
Multi-target DPA attacks: Pushing DPA beyond the limits of a
desktop computer

Luke Mather, Elisabeth Oswald, and Carolyn Whitnall

Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom.
{luke.mather, elisabeth.oswald, carolyn.whitnall}@bris.ac.uk

Abstract. Following the pioneering CRYPTO ’99 paper by Kocher et al. differential power analysis (DPA)
was initially geared around low-cost computations performed using standard desktop equipment with mini-
mal reliance on device-specific assumptions. In subsequent years, the scope was broadened by, e.g., making
explicit use of (approximate) power models. An important practical incentive of so-doing is to reduce the data
complexity of attacks, usually at the cost of increased computational complexity. It is this trade-off which we
seek to explore in this paper. We draw together emerging ideas from several strands of the literature—high
performance computing, post-side-channel global key enumeration, and effective combination of separate infor-
mation sources—by way of advancing (non-profiled) ‘standard DPA’ towards a more realistic threat model in
which trace acquisitions are scarce but adversaries are well resourced. Using our specially designed computing
platform (including our parallel and scalable DPA implementation, which allows us to work efficiently with
as many as 232 key hypotheses), we demonstrate some dramatic improvements that are possible for ‘standard
DPA’ when combining DPA outcomes for several intermediate targets. Unlike most previous ‘information com-
bining’ attempts, we are able to evidence the fact that the improvements apply even when the exact trace
locations of the relevant information (i.e. the ‘interesting points’) are not known a priori but must be searched
simultaneously with the correct subkey.

1 Introduction

Differential power analysis (DPA) was initially conceived as a computationally ‘cheap’ way to recover
secret information from side-channel leakages, under the assumption that trace measurements could be
easily acquired [13]. Over time, the emphasis has changed and several directions have been pursued in the
literature, e.g. attacks using power models [6] and attacks using several trace points [7] ([14] surveys the
many variations of DPA style attacks). Across all these directions, one ‘measure’ of attack success has
emerged and now dominates the scientific discourse with regards to attack efficiency. This measure is the
number of power traces needed to identify the correct (sub)key1.

What is the purpose of considering (sub)key recovery attacks? From a practical perspective any
strategy is considered successful if it reveals ‘enough’ information about the (global) key to enable a brute
force search. It is crucial that side-channel resistance, like other aspects of security, be considered with
respect to realistic threat models. Real world adversaries are then (arguably) mostly interested in exploring
trade-offs between the number of leakage traces available and the computational resources dedicated to
extracting as much information as possible from those traces. Recent work by Veyrat-Charvillon et al.
[22,23] present an algorithm for searching the candidate space containing the key and a means to estimate
its size if the enumeration capabilities of the analyst are below those of a better-resourced adversary.

Resources, from the point of view of a contemporary DPA adversary, include not only sophisticated
measurement equipment but crucially also processing capabilities that directly map to the time necessary
to mount and complete attacks [8]. Moradi et al.’s recent work [16] demonstrates how the use of a handful
of modern graphics cards allows for dramatic increase in processing capabilities, enabling an attack on 32-
bit key hypotheses in a known point scenario (the leakage point corresponding to the attacked operation
was determined a priori via a known key attack).

1 The overall key recovery works according to a divide-and-conquer strategy; each (for example) byte of the key is attacked
and recovered individually.

In this submission we explore the possibilities for sophisticated use of modern processing capabilities
(such as those associated with high performance computing, albeit restricted to the setting of a few
machines or a ‘small’ cluster) to aid working with ‘multi-target’ DPA attacks. Multi-target DPA attacks
consist of amalgamating outcomes from multiple single-target attacks with the aim of reducing global
key entropy more quickly than an individual single-target attack. For example, in the case of a sequential
AES implementation, a multi-target DPA attack could amalgamate outcomes of standard DPA attacks
on the AddRoundKey, SubBytes, and MixColumns operations. We will show later on in this submission
that we can do this meaningfully, and also efficiently, for correlation-based DPA attacks—even in realistic
scenarios where the exact leakage points for those target functions are not known and must each be
searched within windows of the trace. Most importantly, we show that such attacks can dramatically
out-perform single-target attacks and are by far the best strategy to minimise the number of leakage
traces required.

1.1 Our contribution

An adversary who is capable of attacking large numbers of key hypotheses has a greater choice of in-
termediate target functions to attack. For instance, possible AES targets include the output of AES
MixColumns (involving four bytes of the secret key) as well as the (implementation-dependent) inter-
mediate computations for MixColumns (involving two or three key bytes at once). Given the potential
plethora of intermediate value combinations for a sequential AES implementation (as typically found on
micro-processors) we investigate the effectiveness of some of the possible combinations with respect to the
reduction on key guessing entropy. We also touch on the possibility of combining different distinguisher
outputs and explain when this is (or is not) going to be helpful.

We furthermore take inspiration from the suggestion of Veyrat-Charvillon et al. [22,23] (originally
for the purposes of a key enumeration algorithm) that probability distributions on the subkeys can be
derived from the outcome of a DPA attack. We propose an alternative (more conservative) heuristic for
assigning ‘probability’ scores to subkeys, and show how these can be used to simply and usefully combine
information from multiple standard univariate DPA attacks in a strategy inspired by Bayesian updating.

In tandem, this research is entirely dependent on our ability to efficiently process large numbers of
key hypotheses over many repeat experiments. We sketch out our architecture, which has been influenced
by the design of modern high performance computing platforms.

We structure our contribution as follows. We briefly provide the relevant preliminaries and then discuss
prior literature (Section 2). We then introduce our specialised attack framework and explain our attack
strategy, including our method of assigning and updating ‘probability’ scores, in Section 3. Section 4
reports the results of our experiments with simulated leakage data, exploring what can be achieved by
combining the outcomes of attacks against different target functions, as well as investigating the potential
to combine different DPA strategies. In Section 5 we report the outcomes of some practical attacks against
traces measured from an ARM 7 microcontroller, including scenarios in which the precise locations of the
intermediate targets in the traces are unknown.

1.2 Preliminaries: Differential power analysis

We consider a ‘standard DPA attack’ scenario as defined in [15], and briefly explain the underlying
idea as well as introduce the necessary terminology here. We assume that the power consumption P of a
cryptographic device depends on some internal value (or state) Fk∗(X) which we call the target : a function

Fk∗ : X → Z of some part of the known plaintext—a random variable X
R
∈ X—which is dependent on

some part of the secret key k∗ ∈ K. Consequently, we have that P = L ◦ Fk∗(X) + ε, where L : Z → R
describes the data-dependent component and ε comprises the remaining power consumption which can
be modeled as independent random noise (this simplifying assumption is common in the literature—
see, again, [15]). The attacker has N power measurements corresponding to encryptions of N known

2

plaintexts xi ∈ X , i = 1, . . . , N and wishes to recover the secret key k∗. The attacker can accurately
compute the internal values as they would be under each key hypothesis {Fk(xi)}Ni=1, k ∈ K and uses
whatever information he possesses about the true leakage function L to construct a prediction model
M : Z →M.

DPA is motivated by the intuition that the model predictions under the correct key hypothesis should
give more information about the true trace measurements than the model predictions under an incorrect
key hypothesis. A distinguisher D is some function which can be applied to the measurements and the
hypothesis-dependent predictions in order to quantify the correspondence between them. For a given
such comparison statistic, D, the estimated vector from a practical instantiation of the attack is D̂N =
{D̂N (L ◦ Fk∗(x) + e,M ◦ Fk(x))}k∈K (where x = {xi}Ni=1 are the known inputs and e = {ei}Ni=1 is the
observed noise). Then the attack is o-th order successful if #{k ∈ K : D̂N [k∗] ≤ D̂N [k]} ≤ o.

The success rate of a DPA attack is the probability that the correct key is ranked first by the dis-
tinguisher (the o-th order success rate is the probability it is ranked among the o first candidates); the
guessing entropy is the expected number of candidates to test before reaching the correct one [21]. These
metrics are often associated with the subkeys targeted in the ‘divide-and-conquer’ paradigm rather than
with the global key when the partial outcomes are finally combined; we use the terms accordingly, unless
explicitly stated.

Throughout this paper (unless stated otherwise) we use the (estimate of the) Pearson correlation
coefficient as distinguisher, in combination with a Hamming weight power model.

2 Related literature

Our work unites and advances three broad areas of the literature: resource-intensive side-channel strate-
gies, post-SCA global key enumeration, and optimal combination of multiple sources of exploitable infor-
mation.

Resource-intensive strategies. Such strategies have for a long time been considered mainly relevant in
single-trace settings (e.g. SPA attacks using algebraic methods [17,18]), and this has only lately begun to
change, with a few recent academic works making use of modern graphics cards to speed up DPA attacks
[3,16]. These articles essentially use GPUs within a single machine to speed up the processing of standard
DPA attacks using correlation as the distinguisher. Our more ambitious approach is to distribute all the
different components of a DPA attack (including workloads related to combination functionality) across
several cards and several machines.

Post-SCA global key enumeration. Recent work by Veyrat-Charvillon et al. [22,23] focuses on the oppor-
tunity for a well-resourced adversary to view side-channel analysis as an auxiliary phase in an enhanced
global key search, rather than a stand-alone ‘win-or-lose’ attack. They present an algorithm for searching,
based on probability distributions for each of the subkeys (derived from DPA outcomes) [22]. In the case
of profiling DPA with Gaussian templates, the true leakage distributions conditioned on each subkey hy-
pothesis are known, and the probabilities are naturally produced in the Bayesian template matching. In
the case of non-profiling DPA, these conditional leakage distributions are not known; an attack does not
produce a probability distribution on the subkey candidates but a set of distinguisher scores (for example,
correlations) associated with each candidate. Deriving probabilities from these scores is tricky; the method
suggested in [22] is to use the hypothesis-dependent fitted leakage models after a non-profiled linear re-
gression (‘stochastic’) attack as estimates on the ‘true’ conditional distributions. However, non-profiled
linear regression-based DPA specifically relies on the fact that the models built under incorrect key hy-
potheses are invalid. Consequently, the hypothesised functions do not describe the true data-dependent
deterministic behaviour of the trace measurements, and so they are useless for (statistical) inference.
For this reason, we opt for a different (‘safer’) heuristic for assigning ‘probability’ scores, as explained in
Section 3.1.

3

Combining multiple sources of information. Whilst profiling attacks with multivariate Gaussian templates
[7] naturally exploit multiple trace points, notions of ‘multivariate’ non-profiled DPA are varied in nature
and intention. In particular, techniques designed to defeat protected implementations are best considered
separately from attempts to enhance trace efficiency, and we now focus on the latter. Already in an
unprotected implementation, information on a given subkey generally leaks via more than one target
function (AddRoundKey, SubBytes and MixColumns, for example, in the case of AES) and moreover
each of those target functions can be seen to leak at more than one trace point. In some cases, an
adversary may even have opportunity to observe multiple side-channels simultaneously (timing, power
consumption, electromagnetic radiation. . .).

In the realms of both profiled and non-profiled DPA, several efforts have been made to combine
information from multiple trace points in such a way as to optimise the (trace) efficiency of an attack.
Dimensionality reduction techniques such as principal component analysis or linear discriminant analysis
can be used to transform the (often collinear) trace measurements into a reduced number of linearly
uncorrelated variables, together accounting for the important variation in the original data [1,4,20]. In
this way it is even possible to combine information from different side-channels, such as power and electro-
magnetic radiation [20]. Such methods can be very effective if the leakage associated with a particular
intermediate value is concentrated into a single component giving rise to a stronger attack outcome than
the ‘best’ of any individual point in the raw dataset. A recent work by Hajra et al. [11] achieves a similar
end via signal processing techniques. They show how to maximise the signal-to-noise ratio (SNR) (and
consequently demonstrate the success rate of a univariate correlation DPA) by finding the linear Finite
Impulse Response (FIR) filter coefficients for the leakage signal. Hutter et al. [12] also seek to enhance
DPA efficiency by incorporating multiple sources of information, but take an entirely different approach
in which the combination is instead made at the trace acquisition stage. They measure the difference in
consumption between two identical devices operating on different data, which they reason has a higher
data-dependent signal because all environmental and operation-dependent noise is cancelled out.

Other suggestions involve performing separate attacks (against different targets, power models or
using different distinguishers) and then attempting to combine the distinguishing vectors themselves in a
meaningful way. Doget et al. [9] present options for combining difference-of-means (DoM) style outcomes
in order to avoid the ‘suboptimality’ associated with attacks exploiting only one or a few of the bits
at a time. Whitnall et al. [24] try applying a multivariate extension of the mutual information to the
AddRoundKey and an S-box jointly, but find that it is less efficient than the corresponding attack against
the S-box alone, and moreover would not scale easily beyond a two-target scenario due to the complex
nature of the statistic. Souissi et al. [19] suggest to combine different distinguishers (namely, Pearson’s
and Spearman’s correlation) applied against the same or different leakage points by taking either the
sum or the maximum of the two, and show that the former works better, and is most effective if the
trace points contain non-equivalent information. Most directly related to our study is a paper by Elaabid
et al. [10] which suggests to (pointwise) multiply correlation distinguishing vectors together in order to
enhance distinguishing outcomes. They do this for four known leakage points, all relating to the same
target function and power model, and find that it substantially improves over the outcomes achieved for
any one of those leakage points taken individually. Our own combining approach is different: we first
convert distinguishing vectors to ‘probability’ scores and view the multiplication as a Bayesian updating-
like procedure. Moreover, we focus on combinations between different target values (rather than different
leakage points for the same value) with potentially different-sized subkey hypotheses.

3 Methodology

3.1 Assigning probabilities

The attempt of [22] to estimate ‘genuine’ probabilities on the subkey hypotheses in the non-profiled setting
(see Section 2), by using the recovered models derived from a linear regression based attacks, is expensive

4

as well as unsuitable for our purpose. Ignoring the fact that the incorrect key hypotheses (using their
approach) recover invalid models, the method of [22,23] may be viewed as one possible heuristic to assign
probabilities to key guesses. It preserves the ranking of the keys as they appear in the distinguishing
vector produced by a non-profiled linear regression-based DPA. However, because of the nature of the
formula used it dramatically exaggerates the apparent distance between the high- and low-ranked key
candidates. If the implied key is the right one it reinforces this ‘correct’ result. But if it is not the right
one it reinforces the misleading result. In their application (i.e. key enumeration) this may cause a less
efficient key search. However, we are aiming to combine distinguisher results, and hence key rankings, and
mixing in a grossly exaggerated incorrect key ranking may destroy the effectiveness of the method.

Embracing the heuristic nature of the problem we suggest that the conversion from distinguishing
vectors to scores which may be handled as though probabilities be kept simple and conservative. Our
approach is therefore to firstly transform the distinguishing vector to be positive-valued with a baseline
of zero (in a manner appropriate to the nature of the distinguishing statistic—e.g. the absolute value
for correlation, subtraction of the minimum for the mutual information) before secondly normalising the
scores to sum to one. We draw analogy between this idea and the notion of subjective probability basic
to a Bayesian view of statistics: both involve human-allocated scores derived from one’s current best
knowledge about reality.

3.2 Combining probabilities

A Bayesian interpretation views probabilities as measures of uncertainty on hypotheses. Each time new
information becomes available, the current state of knowledge can be updated via Bayes’ theorem:

P(H|B) =
P(B|H)P(H)

P(B)
,

where H is some hypothesis (for example, a guess on the key, “K = k”), and B is some data (for example,
a set of trace measurements l = L ◦ Fk∗(x) + e).

Suppose that we have probabilities for (K = k) conditioned on two sources of data l1, l2, which are
conditionally independent given K = k so that P(l1, l2|K = k) = P(l1|K = k)P(l2|K = k). This is a
natural assumption for the leakages of two target intermediate values: they are related via their shared
dependence on the underlying key, but as long as they are separated in the trace, we would not expect
any dependency in the residual variances after the key is taken into account. In this case, the task of
combining the conditional probabilities is straightforward (see [2]):

P(K = k|l1, l2) =
P(l1, l2|K = k)P(K = k)

P(l1, l2)

=
P(l1|K = k)P(l2|K = k)P(K = k)

P(l1, l2)

=
P(l1)P(l2)

P(l1, l2)
× P(K = k|l1)P(K = k|l2)

P(K = k)
,

(via Bayes’ theorem again, since P(li|K = k) = P(K = k|li)P(li)/P(K = k)). Since a = P(l1)P(l2)/P(l1, l2)
does not depend on the key hypothesis we can treat it as a normalisation constant which just needs to be
computed so as to satisfy

∑
k∈K P(K = k|l1, l2) = 1. In the typical case that all keys are a priori equally

likely, the denominator in the second product term is 1
|K| (constant for all key hypotheses) and simply

gets absorbed into the normalising constant. Thus, conditional probabilities on the key candidates can
be updated with the introduction of any new, independent information via a simple multiplication-and-
normalisation step.

5

Keys attacked per second, OpenCL kernel for attacking 32 bits of key using the MixColumns operation
2,

00
0

tr
ac

es

5,
00

0
tr

ac
es

2x AMD Radeon HD 7970 GHz Edition

2x AMD Radeon R9 290X

2x Intel Xeon E5 2670 @ 2.6 GHz, 16 cores

Intel i5 3550 @ 3.3 GHz, single core

39,727,037

47,034,048

1,257,608

739

2x AMD Radeon HD 7970 GHz Edition

2x AMD Radeon R9 290X

2x Intel Xeon E5 2670 @ 2.6 GHz, 16 cores

Intel i5 3550 @ 3.3 GHz, single core

15,549,116

19,219,889

498,627

295

Fig. 1. Average keys per second recorded during DPA attacks on 32-bits of the input to the MixColumns operation for a
variety of different sample sizes. Implementations are a ‘naive’ single-threaded CPU implementation, a parallelised OpenCL
CPU-based implementation, and the two fastest OpenCL GPU implementations.

3.3 Parallelised attack architecture

Combining multiple distinguishing vectors and attacking target functions involving 24 or more bits of the
key are both computationally demanding tasks, and necessitate the use of parallelised computation. We
elected to use the OpenCL language and a set of graphics cards to parallelise the computation needed to
attack up to 32-bits of a key, the combination and normalisation of distinguishing vectors, and finally the
statistics necessary for evaluating the effectiveness of each combined attack.

We took inspiration from modern high performance computing facilities, in which a significant amount
of the computing power is delivered by GPUs. Hence our experimental setup consists of several work-
stations, each containing two discrete GPUs (the cost per machine is approximately 1500 USD). These
were various pairs of the AMD Radeon R9 290X, AMD Radeon HD 7970 GHz Edition, Nvidia GTX 780
Titan and Nvidia K20 cards. In total, including all the functionality used to fully produce and analyse
our experimental results, we were able to complete at least 250 operations on combined distinguishing
vectors, in very roughly a couple of weeks of computation time.

The most demanding function computationally was performing a 32-bit DPA attack on the Mix-
Columns operation. Here we decided to share the cost over multiple GPUs, with each work group inside
a single card computing a partial piece of the distinguishing vector using a portion of the traces and a
subset of the key hypotheses, followed by a global reduction to compute the final vector. Fig. 1 shows the
performance of our OpenCL attack implementation for a variety of devices, in terms of how many keys
can be attacked per second for a set of traces of a given size.

We note that these benchmark timings are not likely to be optimal. We did not try to improve the
memory coalescence of our kernels, nor did we try to perform any other non-trivial optimisation beyond
maximising kernel occupancy, and so there may be considerable headroom in key-search throughput still to
be gained. It is clear from the extremely cheap price for a dual GPU setup, coupled with the considerable
performance increases observed with the introduction of new GPU architectures, that an adversary can
acquire very large side-channel key-search capabilities at minimal financial cost.

Bartkewitz et al. [3] use Nvidia’s CUDA technology and a Tesla C2070 to parallelise 8-bit CPA attacks
on the SubBytes operation, and focus on maximising trace data throughput in an 8-bit setting. Our more
ambitious goal is to optimise for large key-search problems as well as for trace data throughput. In this
context Moradi et al. [16] utilise 4 Nvidia Tesla GPUs to attack 32-bits of key using 60, 000 traces, and are
able to attack a single time-point every 33 minutes. A direct comparison is not possible as we are using
slightly more modern hardware and the exact computational costs included in the benchmarking are not
clear—however we might expect to be able to perform a similar attack in approximately 20 minutes.

4 Experiments with simulated data

The goal of our combining strategy is to reduce (relative to ‘standard univariate DPA’) the guessing
entropy on the subkeys (and consequently on the global key). Many types of combination are possible.
We study the effect of combining outcomes from different targets as well as, secondarily, the effect of

6

combining outcomes from different distinguishers applied to the same target. We do this initially for
simulated trace measurements so that we can take into account different noise levels (i.e. by varying the
SNR) as well as the impact of using an imperfect power model. Both aspects are relevant with respect to
practical attacks.

4.1 Combining outcomes from different targets

We simulated leakages of AES AddRoundKey, SubBytes, and three 8-bit interim values in the computation
of MixColumns: one involving two key bytes (namely GFm2(statei⊕statei+1) where statei is the ith state
byte after the SubBytes operation), one involving three key bytes (namely GFm2(statei ⊕ statei+1) ⊕
statei+1 ⊕ statei+2), and one involving four key bytes (namely GFm2(statei ⊕ statei+1) ⊕ statei+1 ⊕
statei+2 ⊕ statei+3)

2.

In the case of the 16-bit multi-target attack we necessarily hypothesise over two key bytes (in order to
incorporate the MixColumns leakage). The experiments each involve two AddRoundKey correlation-based
DPA attacks (which are then combined into probabilities on the full 16-bit subkeys via multiplication),
two S-box attacks (combined likewise), and the one MixColumns attack, before multiplying each possible
target function pair together, as well as multiplying all three together. Similarly, for the 24-bit multi-
target attack we hypothesise over three key bytes. The experiments in the 24-bit attack then involve three
AddRoundKey attacks, three S-box attacks, and the one attack on an interim MixColumns value. We
amalgamate probabilities by multiplication as in the 16-bit case. The 32-bit multi-target attack proceeds
in the same fashion: we combine four AddRoundkey attack results and four SubBytes results into the
MixColumns attack result. The graphs in Fig. 2(a) show these different scenarios for a single column of
the AES state.

In the following paragraphs we analyse these graphs with respect to three questions that are relevant
for practice. Firstly, what is the impact of a (low) SNR with regards to our multi-target strategy? As
we base our DPA attacks on correlation distinguishers, we would hope that, similarly to single-target
attacks, multi-target attacks will ‘scale’ alongside the SNR. Secondly, we are interested in how the size of
the key hypotheses impacts on the guessing entropy, and lastly, in how multi-target attacks behave when
the attacker’s power model is imprecise.

Impact of SNR. The top two graphs in Fig. 2(a) show the subkey guessing entropies (for a 16-bit key
guess) as the number of traces increases, for the attacks against simulated Hamming weight leakages
with two SNR levels. Aside from the fact that all attacks require increased numbers of traces as the
SNR decreases (as we would expect) the scenarios exhibit similar outcomes. The attacks on S-boxes are
effective at reducing uncertainty on the key (the results for these are printed in red), but are clearly out-
performed by all three ‘bivariate’ combinations—even the one between the MixColumns sub-computation
and AddRoundKey. The combination between all three further reduces the enumeration work required.

Impact of larger distinguishing vectors. The top right and the bottom graphs in Fig. 2(a) show the subkey
guessing entropies for increasing subkey sizes (16-bit in the top right, 24-bit in the bottom left, and 32-
bit in the bottom right). In all three experiments the multi-target attacks outperform the single target
attacks. Note that the guessing entropy range naturally increases with the size of the key hypothesis and
is in no way an indicator of attack degradation. For the 16-bit attack the guessing entropy is out of 216

and eight such guesses need to be combined to get a global key with guessing entropy between 1 and 2128.
For the 32-bit attack the guessing entropy is out of 232 but only four such guesses need to be combined. It
is the global guessing entropy which ultimately matters and the subkeys always need to be combined at
some point – incorporating information at (e.g.) the 32-bit level simply increases the scope of intermediate

2 This targets a single intermediate byte. The relative effectiveness of the combination of all four attacks on all the possible
intermediate bytes would also be interesting to investigate, but the generation of results requires time and must, for now,
be left as future work.

7

S-box AddRoundKey + MixColumns S-box + MixColumns AddRoundKey + S-box All three

50 100 150 200 250 300 350 4000

1

2

3

4

5

6

7

8

9

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

24-bit targets, SNR = 0.0625 32-bit targets, SNR = 0.0625

16-bit targets, SNR = 0.062516-bit targets, SNR = 1.0

Number of traces Number of traces

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10
G

ue
ss

in
g

en
tr

op
y

(l
og

)
10

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10
G

ue
ss

in
g

en
tr

op
y

(l
og

)
10

Number of traces Number of traces

(a) Outcomes for attacks combining several targets using up to 32-bit key hypotheses.

0

0.5

1

1.5

2

200 4000

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10

SNR = 0.0625

Best univariate

Best bivariate (same)

Best bivariate (independent)
MIA+KSA+VRA (same)
MIA+KSA+VRA(independent)

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10

Imprecise power-model, 16-bit targets, SNR = 0.0625

Number of traces
200 4000

0
66600

1

2

3

4

5

Number of traces

(b) Outcomes for attacks combining several distinguishers for the same target.

Fig. 2. Simulation results

8

targets exploitable by the attacker. For both hypothesis sizes, the outcomes suggest that we are able to
succeed with roughly half the number of leakage traces when using the best multi-target attack (for a fixed
subkey guessing entropy, the best multi-target attacks require roughly half of the traces required by the
best single-target attack). It is possible to estimate global key guessing entropies based on these results by
assuming that the attacks on the other ‘chunks’ of the key would behave identically. For instance, in the
16-bit case, if all eight 16-bit attacks give identical outcomes, we could estimate global key entropies by
raising the results of a single 16-bit attack to the power eight. However, this does not necessarily translate
into practice and so we refrain from this here and rather show actual global key guessing entropies when
discussing attacks on real data.

Impact of imperfect power model. The left picture of Fig. 2(b) shows the outcomes (against a 16-bit
subkey target: the legend from Fig. 2(a) applies) in the case where the Hamming weight is not a perfect
match to the leakage, because of the presence of a constant reference state (representing an address, for
example) of Hamming weight 1. The most striking impact of this distortion occurs for attacks that include
AddRoundKey as a target, which are no longer able to identify the correct key as a likely candidate. This
is because the Hamming distance of the AddRoundKey from the reference state when the correct key
is guessed is the same as the Hamming weight of the AddRoundKey when the key guess is the correct
key XORed with the reference state. In effect, an incorrect key is masquerading as the correct one, and
the correlation DPA against AddRoundKey will naturally preference this. (The same cannot happen for
the S-box, for example, because the key XOR is inside the highly nonlinear transformation, with the
Hamming distance being taken afterwards).

Nonetheless, in this case where the reference state is itself of low weight, incorporating AddRoundKey
information still produces marginal reductions on the guessing entropies after S-box and MixColumns
(separately, and combined). Greater imprecision of the power model will more strongly impact on Ad-
dRoundKey attacks; it may be advisable to exclude it as a target in such cases.

4.2 Combining outputs from the same target

One might ask whether or not the outcomes of different distinguishing statistics or power models can
likewise be combined to some advantage.

Using different distinguishing statistics. Suppose, for example, that we were to run the three following
attacks against the leakage of an AES S-box: mutual information, Kolmogorov–Smirnov, and the variance
ratio, all using a Hamming weight power model. The distinguishing vectors are transformed to have a
baseline of zero and to sum to one, for use as heuristic ‘probability’ scores. What we then want to discover
is whether the combined outcomes improve upon the individual ones.

The right picture in Fig. 2(b) shows what happens when we attempt this in the example scenario
of Hamming weight leakage with SNR 0.0625. When the same measurements are used for all of the
attacks, combining the outcomes actually increases the guessing entropy. By contrast, when independent
measurements are used in each case (i.e., each distinguisher has been applied against a different point
in the trace leaking the same information but with independent noise), there is some scope to refine
the information on the key by combining outcomes—although all three outcomes together on average
produce worse results than the best combination of two. We found that it was generally the addition of
mutual information which degraded the outcome, as it required substantially more data to estimate to
an equivalent degree of precision.

This is very much in line with what we might expect, and acts as a noteworthy warning: it is the
addition of new information which improves attack outcomes—exploiting the same measurements using
the same power models but with different distinguishers does not contribute anything further. In the
context of our heuristic ‘probability’ distributions such a practice could be particularly dangerous, as it
still serves to exaggerate the magnitude of the peaks, thus giving a false sense of increased certainty. Note

9

that the multiplication step implicitly assumes independence of the separate score vectors, which is clearly
violated in the case that they are all based on the same leakage information.

Using different power models. In the light of the ineffectiveness of combining information about the
same target, we briefly revisit previous work by Bevan and Knudsen [5]. They suggest to combine eight
difference-of-means attacks, each targeting a distinct bit of the intermediate value, by ‘summing over the
distinguisher results’ (in our approach we convert them into ‘probability’ distributions on the set of 28

subkeys). Since each attack exploits a separated portion of the overall leaked value we may expect that
each new bit attacked helps to further reduce the candidate search space—and, indeed, our experiments
confirm this (see Appendix A). Such a technique is hence very useful in leakage scenarios which are
unfamiliar to an attacker, which is often the case when attacking dedicated hardware.

5 Practical attacks

We tested our strategy in practice using a dataset of 10,000 traces from an ARM7 microcontroller running
an unprotected implementation of AES. The 10,000 traces were divided up in 200 sets of 50 traces each to
conduct sufficient repeat experiments to report reasonably precise estimates for the guessing entropies in
the same vein as our simulated attacks. Multi-target attacks, similar to multivariate attacks, are greatly
helped by knowledge about where the attacked intermediate values leak in the traces. Consider for instance
a (multivariate) template attack: it is much harder for an adversary to conduct such an attack when in
the profiling phase a similar device is available but not the exact implementation (of, say, AES). In such
a case an adversary could still build templates for microprocessor instructions during profiling, but in the
attack phase the adversary would need to find the specific trace points at which to apply the templates.
Similarly, knowing precisely where the single-target leakages occur is helpful for a multi-target attack. We
consequently focus initially on a ‘known point’ scenario and then make a first attempt at relaxing this
assumption.

5.1 Practical attacks against known interesting points

We applied two multi-target attacks (one involving 16-bit key hypotheses, one involving 32-bit hypothe-
ses) under the assumption that the interesting points in the trace are known, running 200 repeat ex-
periments for increasing samples of up to size 50. For each 16-bit subkey, correlation DPA attacks were
performed against the two corresponding AddRoundKey operations, the S-boxes and the MixColumns
sub-computation GFm2(statei ⊕ statei+1), where statei is the state byte corresponding to the ith key
byte after the S-box substitutions and (in this implementation) the ShiftRows operation. For each 32-bit
subkey, correlation DPA attacks are performed against four AddRoundKey operations, four S-boxes, and
the 32-bit MixColumns computation GFm2(statei ⊕ statei+1)⊕ statei+1 ⊕ statei+2 ⊕ statei+3.

The first two graphs in Fig. 3(a) show the guessing entropies on the first key-byte pair and the final
global guessing entropies, estimated by multiplying the eight subkey guessing entropies together (the
outcomes for the other seven subkey guesses can be found in Appendix B—see Fig. 5).3 They largely, but
not perfectly, match up with our observations for simulated traces. This is an important point: theory
and practice rarely perfectly align, even in the case of a relatively ‘simple’ platform like the ARM7.
In the practical experiments, AddRoundKey and the MixColumns sub-value are consistently unable, on
their own, to identify the correct key (at least, not within 50 traces). However, the two together produce
guessing entropies to rival the effectiveness of the S-box attack, and both produce improvements in
combination with the S-box. All three together produce the best guessing entropies for many of the 16-bit
subkeys, although they are sometimes outperformed by the two-target S-box+AddRoundKey attacks,
which achieve a marginal advantage overall (see Table 1 in Appendix B for the numbers).

3 The more refined rank estimation methodology of [23] indicates that this simple method of approximating global guessing
entropies underestimates the rank by 20 to 40 binary orders of magnitude.

10

The second two graphs in Fig. 3(a) show the guessing entropies for the first 32-bit subkey and the final
global guessing entropies. The global entropies were estimated by multiplying the four subkey entropies
together. We observed varying behaviour for our combined attacks on different subkeys; our targeted
MixColumns computation does not leak nearly as much information in the middle 8 bytes of the state
as it does in the first and final 4 bytes. Consequently, despite (as suggested by our simulated attacks)
observing strong performance of the combined three-target attacks in the latter two cases, in the global
setting this advantage is diminished, and the ‘trivariate’ attack produces similar performance to the
combined four-byte S-box+AddRoundKey attacks. It is noteworthy that even in the presence of this
variable leakage, most combined attacks outperform the S-box attack. Graphs and data for each of the
four separate subkey attacks can be found in Appendix B (see Fig. 6 and Table 2).

5.2 Practical attacks where the interesting points are not known a priori

The natural next question to ask is whether we can relax the assumption that the leakage points are
precisely known. We made some preliminary inroads using ‘desktop-level’ resources (whilst our GPU
machines were occupied with other experiments), focusing, for computational feasibility, on 8-bit key
hypotheses. The three targets we selected to combine were AddRoundKey, the S-box outputs, and the
interim MixColumns value GFm2(statei ⊕ statei+1) with the assumption that the second involved key
byte of the two is known.

We relaxed the ‘known point’ assumption by visually inspecting the AES traces in order to identify
the intervals in which each of the three target functions are contained. The first round takes about 1,400
clock cycles in total and the (non-overlapping) windows we selected for experimentation were of widths
240, 230, and 180 for AddRoundKey, SubBytes and MixColumns respectively. Within these windows we
took an ‘exhaustive search’ approach. First, we subjected each point to a standard DPA attack against
the associated target function, and computed the ‘probability’ scores. We then pairwise combined them
in each of the three possible configurations, and finally we combined all three. We tried two strategies:
in the first, we took (for each configuration) the combined vector with the largest peak as the one most
likely to correspond to the correct key and pair/triple of leakage points, and in the second we took the
Nt combined vectors with the largest peaks and multiplied these together (for different values of Nt) to
achieve a sort of ‘majority vote’.

The left side of Fig. 3(b) shows the average guessing entropy for each of the attacks using the first
‘maximum peak’ strategy. The AddRoundKey attack in an unknown point scenario performs very badly.
Further analysis of the trace window reveals that there are other points exhibiting strong correlations with
AddRoundKey⊕ R, for R some other (possibly address?) value in {0, 255} (see Fig. 7 in Appendix C).4

Moreover, at these points the correct key correlations are low, so that the contribution to the combined
leakage is highly distorting (as opposed to when an ‘imperfect but close’ leakage prediction is made,
in which case the combination can still improve distinguishability). In the presence of such misleading
leakage information, it is reassuring that the attack outcomes are robust to the combining step.

The combined MixColumns and S-box attack exhibits lower guessing entropies than either of the two
taken individually. The trivariate attack (as expected from the above) does not really add much to this,
but again we reflect that the inclusion of AddRoundKey at least does not seem to harm the outcome.

The right side of Fig. 3(b) shows the advantage gained by multiplying the top-ranked few ‘probability’
vectors for the trivariate attack, as well as (for comparison) for the S-box attack on its own. Interestingly,
even the addition of the second ranked vector degrades the S-box attack, whereas the product combining
for the top-ranked triples reduces the guessing entropy at least up to Nt = 20. The subsequent total
improvement over the S-box outcome on its own indicates this as a potentially worthwhile strategy for
key recovery in an unknown point scenario.

4 Note that the leakage of the S-box is less vulnerable to such distortions: a non-zero reference state will not masquerade as
an alternative key hypothesis, as the key addition happens inside the S-box.

11

S-box AddRoundKey + MixColumns S-box + MixColumns AddRoundKey + S-box All three

16-bit subkey guessing entropy Global guessing entropy, 16-bit attacks

32-bit subkey guessing entropy Global guessing entropy, 32-bit attacks

0
0

1

2

3

4

5

6

7

8

9

10 20 30 40 50

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10

0 10 20 30 40 50
0

10

20

30

Number of traces

0

1

2

3

5

4

0 10 20 30 40 50

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10

0 10 20 30 40 50

Number of traces

0

5

10

15

20

25

30

35

40

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10

Number of traces Number of traces

(a) Outcomes for multi-target attacks in a known points scenario.

Number of traces

G
ue

ss
in

g
en

tr
op

y

Number of traces

G
ue

ss
in

g
en

tr
op

yAddRoundKey
S-box
MixColumns
ARK+S-box
ARK+MixCols
S-box+MixCols
All three

S-box
S-box (first 2)
S-box (first 20)

All 3
All 3 (first 2)
All 3 (first 20)

150

100

50

0
0 50 100 150

150

100

50

0
0 50 100 150

(b) Outcomes for multi-target attacks in a known interval scenario.

Fig. 3. Practical results

12

From a practical perspective, a useful forward approach for multi-target attacks would be to ‘try out’
(for a concrete device and implementation) different combinations of targets, and different point selection
strategies, to see which give the best results. We want to caution against drawing too many conclusions
from these last experiments: they clearly represent a first step only!

6 Conclusion

We have shown how to amalgamate single-target ‘standard’ DPA attacks (using a correlation distinguisher
and a Hamming weight power model) into multi-target attacks capable of increasing information on the
correct key by combining distinguisher outcomes that are treated as heuristic probabilities. Leveraging
our modern high performance computing-inspired computing platform, we are able to efficiently handle
key hypotheses of up to 32 bits using a small cluster of simple workstations containing consumer graphics
cards. Such a capability allows us to combine many intermediate targets; in this work we made the
first serious attempt to explore the characteristics of successful combinations. Our results indicate that
combining S-box+AddRoundKey or additionally including an intermediate MixColumns computation
typically produces the strongest results. Multi-target attacks scale predictably with noise and are robust
with regards to imprecise power models. Our primary investigative effort is mainly on ‘known’ (leakage)
point attacks, in line with assumptions generally made for multivariate attacks. When leakage points are
not known, an exhaustive search in suitable visually-identified trace windows, together with a ‘majority
vote’-style approach to decide on ‘peaks’, leads to improved practical attacks even in this challenging
scenario.

Our definition of multi-target attacks and intuitive and efficient combination technique opens up
many interesting new research questions: e.g. is there any single best combination of intermediate values
for a given cipher? How effectively can we combine power and EM attack results in this way? Could
we even move further on and include results from the second encryption round? What other strategies
for combining in unknown point scenarios exist? How could we use this against implementations when
masking and hiding are used? For better or worse, these are “interesting times”—to call to mind the
fabled Chinese curse.

References

1. C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J. Quisquater. Template Attacks in Principal Subspaces. In
L. Goubin and M. Matsui, editors, Proceedings of CHES 2006, volume 4249 of LNCS, pages 1–14. Springer, 2006.

2. C. Bailer-Jones and K. Smith. Combining probabilities. Technical Report GAIA-C8-TN-MPIA-CBJ-053, Max Planck
Institute for Astronomy, Heidelberg, January 2010.

3. T. Bartkewitz and K. Lemke-Rust. A high-performance implementation of differential power analysis on graphics cards.
In CARDIS, volume 7079 of Lecture Notes in Computer Science, pages 252–265. Springer, 2011.

4. L. Batina, J. Hogenboom, and J. van Woudenberg. Getting More from PCA: First Results of Using Principal Component
Analysis for Extensive Power Analysis. In O. Dunkelman, editor, Topics in Cryptology – CT-RSA ’12, volume 7178 of
LNCS, pages 383–397. Springer Berlin / Heidelberg, 2012.

5. R. Bevan and E. Knudsen. Ways to Enhance Differential Power Analysis. In P. J. Lee and C. H. Lim, editors, ICISC,
volume 2587 of LNCS, pages 327–342. Springer, 2002.

6. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage Model. In M. Joye and J.-J. Quisquater,
editors, CHES 2004, volume 3156 of LNCS, pages 135–152. Springer Berlin / Heidelberg, 2004.

7. S. Chari, J. Rao, and P. Rohatgi. Template Attacks. In B. Kaliski, Ç. Koç, and C. Paar, editors, Proceedings of CHES
2002, volume 2523 of LNCS, pages 51–62. Springer Berlin / Heidelberg, 2003.

8. T. e. B. Common Criteria. Application of Attack Potential to Smart Cards.
http://www.commoncriteriaportal.org/files/supdocs/CCDB-2009-03-001.pdf, 2009.

9. J. Doget, E. Prouff, M. Rivain, and F.-X. Standaert. Univariate side channel attacks and leakage modeling. J. Crypto-
graphic Engineering, 1(2):123–144, 2011.

10. M. Elaabid, O. Meynard, S. Guilley, and J.-L. Danger. Combined Side-Channel Attacks. In Y. Chung and M. Yung,
editors, Information Security Applications, volume 6513 of LNCS, pages 175–190. Springer Berlin Heidelberg, 2011.

11. S. Hajra and D. Mukhopadhyay. SNR to Success Rate: Reaching the Limit of Non-Profiling DPA. Cryptology ePrint
Archive, Report 2013/865, 2013. http://eprint.iacr.org/.

13

12. M. Hutter, M. Kirschbaum, T. Plos, J.-M. Schmidt, and S. Mangard. Exploiting the Difference of Side-Channel Leakages.
In W. Schindler and S. A. Huss, editors, COSADE, volume 7275 of LNCS, pages 1–16. Springer, 2012.

13. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Proceedings of CRYPTO 1999, pages 388–397, London,
UK, 1999. Springer-Verlag.

14. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets of Smart Cards.
15. S. Mangard, E. Oswald, and F.-X. Standaert. One for All – All for One: Unifying Standard DPA Attacks. IET Information

Security, 5(2):100–110, 2011.
16. A. Moradi, M. Kasper, and C. Paar. Black-Box Side-Channel Attacks Highlight the Importance of Countermeasures -

An Analysis of the Xilinx Virtex-4 and Virtex-5 Bitstream Encryption Mechanism. In O. Dunkelman, editor, CT-RSA,
volume 7178 of LNCS, pages 1–18. Springer, 2012.

17. M. Renauld and F.-X. Standaert. Combining Algebraic and Side-Channel Cryptanalysis against Block Ciphers. In 30-th
Symposium on Information Theory in the Benelux, 2009.

18. M. Renauld, F.-X. Standaert, and N. Veyrat-Charvillon. Algebraic Side-Channel Attacks on the AES: Why Time also
Matters in DPA. In Workshop on Cryptographic Hardware and Embedded Systems (CHES 2009), volume 5747 of Lecture
Notes in Computer Science, pages 97–111. Springer, 2009.

19. Y. Souissi, S. Bhasin, S. Guilley, M. Nassar, and J.-L. Danger. Towards Different Flavors of Combined Side Channel
Attacks. In O. Dunkelman, editor, CT-RSA, volume 7178 of LNCS, pages 245–259. Springer, 2012.

20. F.-X. Standaert and C. Archambeau. Using Subspace-Based Template Attacks to Compare and Combine Power and
Electromagnetic Information Leakages. In E. Oswald and P. Rohatgi, editors, CHES 2008, volume 5154 of LNCS, pages
411–425. Springer Berlin Heidelberg, 2008.

21. F.-X. Standaert, T. G. Malkin, and M. Yung. A Unified Framework for the Analysis of Side-Channel Key Recovery
Attacks. In EUROCRYPT ’09, pages 443–461, Berlin, Heidelberg, 2009. Springer-Verlag.

22. N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F.-X. Standaert. An Optimal Key Enumeration Algorithm and Its
Application to Side-Channel Attacks. In L. R. Knudsen and H. Wu, editors, Selected Areas in Cryptography, volume
7707 of LNCS, pages 390–406. Springer, 2012.

23. N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert. Security Evaluations beyond Computing Power. In T. Johansson
and P. Q. Nguyen, editors, EUROCRYPT, volume 7881 of LNCS, pages 126–141. Springer, 2013.

24. C. Whitnall and E. Oswald. A Comprehensive Evaluation of Mutual Information Analysis Using a Fair Evaluation
Framework. In P. Rogaway, editor, CRYPTO, volume 6841 of LNCS, pages 316–334. Springer, 2011.

14

A Combining difference-of-means outcomes

Fig. 4 shows the reduction in subkey guessing entropy as an increasing number of difference-of-means
(against different individual bits) are combined via our strategy.

0 50 100 150
0

50

100

150
SNR = 1

Number of traces

G
ue

ss
in

g
en

tr
op

y

0 200 400
0

50

100

150
SNR = 0.25

Number of traces

G
ue

ss
in

g
en

tr
op

y

0 1000 2000
0

50

100

150
SNR = 0.0625

Number of traces

G
ue

ss
in

g
en

tr
op

y

1 bit

2 bits
4 bits

8 bits

Fig. 4. Combining the outcomes of up to eight difference-of-means attacks against Hamming weight leakage of the AES
S-box.

B Practical attacks against known leakage points

Fig. 5 shows all eight subkey attacks against the ARM7 data, combining up to three 16-bit target functions.

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10

AddRoundKey

AddRoundKey + MixColumns S-box + MixColumns AddRoundKey + S-box All three

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10
G

ue
ss

in
g

en
tr

op
y

(l
og

)
10

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10
G

ue
ss

in
g

en
tr

op
y

(l
og

)
10

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10
G

ue
ss

in
g

en
tr

op
y

(l
og

)
10

Key bytes 1 & 6 Key bytes 2 & 7 Key bytes 3 & 8 Key bytes 4 & 5

Key bytes 12 & 13Key bytes 11 & 16Key bytes 10 & 15Key bytes 9 & 14

Number of traces Number of traces Number of traces Number of traces

40200 40200 40200 40200

40200402004020040200

3

2

0

1

4

5

3

2

0

1

4

5

3

2

0

1

4

5

3

2

0

1

4

5

3

2

0

1

4

5

3

2

0

1

4

5

3

2

0

1

4

5

3

2

0

1

4

5

S-box MixColumns

Guessing entropy after "known point", up to three 16-bit target attacks (ARM7 data)

Fig. 5. Guessing entropies for key byte pairs using up to three targets, where the interesting points are known.

15

Table 1. Global key guessing entropies after DPA against up to three 16-bit intermediate targets (ARM7 data).

Number of traces

10 20 30 40 50

AddRoundKey 7.1e+30 7.3e+21 1e+18 2.8e+14 1.4e+11
S-boxes 3.5e+29 5.9e+20 5.9e+11 6.1e+6 1e+02
MixColumns 2.3e+35 8.2e+31 1.4e+29 3.4e+26 5.7e+24
ARK+S-boxes 2.1e+26 5e+11 8.3e+04 14 1.7
ARK+MixCols 2.7e+30 3.1e+22 6.2e+15 3.2e+10 4.1e+08
S-boxes+MixCols 1.5e+29 2.5e+20 5e+10 5.6e+05 1.5e+02
All three 2.4e+26 7.2e+11 6.9e+05 2.6e+02 4

Fig. 6 shows all four subkey attacks against the ARM7 data, combining up to three 32-bit target
functions.

AddRoundKey

AddRoundKey + MixColumns S-box + MixColumns AddRoundKey + S-box All three

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10

S-box MixColumns

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10

G
ue

ss
in

g
en

tr
op

y
(l

og
)

10

Number of traces Number of traces Number of traces Number of traces
0 20 40 0 20 40 0 20 40 0 20 40

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

Key bytes 1, 6, 11 & 16 Key bytes 2, 7, 12 & 13 Key bytes 3, 8, 9, & 14 Key bytes 4, 5, 10 & 15

Guessing entropy after "known point", up to three 32-bit target attacks (ARM7 data)

Fig. 6. Guessing entropies for chunks of four key bytes, using up to three targets, where the interesting points are known.

Table 2. Global key guessing entropies after DPA against up to three 32-bit intermediate targets (ARM7 data).

Number of traces

10 20 30 40 50

AddRoundKey 5.4e+33 1e+29 1.6e+24 1.8e+17 1.5e+14
S-boxes 3.5e+33 2.7e+27 5.4e+21 8.7e+11 1.9e+04
MixColumns 1e+35 1.2e+34 9.8e+31 1.2e+30 6.1e+21
ARK+S-boxes 2.1e+31 2.8e+21 2.7e+11 1.4e+02 2.4
ARK+MixCols 2.9e+33 5.2e+28 8.5e+23 1e+16 6.9e+17
S-boxes+MixCols 1e+33 8.3e+26 1.8e+20 4.5e+09 9e+07
All three 1.1e+31 3.5e+20 2.4e+10 3.1+e04 3e+02

16

C Unknown point attacks: problem of rival peaks

Fig. 7 illustrates the difficulty of separating the true key from strong rival candidates when the relevant
‘interesting points’ in the trace are not known. As described in Section 5, this introduces distorting
information into the point search, which reduces the ability to increase an attack’s effectiveness by the
addition of AddRoundKey outcomes.

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5
Correlations with a sample size of 50

Time index

C
or

re
la

tio
n

(a
bs

ol
ut

e)

Correct key
Key⊕ 227

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Number of traces

C
or

re
la

tio
n

(a
bs

ol
ut

e)

Outcome at current ’winning’ time point

Correct key
Key⊕ 243, Key⊕ 227

Fig. 7. Left: Example of a fixed XOR offset from the key producing a rival peak in the AddRoundKey correlation attack
against the ARM7 traces. Right: The evolution of an AddRoundKey correlation attack against the ARM7 traces, showing
the confounding effect of strong rival candidates.

17

