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Abstract. In FSE 2014, an authenticated encryption mode COBRA [4], based on pseudorandom per-
mutation (PRP) blockcipher, and POET [3], based on Almost XOR-Universal (AXU) hash and strong
pseudorandom permutation (SPRP), were proposed. Few weeks later, COBRA mode and a simple vari-
ant of the original proposal of POET (due to a forging attack [13] on the original proposal) with AES as
an underlying blockcipher, were submitted in CAESAR, a competition [1] of authenticated encryption
(AE). In this paper we show a forging attack on the mode COBRA based on any n-bit blockcipher. Our
attack on COBRA requires about O(n) queries with success probability about 1/2. This disproves the
claim proved in FSE 2014 paper. We also show both privacy and forging attack on the parallel version
of POET, denoted POET-m. We can also recover some derived key of the construction. In case of the
modes POET or POE (the underlying modes for encryption), we show one query distinguishing attack
when we instantiate the underlying AXU-hash function with some other AXU hash function, namely
uniform random involution. Thus, our result violates the designer’s main claim (Theorem 8.1 in [1]).
However, the attacks can not be extended directly for the specific choices of existing submitted versions
to the CAESAR competition.
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1 Introduction

The common application of cryptography is to implement a secure channel between two or
more users and then exchanging information over that channel. These users can initially set
up their one-time shared key. Otherwise, a typical implementation first calls a key-exchange
protocol for establishing a shared key or a session key (used only for the current session). Once
the users have a shared key, either through the initial key set-up or key-exchange, they use
this key to authenticate and encrypt the transmitted information using efficient symmetric-
key algorithms such as a message authentication code Mac(·), pseudorandom function Prf
and (tweakable symmetric-key) encryption Enc(·) respectively.

- The encryption Enc provides privacy or confidentiality plaintext or payload M .
- The message authentication code Mac and pseudorandom function Prf provide data-

integrity authenticating the transmitted message (M, A), a pair of plaintext M and an
associated data A ∈ D). Mac also provides user-authenticity (protecting from imperson-
ation).

An Authenticated Encryption scheme (or simply AE) serves the both purposes in
an integrated manner. An authenticated encryption scheme AE has two functionalities one
of which, called tagged-encryption, essentially combines tag-generation and encryption, and
the other combines verification and decryption algorithms.



1. Tagged-encryption AE.enck: It takes a message M from its message space M ⊆
{0, 1}≤Lmm := ∪Lmm

i=1 {0, 1}i (Lmm denotes the maximum possible message size) and an
associated data A ∈ D as inputs and generates a ciphertext integrated with tag Z =
(C, T ) ∈ {0, 1}∗, called tagged-ciphertext.

2. Verified-decryption AE.deck: It takes a tagged ciphertext Z and an associated data A as
inputs and returns either a special symbol ⊥ (meaning that the given tagged-ciphertext is
rejected i.e., invalid) or it returns a plaintext M when Z is actually the tagged-ciphertext
of M with the associate data A.

Note that both algorithms take the shared key k from a keys-space K = {0, 1}Lkey where
Lkey denotes the key-size. The key usually includes keys for underlying blockcipher, masking
keys etc. Some constructions derives more keys by invoking the blockcipher with different
constant inputs.

An AE scheme is said to have privacy if the tagged ciphertext for any plaintext chosen
adaptively behave like an uniform random string. It has authenticity if it is infeasible to
generate a new valid ciphertext-tag pair which is not obtained before by making encryption
query. More formally, let A be an oracle adversary which can make query to AE.enc adap-
tively. Let $ be a random oracle which returns an uniform random string for every fresh
query. We define privacy advantage of A against AE to be

Advpriv
AE (A) :=

∣∣Pr[AAE.enc = 1]− Pr[A$ = 1]
∣∣.

Similarly we define authenticity advantage of A as Advauth
AE (A) := Pr[AAE.enc = Z] where Z

is valid tagged-ciphertext not a response of its encryption query.

1.1 Two AE Schemes COBRA and POET submitted to CAESAR

CAESAR [1], a competition for authenticated encryption having security applicability, and
robustness. The final goal of the competition is to identify a portfolio of AE depending on
different applications and environments. Fifty seven authenticated encryptions have been
submitted. AES-COBRA and POET are two such submissions. These two have been pub-
lished before in FSE 2014. Unfortunately, in [13] Guo et al. demonstrated one query forging
attack of POET. So designers of POET modified accordingly to resist this forging attack and
submitted the revised version to CAESAR.

1.2 Our Contribution

1. In this paper we show forging attack on the submitted version of AES-COBRA. In fact
the attack works for the mode COBRA based on any blockcipher. Thus it disproves the
claim stated in [4]. The authenticity advantage of our proposed algorithm is about 1/2
and it makes about 2n many encryption queries where n is the plaintext size of the un-
derlying blockcipher. Our technique seems to be applicable to all stateless authenticated
encryptions which follow hash then encrypt paradigm.



2. The designers of POET has recommended a parallel version, called POET-m. We provide
distinguishing and forging attack on it. Moreover designers of POET claimed AE security
of the encryption mode, called POE, for any arbitrary AXU hash function. Here we
disprove their claim by showing a distinguishing attack on a special choice of AXU,
namely uniform involution function. Thus the security proof of the claims have flaws. We
also extended this to have a forging attack. All these attack algorithms make at most
encryption queries and has advantages close to 1. However, we would like to note that
our attacks on POET mode do not work for the choices of AXU which are proposed in
CAESAR submissions.

2 Basics of Almost XOR Universal (AXU) Hash

2.1 Notation and Basics

In this paper we fix a positive integer n which denotes the block size of the underlying
blockciphers. We mostly use AES (advanced encryption standard) [11] with 128 bit key size
as the underlying blockcipher and in this case n = 128. For any set S, we write S+ := ∪i≥1Si.

Binary Field. We identify {0, 1}n as the binary field of size 2n. An n bit string α =
α0α1...αn−1, αi ∈ {0, 1} can be equivalently viewed as an (n − 1) degree polynomial with
coefficient α0, α1, ..., αn−1, i.e, α(x) = α0 +α1x+ · · ·+αn−1x

n−1. The field addition between
two n bit strings is bit-wise addition ⊕ (we also use “+”). Let us fix a primitive polynomial
p(x) of degree n. Field multiplication between two n-bit strings α and β can be defined
as the binary string corresponding to the polynomial α(x)β(x) mod p(x). We denote the
multiplication of α and β as α · β. Thus, 0 = 0n is the additive identity and 1 = 0n−11 is the
multiplicative identity. Moreover, 2 = 0n−210 is a primitive element.

2.2 Almost XOR Universal (AXU) Hash

Universal hash functions and its close variants strongly universal, AXU-hash [9, 12, 21, 23,
24, 22, 18] are information theoretic notion which are used as building blocks of several
cryptographic construction, e.g., message authentication code [9, 25], domain extension of
pseudorandom function [5, 8], extractor [17], quasi-randomness and other combinatorial
objects [12, 22].

AXU Hash Function. A keyed function FL : {0, 1}n → {0, 1}n is called ε-AXU [18] if for
all x 6= x′ ∈ {0, 1}n and δ ∈ {0, 1}n, PrL[FL(x)⊕ FL(x′) = δ] ≤ ε.

2.3 Examples

Field Multiplier. Let L ∈ {0, 1}n be chosen uniformly then FL(x) = L · x (field multipli-
cation on {0, 1}n) is 2−n-AXU.



Polynomial Hash. Polynomial hash [21] is one of the popular universal hash which can
be computed efficiently by Horner’s rule [14] (same as computation of CBC message authen-
ticated code [2, 6]).

Definition 1. [21] We define the polynomial-hash indexed by L ∈ {0, 1}n over the domain
({0, 1}n)+ as

polyL(ad, ad−1, . . . , a0) = a0 + a1L · · ·+ ad−1L
d−1 + adL

d

where a0, a1, . . . , ad ∈ {0, 1}n.

Four Rounds AES. The AES (for 128 bit keys) has ten rounds. However, it has been
studied that the four rounds of AES has good differential probability. More formally, Daemen
et al. in [10] showed that the four-round AES is a family of 2−113-AXU under the reasonable
assumption that all four round keys are uniform and independent (which is actually not the
case for AES).

Random (Involution) Function. The uniform random function from {0, 1}n to itself
is an 2−n-AXU hash function. A function f : {0, 1}n → {0, 1}n is called involution if f is
inverse of itself (so it must be permutation). An uniform random involution function In is
chosen uniformly from the set In of all involution functions from {0, 1}n to itself. It is easy
to see that In is an 1

2n−2 -AXU hash function.

2.4 Combination of AXU hash functions

Compositions of AXU hash functions Now we show that AXU-hash function does not
preserve under composition with same key. In other words, if FL is ε-AXU then FL ◦ FL
is not necessarily AXU. It can be easily seen for uniform random involution function as
the composition is identity function which is clearly not an AXU hash function. Similar
result holds if we apply CBC composition of F . That is, for any positive integer CBCFL :
({0, 1}n)` → {0, 1}n is not AXU. Note that

CBCf (x1, . . . , x`) = y`, where yi = f(yi−1 ⊕ xi), 1 ≤ i ≤ `

and y0 = 0n. So CBCFL(x1, 0) = FL(FL(x1)) which is not necessarily AXU hash function as
we have seen before. However, it is true for specific choice, e.g. when FL is field multiplier. In
this case, CBCFL is nothing but poly-hash which is `2−n-AXU for fixed `. Even for variable
` with appropriate padding on message, we can make it AXU hash function.

Sum of AXU hash functions Now we consider another method of domain extension of
AXU hash function. Given an ε-AXU FL, we define F sum

L (x1, . . . , x`) = FL(x1)⊕· · ·⊕FL(x`).
Note that if FL is linear (which is true for field multiplier) then the sum hash is clearly
not AXU. However, the sum hash is AXU when we consider uniform random (involution)
functions and we apply counter on message blocks. More precisely, FL(x1‖1)⊕· · ·⊕FL(x`‖`)
is 1

2n−2` -AXU. Instead of counter, one can apply masking by keys indexed by position which
can be derived from the random function.



3 Description of COBRA

COBRA is an authenticated encryption mode based on blockcipher. It is originally published
in FSE 2014 [4]. Later the same mode with AES as the underlying blockcipher, called AES-
COBRA, submitted to CAESAR [1]. The mode can be viewed as hash then ECB type where
hash function is poly-hash type and ECB is applied on a double block (i.e., 2n bit plaintext)
encryption which is defined by two rounds Fiestel structure [15]. As it uses Fiestel structure,
it is an inverse-free. In other words, even though it is based on AES blokcipher, the decryp-
tion of COBRA does not require AES decryption. Other than implementation advantage,
it has potentially advantage in security since we only need to rely on the pseudorandom
permutation assumption of AES instead of strong pseudorandom permutation.

Fig. 3.1. COBRA Modes for ciphertext and tag generation for three double blocks message. U is obtained from
associated data and L is the hash key.

COBRA defines for any messages of size at least n bits and it expands n bits in its
corresponding ciphertext. Now we briefly describe how the encryption algorithm of COBRA
works for all inputs M ∈ ({0, 1}2n)+. In addition with a message M , it also takes a nonce N ∈
{0, 1}n and an associated data A, and outputs a tagged-ciphertext (C, T ) where |C| = |M |
and T ∈ {0, 1}n. Readers are referred to [4, 1] for complete description of the algorithm (i.e.,
how it behaves for other sizes inputs). We write M = M1‖ · · · ‖M` for some positive integer `
where M1, . . . ,M` ∈ {0, 1}2n. We also write Mi = (Mi[1],Mi[2]) where Mi[2],Mi[2] ∈ {0, 1}n
are also called blocks and Mi’s are called double blocks. Let βi’ and γi’s be independent
uniform random (or pseudorandom) permutation over {0, 1}n for all i ≥ 1. We describe
the COBRA-mode based on these permutations. These are actually derived from a single
blockcipher using the standard masking algorithm (i.e., XEX construction [19]). For details
description of tweakable pseudorandom permutations readers can see [4, 1]).



Algorithm: COBRA Encryption
Input: (M1,M2, ...,Md) ∈ ({0, 1}2n)d, N ∈ {0, 1}n
Output: (C1, C2, ..., Cd) ∈ ({0, 1}2n)d

1 for i = 1 to d

2 write Mi = Mi[1]‖Mi[2], Mi[1],Mi[2] ∈ {0, 1}n

3 Pi[1] = polyL(1, N,M1[1],M1[2], . . . ,Mi[1]);

4 Pi[2] = polyL(1, N,M1[1],M1[2], . . . ,Mi[1],Mi[2]);

5 Ci[1] = Pi[1]⊕ βi(Pi[2]);

6 Ci[2] = Pi[2]⊕ γi(Ci[2]);

7 write Ci = Ci[1]‖Ci[2];

8 end for loop

9 Return (C1, C2, ..., Cd)

Algorithm 1: COBRA encryption algorithm for a nonce N ∈ {0, 1}n, and messages M of
sizes multiple of 2n. Note that associated data has no influence on ciphertext. It is used
for computing tag.

The line 3 and 4 of the above algorithm in which ciphertext are computed can be viewed
as a 2-round Feistel structure.1 We denote this computation as

2LRβi,γi(Pi[1], Pi[2]) = (Ci[1], Ci[2]).

We also simply write the above as 2LRi(·, ·). It is easy to see that it is invertible and the
inverse function 2LR−1i (Ci[1], Ci[2]) = (Pi[1], Pi[2]) where Pi[2] = γi(Ci[2])⊕Ci[1] and Pi[1] =
βi(Pi[2])⊕Ci[1]. The COBRA mode is categorized as inverse-free as the decryption algorithm
does not require any inverse of tweakable random permutation. So one can replace the
tweakable random permutations by tweakable random functions.

3.1 Tag Generation

The final tag T (S,N, U) is computed from

S := ⊕i(Pi[1]⊕ Pi[2]⊕ Ci[1]⊕ Ci[2]),

nonce N and U which depends only on the associated data A. One can find the details of
the construction in [4, 1]. Now we state a simple but important observation which would be
used to analyze our forging attack on this mode.

1 The 3 and 4 rounds security analysis is given in [15] (see [16] for characterization of Luby-Rackoff constructions).



Lemma 1. If for two distinct triples (A,N,M) and (A′, N ′,M ′) such that Pr[S = S ′] = p,
N = N ′, and U = U ′ (which is true if we take A = A′) then the probability that their tag
matches is p:

Pr[T (S,N, U) = T (S ′, N ′, U ′)] = p.

In our forging attack we keep nonce N and associated data A same and so it would be
sufficient to find M 6= M ′ such that its corresponding S and S ′ match with high probability.
This would lead to forge a tag ciphertext pair. As our attack fixes nonce and associated data
we denote the tag simply by T (S).

4 Forging Attack on COBRA

Let us fix an integer `. Later we see the choice of it. We define the following messages

M i := ((0, 0)i−1, (0, 1), (0, 0)`−i), 1 ≤ i ≤ `.

Let M0 be the all zero block message. Now we briefly describe the forging algorithm.

Forging Algorithm F0 for COBRA.

1. Make encryption queries M i and obtains responses (Ci, T i), 0 ≤ i ≤ `.

2. Parse C0 = (C0
1 [1], C0

1 [2], · · · , C0
` [1], C0

` [2]).
3. For i = 1 to `

(a) Parse Ci = (Ci
1[1], Ci

1[2], · · · , Ci
`[1], Ci

`[2]),
(b) Let hi1 = Ci

i [1]⊕ Ci
i [2].

(c) Let hi0 = C0
i [1]⊕ C0

i [2].

4. Let h = h`0 ⊕ (
⊕`−1

i=1 h
i
0).

5. Find a sequence b1, . . . , b`−1 ∈ {0, 1},
⊕`−1

i=1 h
i
bi

= h`1 ⊕ h.

6. If there is no such sequence then abort else we proceed.
7. If b1 ⊕ · · · ⊕ b`−1 6= 1 then abort.

8. Else make the forgery (C∗ := (C∗1 , . . . , C
∗
` ), T 0) where for all 1 ≤ i ≤ `− 1

C∗i =

{
Ci
i [1]‖Ci

i [2] if bi = 1,

C0
i [1]‖C0

i [2] if bi = 0.

and C∗[`] = C`
` [1]‖C`

` [2].

The forging algorithm makes `+ 1 many queries. This algorithm aborts in two cases. We
need to compute the abort probabilities. Given that it does not abort we also have to show
that the forging attack works. To compute the probability of the first abort, we apply the
following fact.



Fact 1.[7] Let h ∈ {0, 1}n be a fixed element and h10, h
1
1, . . . , h

`
0, h

`
1 be chosen uniformly

from {0, 1}n. Then, the probability that there exists j1, . . . , j` ∈ {0, 1} such that
⊕

j h
i
ji

= h

is at least 1− 2n−`.

Theorem 1. The forgery algorithm F0 has success probability at least 1/4.

Proof. For a random online cipher hi0 and hi1 will be independently drawn from {0, 1}n
as these are xor of two blocks of the ith double-block ciphertext for M i and M0 queries
respectively. Note that M i and M0 have different double block in ith position. By the above
fact, with probability at least 1/2, we have b0, . . . , b`−1 such that ⊕`−1j=0h

j
bj

= h⊕ h`1.

Claim. Let us assume that we have such b0, . . . , b`−1 ∈ {0, 1} which can happen with
probability at least 1− 2n−`. Then,

b0 ⊕ · · · b`−1 = 1⇒ (C∗, T ) is a valid ciphertext tag pair.

To prove the above claim we compute S∗ and S0 for the given forged ciphertext and M0

respectively where Si denotes the S values for the message M i.

Computation of S0 Computation of S0 is straightforward from its definition.

S0 := (⊕`j=1(P
0
j [1]⊕ P 0

j [2]))⊕ (⊕`i=1(C
`
i [1]⊕ C`

i [2]).

Now note that P i
i [1] = polyL(1, N, 02i−2, 1) and P i

i [2] = polyL(1, N, 02i−1, 1). So

S0 = h⊕ (
⊕̀
i=1

(polyL(1, N, 02i−1, 1)⊕ polyL(1, N, 02i−2, 1))

= h⊕ (
⊕̀
i=1

(polyL(1, N, 02i−1, 0)⊕ polyL(1, N, 02i−2, 0))

:= h⊕Σ

where Σ is defined to be the xor of the poly-hash values.

Computation of S∗ Now we compute S∗ under the assumption that the first abort does
not hold. We first compute the xor of ciphertext blocks. As first abort does not hold, the xor
of all forged ciphertext blocks is same as h.

Now we decrypt the forged ciphertext double blocks by 2LR−1. Let P ∗i := (P ∗i [1], P ∗i [2]) be
the ith double block of forged ciphertext after we apply Luby-Rackoff two round decryption
(i.e., after applying poly-hash in line 3 and 4). Similarly, we denote Pi values for M j query
as P j

i . As all ciphertext double blocks Ci,ji
i are appeared in responses of queries (keeping the

position same) we can compute the P ∗i values easily for 1 ≤ i ≤ `− 1 and these are

P ∗i =

{
P i
i [1]‖P i

i [2] if bi = 1,

P 0
i [1]‖P 0

i [2] if bi = 0.



and P ∗` = P `
` [1]‖P `

` [2]. Note that

1. P i
i [1] = polyL(1, N, 02i−1) and P i

i [2] = polyL(1, N, 02i−11),
2. P 0

i [1] = polyL(1, N, 02i−1) and P 0
i [2] = polyL(1, N, 02i).

By linearity of polyL, we can simply write for 1 ≤ i ≤ `− 1,

1. P ∗i [1]⊕ P ∗i [2] = polyL(1, N, 02i−1)⊕ polyL(1, N, 02i)⊕ bi and
2. P ∗` [1]⊕ P ∗` [2] = polyL(1, N, 02`−1)⊕ polyL(1, N, 02`)⊕ 1.

So
⊕`

j=1(P
∗
j [1]⊕ P ∗j [2]) = Σ ⊕ 1⊕ (⊕`−1j=1bj). So finally we simplify S∗ and we have

S∗ = [⊕`−1j=0h
j
bj
⊕ h`1]⊕ (Σ ⊕ 1⊕ (⊕`−1j=1bj).

By choices of hjbj ’s and if ⊕jbj = 1 implies that S∗ = h⊕Σ = S0. This proves the claim.

Now we information argue that Pr[⊕`−1j=1bj = 1] = 1/2. Note that Ci
i [1], Ci

i [2], C0
i [1], C0

i [2]’s

are independent and so are hi0, h
i
1 for all 1 ≤ i ≤ `. Thus by conditioning h`0, h

`
0, choices of

bi’s are independent and uniform. So the probability is 1/2. By the Fact 1, first abort does
not hold with probability 1 − 2n−` and now we claim the second abort does not hold with
probability 1/2. Hence success probability of forging is at least 1

2
(1− 2n−`) which is almost

1/2 if we set ` = 2n. Moreover, note that we can verify whether forged ciphertext tag pair
is valid without querying it. So we can try encryption queries until we succeed. ut

One can modify the above attack as follows. Whenever we abort (which can happen with
probability about 1/2) we may repeat the process by choosing another set of M i’s in which
choice of the bit 0 or 1 in different position instead of the last bit as described above. We
can make n such tries and all these try fail with probability about 2−n. So with probability
very close to one we can forge. Note that we can decide whether abort events holds or not
without making the forgery attempt.

Remark 1. In the above analysis we make several probabilistic assumptions to make it anal-
ysis clean and simple. Here we list these.

1. We assume that hij’s are independent and uniform. However, for a fixed i, hi1 and hi0 are not
completely independent as these are generated from uniform online random permutation.
However, for these 4n outputs Ci

i [1], Ci
i [2], C0

i [1], C0
i [2] these are statistically close to

uniform distribution with distance about
(
4n
2

)
/2n.

2. True distributions of bi’s may not be uniform and independent. It actually depends on
how we define bi’s as there could be more than one choices of bi’s. However all these
choices would lead abort has probability about 1/2 or less.

5 Security Analysis of POET and POET-m

POET-m: We first describe ciphertext generation algorithm of parallel version POET-m. We
consider FL to be the field multiplier hash in which message block is multiplied by the key



Fig. 5.1. POET-m Mode for ciphertext and tag generation. X0 = Y0 = τ which is obtained from the associated data.

Algorithm: POET-m Encryption
Input: (M1,M2, ...,M`) ∈ ({0, 1}n)`

Output: (C1, C2, ..., C`, T ) ∈ ({0, 1}n)`+1

1 for i = 1 to `− 1

2 Xi = τ ⊕ FLtop(M1 ⊕ L1)⊕ FLtop(M2 ⊕ L2)⊕ · · · ⊕ FLtop(Mi ⊕ Li).

3 Yi = EK(Xi);

4 Ci = FLbot(Yi−1 ⊕ Yi)⊕ Li;

5 end for loop

6 X` = FLtop(X`−1)⊕M`.

7 Y` = EK(X`);

8 C` = FLbot(Y`−1 ⊕ Y`);

9 X`+1 = FLtop(X`)⊕ S ⊕ τ.

10 Y`+1 = EK(X`+1);

11 T = FLbot(Y`)⊕ Y`+1 ⊕ S;

12 Return (C1, C2, ..., C`, T )

Algorithm 2: POET encryption algorithm for a messages M of sizes `n with ` < m. Let
τ be an n bit elements which is derived from associated data. The elements L1, . . . , Lm−1
are derived keys and S is a key derived from length of the message.



L (example 1). We describe how POET-m works for all messages (M1, . . . ,M`) with ` < m.
Let τ be an n bit elements which is derived from associated data. The elements L1, . . . , Lm−1
are derived keys by invoking pseudorandom permutation on different constants (see [1, 3]
for details). Note that the input of the blockcipher Xi is a sum hash. When we instantiate
the AXU by field multiplier we can simplify the sum hash (due to linearity). We have

Xi = τ ⊕ Ltop · (M1 ⊕ · · · ⊕Mi)⊕ L′

where L′ is the remaining part depending only on keys. We use this expression to mount the
attack.

Fig. 5.2. POET-m Mode for ciphertext and tag generation. X0 = Y0 = τ which is obtained from the associated data.

POET: Now we describe only ciphertext generation algorithm of POET, i.e. POE the under-
lying encryption algorithm. Here we consider F and F ′ to be any arbitrary AXU functions
(as mentioned in Theorem 8.1 of the submission POET in [1]). Given messages (M1, . . . ,M`),
we compute for 1 ≤ i ≤ `− 1 as follows:

Ci = F ′(Yi−1)⊕ Yi, Yi = EK(Xi), Xi = F (Xi−1)⊕Mi

where X0 = Y0 = τ . The last ciphertext block is computed differently and we do not need
the description for our distinguishing attack. Note that Xi is computed by CBCF . If F is
uniform random involution function then CBC does not remain AXU (it becomes poly-hash
when F is field multiplier). We use this property to make a distinguisher.

5.1 Distinguishing Attack on POET-m and POET

Privacy Attack on POET-m. Now we first demonstrate a distinguishing attack on POET-
m distinguishing from uniform random online cipher when m > 4. We make two queries



M = (M1,M2,M3,M4) and M ′ = (M ′
1,M

′
2,M

′
3,M

′
4) such that M1 6= M ′

1, M1⊕M2 = M ′
1⊕M ′

2

and M3 = M ′
3. So X2 = X ′2 and X3 = X ′3 and hence C3 = C ′3 with probability one. This

equality of third ciphertext block happens with probability 2−n for uniform random online
cipher. So we have almost one probability distinguisher. The presence of fourth block makes
sure that Xi’s are defined as above (as the final block is processed differently). We can keep
all other inputs, for example nonce, associated data etc., same.

Privacy Attack on POET. Now we demonstrate a privacy attack on POET distinguish-
ing from uniform random cipher when FL is instantiated with uniform random involution
function. In this attack we only make a single query and so it is also nonce-respecting. This
would violate the Theorem 8.1 of the submission POET in [1] (online permutation security
of POE). However, we believe that the theorem remains valid when FL is instantiated with
field multiplier. The attack is described below.

We make a single query with (M1, 0, 0, 0, · · · ). By involution property, we prove that
C2 = C4 with probability one for POET. We can easily see that

1. X3 = F (F (X1)) = X1 and
2. similarly, X4 = X2 = F (X1).

So Y1 = Y3 and Y2 = Y4 and hence C2 = C4. Again, we can choose any arbitrary nonce and
associated data.

5.2 Key Recovery and Forging Attack on POET-m

Now we see how we can exploit the weakness in sum of AXU hash to actually a forge the
construction. Here we first recover the key LF which is used for AXU for both bottom and
top layers by making only two queries.

5.3 Key Recovery of LF

We make two queries as distinguishing attackM = (M1,M2,M3,M4) andM ′ = (M ′
1,M

′
2,M

′
3,M

′
4)

such that M1 6= M ′
1, M1 ⊕M2 = M ′

1 ⊕M ′
2 and M3 = M ′

3. So X2 = X ′2 and X3 = X ′3 and
hence C3 = C ′3. Now we observe that if Y1 ⊕ Y2 = δ 6= 0 then C1 ⊕C ′1 = LF · δ (similarly for
C2 ⊕ C ′2). So we obtain LF = δ−1 · (C1 ⊕ C ′1).

5.4 Forging attack on POET-m

Once we have LF by making two encryption queries (with same nonce and associated data)
the construction actually behaves like OCB [20] where the ith message block of OCB is
actually some known linear function of M1, . . . ,Mi and similarly for the ith ciphertext.
When nonce is reused, OCB can be forged very easily. We basically transform the message
blocks corresponding to attack of OCB to that for POET-m. Similarly, when we forge we
transform the ciphertext accordingly.



6 Conclusion

In this paper, we demonstrate forging attack on COBRA with practical complexity. Hence the
theorem proved in [4] is wrong. We also demonstrate forging (through derived key-recovery)
and distinguishing attack on POET-m for one particular recommended choice of AXU hash
function. We also show the security claim for POET is wrong by showing a distinguishing
attack on a different choice of AXU hash function (not in the recommended list). However,
these attacks on POET does not carry through for the versions submitted to CAESAR.
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