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Abstract. The most important drawback to code-based cryptography
has historically been its large key sizes. Recently, several promising ap-
proaches have been proposed to reduce keysizes. In particular, signifi-
cant keysize reduction has been achieved by using structured, but non-
algebraic codes, such as quasi-cyclic (QC) Moderate Density Parity Check
(MDPC) codes. Biasi et al. propose further reducing the keysizes of code-
based schemes using cyclosymmetric (CS) codes. Biasi et al analyze the
complexity of attacking their scheme against standard information-set-
decoding attacks. However, the research presented here shows that infor-
mation set decoding algorithms can be modified, by choosing the columns
of the information set in a way that takes advantage of the added sym-
metry. The result is an attack that significantly reduces the security of
the proposed CS-MDPC schemes to the point that they no longer offer
an advantage in keysize over QC-MDPC schemes of the same security
level.
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1 Introduction

The McEliece cryptosystem [1] is one of the oldest and most studied candidates
for a postquantum cryptosystem. However, its keysizes, on the order of a million
bits, are a major drawback. The most aggressive approaches to keysize reduction
have focused on imposing structure on the public generator and parity check
matrices such that they consist of cyclic [2] or dyadic [3] blocks, each of which
can be represented using only the top row of the block.

However, these matrices have significant algebraic structure, and when the
private code is itself an algebraic code, like the Goppa codes used in the original
McEliece cryptosystem, such schemes tend to be open to algebraic attack[4]. A
promising solution to this problem is to use nonalgebraic codes. In particular
Misoczki et al. proposed [5] using moderate density parity check (MDPC) codes
with quasicyclic structure (QC-MDPC).
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A typical approach to attacking a scheme based on MDPC codes is to use
information set decoding techniques to find low weight codewords in the dual
code space (i.e. the row space of the public parity check matrix.) The concept of
information set decoding originates with Prange [6]. Further optimizations were
subsequently proposed by Lee and Brickell [7], Leon [8] and Stern [9].

Biasi et al. [10] attempt further keysize reduction by replacing blockwise
cyclic structure with blockwise cyclosymmetric (CS) structure. The advantage
of such matrices is that they can be represented by only half of the elements of
their top rows. Indeed, a cyclosymmetric matrix consisting of smaller cyclosym-
metric blocks can be represented using only a quarter of the elements in its top
row, which would seem to provide significant opportunities for keysize reduction
above and beyond what can be achieved using cyclic matrices. This further op-
timization was suggested by Biasi et al in earlier versions of their paper[11],[12],
but not in the published version, for reasons discussed in Section 4.

This paper demonstrates that information set decoding techniques can be
improved by restricting the selection of information set columns to take advan-
tage of CS symmetry. The complexity of the resulting attacks on a blockwise
cyclosymmetric code is almost identical to the complexity of attacking a similar
blockwise cyclic code with half the dimension, and half the row weight.

2 Cyclosymmetric Matrices

Ordinary cyclic matrices are those of the form:

A =


a0 a1 . . . ar−1

ar−1 a0 . . . ar−2
...

...
. . .

...
a1 a2 . . . a0

 . (1)

Each row is the right-cyclic rotation of the row above it. When their entries
are elements of a field F, cyclic matrices form a commutative ring under matrix
multiplication and addition, isomorphic to the polynomial ring F[x]/(xr − 1).
(In most code-based-cryptography applications, including the scheme attacked
in this paper, F is F2.)

Cyclosymmetric matrices are further restricted to be symmetric matrices, i.e.
equal to their transpose. Using the commutativity of the ring of cyclic matrices
we can show that the cyclosymmetric matrices are closed under multiplication
and therefore form a subring of the cyclic matrices:

(AB)T = BTAT = BA = AB. (2)

A relevant fact about cyclosymmetric matrices is that b r−12 c pairs of entries
in the top row of a cyclosymmetric matrix are constrained by symmetry to be
equal:

∀x|1 ≤ x <
r − 1

2
: ax = ar−x. (3)
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3 MDPC cryptosystems

The scheme of Biasi et al. [10] modifies an earlier proposal by Misoczki et al. [5].
Both schemes are variants of the Niederreiter[13] cryptosystem : The public key,
Hpub is a (n− k)× n parity check matrix for a binary linear code, in systematic
form —[M |I]. The plaintext, m, is encoded as an n-bit vector of Hamming
weight at most t. The ciphertext is Hpubm

T . In the language of coding theory,
the plaintext is the error vector, while the ciphertext is the syndrome. As in all
variants of the Neiderreiter cryptosystem, the private key consists of trapdoor
information that allows the owner to efficiently reconstruct the error vector m
from the syndrome Hpubm

T

In the case of MDPC cryptosystems, the private key is a low density parity
check matrix H sharing the same codespace as Hpub. The cryptographic scheme
is described as using a moderate density parity check (MDPC) code, in contrast
to the related low density parity check (LDPC) codes used for error correc-
tion in telecommunications applications. LDPC codes employ a significantly less
dense parity check matrix and they correct more errors than the codes used in
the proposed cryptographic scheme. The quasicyclic and cyclosymmetric vari-
ants of the MDPC encryption scheme construct the matrix H from n0 cyclic or
cyclosymmetric blocks each with row weight dv, but otherwise randomly chosen:

H =
[
H0 H1 . . . Hn0−1

]
. (4)

Once a private parity check matrix is chosen as above, the public key is
constructed from it as follows:

Hpub = H−1n0−1H =
[
H−1n0−1H0 | H−1n0−1H1 | . . . | H−1n0−1Hn0−2 | I

]
. (5)

4 Previous Attack on Cyclosymmetric Matrices

In their paper, Biasi et al. note that there is a more compact representation of
the ring of cyclosymmetric matrices than that given in equation 1. For example,
matrices of the form:

M(a, b, c, d) =


a b c d c b
b a b c d c
c b a b c d
d c b a b c
c d c b a b
b c d c b a

 (6)

obey exactly the same multiplication rules as matrices of the form

M ′(a, b, c, d) =


a 2b 2c d
b a + c b + d c
c b + d a + c b
d 2c 2b a

 . (7)
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This however does not completely break the scheme. While, this observation
allows the attacker to reduce the dimension of the scheme being attacked by
a factor of 2 for large matrices, it does so at the cost of reducing the sparsity
(increasing the row weight) of the target private matrix by a factor of 2. This
observation forced Biasi et al. to make their parameter choices less agressive,
but it did not force them to abandon the possibility of keysize reduction through
cyclosymmetric matrices altogether.

5 Modifying Information Set Decoding Techniques

The goal of the attack presented in this paper is to extract the private key H,
from the public key Hpub. As is clear from equations 4 and 5, the rows of H are
linear combinations of the rows of Hpub. In particular, as will become relevant
later in this section, h = hn0−1Hpub, where h and hn0−1 represent the top rows
of the matrices H and Hn0−1 respectively. The rows of H are distinguished from
other linear combinations of the rows of Hpub in that they are sparse. As it
happens, finding sparse linear combinations of the rows of a binary matrix is
precisely the application for which classical information set decoding algorithms
were invented.

All information set decoding algorithms follow the same basic script1:

1. Permute the columns of Hpub :

H ′pub = HpubP. (8)

2. Check that the first r columns of the new matrix, H ′pub, form an invertible
matrix A. These columns are referred to as the “information set.” If A is not
invertible go back to step 1.

3. Left-multiply by A−1, resulting in a matrix of the form:

M = A−1H ′pub =
[
Ir | Q

]
. (9)

4. Search for low weight row-vectors among linear combinations involving small
subsets of the rows of M . If none are found, go back to step 1. If a low weight
vector x′ = vM is found, return x = vMP−1.

Most optimizations to information set decoding algorithms, for example that
of Stern [9], involve step 4. However, the special blockwise cyclosymmetric form
of Hpub allows us to make a much larger optimization, based on the choice of
the permutation P in step 1. To see how this works, we need to understand the
significance of the row vector v in step 4: In particular, since the first r columns
of M form an identity matrix, the first r bits of the candidate low weight row
vector x′ are equal to v. Moreover:

1 The variable names are chosen to reflect the scheme being attacked. For example
the matrix being attacked is represented as a parity check matrix Hpub rather than
a generator matrix G, and its dimensions are given as r × n0r rather than k × n
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Theorem 1 When computed by an information set decoding algorithm as out-
lined by steps 1-4 above, x′ is the unique element of the rowspace of H ′pub whose
first r bits equal v.

Proof. Suppose there were another element of the rowspace of H ′pub, yH
′
pub whose

first r bits equalled v. Then, since yH ′pub expands as:

yH ′pub = yAM = yA|yAQ. (10)

We may rewrite our requirement as

yA = v. (11)

Since A is invertible, this implies y = vA−1 and therefore, yH ′pub = vA−1H ′pub =
vM = x′.

Thus, given the existence of a low weight vector x in the rowspace of Hpub,
v represents a guess of all the bits of x within the information set. Since the
most probable value of a bit contained within a sparse vector is zero, the choice
of v with the highest probability of success is the guess which contains as many
zeroes as possible. (Note that v must contain at least one nonzero bit, since
we’re looking for a nontrivial solution.) As it happens, the best strategy involves
checking multiple guesses of v for each choice of P , since checking a guess is
computationally cheaper than inverting a matrix, but the point remains that our
probability of success relies on the probability that we will choose an information
set, such that the restriction v of x to the information set is significantly sparser
than x itself.

This is where the choice of permutation helps us. We are much more likely to
get x to be oversparse on the information set, if the bits we are guessing are not
independent. As it happens, the top row, h of the private parity check matrix is
a sparse vector, consisting of subvectors, h0 . . . hn0−1, whose bits come in pairs
obeying the relation given in equation 3. x = h will then be the target of our
attack. If we restrict the permutation P to either leave both elements of such
linked pairs outside of the information set, or to bring both elements in, then
the probability of h matching one of our oversparse guesses v on the information
set is significantly higher than it would be if P were chosen randomly.

To give an example (based on the parameters given by Biasi at all for 128-bit
security) if n0 = 3, r = 7232, and the row/column weight, dv, of the submatrices
H0, H1, and H2, is equal to 98, then for a random choice of P the probability that

Truncate(r, hP ) has weight 2 is
(7232

2 )(2·7232
292 )

(3·7232
294 )

= 2−160. However, for a choice of P

restricted to bring mirrored pairs of bits into the information set together, the

probability is
(3616

1 )(2·3616
146 )

(3·3616
147 )

= 2−80. Thus, a (rather poorly optimized) information

set decoding algorithm, which tried all the values of v with weight 2, would
require 2160 matrix inversions on average to succeed if P were chosen randomly.
Our optimization brings the complexity down to 280 matrix inversions, which,
even accounting for the nontrivial complexity of the matrix inversion step, is
already well below the claimed security level of the scheme.
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6 Modified Stern Algorithm

In this section we present a variant of Stern’s algorithm modified to find the
top row, h of the private parity check matrix of the CS-MDPC scheme of Biasi
et al. The other rows of H may then be trivially computed as rotations of h.
The attacker is given Hpub generated from H as in equation 5. Both H and
Hpub have dimensions r × n0r, and consist of r × r cyclosymmetric blocks. H
has column weight dv and row weight n0dv. The algorithm is parametrized by
integers p and l.

1. Permute the columns of Hpub :

H ′pub = HpubP (12)

choosing P with the restriction that cyclosymmetry forces:

(hP )2i = (hP )2i+1 for i = 0 . . . br/2c+ l. (13)

2. Check that the first r columns of the new matrix, H ′pub, form an invertible
matrix A. If A is not invertible go back to step 1.

3. Left-Multiply by A−1, resulting in a matrix of the form:

M = A−1H ′pub =
[
Ir | Q

]
. (14)

4. Search for low-weight row-vectors among linear combinations involving small
subsets of the rows of M . In particular these will involve 2p of the first r

2 rows
and 2p of the remaining rows. The search will succeed if hP has weight 2p on
its first r

2 bits, weight 2p on the next r/2 bits, and weight 0 on the next l bits.

(a) Sum paired rows and compile in two equal length lists, i.e.:
for 0 ≤ i < r

4
xi = row2i(M) + row2i+1(M) (15)

and for r
4 ≤ j < r

2

yi = row2j(M) + row2j+1(M) (16)

(b) compute all the sums of p xis and all the sums of p yis and check for
collisions on bits r . . . r + 2l − 1

bitsr...r+2l+1(xi1 + . . .+ xip) = bits(r . . . r + 2l + 1, yj1 + . . .+ yjp) (17)

(c) When such a collision is found, check the total weight of the sum w of
the 2p colliding row vectors.

w = xi1 + . . . + xip + yj1 + . . . + yjp . (18)

If the weight of any such w is less than or equal to n0dv retrurn wP .
Otherwise, go back to step 1.
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7 Attack Complexity for Suggested Parameters

The major contributions to the overall complexity of each iteration of the mod-
ified Stern’s algorithm above may be approximated as: n0r

3 for the matrix in-
version (step 3), 2(p− 1)n0r

( r
4
p

)
for the construction of hash tables for collision

search (step 4b) and
n0r(

r
4
p)

2

2l
. However, the units for these complexity figures are

single-bit addition operations. Since legitimate parties do computations on the
order of n0r

2 during both public and private-key operations, it is reasonable to
divide this factor out leaving a per iteration complexity estimate of:

r +
2(p− 1)

r

( r
4

p

)
+

1

2lr

( r
4

p

)2

. (19)

The expected number of iterations is the inverse probability of success per
iteration, which is: ( n0r

2
n0dv

2

)( r
4

p

)−2( (n0−1)r
2 − l

n0dv

2 − 2p

)−1
. (20)

Note that the iteration count (equation 20) is identical to the iteration count
of an unmodified Stern’s algorithm applied to a code with r′ = r

2 and d′v = dv

2 ,
and the per iteration cost (equation 19) is identical up to polynomial factors in
r/r′ = 2 (The discrepancy is due to the fact that linear algebra operations are
being performed on a larger matrix.) Thus, our attack may be thought of as
reducing the security of a cyclosymmetric MDPC scheme with block dimension
r and private row density dv

r to that of a corresponding cyclic scheme which
with dimension r

2 and the same private row density.
Table 1 gives the results of our attack when applied to the parameters sug-

gested by Biasi et al. For all parameter choices, the security level allowed by this
attack is significantly lower than the claimed security level.

Claimed Security Attack Complexity
(bits) n0 r dv (bits) p l

80 3 3072 53 46 2 20
112 3 5376 75 63 2 20
128 3 7232 97 81 2 22
160 3 19200 109 93 2 25

Table 1. Claimed security levels and the results of the modified Stern’s algorithm
attack for parameters given in [10]

As our attack brings the security of Biasi et al.’s proposed 128-bit parameters
down to nearly exactly 80 bits of security, it is informative to compare these
parameters to the 80-bit security parameters of Misoczki et al.’s QC-MDPC
scheme. Here we find that there is no longer any advantage to the cyclosymmetric
scheme, either in public key size or cryptogram size:
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CS-MDPC [10] QC-MDPC [5]

Public Key Length 7232 4801
Cryptogram Size 21696 9602

Table 2. Comparison of proposed CS-MDPC and QC-MDPC parameters at 80 bits
of security given this paper’s attack.

8 Conclusion

While the idea of using cyclosymmetric codes to reduce keysize beyond what
is possible with blockwise cyclic codes seemed promising, the added structure
appears to be as useful to the attacker as to the legitimate parties. In particular,
information set decoding algorithms can be modified to take full advantage of
the knowledge that the rows of the private parity check matrix of such a scheme
are structured. It may be the case that cyclic MDPC codes are as far as we can
go in keysize reduction for code-based cryptography.
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