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Abstract. We present a new family of linear binary codes of length n and dimension k accompanied with
a fast list decoding algorithm that can correct up to n

2 errors in a bounded channel with an error density
ρ. The decisional problem of decoding random codes using these generalized error sets is NP-complete.
Next we use the properties of these codes to design both an encryption scheme and a signature scheme.
Although in the open literature there have been several proposals how to produce digital signatures from
the McEliece public key scheme, as far as we know, this is the first public key scheme based on codes where
signatures are produced in a straightforward manner from the decryption procedure of the scheme. The
security analysis of our scheme have four parts:
1. An extensive list of attacks using the Information Set Decoding techniques adopted for our codes;
2. An analysis of the cost of a distinguishing attack based on rank attacks on the generator matrix of the

code or on its dual code;
3. An analysis of the cost of cheap distinguishing attacks on the generator matrix of the code or on its

dual code that have expensive list-decoding properties;
4. We interpret our scheme as multivariate quadratic system and discuss difficulties of solving that system

using algebraic approaches such as Gröbner bases.
Based on this security analysis we suggest some concrete parameters for the security levels in the range of
280−2128. An additional feature of the decryption process is that it admits massive and trivial parallelization
that could potentially make our scheme in hardware as fast as the symmetric crypto primitives.
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1 Introduction

The McEliece public key scheme [36] was published two years after the seminal paper of Diffie and Hellman [17]
and was the first scheme based on the theory of error-correcting codes and the NP-hardness of the problem of
decoding random linear codes. The original scheme used binary Goppa codes with parameters [n, k, 2t + 1] =
[1024, 524, 101] for a security level of 280 operations and a public key size of around 32 kB. This was probably
one of the main reasons why the scheme was not widely used in practice, despite the fact that encryption and
decryption were much faster than in RSA [42].

Still, the McEliece PKC has received a considerable amount of cryptanalytic effort, and has upheld remark-
ably well. Apart from an update of the original parameters due to improvements in Information Set Decoding
(ISD) techniques [30,44,9,20,12,35,7], the main design remains sound.

1.1 Related Work

Three research directions in code-based cryptography are related to the work in this paper: 1. Use of alternative
codes instead of binary Goppa codes; 2. Use of list-decoding techniques in code-based cryptography; 3. Design
of code-based digital signature schemes.

Alternative codes: Soon after McEliece published his scheme based on binary Goppa codes, several alter-
natives using different codes were proposed. For example in [39] Niederreiter proposed to use generalized
Reed-Solomon codes, Gabidulin et al., in [21] proposed the use of rank codes, Sidelnikov [43], proposed the
use of binary Reed-Muller codes, Janwa and Moreno in [26] used algebraic-geometric codes, Gaborit in [22]
used cyclicity and quasi-cyclicity of BCH codes in order to shorten the length of the public key, Monico et
al., [38], proposed replacement of the binary Goppa codes with Low Density Parity Check (LDPC) codes,
then Baldi et al., in [5] extended that idea to use Quasi-Cyclic LDPC codes, and Misoczki et al., [37], instead
of LDPC codes proposed the use od Middle Density Parity Check (MDPC) codes.

List-decoding techniques: The idea of list decoding was present in the literature from the late 50’s [18,48],
but an efficient algorithm with polynomial run-time was published four decades later by Sudan [45] and
subsequently was significantly improved by Guruswami and Sudan in [23]. In code-based cryptography, the
use of list decoding techniques came later in the works of Bernstein, Lange and Peters [10,11,13].

Code-based digital signature schemes: Early attempts [47,32,25,3,28] to design a code-based signature
scheme proved to be unsuccessful and were broken [2,1,46,49,14]. Similarly, some newer schemes such as
[24,33] have been broken in [29,40]. There is an intrinsic difficulty in designing a signature scheme from the
McEliece scheme. The reason is that for the signature part someone needs to decode a random syndrome
which is generally a hard problem. In 2001 Courtois, Finiasz and Sendrier proposed a signature scheme
[16] that so far has resisted cryptanalytic attacks. However, compared to the signatures schemes based on
number theory or discrete logarithm problem on elliptical curves, it is not very practical: It has a big public
key, the speed of producing signatures is much slower and is not scalable for security levels beyond the 2128

range.

1.2 Our Contribution

All known code-based PKC schemes are based on codes where no structure is imposed on the error vectors
except for the requirement of having Hamming weight4 less than, or equal to a certain value t. When modeling
a noisy channel this is a natural approach, however, the cryptographic setting is an artificial one. In this paper
we novate the use of the noisy channel with a channel where the sender has full control over the “noise” and can
produce error vectors with a significantly different pattern than in the classical case. We call a collection of such
error vectors an error set. We define two important characteristics of these error sets: density and granulation.

In the classical case, the set of all syndromes is partially covered by Hamming spheres and there is a unique
decoding if the norm of the error is less than t = d

2 , where d is the minimum distance of the code. On the other
hand, in our approach using error sets, we can cover almost the complete set of all syndromes (except a negligible
portion) with a tessellation around the code words. However, we do not have a unique decoding. Intuitively
this covering can be represented in a form of an artistic Escher’s tessellation 5. A graphical presentation of the
4 Or other norms such as the Rank norm used in Gabidulin codes [21].
5 M. C. Escher (1898 - 1972), Dutch graphical artist. Known for his drawings of impossible, self-referential constructions.
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Fig. 1. A classical modeling of an error set around a
code word - The Hamming sphere.

Fig. 2. In our approach an error set around a code
word can be an arbitrary set.

e 

Fig. 3. A classical modeling of an error set around a
code word with the Hamming sphere. If the error is less
than d

2 where d is the minimal distance of the code, we
have a unique decoding.

e 

Fig. 4. An artistic visualization of our idea with an
arbitrary error set around the codewords. The tessel-
lation of the plane with these error sets is similar to
Escher’s tessellations. There is no unique decoding in
this case.

conceptual differences between the classical approach of using error sets that form a Hamming sphere around
the codewords and our approach, using arbitrary error sets, is given in figures Fig. 1, Fig. 2, Fig. 3 and Fig. 4.

We introduce a new family of binary linear codes that with overwhelming probability can decode a given
error set. The generator matrix G of these codes has a stepwise random block structure, which enables us to
define an efficient list decoding algorithm.

Having introduced the new codes, we derive both encryption and signature schemes that follow the basic
structure of the McEliece scheme: Gpub = SGP . Like in other code-based schemes, the security of our schemes
depends both on the hardness of decoding random syndromes and on the hardness of recovering the underlying
structure of the code. We show that the first is tightly connected to the decoding of random syndromes in the
Hamming metric. In particular, the related decisional problem of decoding random codes using our generalized
error sets is NP-complete. Then we provide an analogue to the Information Set Decoding techniques for our
error sets. For the second assumption, we note that the particular structure of G (and its dual parity check
matrix H) can be a source of weakness. Thus, we make a careful trade off between the size of the stepwise
structure present in G (and H), the size of the internal blocks of G (and H), the efficiency of the scheme and
the security of the scheme.

As a concrete example of our construction we consider the following error set E = {00, 01, 10}. The error
vectors e ∈ Fn2 will be constructed as the concatenation of m = n

2 randomly drawn elements from the error
set E. That is, e = e1‖e2‖ . . . ‖em, with each ei ∈ E. Like in the McEliece scheme we need our error sets to
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be invariant under the permutation P . Therefore we can not choose P from the set of all n × n permutation
matrices. Instead, we use block permutation matrices that permute the m substrings of e.

A unique characteristic of our code-based scheme is that the encryption scheme can be turned into a signature
scheme directly using the decoding (decryption) algorithm. In other code-based signature schemes, like [16], the
probability of finding a decodable syndrome is relatively small. To remedy this, the strategy is to introduce a
counter and produce syndromes as Syndrome = Hash(Doc,Counter) until a decodable one is found. In our
scheme, with high probability, we can apply the decoding directly on the value Syndrome = Hash(Doc).

2 Notation and Preliminaries

Throughout the paper, we will denote by C ⊆ Fn2 a binary (n, k) code of length n and dimension k. We will
denote the generator matrix of the code by G, and wt(x) will denote the Hamming weight of the word x.

Unlike the standard approach in code-based cryptography that relies on the Hamming metric and unique
decoding, we will use a different characterization parameter and list decoding technique that enables correct
decoding with overwhelming probability. We will need some new notions, to our knowledge, previously not used
in code-based cryptography.

Definition 1. Let ` be a positive integer and let S ⊂ F2[x1, x2, . . . , x`] be a set of multivariate polynomials. We
say that E` is an error set if it is the kernel of S.

E` = Ker(S) = {e ∈ F`2 | f(e) = 0,∀f ∈ S}. (1)

We define the density of the error set E` to be ρ` = D(E`) = |E`|1/`. We will refer to the integer ` > 0 as the
granulation of E` (when it is clear from context, we will drop the subscript `).

Immediately we have the following proposition:

Proposition 1. 1. Let E`1 ⊆ F`1
2 , E`2 ⊆ F`2

2 , for some integers `1, `2 > 0. Let D(E`1) = D(E`2) = ρ. Then
D(E`1 × E`2) = ρ.

2. Let E`,1, E`,2, . . . , E`,m ⊆ F`2, ` > 0, and D(E`,1) = D(E`,2) = · · · = D(E`,m) = ρ.
Then D(E`,1 × E`,2 × · · · × E`,m) = ρ.

Proof. 1. D(El1 × El2) = |El1 × El2 |1/(l1+l2) = (|El1 | · |El2 |)1/(l1+l2) = (ρl1 · ρl2)1/(l1+l2) = ρ.
2. Follows directly from 1.

ut

Example 1.

1. Let E2 = {x ∈ F2
2 | wt(x) < 2} = {(0, 0), (0, 1), (1, 0)}. Then D(E2) = |E2|1/2 = 31/2, and also D(E2

2) =
|E2

2 |1/4 = 91/4 = 31/2 as well as D(Em2 ) = 31/2 for any positive integer m.
2. Let E4,1 = {x ∈ F4

2 | 2 ≤ wt(x) ≤ 3}. Then D(E4,1) = (
∑3
i=2
(4
i

)
)1/4 = 101/4, and also D(Em4,1) = 101/4

for any positive integer m. Note that the set E4,2 = {x ∈ F4
2 | wt(x) ≤ 2} \ {(0, 0, 0, 0)} also has density

D(E4,2) = 101/4.
3. Let E4 = {(0, 1, 0, 0), (0, 0, 0, 1), (0, 1, 0, 1), (1, 0, 0, 1), (0, 0, 1, 0), (0, 1, 1, 0), (1, 0, 1, 0), (1, 1, 1, 0),

(0, 1, 1, 1), (1, 1, 1, 1)}. The values of E4 are chosen without any particular rule in mind. Then D(E4) =
|E4|1/4 = 101/4 as well as D(Em4 ) = 101/4 for any positive integer m.

We will be interested in finding codes that can correct error vectors drawn from En = Em` = E`×E`×· · ·×E`
of a given density ρ`. These error sets differ from the standard error sets usually considered in code-based
cryptography. In particular, the error sets usually used are determined by the ability of the code to uniquely
decode such errors with respect to some metric, like the Hamming metric or rank metric. While this approach
guarantees unique decoding, the size of the error set is restricted to a relatively small number and is given by

the well known Hamming bound for (n, k) binary code of minimum distance d: k ≤ n− log2

(∑b d−1
2 c

i=0
(
n
i

))
.

In this work, instead of unique decoding, we take the approach of list decoding, a notion that dates back to
the work of Elias [18] and Wozencraft [48] in the 1950’s. In list decoding, the decoder is allowed to output a
list of possible messages one of which is correct. List decoding can handle a greater number of errors than that
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allowed by unique decoding. In order for the list decoding to be efficient, the size of the resulting list has to be
polynomial in the block length of the code.

Several bounds exist that link the error rates beyond the Hamming bound and rates of codes that can effi-
ciently decode them with overwhelming probability. For example, the list decoding capacity, i.e., the information
theoretic limit of list decodability, is given by the optimal trade-off between the code rate and the fraction of
errors that can be corrected under list decoding. This bound shows that list decoding can correct twice as many
errors as unique decoding, for every rate (see for ex. [23]). Another bound, the Johnson bound [27] gives the
radius of a Hamming ball beyond half the minimum distance up to which any code of a given distance can be
list decoded using polynomial lists.

Here we derive some bounds for codes that link the density of the error sets to the code rate. First, we recall
a simpler variant [4] of the Chernoff bound [15] that gives an estimate on the tail in a binomial distribution.

Lemma 1. (Chernoff bound)[4] Let Xi, i = 1, . . . , N be independent binary random variables with Pr[Xi =
1] = p. Then the following bounds are true:

Pr[
N∑
i=1

Xi ≤ (1− ε)pN ] ≤ e−ε
2pN/2, for all 0 < ε ≤ 1, (2)

Pr[
N∑
i=1

Xi ≥ (1 + ε)pN ] ≤ e−ε
2pN/(2+ε), for all ε > 1. (3)

In essence, the Chernoff bound states that the probability mass is concentrated around the mean pN which is
the expected value for

∑N
i=1 Xi.

As a consequence of Lemma 1 we have the following bound that is true for any binary code:

Proposition 2. Let C be any binary (n, k) code and E ⊂ Fn2 be an error set of density ρ. Let w be any word of
length n, WE = {w + e | e ∈ E} and CWE

denote the set of codewords in WE. Then:

1. The expected number of codewords in WE is ρn2k−n. The probability that CWE
is an empty set is estimated

by Pr[|CWE
| ≤ 1/2] ≤ e−(ρn2k−n+1−1)2/(ρn2k−n+3).

2. Suppose there exists a codeword c ∈WE. Then the expected number of codewords in WE\{c} is approximately
ρn2k−n for large enough n and k. The probability that CWE\{c} has another element except c is estimated
by Pr[|CWE\{c}| ≥ 1/2] ≤ e−(1−ρn2k−n+1)2/2(1+ρn2k−n+1).

Proof. 1. Since D(E) = ρ, we have that |E| = ρn, and thus |WE | = ρn. From here it follows that the probability
that a random word is in the set WE is p = ρn/2n. We can consider the event that one codeword is in the set
WE as independent from the event that another codeword is in WE . There are 2k codewords, so it follows
directly that the expected number of codewords in WE is ρn2k−n.
For the second part, let N = 2k and fix an enumeration c1, c2, . . . cN of C. By letting the random variables
Xi be 1 iff ci ∈WE in Lemma 1, and setting ε = 1− 1/(2pN) in (2), the claim follows.

2. In this situation we again have a sequence of independent events. Now, the number of codewords except c
is 2k − 1, and the probability that a random word except c is in the set WE \ {c} is p = (ρn − 1)/(2n − 1).
Now the expected number of codewords in WE \{c} is (ρn−1)(2k−1)/(2n−1) which can be approximated
to ρn2k−n for large enough n and k.
The second part follows directly from Lemma 1, by setting ε = 1/(2pN)− 1 in (3).

ut

We illustrate the implications of Proposition 2 through some examples.

Example 2.
1. Let C be a (1280, 256) binary code. The code rate is 0.2. We consider an error set E of density ρ = 31/2. Let c be

a codeword and w = c + e for some e ∈ E. Then, from Proposition 2 the decoding list of the word w is of average
length 1 + Exp[|CWE\{c}|] = 1.00127. The probability that there is another element in the list except c is 0.6. Note
that these parameters may be suitable for building an encryption scheme, since we can expect that the list has only
one element.
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2. Let C be a (1208, 256) binary code. The code rate is 0.211921. We consider an error set E of density ρ = 31/2. Let w
be a word of length n. Then the decoding list of the word w is of average length 39.8733, and the probability that
the list is empty is 2−28. Such parameters are suitable for building a signature scheme, since with great confidence
we can always expect to have a valid signature. Moreover, the number of valid signatures is relatively small.

Note that it is possible to define an error set with small enough density that does not exceed the Hamming
bound. In that case, knowing the minimum distance of a code will give constrains for unique decoding. Our
bound does not guarantee unique decoding, but gives a good estimate,even for codes for which we do not know
the minimum distance.

Example 3. Let C be a (1024, 524) binary code of minimum distance d = 101. Note that these are the parameters
of the original McElliece system. The size of the error set of uniquely decodable errors is

∑50
i=0
(1024

i

)
≈ 2284. This

error set has density ρ = 1.21. Let c be a codeword, and w = c+e for some e ∈ E. Then, from Proposition 2 the
decoding list of the word w is of average length 1+2−216 ≈ 1. Hence, the list decoding bound from Proposition 2
gives a very good estimate of the size of the decoding list, even though it does not guarantee uniqueness (which
for these parameters is the case).

Even more, if we allow errors up to weight 100 (twice as big as for unique decoding), we get an error set of
density ρ = 1.37. Now the decoding lists will on average have length of 1 + 2−32, hence we can still expect that
there will only be one element in it in most of the cases.

Having introduced the definitions and the basic properties for the generalized error sets, we have the following
Theorem:

Theorem 1. The decisional problem of decoding random codes using the error sets in Def. 1 is NP-complete.

Proof. If C is an (n, k) binary linear code and y a received vector, the general decoding problem asks to find the
codeword that most likely was sent. That is, “most-likely” means to find an error vector e of minimal weight,
such that x = y + e is word in the code. Equivalently, if H is the (n − k) × n parity-check matrix of C, the
problem can be stated as asking to find a minimal weight solution e0 to the equation s = eHT , where s is the
syndrome yHT .

The hardness of decoding arbitrary linear codes have long been established based on the decades of efforts
trying to solve it. Furthermore, Berlekamp et al. [8], showed that the related decisional problem, COSET
WEIGHTS, is NP-complete:

Definition 2 (COSET WEIGHTS).

Input: A binary (n− k)× n matrix H, a binary vector s ∈ Fn−k2 , and a non-negative integer w.
Output: YES, if there exists a vector e of Hamming weight ≤ w such that eHT = s. NO otherwise.

We now show that the problem of decoding arbitrary linear codes when using the error sets defined in Def. 1
is NP-complete.

Definition 3 (ERROR SETS).

Input: A binary (n− k)× n matrix H, a binary vector s ∈ Fn−k2 , and a generalized error set E` ⊂ F`2.
Output: YES, if there exists an error vector e ∈ Em` such that eHT = s. NO otherwise.

Proving ERROR SETS NP-complete amounts to nothing more than noting that the set of errors having
Hamming weight ≤ w constitutes a generalized error set. That is, COSET WEIGHTS is simply a special case
of ERROR SETS by letting ` = n and

E` = Ker({
∏

i∈I⊆[n]

xi ∈ F2[x1, . . . , xn] | |I| > w}) = {e ∈ Fn2 | wt(e) ≤ w}, (4)

Thus, since a solution to ERROR SETS would be a solution to COSET WEIGHTS, we have proved Thm. 1.
ut
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3 Concrete Code Example

We consider a binary (n, k) code C with the following generator matrix on standard form:

B1
B2

Bw
. . .

. . .




IkG =

0

k1

k2

n1 n2

(5)

Each Bi is a random binary matrix of dimension
∑i
j=1 kj × ni, so that k = k1 + k2 + · · · + kw and n =

k + n1 + n2 + · · ·+ nw.
Let E` be an error set with density ρ where ` divides n and m = n/`. We describe a general list decoding

algorithm (Alg. 1) for the code C, that corrects errors from the set Em` .

Algorithm 1 Decoding
Input: A vector y ∈ Fn2 , and a generator matrix G of the form (5).

Output: A list Lw ⊂ Fk2 of valid decodings of y.

Procedure:
Let Ki = k1 + · · · + ki. Represent x ∈ Fk2 as x = x1 ‖ x2 ‖ · · · ‖ xw where each xi has length ki. Similarly, for y ∈ Fn2 ,
represent it as y = y0 ‖ y1 ‖ y2 ‖ · · · ‖ yw, where each yi has length ni and |y0| = k. We further identify y0 with
y0 = y0[1] ‖ y0[2] ‖ · · · ‖ y0[w], where each y0[i] is of length ki.

During decoding, we will maintain the lists L1, L2, . . . , Lw of possible decoding candidates of length Ki.

Step 0: Set a temporary list T0 = L0 to contain all possible decodings of the first k1 coordinates of y:

T0 ← {x′ = y0[1] + e | e ∈ Ek1/`}.

Step 1 ≤ i ≤ w: Perform list-decoding to recover a list of valid decodings:
For each candidate x′ ∈ Ti−1 ⊂ FKi2 , add to Li all the candidates for which x′Bi + yi ∈ Eni/`:

Li ← {x′ ∈ Ti−1 | x′Bi + yi ∈ Eni/`}. (6)

If i < w then create the temporary list Ti of candidates of length Ki+1 from Li:

Ti ← {x′ ‖ (y0[i+ 1] + e) | x′ ∈ Li, e ∈ Eki+1/`}. (7)

Return: Lw.

Remark 1. Note that, when testing the validity of a candidate in (6) in Step i of Alg. 1, it is not necessary to
consider all errors of length ni for all candidates in Ti−1. Instead, one can incrementally add in more and more
constraints (by using more and more columns of Bi) until a candidate either: fails to be a valid decoding, in
which case we discard it immediately, or all ni columns of Bi have been considered. In practice, this strategy
will remove most of the bad candidates without considering all errors of length ni, avoiding much unnecessary
computation.
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3.1 Small Decoding Example

In this example we consider a binary (24, 6) code generated by:

G =


1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0

1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 0
1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1

1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1
1 0 1 1 1 1 1 1 1 1 0 1 1

1 1 1 0 0 1 1

 . (8)

In particular, we have k1 = 4, k2 = 1, k3 = 1 and n1 = n2 = n3 = 6 (ref. (5)). Let E` = {00, 01, 10} be our
error set, having granulation ` = 2 and density ρ = 31/2. For the following values of the message x and error
vector e, we obtain the codeword y.

x = (101001), (9)
e = (100110 000001 101010 000000), (10)

y = xG+ e = (
y0︷ ︸︸ ︷

001111
y1︷ ︸︸ ︷

100101
y2︷ ︸︸ ︷

101101
y3︷ ︸︸ ︷

100100). (11)

We now decode y using Alg. 1.

Step 0: Here we simply calculate all possible decodings of the first four bits of y0, by adding to it all possible
error vectors in four bits. This yields the following T0:

T0 = {(0011), (0111), (1011), (0010), (0110), (1010), (0001), (0101), (1001)}.

Step 1 - Step 3: Next, we try to remove all vectors in T0 that does not satisfy (6).
To illustrate the optimization proposed in Remark 1, we look at the processing of the element x′ = (0011)

from T0 in detail through Step 1. As mentioned in the remark, initially we only consider the first two columns
of B1 when trying to determine the validity of x′. That is, we test the following restricted variant of (6):

(x′B1)[1 . . . 2] + e′[1 . . . 2] ?= y1[1 . . . 2], for some e′ ∈ Ek1/`.

With the concrete values of x′, y1 and B1 as given above, this becomes:

(0011)


0 1
0 0
1 1
0 0

+ e′[1 . . . 2] = (11) + e′[1 . . . 2] = (10).

By inspection we see that an error of the form (01XXXX) will satisfy this equation, so we continue with
the next two columns of B1:

(0011)


0 1 0 0
0 0 1 1
1 1 0 1
0 0 1 1

+ e′[1 . . . 4] = (1110) + e′[1 . . . 4] = (1001).

At this point we see that there are no errors that satisfies this equation (since it would have to be of the form
(0111XX) which is not a valid error in our error set). Hence, we can discard x′ immediately, without considering
all of B1. Applying the same technique to the rest of the elements of T0 we obtain:

L1 = {(0010), (1010), (0101)}.

9



From the elements in L1 we build up the temporary list T1 of all possible decodings of y0 having length
4 + 1 = 5:

T1 = {x′ ‖ (y0[5] + e′) | x′ ∈ L1, e′ ∈ Ek2/`}
= {(00100), (00101), (10100), (10101), (01010), (01011)}.

Repeating the above process for Step 2 and Step 3, we obtain the lists L2 and L3:

L2 = {(10100), (01010)}
L3 = {(101001)}.

Thus, in this case we obtain a unique decoding.
The efficiency of the list decoding algorithm depends on the size of the lists L0, L1, . . . , Lw, and whether

during the decoding process each new list has a smaller size than the previous one. If the size of the lists
decreases, the overall complexity is dominated by the size of the initial list L0. Therefore, given a parameter k1
(which determines L0), we want to impose constrains on the values of ni/ki in order to avoid “blow-up” of the
list sizes.

Proposition 3. Let E[|Li|] denote the expected value of the size of the lists L1, L2, . . . , Lw. Then |L0| ≥

E[|L1|] ≥ · · · ≥ E[|Lw|] if and only if ni
ki
≥ log2 ρ

1− log2 ρ
for all 2 ≤ i ≤ w.

Proof. Let i ∈ {1, . . . , w}. Then, from Proposition 2 the condition E[|Li−1|] ≥ E[|Li|] turns into

ρn1+k1+···+ni−1+ki−12(k1+···+ki−1)−(n1+k1+...ni−1+ki−1) ≥
≥ ρn1+k1+···+ni−1+ki−1+ni+ki2(k1+···+ki−1+ki)−(n1+k1+...ni−1+ki−1+ni+ki)

which in turn is equivalent to

2ni ≥ ρni+ki

and further, equivalent to
ni ≥ ki

log2 ρ

1− log2 ρ
.

ut

4 Application to Encryption and Signatures

In this section we describe how we can construct an encryption and a signature scheme based on the ideas
presented in Sect. 2 and Sect. 3. Both schemes share a common description of their key generation, given in
Alg. 2.

4.1 Encryption Scheme

The encryption scheme is structurally identical to McEliece, in the sense that for a message m ∈ Fk2 , the
ciphertext is computed as c = mGpub + e ∈ Fn2 . The difference is in the construction of Gpub (as defined in
Alg. 2), and in the choice of the error vector e (drawn from a specific set of errors Em).

Similarly, decryption works by first applying the inverse permutation P−1 to the ciphertext, decode the
result using Alg. 1, and finally apply the inverse transformation S−1.

4.2 Signature Scheme

Our signature scheme can use the decryption routine directly to sign messages. As mentioned in Ex. 2, for
signing purposes, we want the code rate to be high enough so that Lw is likely to be non-empty, whereas for an
encryption scheme one generally wants a smaller code rate to obtain unique decoding.
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Algorithm 2 Key Generation
Parameters: Let ` divide n, m = n/` and E ⊂ F`2 be an error set of granulation ` and density ρ.

Key generation: The following matrices make up the private key:

– An invertible matrix S ∈ Fk×k2 .
– A permutation matrix P ∈ Fn×n2 created as follows. Select a permutation π on {1, 2, . . . ,m}, and let P be the

permutation matrix induced by π, so that for any y = y1 ‖ y2 ‖ . . . ‖ ym ∈ (F`2)m:

yP = yπ(1) ‖ yπ(2) ‖ . . . ‖ yπ(m), (12)

that is, P only permutes the m substrings of y of length `.
– A generator matrix G for a binary (n, k) code of the form (5).

Public key: Gpub = SGP .

Private key: S, G and P .

Algorithm 3 Decoding for signatures
Input: A vector y ∈ Fn2 , and a generator matrix G of the form (5).

Output: A valid decoding s ∈ Fk2 of y.

Procedure:
The notation is the same as in Alg. 1, with the addition of the variables ExpLimiti ≤ ρni . The decoding proceeds in two
phases:

Phase 1: Find a valid decoding x′ of y0[1] with respect to B1 and y1. That is, find an x′ ∈ Fk1
2 so that x′B1+y1 ∈ En1/`,

trying at most ExpLimit1 candidates. Expand x′ into at most ExpLimit2 candidates of length k1 + k2 by appending
the sum of y0[2] with random errors from Ek2/`, until you find a valid decoding with respect to B2 and y2 (if no
valid candidate can be found, start over with a new initial x′). Continue this process for (B3,y3), (B4,y4), . . .

Phase 2: Once you have found a candidate that is valid for B1, B2, . . . , Bw−1 and y1,y2, . . . ,yw−1, switch to the list-
decoding algorithm described in Alg. 1 for the last block, i.e. for i = w − 1.

Return: s← Lw.

However, for signing, we actually don’t need to find all the possible decodings for a certain syndrome y ∈ Fn2 ,
as described in Alg. 1; we need only one. That is why we need an alternative decoding algorithm that, with very
high probability, will find only one decoding.

We now present a randomized decoding algorithm, Alg. 3, that is suitable for finding digital signatures. In
Sect. 5.3 we will see further security related justification for this alternative algorithm.

Since Alg. 3 is a randomized version of the Alg. 1 we need a condition that guarantees that the signing
process will find a signature with high probability.

Proposition 4. Algorithm 3 produces a signature with probability more than 1/2 if the following two conditions
hold:

1. ExpLimiti > (2/ρ)ni , for 1 ≤ i ≤ w − 1;
2. ρkw+nw2−nw > 1.

Proof. 1. In each step of the Alg. 3, Phase 1, we need to find a valid extension of the error by picking a valid
part of length ki and then validating it on the remaining ni bits. The probability that the ni bits, when the
corresponding part of x is evaluated, to give a valid error extension is

( |E|2l )ni/` = (ρ2)ni

Hence, we need approximately ExpLimiti ≈ (2/ρ)ni tries in order to find a valid error extension.
2. Since the List decoding for producing signatures starts in the last block, the claim follows directly from

Proposition 2.
ut
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For concreteness, we describe the signing and verification procedures in detail in Alg. 4 and 5, respectively.

Algorithm 4 Signing
Input: A value z ∈ Fn2 to be signed. The private key S, G and P .

Output: A valid signature σ ∈ Fk2 , so that σGpub +z ∈ Em ⊂ Fn2 .

Procedure:

1. Compute y = zP−1.
2. Decode y using Alg. 3, to get a valid decoding s.
3. Set the signature σ = sS−1.

Algorithm 5 Verification
Input: A pair (z,σ) ∈ Fn2 ×Fk2 , and the public key
Gpub.

Output:

Ver(z,σ) =
{

Accept, if σGpub + z ∈ Em ⊂ Fn2 .
Reject, otherwise.

5 Security Analysis

The security of code-based systems relies on the hardness of finding a codeword that is closest to a certain
word, given that such a codeword exists. There are two approaches for solving this problem: generic decoding
algorithms that assume no knowledge about the structure of the code, and structural attacks that try to exploit
the known structure of the code.

5.1 Information Set Decoding for Error Sets of a Given Density

The best generic decoding algorithms, when assuming a random code of a given rate and known error set, are
based on Information-Set Decoding (ISD). The technique was introduced by Prange [41], and later improved
several times in the works of Lee and Brickell [30], Leon [31], Stern [44], and many others [20,12,35,7].

In essence, the idea behind all ISD algorithms is the following. Find an information set I i.e. an index set of
k columns of the generator matrix G that form an invertible matrix GI , such that the error vector has a specific
error pattern eI with respect to I. With the error pattern being correctly guessed, we can find the message as
m = (cI + eI)G−1

I , where cI is the part of the ciphertext c corresponding to the information set I. In our case,
the error vector is not characterized by its Hamming weight, but by the density of the error set out of which it
was drawn. Nevertheless, the idea and techniques of ISD can still be successfully applied with an appropriate
adaptation. We call this the ρISD problem.

Let an error set E` of density ρ and granulation `, with m` = n, be used in the coding process, i.e. the error
vector is randomly picked from the set Em` . Note that WLOG we can assume that the “all-zero” error 0 is in E`.
Also, for simplicity, we assume that ` divides k. In our adaption of the plain ISD attack we hope that there are
no 1’s in the part of the error vector corresponding to our chosen information set. In other words, we hope that
0 ∈ E` has been used for all of the k/` blocks corresponding to I. (More generally, this can be seen as guessing
exactly the k/` errors in I, no matter what they actually look like with respect to the Hamming metric.) The
probability of success is 1

|E|k/` = ρ−k.
Similarly, in our analogue of the Lee-Brickell variant, we allow p blocks to have a different error pattern than

0, so the probability of success is
(
k/`
p

) ( |E|−1
|E|

)p (
1
|E|

)k/`−p
=
(
k/`
p

) (ρ`−1)p
ρk

.
Similar adaptions to our setting can be made for all the various variants of ISD as follows.
Let ρISDV AR denote the complexity of some variant of the ISD algorithms adapted to error sets of density

ρ. Then as usual, we can write:
ρISDV AR = ρPr−1

V AR · ρCostV AR
where ρPrV AR is the probability of success of one iteration of the algorithm, and ρCostV AR denotes the cost
of each of the iterations. We summarize the results of adapting several ISD variants in the following theorem.

Theorem 2. The probability of success of one iteration and the cost of one iteration of the Lee-Brickell vari-
ant, Stern variant, Finiasz-Sendrier variant, Bernstein-Lange-Peters variant, May-Meurer-Thomae variant and
Becker-Joux-May-Meurer variant adapted to error sets of density ρ are given in Table 1.

Proof (sketch). We first note that all the parameters and the strategy used in the presented variants ρISDV AR

is the same as in the original algorithms ISDV AR. The main difference is in the probability of success and the
size of the constructed lists.
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In the original variants, one allows a certain amount of errors to appear in the coordinates indexed by the
information set I in a specific pattern. Also, a specific number of errors is allowed on certain coordinates outside
I. Each and every new algorithm uses different pattern, carefully chosen in order to increase the probability of
having such a particular pattern compared to previous variants.

Without loss of generality, let k̃ be the size of some fixed portion of the coordinates. From the discussion
at the beginning of the section, we see that unlike in the standard ISDV AR, in ρISDV AR the probability of
“guessing” the pattern in p blocks does not depend on n, or the structure of the error vector outside the fixed
coordinates. It is always given by

(
k̃/`
p

) (ρ`−1)p
ρk̃

. This probability can be used to compute the probability of any
of the variants.

Now, assuming that the pattern is correctly guessed, one forms one or more lists of size p subsets of the
fixed coordinates, in order to match a computed tag to another, using plain or collision type of matching. In
our case, the number of such subsets is given by

(
k̃/`
p

) (
ρ` − 1

)p, where
(
k̃/`
p

)
is the number of size p subsets of

blocks of length `, and
(
ρ` − 1

)
is the number of possible error patterns inside a block where we allow to have

not guessed the pattern. Using this formula we can compute the size of the created lists in the algorithms of all
variants. The particular details are left to the reader.

Table 1. Complexity of ISD variants adapted to error sets of density ρ. CostGauss denotes the complexity of Gaussian
elimination. The meaning of the optimizing parameters in each of the formulas below can be found in [30,44,20,12,35,7].

Variant ρPrV AR ρCostV AR − CostGauss

LB
(
k/`
p

) (ρ`−1)p

ρk

(
k/`
p

)
(ρ` − 1)ppn

ST
(
k/2`
p

)2 (ρ`−1)2p

ρk+λ 2λpL+ 2pnL
2

2λ , L =
(
k/2`
p

)
(ρ` − 1)p

FS
((k+λ)/2`

p

)2 (ρ`−1)2p

ρk+λ 2λpL+ 2pnL
2

2λ , L =
((k+λ)/2`

p

)
(ρ` − 1)p

BLP
(
k/2`
p

)2(λ1/`
q

)(
λ2/`
q

) (
k/2`
p

)
(ρ`− 1)p2(λ1 +λ2)p+

(
k/2`
p

) ((
λ1/`
q

)
+
(
λ2/`
q

))
(ρ`− 1)p+q(λ1 +λ2)q

· (ρ`−1)2p+2q

ρk+λ1+λ2 + (k/2`
p )2(λ1/`

q )(λ2/`
q )(ρ`−1)2p+2q

2λ1+λ2 2(p+ q)n

MMT
((k+λ)/2`

p

)2 (ρ`−1)2p

ρk+λ 2λ2pL+ (2n+ λ− λ2)p L
2

2λ2 + pn L4

2λ+λ2 , L =
((k+λ)/2`

p/2

)
(ρ` − 1)p/2

BJMM
((k+λ)/`

p

) (ρ`−1)p

ρk+λ 4Pr−4
collp2

(
L3 log2 R2 + n

L2
3

R2

)
+ 2n

(
p1

L2
2R2
R1

+ p
L2

1R1
2λ

)
,

P rcoll =
((k+λ)/2`

p2/2

)2((k+λ)/`
p2

)−1
, pi = pi−1

2 + εi, i = 1, 2, p0 = p,

Li =
((k+λ)/2`

pi

)
(ρ` − 1)pi , i = 1, 2, L3 =

((k+λ)/2`
p2/2

)
(ρ` − 1)p2/2,

Ri =
(
pi−1
pi−1/2

)((k+λ)/`−pi−1
εi

)
(ρ` − 1)εi , i = 1, 2, p0 = p

ut

In Table 2 we state concrete complexities of the various adaptions for the concrete parameters ` = 2 and
ρ = 31/2, when k = 256 or k = 512.

5.2 Modelling ρISD using Polynomial System Solving

In this part we describe how the ρISD problem can be modeled as the Polynomial System Solving (PoSSo)
problem. PoSSo is the problem of finding a solution to a system of polynomial equations over some field.
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Table 2. Complexity of ISD variants for ` = 2, ρ = 31/2 when k = 256 and k = 512.

Variant LB ST FS BLP MMT BJMM

k = 256 2212 2197 2186 2186 2146 2123

k = 512 2416 2381 2356 2356 2279 2226

Given a public generator matrix Gpub and a ciphertext c, we can form n linear equations

Gpub + y = c,

where x denotes the k unknown bits of the message, and y is the n-bit unknown error. Clearly, we don’t have
enough equations to find the correct solution efficiently. However, from the known structure of the error vector
we can derive additional equations of higher degree that describe exactly the error set. If we denote these
equations as P (y) = 0, then a solution of the system

xGpub + y = c
P (y) = 0

(13)

will give the same solution for the message and the error vector as the decoding algorithm with the knowledge
of the private key.

We emphasize that any error set can be described by a system of equations, including the set of errors of
a bounded weight used in the McEliece system. The efficiency of this approach strongly depends on the error
structure.

Remark 2. Note that, in order for a choice of error set to be secure, the set of polynomials S used to define
it should not contain any linear polynomials (nor be isomorphic to a such a set). Without this restriction, the
system in (13) becomes easily solvable.

Furthermore, it is possible to introduce an optimization parameter in the form of a guess of some of the
errors, or a guess of linear equations for the errors. In what follows we present the modeling of an error set of
density ρ = 31/2 and granulation ` = 2.

Let E` be an error set of density ρ = 31/2 and granulation ` = 2. Without loss of generality, we can assume
that E` = {(00), (01), (10)}. Let (e1, e2) ∈ E`. Then, the equation e1e2 = 0 describes completely the error set
E`. Hence, the system (13) turns into:

(x1, . . . , xk)Gpub + (y1, . . . , yn) = c
y1y2 = 0

. . .

yn−1yn = 0

The system can be easily transformed to the following form:

A1(x1, . . . , xk)A2(x1, . . . , xk) = 0
. . . (14)

An−1(x1, . . . , xk)An(x1, . . . , xk) = 0

where Ai are some affine expressions in the variables x1, . . . , xk.
We can introduce an optimization parameter p as follows. Suppose we have made a correct guess that the

equation y2t−1 +y2t = bt, bt ∈ {0, 1} holds for p pairs (y2t−1, y2t) of coordinates of the error vector. Adding these
p new equations to the system reduces the complexity of solving it. Note that it is enough to correctly guess k
equation to obtain a full system of k unknowns. The probability of making the correct guess is Pr = (2/3)p.
Under the natural constrain 0 ≤ p ≤ k, we can roughly estimate the complexity to

Comp = (2/3)p ·
((

k − p
Dregk−p

)
+ p

)ω
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where Dregk−p denotes the degree of regularity of a system of k − p variables of the form (14).
We performed some experiments using the F4 algorithm [19] implemented in MAGMA [34], and based on

rather conservative projections of the degree of regularity, we give the following table with a rough estimate of
the lower bound of the complexity.

Table 3. Estimated complexity of solving ρISD using the F4 algorithm for ` = 2, ρ = 31/2.

k Complexity

128 284

256 2152

512 2237

5.3 Distinguishing Attacks

A distinguishing attack on our scheme, will in essence try to recover a decomposition of the public key Gpub
into Gpub = S′G′P ′, where G′ has a shape similar to that of (5). We emphasize that the attacker does not have
to recover G exactly, but rather a similar G′. Once G′ is obtained, the attacker can try to perform decoding
as the normal user. The complexity of the message recovery will depend on the level of structural similarity of
obtained equivalent key G′ with the original key G.

Let [n` ] denote the set {1, 2, . . . , n` }, and for I ⊂ [n` ] denote by (Gpub)I the |I| corresponding blocks of `
columns picked from Gpub. Further, let Ki = k1 + · · ·+ ki and Ni = Ki + n1 + . . .+ ni. We partition the public
key as Gpub = (G′X G′Y ), where the submatrices G′X and G′Y have dimension k × nX and k × nY respectively
and initially nX = 0 and nY = n.

Step 1. The crucial idea is to notice that there exist submatrices of blocks of columns that have smaller rank
than expected. Let I1 denote the coordinate set of dKt` + 1e randomly selected blocks of columns from Gpub,
where 1 ≤ t < w is an optimization parameter. This parameter t allows us to find the best choice of the set I1
that gives the lowest complexity of the attack. For a random matrix we would expect, with high probability,
that rank(Gpub)I1 = Kt + `. However, due to the structure of G, we hope to find columns such that:

rank(Gpub)I1 < Kt + `. (15)

After finding such an I1, we set G′X ← (Gpub)I1 and G′Y ← (Gpub)[n` ]\I1 .
Step 2. After Step 1 is finished, we perform a greedy selection among the remaining column blocks, incre-

mentally expanding G′X (and simultaneously shrinking G′Y ) with the blocks that give the minimum rank (of
G′X), until rank(G′X) = k. That is, we pick single block column sets I2 ⊂ [n` ] \ I1, I3 ⊂ [n` ] \ I1 ∪ I2, . . . , so
that the ranks of G′X ← (Gpub)I1,I2 , G′X ← (Gpub)I1,I2,I3 , . . . , are minimal.

Step 3. Since 1 ≤ t < w, the steps so far will distinguish the union of the columns of the matrices Bt+1, . . . , Bw
and the kt+1 + · · · + kw columns from Ik. This is not enough to distinguish the code, as t can be close to w.
Hence we need to repeat the Steps 1 and 2 for the smaller code composed of the remaining non-distinguished
columns.

Step 4. In the last step, we recover the matrices P ′ and S′. Let P ′−1 denote the permutation matrix
corresponding to the columns selected during Steps 2, i.e.:

G′ = GpubP
′−1 = (G′X G′Y ) =

(
(Gpub)I1,...,In/` (Gpub)[n` ]\

⋃
i
Ii

)
. (16)

The G′ in (16) has an “internal” block structure, of n` blocks. Still, it is not of the form as the matrix in (5),
since it it does not have the step-wise structure with zeroes below each block. However, by performing some
elementary row operations on G′ we can get it into the right form which allows decoding.

Note that the G′ found by the above process is not in systematic form as is the matrix in (5). It can be
brought to form (5) using a standard procedure for obtaining the systematic form, having in mind that only
block column operations are allowed.
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Remark 3. A distinguishing attack can also be performed on the generator matrix of the dual code, since it also
has a stepwise structure. The procedure described above will be the same, but the roles of the parameters ki
and ni will be interchanged as follows k1 7→ nw, . . . , kw 7→ n1, n1 7→ kw, . . . , nw 7→ k1.

The following theorem estimates the complexity of the distinguishing attack.

Theorem 3. The complexity of the distinguishing attack is the minimum of the attacks on the code and the
dual code, i.e.,

Dist = min{Pr−1
rank · Cost, Pr−1

rankD · CostD} (17)

where Cost = k(Kt + `)ω−1, CostD = (n− k)(Nt + `)ω−1, ω is the linear algebra constant, and

Prrank =
(
n/`− (Kt/`+ 1)
Nt/`− (Kt/`+ 1)

)(
n/`

Nt/`

)−1
, P rrankD =

(
n/`− ((Nt −Kt)/`+ 1)
Nt/`− ((Nt −Kt)/`+ 1)

)(
n/`

Nt/`

)−1
. (18)

Proof. We will evaluate the complexity of the attack on the generator matrix of the code. The attack on the
dual code is analogous.

First of all, lets emphasize that Step 1 has the biggest complexity, so we can WLOG omit the other steps
from our complexity estimation.

First, let’s consider a more general strategy of choosing in the attack. Suppose we first choose m/` blocks,
Kt < m < n out of the possible n/` in the hope that, among them there are Kt/`+ 1 blocks with smaller rank
than Kt + `. The probability of this to happen is

Prm =
(

m/`

Kt/`+ 1

)(
n/`−m/`

Nt/`− (Kt/`+ 1)

)(
n/`

Nt/`

)−1
(19)

Suppose the choice was made correctly. Now the cost of finding the Kt/`+ 1 blocks of smaller rank among the
m/` is

Costm =
(

m/`

Kt/`+ 1

)
· Costrank

Hence, the total amount of work is

Distm = Pr−1
m · Costm =

(
n/`

Nt/`

)(
n/`−m/`

Nt/`− (Kt/`+ 1)

)−1
· Costrank

Since m/` ≥ (Kt/`+ 1), the minimum complexity is obtained for m = Kt/`+ 1. From here we get that

PrKt/`+1 = Prrank =
(
n/`− (Kt/`+ 1)
Nt/`− (Kt/`+ 1)

)(
n/`

Nt/`

)−1
(20)

and
CostKt/`+1 = Costrank

The rank computation takes approximately Costrank = k(Kt + `)ω−1 operations, where ω is the linear algebra
constant.

As we said, the same strategy applies for the dual code, for which instead of Kt we have Nt −Kt. Now the
claim follows directly.

The parameter t is an optimization parameter for the attack, and its optimal value depends strongly on the
chosen parameters. We should note that, for the sets of parameters that we use, because of the nature of the
curve of the complexity for different Kt, the best strategies are always for either t = 1 or t = w − 1. ut

We have noticed that the best complexity of the attack is achieved when the optimization parameter t is
either 1 or w − 1.

Remark 4. We emphasize that the generator matrix of any linear (n, k) code can be transformed to the form (5)
using the attack described above. Since the size of the Ki is not known, one would use a trial-and-error approach,
starting from some chosen small K1, and slowly increasing its value, until a smaller rank than expected is
distinguished. The size of the obtained K1 depends on the code, and for randomly selected code it is expected
to depend on the dimension k.
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5.4 Cheap Distinguishing Attacks With Expensive Recovery/Forgery

Here we describe two distinguisher attacks, having relatively small complexity. As in the previous analysis, these
distinguishers lead to recovery of an alternative private key. However, the complexities of decoding or signature
forgery with these recovered private keys are very expensive, i.e. infeasible.

Attack on the encryption scheme: Denote by C the (n, k) code of the generator matrix G in (5), and by
D the dual (n, r) code of C. Up to a permutation of coordinates, the code D admits a subcode spanned by the
n1 × r matrix A = [BT1 | Id | 0 . . . 0], where Id is the identity matrix, and BT1 is the transpose of the block B1
in G. Matrix A has n − n1 − k1 columns of zeros in its rightmost positions. These positions can be ignored as
far as we consider codewords obtained by combining the rows of A. Consequently, the minimum distance of D
is not greater than the minimum distance of the (n1 + k1, n1) code spanned by [BT1 | Id]. Note that a random
(n1 + k1, n1) linear binary code has an expected minimum distance dmin which equals the Gilbert—Varshamov
bound [6]:

dmin = (n1 + k1) · δGV ( n1

n1 + k1
), (21)

where δGV ≤ 1
2 is the relative Gilbert–Varshamov (GV) distance of a code having rate R. It is defined as being

the root of F (x) = H2(x)− 1 + R, where H2(x) is the binary entropy function. Thus, the dual codes D of our
scheme will have a minimum distance of dmin = (n1 + k1) · δGV ( n1

n1+k1
), instead of dmin,rand = n · δGV ( rn ).

In Sect. 6 and Appx. A we consider a wide range of choices for the parameters n, k, ni and ki. For the
dual codes, we can approximate the cost of finding a word of weight dmin for these choices, by applying Stern’s
algorithm [44]:

Costn,r,dmin ≈ 2a0+a1n+a2r+a3dmin+a4ndmin+a5nk+a6kdmin+a7d
2
min , (22)

where a0 = 20.0482, a1 = 0.00519929, a2 = 0.0019762, a3 = 0.31586, a4 = −0.000211907, a5 = −1.15349×10−6,
a6 = 0.000536886 and a7 = 0.00610952.6

For example, let us consider the code defined by (n, k) = (7590, 1278), w = 155, K = (46, 8, 8, . . . , 8),
N = (32, 32, . . . , 32, 1384), with dual code (7590, 6312). Since n1 = 32 and k1 = 46, a random binary (n1 +
k1, n1) = (78, 32) linear code would be expected to have a minimum distance of 12. From the approximation
in (22), we have that finding a word of weight 12 in the binary code (7590, 6312) is going to cost around 243

binary operations.
Now, the main question is: How good is the equivalent key that the attacker can get from this distinguisher?
We answer this question with the following analysis. Let w ∈ Fn2 be the codeword of weight dmin that was

obtained with the above distinguishing method against the dual code with parameters (n, r). Note that the
support of w (non-zero coordinates) is dispersed among n columns. In order to build an equivalent key G′ with
a stepwise form similar to that of G in (5), the attacker needs to process the whole first block B1 of G by calling
the distinguisher n1 times and finding codewords with weight dmin. The total size of the obtained support in
this phase determines the value k′1 in the equivalent key G′ and is crucial for the complexity of decoding with
G′. The maximal value for k′1 is n1dmin, and a lower bound is given in (23) (modeled as the expected number of
non-zero coordinates in a vector of n coordinates with an equiprobable dispersion of n1dmin ones; and reduced
by n1, corresponding to the Id part in A):

k′1 = n− (n− 1)n1dmin

nn1dmin−1 − n1. (23)

Consequently, the decoding procedure using G′ will have a complexity of around O(3
k′1
2 ) operations.

For the (n, k) = (7590, 1278) code considered in the example above, this cheap distinguishing attack will
need around ≈ 2246 operations just for the start of the decoding procedure.

6 We note that it is possible to get slightly better distinguishing complexities with the BJMM algorithm [7] but it was
harder for us to obtain a closed approximation formula as (22) since in [7] the analysis is for another fixed weight value
of dmin.
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Attack on the signature scheme: Someone can apply the key recovery attack described in [29] for the
signature scheme based on convolutional codes described in [33]. In the first look, this makes sense, since
someone can see the similarities between our scheme and the scheme in [33]. However, there are two crucial
differences that makes this attack infeasible:

1. The structure of the secret key [33] is such that for its decoding, direct decoding techniques for convolutional
codes in the Hamming metrics are applied. On the other hand, we do not use the Hamming metrics in our
codes, but a metrics that involves granularity with a density ρ = 31/2. Consequently, the recovered equivalent
key by the attack described in [29] will not have the property described in Proposition 3 : ni

ki
≥ log2 ρ

1− log2 ρ
for all 2 ≤ i ≤ w. That will make the recovered equivalent key useless for performing feasible list-decoding.

2. The authors of the attack paper [29] suggest at the end of their work that the scheme in [33] can become
resistant to their key recovery attack if they add additional random code et the end of their code in lengths
of around 140 bits. Interestingly, our codes for signatures have already that random part at the end of the
code.

Finally, we emphasize that in many public-key schemes, distinguishing a public-key from random is not
considered an attack nor a flaw. This is the case with our scheme too. It would become an attack if the
distinguisher leads to the recovery of a private key that facilitates efficient decryption.

6 Choosing Parameters

One important issue with any cryptographic primitive is its efficiency for a given level of claimed security. For
public-key primitives, this can be examined by analyzing the sizes of the private and public key, and the number
of operations necessary for encryption, decryption, signing and verification.
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Fig. 5. Comparison between the complexity of decoding and the distinguishing attacks for encryption and signature.
Dashed horizontal lines denote three security levels: 280, 296 and 2128.

From the analysis in Sect. 5.3 we have chosen a set of eight parameters for encryption and nine parameters
for signatures, with security levels in the range of 280− 2128 (actually slightly above 2128) according to Thm. 3.
The full description of the proposed parameters are in Appx. A. In Fig. 5 we plot comparative curves for the
complexities of decoding and the complexities of the distinguishing attacks on the code and its dual.

Fig. 6 illustrates how the complexities in Fig. 5a were calculated, by considering the fifth data point in the
graph, representing a (800, 4840) code suitable for encryption. By examining all possible values of the attack
parameter Kt we find that the distinguishing attack on the code and its dual (a code of dimensions (4040, 4840))
has a minimum complexity of 2129.
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Similarly, in Fig. 7, we illustrate with a code suitable for signatures (it is the (786, 1578) code in point
eight of Fig. 5b). Again, by examining all possible values of the attack parameter Kt we see that the minimum
complexity of the attack (on either the code or its dual (792, 1578) code) is 2137.
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Note that the gap between the attack complexity and the complexity of decoding in Fig. 5a (the encryption
scheme) is almost a constant, and in Fig. 5b (the signature scheme) the gap is just slowly increasing. While this
can be arguably considered as a negative characteristic of the scheme, we want to emphasize the following two
arguments why we see our scheme as potentially a useful cryptographic design: 1. The attack complexities are
in the stratosphere of infeasibility of “real world” computations in the levels of 280 − 2128 (or slightly above),
while the decryption complexities are in the feasible levels of 223 − 236; 2. Since our decoding procedure has
the feature of being trivially parallelizable, it is feasible to reduce the decoding complexity from 236 time units
down to only a few time units. If the same amount of parallel computing power is given to the attacker, the
reduction in the attack complexities will be much smaller7, thus keeping the complexities of attacks utilizing
parallelism in the stratosphere of infeasibility .

7 Conclusions

We have introduced a cryptographic communication channel where the sender has the role of the “noise” and
can produce error vectors from an almost arbitrary big error set. For those error sets we defined a new family of
binary linear codes that with overwhelming probability can be decoded by an efficient list decoding algorithm.

Having introduced the new codes, we constructed both encryption and signature schemes that follow the
basic structure of the McEliece scheme: Gpub = SGP . We showed that the security of our schemes are tightly
connected to the problem of decoding a random syndrome in the Hamming metric by providing an analog to
the Information Set Decoding techniques for our error sets. Further, we scrutinized the power of rank attacks
against our scheme and that resulted to a particular choice of parameters that offer a security in the range
280 − 2128 with plausible operating characteristics. Finally, we analyzed distinguishing attacks that can recover
some equivalent key, and showed that those recovered keys are useless for the message recovery or signature
forgery since they do not reassemble the subtle structure of our codes (a requirement that guarantees that the
list-decoding procedure is stable, convergent and feasible).

We point out to some research directions and open questions connected with our schemes: 1. Finding pa-
rameter sets that will offer security levels in the range of 2256, 2. Reducing the public key sizes with techniques
such as cyclic and MDPC codes. 3. Implementations in hardware making heavy use of the inherent parallelism
in the decoding algorithm for our codes.
7 Decoding procedures use much simpler matrix-vector multiplications, while the rank attacks have to perform infeasible

number of more expensive operations of matrix rank computations.
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A Full Description of Sets of Parameters for Security Levels in the Range of
280 − 2128

We denote with K = (k1, . . . , kw) and with N = (n1, . . . , nw) the vectors of values used in definition of concrete
generator matrices as defined in equation (5). The used error set for all concrete codes is E2 = {x ∈ F2

2 | wt(x) <
2} = {(0, 0), (0, 1), (1, 0)}, thus ` = 2. For computing the complexities of the rank attacks on the code and on
its dual code we use equation (18), and we give here the values for Kt/` and Nt/` for which those complexities
are achievable.

Codes for encryption
1. Code (1160, 160).

Public key size: 19.53 Kb.
w = 17, K = (32, 8, 8, . . . , 8), N = (32, 32, . . . , 32, 488).
Decoding complexity: 225.36.
Best rank attack complexity: 290 for Kt/` = 152 and Nt/` = 664.
The dual code is (1160, 1000).
Best dual code rank attack complexity: 2120.61 for Kt/` = 968 and Nt/` = 1096.

2. Code (2050, 314).
Public key size: 66.54 Kb.
w = 36, K = (34, 8, 8, . . . , 8), N = (32, 32, . . . , 32, 616).
Decoding complexity: 226.94.
Best rank attack complexity: 2113.75 for Kt/` = 306 and Nt/` = 1426.
The dual code is (2050, 1736).
Best dual code rank attack complexity: 2121.20 for Kt/` = 1704 and Nt/` = 1984.

3. Code (2980, 476).
Public key size: 145.50 Kb.
w = 56, K = (36, 8, 8, . . . , 8), N = (32, 32, . . . , 32, 744).
Decoding complexity: 228.53.
Best rank attack complexity: 2131.96 for Kt/` = 36 and Nt/` = 68.
The dual code is (2980, 2504).
Best dual code rank attack complexity: 2123.61 for Kt/` = 2472 and Nt/` = 2912.

4. Code (3910, 638).
Public key size: 254.83 Kb.
w = 76, K = (38, 8, 8, . . . , 8), N = (32, 32, . . . , 32, 872).
Decoding complexity: 230.11.
Best rank attack complexity: 2145.80 for Kt/` = 38 and Nt/` = 70.
The dual code is (3910, 3272).
Best dual code rank attack complexity: 2126.44 for Kt/` = 3240 and Nt/` = 3840.

5. Code (4840, 800).
Public key size: 394.53 Kb.
w = 96, K = (40, 8, 8, . . . , 8), N = (32, 32, . . . , 32, 1000).
Decoding complexity: 231.70.
Best rank attack complexity: 2158.51 for Kt/` = 40 and Nt/` = 72.
The dual code is (4840, 4040).
Best dual code rank attack complexity: 2129.37 for Kt/` = 4008 and Nt/` = 4768.

6. Code (5730, 954).
Public key size: 556.19 Kb.
w = 115, K = (42, 8, 8, . . . , 8), N = (32, 32, . . . , 32, 1128).
Decoding complexity: 233.28.
Best rank attack complexity: 2170.30 for Kt/` = 42 and Nt/` = 74.
The dual code is (5730, 4776).
Best dual code rank attack complexity: 2132.36 for Kt/` = 4744 and Nt/` = 5656.
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7. Code (6660, 1116).
Public key size: 755.26 Kb.
w = 135, K = (44, 8, 8, . . . , 8), N = (32, 32, . . . , 32, 1256).
Decoding complexity: 234.86.
Best rank attack complexity: 2181.88 for Kt/` = 44 and Nt/` = 76.
The dual code is (6660, 5544).
Best dual code rank attack complexity: 2135.27 for Kt/` = 5512 and Nt/` = 6584.

8. Code (7590, 1278).
Public key size: 984.71 Kb.
w = 155, K = (46, 8, 8, . . . , 8), N = (32, 32, . . . , 32, 1384).
Decoding complexity: 236.45.
Best rank attack complexity: 2193.15 for Kt/` = 46 and Nt/` = 78.
The dual code is (7590, 6312).
Best dual code rank attack complexity: 2138.17 for Kt/` = 6280 and Nt/` = 7512.

Codes for signatures
1. Code (650, 306).

Public key size: 12.85 Kb.
w = 6, K = (84, 48, 48, 48, 48, 30), N = (48, 48, 48, 48, 48, 104).
Decoding complexity: 223.77.
Best rank attack complexity: 287.54 for Kt/` = 276 and Nt/` = 516.
The dual code is (650, 344).
Best dual code rank attack complexity: 293.32 for Kt/` = 296 and Nt/` = 518.

2. Code (766, 366).
Public key size: 17.87 Kb.
w = 7, K = (94, 48, . . . , 48, 32), N = (48, 48, . . . , 48, 112).
Decoding complexity: 225.36.
Best rank attack complexity: 294.44 for Kt/` = 334 and Nt/` = 622.
The dual code is (766, 400).
Best dual code rank attack complexity: 298.93 for Kt/` = 352 and Nt/` = 624.

3. Code (882, 426).
Public key size: 23.71 Kb.
w = 8, K = (104, 48, . . . , 48, 34), N = (48, 48, . . . , 48, 120).
Decoding complexity: 226.94.
Best rank attack complexity: 2101.00 for Kt/` = 392 and Nt/` = 728.
The dual code is (882, 456).
Best dual code rank attack complexity: 2104.48 for Kt/` = 408 and Nt/` = 730.

4. Code (998, 486).
Public key size: 30.37 Kb.
w = 9, K = (114, 48, . . . , 48, 36), N = (48, 48, . . . , 48, 128).
Decoding complexity: 228.53.
Best rank attack complexity: 2107.36 for Kt/` = 450 and Nt/` = 834.
The dual code is (998, 512).
Best dual code rank attack complexity: 2110.00 for Kt/` = 464 and Nt/` = 836.

5. Code (1114, 546).
Public key size: 37.86 Kb.
w = 10, K = (124, 48, . . . , 48, 38), N = (48, 48, . . . , 48, 136).
Decoding complexity: 230.11.
Best rank attack complexity: 2113.55 for Kt/` = 508 and Nt/` = 940.
The dual code is (1114, 568).
Best dual code rank attack complexity: 2115.48 for Kt/` = 520 and Nt/` = 942.
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6. Code (1230, 606).
Public key size: 46.16 Kb.
w = 11, K = (134, 48, . . . , 48, 40), N = (48, 48, . . . , 48, 144).
Decoding complexity: 231.69.
Best rank attack complexity: 2119.63 for Kt/` = 566 and Nt/` = 1046.
The dual code is (1230, 624).
Best dual code rank attack complexity: 2120.93 for Kt/` = 576 and Nt/` = 1048.

7. Code (1346, 666).
Public key size: 55.28 Kb.
w = 12, K = (144, 48, . . . , 48, 42), N = (48, 48, . . . , 48, 152).
Decoding complexity: 233.28.
Best rank attack complexity: 2125.61 for Kt/` = 624 and Nt/` = 1152.
The dual code is (1346, 680).
Best dual code rank attack complexity: 2126.34 for Kt/` = 632 and Nt/` = 1154.

8. Code (1462, 726).
Public key size: 65.23 Kb.
w = 13, K = (154, 48, . . . , 48, 44), N = (48, 48, . . . , 48, 160).
Decoding complexity: 234.87.
Best rank attack complexity: 2131.52 for Kt/` = 682 and Nt/` = 1258.
The dual code is (1462, 736).
Best dual code rank attack complexity: 2131.74 for Kt/` = 688 and Nt/` = 1260.

9. Code (1578, 786).
Public key size: 75.99 Kb.
w = 14, K = (164, 48, . . . , 48, 46), N = (48, 48, . . . , 48, 168).
Decoding complexity: 236.45.
Best rank attack complexity: 2137.37 for Kt/` = 740 and Nt/` = 1364.
The dual code is (1578, 792).
Best dual code rank attack complexity: 2137.11 for Kt/` = 744 and Nt/` = 1366.
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