinates of some points on the curve
or other vertex identifiers, the size of which grows logarithmically in q. Hence the size of a
vertex will grow logarithmically in q, but this dependence is weak and for practical field sizes
it is not a significant factor. To take this into account, we assume the size of a vertex data is
d(log2 q)/64e · 370 bytes. The results are shown in Table 1.

Table 1: Results for field sizes of practical interest
Field size λ logq #F logq Nmax logqMTotal log2MTotal Memory

230 0.94987 0.55677 0.81172 1.34024 40.20729 7.4 GB
240 0.98285 0.54750 0.79875 1.27488 50.99510 1430 GB
250 1.00974 0.54112 0.79056 1.23231 61.61568 267 TB
260 1.03251 0.53641 0.78487 1.20212 72.12744 50490 TB
270 1.05230 0.53277 0.78067 1.17947 82.56275 1.90 · 107 TB
280 1.06983 0.52987 0.77743 1.16177 92.94144 3.56 · 109 TB
290 1.08559 0.52749 0.77486 1.14752 103.27649 6.62 · 1011 TB
2100 1.09992 0.52550 0.77275 1.13577 113.57690 1.2 · 1014 TB
2110 1.11306 0.52380 0.77099 1.12590 123.84916 2.28 · 1016 TB
2115 1.11926 0.52304 0.77022 1.12153 128.97628 3.10 · 1017 TB
2120 1.12522 0.52234 0.76950 1.11748 134.09806 4.22 · 1018 TB
2140 1.14712 0.51994 0.76711 1.10386 154.53975 2.16 · 1023 TB
2160 1.16646 0.51805 0.76528 1.09327 174.92298 7.29 · 1027 TB
2180 1.18380 0.51652 0.76382 1.08479 195.26141 8.43 · 1031 TB
2200 1.19954 0.51525 0.76262 1.07782 215.56441 1.10 · 1037 TB
2220 1.21397 0.51418 0.76163 1.07199 235.83869 3.71 · 1041 TB
2240 1.22729 0.51326 0.76080 1.06704 256.08921 1.24 · 1046 TB

According to these estimates one should use a field of size at least 115 bits to get a security level
of 128 bits and a field of size at least 240 bits to get a security level of 256 bits. Of course this
is only the relation collection step and is not taking into account the linear algebra step or even
more importantly the massive memory consuption. Later we will see how parallelization reduces
both time and memory requirements (per computer).



Experimental Results for Small Examples

We ran small experiments and got results corresponding to the theoretical results above. We
chose RP to be slightly bigger than was strictly speaking needed to ensure that the algorithm
finishes successfully on the first attempt. More precisely, we chose it so that about 95% of the
factor base pairs are used when the algorithm finishes. The results are shown in Table 2. We
conclude that the experimental results correspond closely to the theoretical results, even for such
small field sizes.

Field size logq #F (theory) logq #F (practice) FBPU logqMTotal (theory) logqMTotal (practice)

217 0.57846 0.58034 96.4 1.51247 1.50780
219 0.57387 0.57692 95.5 1.47352 1.46740
221 0.56683 0.57223 95.3 1.44080 1.43510
223 0.56637 0.56819 95.4 1.41287 1.40769
225 0.56325 0.56468 96.0 1.38869 1.38418
227 0.56046 0.56158 96.4 1.36752 1.36351

Table 2: Experimental results. (FBPU = percent of factor base pairs used)

Linear Algebra

We recall that the complexity of sparse linear algebra algorithms is O
(
w · (#F)2

)
where w

denotes the average row weight. The row weight depends logarithmically on the field size. The
expected average depth of a tree on a given number of vertices can be estimated using the method
in [GTTD] but we need to take into account that the size of the graph is changing while we are
looking for full relations.

Lemma 1. The average row weight of the matrix is w ≤ 18− 8 lnλ+ ln q.

Proof. In [GTTD] it is established that for a tree containing k vertices the expected average
depth can be approximated from above by the function 1 + ln k. Our graph consists of trees built
on top of each of the top triangle vertices. When our graph has a total of k vertices, each one of
these 4λ4 q1/2 +O(q3/8) trees has on average k/(4λ4 q1/2) +O(q−1/8) vertices. So if we choose a
tree at random and a point in it at random, the expected depth (measured from the root of that
tree) is

≤ 1 + ln

(
k

4λ4 q1/2

)
+O

(
q3/8

k

)
= 1 + ln

(
k

4λ4 q1/2

)
+O(q−3/8) .

We find full relations while building the graph so the sizes of the trees change. Recall that right
after the triangles are constructed, the size of the graph is

N0 = 4λ4 q1/2 +O(q3/8) .

When a full relation is produced and the graph tracing step performed, the number of factor
base elements we end up with on average is4

≤ 22

#F

Nmax∑
k=N0

(
1 + ln

(
k

4λ4 q1/2

)
+O(q−3/8)

)
·
(

1

2
+O(q−1/2)

)
k/q

1− k/q

≈ q1/2

2λ4

(
1 +O(q−1/8)

)∫ Nmax/q

N0/q

(
1 + ln

(
t q1/2

4λ4

)
+O(q−3/8)

)
· t

1− t dt

=
q1/2

2λ4

(
1 +O(q−1/8)

)(
1 +O(q−1/4)

)∫ Nmax/q

N0/q

t

(
1 + ln

(
t q1/2

4λ4

)
+O(q−3/8)

)
dt

= 4
(

1 +O(q−1/8)
)(1

2
− 2 lnλ+

1

4
ln q +O(q−1/8)

)
+O(q−1/2)

= 2− 8 lnλ+ ln q +O(q−1/8 ln q) .

In addition to the contribution coming from moving in the graph, we have 2 initial factor base
elements, 2 coming from using the triangle relations and 12 from the base vertices. The expected
average row weight should therefore satisfy w ≤ 18− 8 lnλ+ ln q.

4 One factor of 2 is for the two factor base elements that are produced at every step in the graph and the
other factor of 2 from tracing back two vertices to their respective roots. Here we are only concerned with
the factor base elements that result from moving in the graph. The others are taken into account below.



Note that in practice q is large so q−1/8 ln q is small, and we let west = 18− 8 lnλ+ ln q. Results
for field sizes of practical interest are shown in Table 3. The complexity of the linear algebra is
in all cases slightly better than the complexity of matrix building so there might be some room
for optimization by choosing the factor base to be slightly larger, which makes relation collection
faster and linear algebra slower.

Table 3: Linear algebra results for field sizes of practical interest
Field size log2 west log2 #F Lin. alg. MTotal

230 5.29300 16.70320 ≈ 239 ≈ 240

240 5.51930 21.90017 ≈ 249 ≈ 251

250 5.71644 27.05593 ≈ 260 ≈ 262

260 5.89076 32.18461 ≈ 270 ≈ 272

270 6.04685 37.29417 ≈ 281 ≈ 283

280 6.18808 42.38952 ≈ 291 ≈ 293

290 6.31698 47.47391 ≈ 2101 ≈ 2103

2100 6.43551 52.54957 ≈ 2112 ≈ 2114

2110 6.54518 57.61814 ≈ 2122 ≈ 2124

2115 6.59709 60.15016 ≈ 2127 ≈ 2129

2120 6.64723 62.68083 ≈ 2132 ≈ 2134

2140 6.83216 72.79205 ≈ 2152 ≈ 2155

2160 6.99630 82.88852 ≈ 2173 ≈ 2175

2180 7.14381 92.97370 ≈ 2193 ≈ 2195

2200 7.27774 103.04993 ≈ 2213 ≈ 2216

2220 7.40038 113.11892 ≈ 2234 ≈ 2236

2240 7.51347 123.18192 ≈ 2254 ≈ 2256

5 Comparison with Diem’s Algorithm

Case 1: Free Graph Size

In Diem’s algorithm (see [Die2]) the size of the factor base should be taken to be at least

#FDiem = d((3/2) ln q + 4)1/2 q1/2e .

We can compare this to the size of our factor base #F ≈ 4λ4 q1/2. Using the defining equation
of λ to write ln q = 8 lnλ+ 32λ8 we find

ρMB =

(
#FDiem

#F

)2

= 3 +
3 lnλ+ 1

4λ8
.

When q increases λ increases and so this ratio approaches 3.

Lemma 2. The ratio of the complexity of the matrix building step in our algorithm and the
complexity of the matrix building step in Diem’s algorithm approaches 3 as the size of the field
increases.
The ratio of the complexity of the linear algebra step in our algorithm and the complexity of the
linear algebra step in Diem’s algorithm approaches 9 as the size of the field increases.

Proof. In both algorithms the sizes of the factor bases have been chosen so that the algorithm
can just barely terminate. Thus almost all pairs of factor base elements have to be used which
means that the ratio of the complexities in the matrix building step is roughly(

#FDiem
2

)(
#F
2

) ≈
(

#FDiem

#F

)2

which approaches 3 as q grows.
The complexity of the linear algebra step depends quadratically on #FB and linearly on the
average row weight. In Diem’s algorithm the expected average depth of the tree is approximately

1 + ln
(
q3/4

)
= 1 + (3/4) ln q and so the average row weight is 2 + 4(1 + (3/4) ln q) = 6 + 3 ln q

whereas in our algorithm it is generally smaller, 18−8λ+ln q. Hence the ratio of the complexities
in the linear algebra step is roughly

ρLA :=
6 + 3 ln q

18− 8 lnλ+ ln q

(
#FDiem

#F

)2

which approaches 3 · 3 = 9.



Denote the ratios in the above lemma by ρMB and ρLA. Let ρMEM denote the ratio in memory
consumption which we measure by the maximum size of the graph. These numbers for field sizes
of practical interest are presented in Table 4.

Table 4: Comparison with Diem
Field size q ρMB ρLA 1/ρMEM

230 3.31904 5.78911 3.60900
240 3.27221 6.36242 3.86398
250 3.23808 6.77252 4.07829
260 3.21213 7.07935 4.26429
270 3.19171 7.31689 4.42932
280 3.17519 7.50579 4.57814
290 3.16153 7.65933 4.71400
2100 3.15004 7.78637 4.83926
2110 3.14022 7.89309 4.95564
2115 3.13582 7.94026 5.01093
2120 3.13172 7.98390 5.06448
2140 3.11772 8.12990 5.26351
2160 3.10664 8.24185 5.44247
2180 3.09763 8.33019 5.60552
2200 3.09015 8.40153 5.75560
2220 3.08383 8.46025 5.89487
2240 3.07841 8.50934 6.02500

As we have pointed out earlier, in our algorithm it is possible to take the factor base to be slightly
smaller and re-run the graph building/relation searching step once it has failed for the first time.
At that point the graph is huge and it should not take long to find the missing full relations. This
is not possible in Diem’s approach. We also save time because we only need to find roughly q1/8

random points on the curve compared to over q1/2 which have to be found in Diem’s algorithm.
Of course we then need to compute more intersection divisors to find the remaining factor base
elements.

Case 2: Fixed Graph Size

Another interesting way to compare these algorithms is to see what happens when memory
consumption is fixed. Suppose we let our graph grow to size q3/4 and after that only search for
full relations. More precisely, we start by choosing a set RPRes of 4η q1/8 random points on the
curve where η is a real number and use these to construct a factor base FRes of size 4η4 q1/2 just
as in our original algorithm. We expect η to be somewhere between 1 and 10 for practical field
sizes. In the graph building/relation searching step we stop adding new vertices to the graph
once it has reached size q3/4 and after that only search for full relations.

Theorem 3. (Heuristic) If q is large enough and we take η to be a root of

2η2 exp
(
4η8 − 4η4 + 1/4

)
= q1/8

we can expect the algorithm to terminate successfully. The average row weight of the matrix will
be approximately

20 +
1

8η4
− 4 ln(4η4) + ln q .

Proof. This is very similar to the proof of Theorem 2. We start with a set RPRes of 4η q1/8 =
O(q1/8) random points. The size of the factor base and the number of vertices in the graph after
the triangles have been constructed are

#FRes = 4η4 q1/2 +O(q3/8) , N0 = 4η4 q1/2 +O(q3/8) .

We build the graph until it has size q3/4. This produces(
1

2
+O(q−1/2)

)∫ q3/4

N0

x/q

1− x/q dx =
q1/2

4
+O(q−3/4)



full relations (see the proof of Theorem 2). The total number of full relations needed is #FRes +1
so we are lacking

4η4 q1/2 − q1/2

4
+O(q3/8) =

(
4η4 − 1

4

)
q1/2 +O(q3/8)

of them. We also need to know how many pairs of factor base elements were used in this. Just
like in the proof of Theorem 2 we find that this number is

(
1 +O(q−1/2)

)∫ q3/4

N0

1

(x/q)(1− x/q) dx = q ln

(
q1/4

4η4

)
+O(q7/8) .

Now once the graph has size q3/4 we need to find the rest of the full relations. For each pair
of factor base elements we try, the probability of finding a full relation is now approximately
1/(2q1/2) +O(q−1) (see the proof of Theorem 2). Thus we need to try

2q1/2
(

1 +O(q−1/2)
)
·
[(

4η4 − 1

4

)
q1/2 +O(q3/8)

]
=

(
8η4 − 1

2

)
q +O(q7/8)

more factor base pairs. We want to end up using precisely all of the factor base pairs, of which
there are

(
#FRes

2

)
= 8η8 q +O(q7/8). We get the equation

8η8 q +O(q7/8) = q ln

(
q1/4

4η4

)
+

(
8η4 − 1

2

)
q +O(q7/8) .

Exponentiating this yields

2η2 exp(4η8 − 4η4 + 1/4) = q1/8 +O(1) .

When q is big we can approximate this with

2η2 exp(4η8 − 4η4 + 1/4) = q1/8 .

As in the proof of Lemma 1 we find that the average row weight is approximated from above by

16 +
22

#FRes

 q3/4∑
k=N0

(
1 + ln

(
k

4η4 q1/2

)
+O(q−3/8)

)
·
(

1

2
+O(q−1/2)

)
k/q

1− k/q

+

(
1 + ln

(
q3/4

4η4 q1/2

)
+O(q−3/8)

)((
4η4 − 1

4

)
q1/2 +O(q3/8)

)]
= 16 +

ln q

16η4
− ln(4η4)

4η4
+

1

8η4
+

(
1− 1

16η4

)(
4− 4 ln(4η4) + ln q

)
+O(q−1/8 ln q)

= 20 +
1

8η4
− 4 ln(4η4) + ln q +O(q−1/8 ln q) .

Corollary 1. Lemma 2 holds even if we restrict the size of the graph to q3/4.

Proof. We find (
#FDiem

#FRes

)2

= 3 +
7 + 12 ln(2η2)− 48η4

16η8

which approaches 3 and

6 + 3 ln q

20 + 1/(8η4)− 4 ln(4η4) + ln q

(
#FDiem

#FRes

)2

which approaches 3 · 3 = 9.

In practice things are not quite that good. The values for the ratios ρMB (complexities of matrix
building steps) and ρLA (linear algebra step) in this memory restricted setting for field sizes of
practical interest are presented in Table 5.



Table 5: Comparison with Diem, Memory restricted
Field size q ρMB ρLA 1/ρMEM

230 1.31190 2.61456 1
240 1.42304 3.10424 1
250 1.51028 3.49559 1
260 1.58162 3.81649 1
270 1.64164 4.08534 1
280 1.69323 4.31463 1
290 1.73829 4.51311 1
2100 1.77818 4.68707 1
2110 1.81388 4.84116 1
2115 1.83038 4.91189 1
2120 1.84610 4.97890 1
2140 1.90224 5.21555 1
2160 1.94980 5.41253 1
2180 1.99087 5.57988 1
2200 2.02685 5.72440 1
2220 2.05876 5.85091 1
2240 2.08734 5.96288 1

The Full Algorithm

There is another variant of Diem’s algorithm, namely the full algorithm approach of Diem and
Thomé [DT] (see [GTTD] for the hyperelliptic case). In this algorithm a very large graph is
constructed, of the size q5/6. Consequently the factor base can be chosen to be smaller, of the
size 2q1/2. The graph is disconnected and is searched for cycles which are then used to produce
full relations. The complexity analysis of the full algorithm is difficult and the large graph size
makes is impractical for all but the smallest examples so we will not discuss it further here.

6 Parallelization

In this section we study how the work of computing the DLP can be split between K computers.
It turns out that with an increase in total computing time and total memory cost we can be split
the computation between these K computers so that each needs to pay only a fraction of the
original memory cost.
Suppose ε is a real number and we start by choosing a set RPPar of 4ε q1/8 random points on
the curve and as usual use these to generate a factor base FPar of size 4ε4 q1/2. As usual at this
point the graph will contain 4ε4 q1/2 triangles. Now distribute the entire factor base and the base
vertices to each one of the K computers and split the triangles evenly between them so that each
computer gets 4ε4 q1/2/K triangles. Each computer starts building a graph and searching for
full relations using their share of the triangles until they have each found approximately 4ε4 q1/2

full relations. Now all full relations are combined into a matrix and the linear algebra step is
performed as usual.

Theorem 4. (Heuristic) If q is large enough and we take ε to be a root of

ε exp
(
4ε8
)

= K1/4 q1/8

we can expect the algorithm to terminate successfully. Each of the K computers will end up with
a graph of size

Nmax =
4ε2 q3/4√

K
.

The average row weight of the matrix will be approximately 18 + 2 lnK − 8 ln ε+ ln q.

Proof. The proof is again similar to the proof of Theorem 2. We start with a set RPPar of
4ε q1/8 = O(q1/8) random points and suppose that Nmax = O(q3/4). The size of the factor base
and the number of vertices in the graph after the triangles have been constructed are

#FPar = 4ε4 q1/2 +O(q3/8) , N0 = 4ε4 q1/2 +O(q3/8) .



Building the graphs from size N0/K to Nmax on each computer produces(
1

2
+O(q−1/2)

) Nmax∑
k=N0/K

k/q

1− k/q =
N2

max

4q
+O(q1/4)

full relations. But each computer should produce #FPar/K = 4ε4 q1/2/K+O(q3/8) full relations,
so we get an equation and solve

Nmax =
4ε2 q3/4

K1/2

(
1 +O(q−1/8)

)
=

4ε2 q3/4√
K

+O(q5/8) .

The number of pairs of factor base elements that each computer has is
(FPar

2

)
= 8ε8 q+O(q7/8).

We want this number to equal the number of pairs needed to build the graphs as explained above.
Hence we need

8ε8 q +O(q7/8) =
(

1 +O(q−1/2)
) Nmax∑
k=N0/K

1

(k/q)(1− k/q) = q ln

(
K1/2q1/4

ε2

)
+O(q7/8)

which gives the equation
ε exp

(
4ε8
)

= K1/4 q1/8 +O(1) .

Finally, the average row weight is approximated from above by

16 +
22

#FPar/K

Nmax∑
k=N0/K

(
1 + ln

(
kK

4ε4 q1/2

)
+O(q−3/8)

)
·
(

1

2
+O(q−1/2)

)
k/q

1− k/q

= 18 + 2 lnK − 8 ln ε+ ln q +O(q−1/8 ln q) .

Remark 2. In the above proof we were only concerned with the asymptotic behavior as q grows
and in particular some of the O-estimates do not make sense unless K � q1/8.

Above we assumed that each one of the computers computes the same 8ε8 q intersection divisors
but of course this is completely unnecessary if there is a very efficient way for the computers to

communicate with each other. In this case each one computes
(

1/2 +O(q−1/2
)

8ε8 q/K inter-

section divisors and shares their results with the other K − 1 computers. Unfortunately this is
a massive amount of data to share. In fact, merely storing all these intersection divisors costs
potentially much more memory than storing the graph since

4ε8 q

K
� 4ε2 q3/4√

K

for practical field sizes unless K is impossibly large. Hence instead of storing the intersection
divisors they should be streamed to all other computers as soon as they are generated and then
deleted immediately afterwards. This speeds up the algorithm only if the connections between
the computers are so fast that distributing the data over the network is faster than for each
computer to generate it separately. We assume this is the case.
Let MPar

Total be the total number of field multiplications needed per computer. We have

MPar
Total = Mpair ·

1

K

(
#FPar

2

)
≈ (7 log2 q + 13) · 8ε8 q

K
.

We denote by ρLA the ratio of the complexities of the linear algebra stages in the parallelized
and unparallelized algorithms. We see that

ρLA =
18 + 2 lnK − 8 ln ε+ ln q

18 + ln q

( ε
λ

)8
.

We denote

MPC (Memory Per Computer) =
4ε2 q3/4√

K
· (d(log2 q)/64e · 370 bytes)

and

IDPC (Intersection Divisors Per Computer with Fq-rational points) =
4ε8 q

K
,



Table 6: Parallelization: K = 4
Field size q log2M

Par
Total ρLA MPC log2 IDPC

230 38.37745 1.21411 3.8 GB 29.57655
240 49.12762 1.16379 731 GB 39.93286
250 59.72405 1.13164 136 TB 50.22023
260 70.21903 1.10941 25648 TB 60.46080
270 80.64203 1.09317 9.62 · 106 TB 70.66761
280 91.01129 1.08082 1.80 · 109 TB 80.84890
290 101.3389 1.07114 3.35 · 1011 TB 91.01023
2100 111.63331 1.06336 6.21 · 1013 TB 101.15555
2110 121.90060 1.05698 1.15 · 1016 TB 111.28773
2115 127.02555 1.05420 1.56 · 1017 TB 116.34960
2120 132.14535 1.05166 2.13 · 1018 TB 121.40894
2140 152.58044 1.04333 1.09 · 1023 TB 141.62479
2160 172.95868 1.03711 3.67 · 1027 TB 161.81275
2180 193.29321 1.03232 1.24 · 1032 TB 181.97919
2200 213.59307 1.02852 5.56 · 1036 TB 202.12853
2220 233.86478 1.02544 1.86 · 1041 TB 222.26393
2240 254.11314 1.02289 6.24 · 1045 TB 242.38778

Table 7: Parallelization: K = 100
Field size q log2M

Par
Total ρLA MPC log2 IDPC

260 65.76817 1.39707 5304 TB 56.00995
270 76.16726 1.34197 1.98 · 106 TB 66.19284
280 86.51785 1.30004 3.69 · 108 TB 76.35545
290 96.83049 1.26708 6.85 · 1010 TB 86.50181
2100 107.11261 1.24051 1.27 · 1013 TB 96.63485
2110 117.36965 1.21863 2.35 · 1015 TB 106.75678
2115 122.49008 1.20909 3.19 · 1016 TB 111.81413
2120 127.60571 1.20032 4.33 · 1017 TB 116.86931
2140 148.02689 1.17141 2.20 · 1022 TB 137.07124
2160 168.39449 1.14963 7.45 · 1026 TB 157.24856
2180 188.72061 1.13265 2.51 · 1031 TB 177.40660
2200 209.01367 1.11905 1.12 · 1036 TB 197.54912
2220 229.27975 1.10791 3.77 · 1040 TB 217.67891
2240 249.52340 1.09863 1.26 · 1045 TB 237.79803

Table 8: Parallelization: K = 1000
Field size q log2M

Par
Total ρLA MPC log2 IDPC

280 83.29477 1.46929 1.19 · 108 TB 73.13238
290 93.59828 1.41737 2.20 · 1010 TB 83.26961
2100 103.87281 1.37563 4.07 · 1012 TB 93.39505
2110 114.12344 1.34135 7.52 · 1014 TB 103.51057
2115 119.24103 1.32642 1.02 · 1016 TB 108.56507
2120 124.35401 1.31272 1.39 · 1017 TB 113.61761
2140 144.76630 1.26760 7.05 · 1021 TB 133.81065
2160 165.12699 1.23369 2.38 · 1026 TB 153.98106
2180 185.44760 1.20728 8.00 · 1030 TB 174.13358
2200 205.73615 1.18616 3.58 · 1035 TB 194.27161
2220 225.99849 1.16887 1.20 · 1040 TB 214.39765
2240 246.23898 1.15448 4.01 · 1044 TB 234.51361



which measures the amount of data that needs to be shared. These numbers for practical field
sizes are shown in Tables 6, 7, 8. Due to Remark 2 we only show results for field sizes such that
K � q1/8.
Unfortunately parallelization makes the complexity of the linear algebra part slightly worse and
for large K the difference between the matrix building step and the linear algebra step is very
large.
In the above our main concern was with reducing the per computer memory cost. For each one
of these computers we can parallelize the local work to any number of cores where each core
computes its own share of intersection divisors which are then collected together and used to
build the graph. This results in even better running times for the matrix building step but again
does not help with linear algebra.

References

[ADH] L. M. Adleman, J. DeMarrais, M.-D. Huang, A subexponential algorithm for discrete
logarithms over hyperelliptic curves of large genus over GF(q), Theoret. Comput. Sci.
226 (1999), no. 1-2, pp. 7–18.

[BCLS] D.J. Bernstein, C. Chuengsatiansup, T. Lange, P. Schwabe, Kummer strikes back: new
DH speed records, http://cr.yp.to/papers.html#kummer, Preprint 2014, 21pp.

[BCHL] J. W. Bos, C. Costello, H. Hisil, K. Lauter, Fast Cryptography in Genus 2, Advances
in Cryptology - EUROCRYPT 2013, Lecture Notes in Computer Science, May 2013.

[DT] Diem, C., Thomé, E., Index Calculus in Class Groups of Non-Hyperelliptic Curves of
Genus Three, Journal of Cryptology 21 (2008), no. 4, 591–611.

[Die] Diem, C., An Index Calculus Algorithm for Plane Curves of Small Degree, Algorithmic
number theory, 543–557, Springer Berlin Heidelberg, 2006.

[Die2] Diem, C., Index Calculus in Class Groups of Non-Hyperelliptic Curves of Genus 3 from a
Full Cost Perspective, http://www.math.uni-leipzig.de/~diem/preprints/sharcs.

pdf.
[Eng] Enge, A., Computing discrete logarithms in high-genus hyperelliptic jacobians in prov-

ably subexponential time, Math. Comp. 71 (2002), no. 238, pp. 729–742.
[EG] Enge, A., Gaudry, P., A general framework for subexponential discrete logarithm algo-

rithms, Acta Arith. 102 (2002), no. 1, pp. 83–103.
[Gau] Gaudry, P., An algorithm for solving the discrete log problem on hyperelliptic curves,

Advances in Cryptology - EUROCRYPT 2000, Springer-Verlag, LNCS 1807, pp. 19–34,
2000.

[GTTD] Gaudry, P., Thomé , E., Thériault, N., Diem, C., A Double Large Prime Variation for
Small Genus Hyperelliptic Index Calculus, Math. Comp. 76 (2007), no. 257, 475–492.

[Hes] Hess, F., Computing Riemann-Roch spaces in algebraic function fields and related topics,
J. Symbolic Comput. 33 (2002), no. 4, 425–445.

[Kob] Koblitz, N., Hyperelliptic Cryptosystems, Journal of Cryptology 1 (1989), 139–150.
[Nag] Nagao, K., Index calculus for Jacobian of hyperelliptic curve of small genus using two

large primes, Japan Journal of Industrial and Applied Mathematics, 24, no.3 (2007).
[Smi] Smith, B., Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3 Hy-

perelliptic Curves, Advances in Cryptology - EUROCRYPT 2008, 163-180, Springer
Berlin Heidelberg, 2008.

[The] Thériault, N., Index calculus attack for hyperelliptic curves of small genus, Advances in
Cryptology - ASIACRYPT 2003, New York: Springer, 2003.

[VJS] M. D. Velichka, M. J. Jacobson Jr., A. Stein, Computing discrete logarithms in the
Jacobian of high-genus hyperelliptic curves over even characteristic finite fields Math.
Comp. 83 (2014), 935–963.

http://www.math.uni-leipzig.de/~diem/preprints/sharcs.pdf
http://www.math.uni-leipzig.de/~diem/preprints/sharcs.pdf

	Time-Memory Trade-offs for Index Calculus in Genus 3

