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Abstract. In this paper, we consider the multi-bit Differential Power Analysis (DPA) in the Hamming
weight model. In this regard, we revisit the definition of Transparency Order (TO) from the work of
Prouff (FSE 2005) and find that the definition has certain limitations. Although this work has been
quite well referred in the literature, surprisingly, these limitations remained unexplored for almost a
decade. The existing definition of TO (by Prouff) for an S-box F : Fn2 → Fm2 considers maximization on
β ∈ Fm2 . However, we show that the expression suggested by Prouff is always maximum when β is either
all-zero or all-one, that makes the maximization over all β ∈ Fm2 redundant. Digging TO deeper, we
note that the existing definition of TO assumes certain cross-correlation terms between the co-ordinate
Boolean functions of F as zero. This is not true in general and thus we need to accommodate these terms
in the definition. Further the definition is based on the assumption that the co-ordinate functions in the
S-boxes are balanced (which is indeed logical for practical S-boxes), but unfortunately the measure has
been calculated for bent functions (which are not balanced) in Prouff’s paper and subsequent works. We
analyse the definition from scratch, modify it and finally provide a substantially improved and logical
definition that can theoretically capture DPA in Hamming weight model for hardware implementation
with precharge logic. In this regard, our analysis comes with numerical data for AES S-Box and the
family of S-Boxes described in the context of Prince.

Keywords: AES, Auto-correlation, Cross-correlation, Differential Power Analysis, Prince, S-Box,
Transparency Order, Walsh Spectrum.

1 Introduction

Differential Power Analysis (DPA) is one of the strongest forms of side-channel attacks in which
the information about the secret key is leaked through power traces while the encryption is ex-
ecuting on the cryptographic platform. The efficiency of these attacks is naturally much higher
than linear or differential cryptanalysis due to the information related to the power traces. To re-
sist such attacks, though algorithmic countermeasures [16] like masking and leakage resistant logic
exist, that may lead to increased footprint on the implementation platforms in terms of area and
power consumptions. It should also be noted that sometimes masked implementations can also be
attacked [10]. With this backdrop, it is evident that the S-boxes in block ciphers would be the prime
target of DPA. From the designers point of view, the S-boxes should be chosen carefully such that
they should have high DPA resilience in addition to the resistance to other classical cryptanalytic
attacks like linear and differential cryptanalysis.

In [7], the theoretical resistance of AES and DES S-boxes to linear cryptanalysis vis a vis DPA
attacks in terms of signal-to-noise ratio (SNR) was investigated. Then, an attempt to quantify the
DPA resilience of the S-boxes was made in [13], where the parameter Transparency Order (TO)
was introduced. This was an important attempt in defining a metric for the DPA resilience of



S-boxes for almost a decade ago. The paper [13] tried to explain that S-boxes with smaller TO
have higher DPA resilience. The TO, as defined in [13] was found to depend on the propagation
characteristics (PC) of the co-ordinate functions of the S-boxes. The bent functions that satisfy the
PC for all orders have been found to have worst TO value (though we show in this paper that by
the definition of [13], TO cannot be measured for a bent function), while the linear S-boxes have
the best DPA resilience. However, the linear S-boxes are not acceptable as a secure cryptographic
primitive. Further analysis of TO, as defined in [13], has been followed in [5, 11]. The main issue here
lies in the fact that a redundant definition of transparency order has received significant attention in
literature and for almost a decade the problem in the definition remained unidentified. This paper
points out to the problems in the definition of transparency order and provides further measures
for better modelling of DPA.

Differential Power Analysis (DPA) is one kind of side channel attack that exploits the difference
between the power consumed by a single gate when its output changes from zero to one or vice versa.
Initial results in this direction have been presented by Kocher et al [9]. Suppose the attacker has a
sufficiently large collection of ciphertexts EK̇(x), where K̇ is the round key, E denotes the encryption
function and x denotes the corresponding plaintext. First, the sample power consumption traces
Tx(t) (it could be a series of power related data based on time or may be a summarized data
related to power) are collected for a sufficient number of plaintexts x. These samples actually give
the information about the power consumed by each gate when output changes. One may note that
to collect the sample of power consumption traces, the attacker doesn’t need any information about
the plaintexts. It is enough if the attacker records the power consumption during the computation
of encryption function E. Next, based on these power traces, the actual attack can be mounted
off-line.

In single bit DPA attack, a particular bit j is considered and the attacker tries to make a
distinguisher by partitioning the power traces in two bins by considering whether the bit value is
zero or one, corresponding to the key guessed. Let K̇ be the actual round key used for encryption.
The attacker guesses a round key K and then the traces are assigned in either of the two bins, say
S0 and S1, according to the bit value of j. One can compute the Differential Trace [7], denoted
by DT,K,j as DT,K,j(t) = 1

|S1|
∑

Tx∈S1
Tx(t) − 1

|S0|
∑

Tx∈S0
Tx(t). The quantity DT,K,j(t) works as

a distinguisher in the single bit power attack model. According to the theory proposed in [9] the
distribution DT,K,j(t) should show a peak for the correct key K = K̇.

In single bit DPA attack, the sets S0 and S1 are constructed on the basis of a fixed bit j. One
can also measure the distribution DT,K,j considering different j’s. This kind of DPA attack is called
multi-bit DPA attack. It works as follows. For each of the guessed key K the quantity DT,K,j is
computed for all 1 ≤ j ≤ m. Then one can compute the quantity, DT,K , which considers proper
accumulation of DT,K,j(t) values for all j. Here DT,K works as a distinguisher and similar to the
single bit case, the graphical presentation of DT,K provides a peak if K = K̇, which should not be
observed for a wrong guess. This is the base model for the work presented in this paper. Before
proceeding further, let us introduce a few basic concepts related to Boolean functions.

1.1 Basics of Boolean functions

Let Fn2 be the vector space that contains all the n-bit binary vectors. A (single output) Boolean
function on n variables may be viewed as a mapping from Fn2 into F2. We will denote the set of
n-variable Boolean functions as Bn. It is easy to note that |Bn| = 22

n
.



The support of a Boolean function f is defined as Supp(f) = {x ∈ Fn2 |f(x) = 1}. When we use a
Boolean function as a cryptographic primitive, we generally consider the functions which output 0
and 1 with equal probability. Thus, we generally consider functions in Bn for which the cardinality
of the support is 2n−1. These are known as balanced functions.

Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belong to Fn2 and the inner product x · ω =
x1ω1 ⊕ · · · ⊕ xnωn. The Walsh transform of f(x) is an integer valued function over Fn2 which is
defined as Wf (ω) =

∑
x∈{0,1}n(−1)f(x)⊕x·ω. The autocorrelation transform of f(x) is again an

integer valued function over Fn2 which is defined as Af (ω) =
∑

x∈{0,1}n(−1)f(x)⊕f(x⊕ω). The Walsh
and autocorrelation spectra are important properties in designing Boolean functions that may be
used as cryptographic primitives. In general, it is expected that the maximum absolute value in
any of these spectra should be low for better resistance against cryptanalysis.

An S-box can be seen as a multi-output Boolean function. As we have discussed, an n×m S-box
is a function F : Fn2 → Fm2 . Let u · F , where u ∈ Fm2 . By H(u), we mean the number of 1’s in the
binary representation of u.

Let u = (u1, . . . , um), with H(u) = 1, where u1 = . . . = uj−1 = uj+1 = . . . = um = 0 and
uj = 1. Each component function of the S-box is a single output Boolean function u · F , where
u ∈ Fm2 and H(u) = 1. If F = (F1, . . . , Fm), then one may note that u · F = Fj . By abuse of
notation, we may also denote this component function as Fu. That is, the notations Fu and Fj are
used interchangeably for a component function in this draft.

Given f1, f2 ∈ Bn, we define the cross-correlation spectrum between these functions as Cf1,f2(ω) =∑
x∈{0,1}n(−1)f1(x)⊕f2(x⊕ω). In fact, in [13], the cross-correlation terms have been ignored while cal-

culating the TO. We show that these terms are significant and cannot be ignored.

1.2 DPA Attack and Transparency Order of S-Boxes

As discussed, the DPA provides the attacker a verifier or distinguisher to guess the correct key.
The distinguisher based on the differential traces works on the hypothesis that for the correct key
it takes the maximum value (though, due to the presence of system noises one can get several
other “ghost peaks” for wrong keys). Now, from the designer’s point of view, one should design the
S-boxes in such a manner so that the distribution of the differential trace becomes almost uniform.
In such a case, the correct key cannot be distinguished from a wrong key. This gives a security
criterion for designing the S-boxes.

↓
x⊕ K̇

n×m S-Box

F = {F1, . . . , Fm}

↓
β → F (x⊕ K̇)

Fig. 1. Model of DPA on an S-Box. In the output the previous value is β, which is updated by F (x⊕ K̇).

In [7], a few ideas were presented to measure the efficiency of DPA on an S-box. They studied
single bit DPA in the Hamming distance model, introduced in [4]. Let F be an n×m S-box. Given



v, β ∈ Fm2 , and H(v) = 1, we can consider ∆K,K̇ for single bit DPA as

∆K,K̇(v, β) =
1

2n

∑
u∈Fm2
H(u)=1

∑
x∈{0,1}n

(−1)Fv(x⊕K)⊕(Fu(x⊕K̇)⊕β·u).

If vj = 1 (the rest of the bits are zero as H(v) = 1), then the quantity DT,K,j is being calculated
here. The quantity β comes with the system. It denotes the temporary value of the register, which
is replaced by EK(x) = F (x⊕K).

Informally speaking, the TO is used to quantify the resistance of S-boxes towards DPA attacks
which employ Difference of Means (DoM) model. To resist DPA attacks, the bias value of DoMs
should be small for any round key K̇. The parameter is defined in terms of initial state value which
is constant (say β ∈ {0, 1}m) for platforms like embedded smart cards based on precharge logic.
The precharge logic is used in case of microcontrollers in which there is a precharge phase where in
the initial part of the clock cycle the registers are initialized to some fixed value in each round. That
is, given the precharge logic assumption for the hardware design, β is considered to be a constant.

According to this definition as given in [13], if some S-box shows low TO, then that S-box is
more resistant against DPA attack, i.e., the number of power traces to identify the correct key
will be higher. One can easily check that the TO becomes minimum for the S-boxes for which
the co-ordinate Boolean functions become constant or affine and on the other hand, the highly
nonlinear S-boxes have higher transparency order, implying that they are more susceptible to DPA
attacks. Though the linear S-boxes are good in terms of TO, linear S-boxes cannot be used for
cryptographic reasons and thus we have to mainly study the behaviour of TO for the well known
nonlinear S-boxes used in practice. The TO values of constant or linear S-boxes are actually of
little interest, though those values may be computed for noting the bounds on TO.

In [13], Prouff formalized the definition of transparency order in multi-bit scenario. After certain
assumptions, for an n ×m S-box F = (F1, . . . , Fm), the final formula for the transparency order
(TO) as in [13] is given by

τF = max
β∈Fn2

|m− 2H(β)| − 1

22n − 2n

∑
a∈Fn∗2

|
m∑
i=1

(−1)βiAFi(a)|

 . (1)

We critically study the above definition in this paper. The organization of our paper is as follows.
In the next section (Section 2), we show that this definition has redundancy in terms of considering
the maximum over all β ∈ Fm2 . Then in Section 3 we critically analyse the definition of TO in
Hamming weight model from the basic background and identify all the limitations of the existing
definition [13]. Next, in Section 4, we present our modified definition of TO that explains the DPA
in Hamming weight model more appropriately than [13] (see also Remark 1). Section 5 concludes
the paper. We also provide Appendices A, B and C for some detailed calculations, bounds and
examples.

Having a good TO is indeed not a determinant criterion for a cryptographically secure S-Box.
Nevertheless, it provides clear comparison between two S-boxes having the same cryptographic
parameters (e.g., one may consider our analysis in this paper that clearly shows the difference in
quality of several 4 × 4 S-boxes studied in the context of Prince [3]). Thus, a correct definition of
TO is of importance to choose between good S-boxes and then deciding whether the chosen one



can be protected against Side Channel Attacks (SCA) at a reasonable cost (for example, by higher
order masking as studied in [15]). In this direction, threshold implementation related results for all
the 3× 3 and 4× 4 S-boxes have been presented in [2].

Other than DPA with Hamming weight model in precharge logic scenario, that we concentrate
on in this paper, there are several models for SCA. Other possible leakages such as glitches have been
studied in [10, 12]. Recently, the notion of confusion coefficient has been presented in [6]. Further
the notion of transparency metric has been studied in [8]. A metric to consider the side channel
distinguisher, known as relative distinguishing margin has been presented and studied in [17, 18]
and certain clarifications on this has been made in [14]. We refer these papers and the references
therein for recent state of the art developments in DPA under several models.

2 Redundant Definition of Transparency Order [13]

Let F : Fn2 → Fm2 . We explain the definition of the transparency order [13] τF of F = (F1, . . . , Fm)
in a step by step manner for a better understanding. Let α ∈ Fn2 and β ∈ Fm2 . Let us denote

νF,β =
1

22n − 2n

∑
α∈Fn∗2

|
m∑
i=1

(−1)βiAFi(α)|. (2)

and
µF,β = |m− 2H(β)| − νF,β. (3)

The TO of the function F is
τF = max

β∈Fm2
µF,β. (4)

Proposition 1. µF,β = µF,β.

Proof. Note that |m− 2H(β)| = |m− 2(m−H(β))| = | −m+ 2H(β)| = |m− 2H(β)|.
One may also check that νF,β = νF,β. This is as follows.

νF,β =
1

22n − 2n

∑
α∈Fn∗2

|
m∑
i=1

(−1)βiAFi(α)| = 1

22n − 2n

∑
α∈Fn∗2

|
m∑
i=1

−
(

(−1)βiAFi(α)
)
|

=
1

22n − 2n

∑
α∈Fn∗2

|
m∑
i=1

(
(−1)βiAFi(α)

)
| = νF,β

Thus the proof. ut

Next we present the most important result in this direction.

Proposition 2. Let 0 < H(β) ≤ bm2 c. Then µF,β ≤ µF,0.

Proof. Consider that 0 < k = H(β) ≤ bm2 c. Now, µF,0 = (m− νF,0) and µF,β = (m− 2k − νF,β).
Let, in contrary to the statement of the proposition, µF,β > µF,0. Then νF,0 − νF,β > 2k, i.e.,

∑
α∈Fn∗2

[
|
m∑
i=1

(AFi(α)) | − |
m∑
i=1

(
(−1)βiAFi(α)

)
|

]
> (22n − 2n)2k.



Let S = {1, 2, . . . ,m} and T ⊆ S, such that i ∈ T if and only if βi = 1. That is T is the support of
β.

Then we can rewrite the above inequality as

∑
α∈Fn∗2

| m∑
i=1

(AFi(α)) | − |
∑
i∈S\T

(AFi(α))−
∑
i∈T

(AFi(α)) |

 > (22n − 2n)2k.

Using the inequality |x| − |y| ≤ |x− y|, we obtain,

∑
α∈Fn∗2

| m∑
i=1

(AFi(α))−
∑
i∈S\T

(AFi(α)) +
∑
i∈T

(AFi(α)) |

 > (22n − 2n)2k,

i.e.,
∑
α∈Fn∗2

2

∣∣∣∣∣∑
i∈T

(AFi(α))

∣∣∣∣∣ > (22n − 2n)2k.

We know that |AFi(α)| ≤ 2n, and thus we land into a contradiction as the left hand side is always
less than or equal to the right hand side. (Even taking the maximum value 2n, we get that the left
hand side is equal, but cannot be greater than the right hand side.) Thus the proof. ut

Therefore, we have the following result that shows that the definition of transparency order is
actually redundant and it does not depend on β. The proof follows from Propositions 1, 2.

Theorem 1. τF = µF,0 = m− 1
22n−2n

∑
α∈Fn∗2

|
∑m

i=1AFi(α)|.

3 Critically analysing the TO for Multi-bit DPA Attack

Given the redundancy in the definition of TO as in [13], we look into the definition from the basic
principle and obtain various other limitations of the definition. We highlight several assumptions
considered in [13] and critically comment on those.

Referring to Figure 1, the output of the S-box becomes F (x⊕K̇) from β, where β is the precharge
logic value that is fixed with the system, i.e., β is constant. So, the number of bits, changed after
storing the S-box output bits is H(F (x⊕ K̇)⊕ β) The basic idea of DPA works as follows.

Given the correct key K̇ (the attacker does not know this), the power trace of the encryption
or decryption can be collected by the adversary corresponding to the known plaintexts. As the
corresponding n×m S-boxes are in general not very large, one may expect that the power traces
are available corresponding to all the 2n possible inputs x. After the data is available, the attack
may work off-line where the attacker tries each of the possible 2n keys K (these are actually parts
of round keys that are XORed with x) and partitions the power traces in two bins. It is expected
that for the correct key K̇, the partitioning will show some distinguishing feature than that in the
case of the incorrect keys.

Let us concentrate on the j-th output bit of the S-box. Given any key K (which may or may
not be K̇), we put the power related information in two bins depending on the value of Fj(x⊕K).
As in [13], for theoretical analysis, the Hamming weight of F (x ⊕K) ⊕ β can be considered as a
logical model for the power related information. The difference of average value in the two bins is

∆K,K̇(j, β) =
1

|SK,1|
∑

x∈SK,1

H
(
F (x⊕ K̇)⊕ β

)
− 1

|SK,0|
∑

x∈SK,0

H
(
F (x⊕ K̇)⊕ β

)
, (5)



where SK,0 = {x|Fj(x ⊕ K) = 0} and SK,1 = {x|Fj(x ⊕ K) = 1}. At this point let us present a
technical result.

Proposition 3. Let us fix β ∈ Fm2 . Let F = (F1, . . . , Fm) be an n×m S-box (i.e., F : Fn2 → Fm2 ).
Let the co-ordinate functions be such that they are pairwise complement when m is even. In case
m is odd, then we consider m−1

2 pairs of pairwise complement functions and one constant function.
For any such S-box, ∆K,K̇(j, β) = 0 for any j, 1 ≤ j ≤ m.

Proof. The proof follows by noting that H(F (x)) is constant for all x ∈ Fn2 . Thus it is immediate

to note that H
(
F (x⊕ K̇)⊕ β

)
is always constant making ∆K,K̇(j, β) = 0, for any j and the fixed

β. ut

Consider a special case when m is even. For any such S-box, where all the functions are taken to be
pairwise complement and bent, no DPA is possible under the model we are working on. However,
the measure presented in [13, 5] shows that the TO is the maximum (i.e., m) for such functions,
which means that they are maximally prone to such DPA. The conclusion in [13, 5] is not correct
and it happened due to certain assumptions that make the definition of TO invalid for S-boxes
with unbalanced co-ordinate functions such as bent.

Assumption 1. The analysis of [13] implicitly assumes that the co-ordinate functions of the S-box
are balanced.

Note that, if Fj is not balanced, then handling the terms in (5) becomes complicated. Inter-
estingly, the definition used in [13, Definition 2] considered the balancedness implicitly. However,
they had later measured the transparency order of bent functions in [13, Theorem 1], and did not
note that the bent functions are indeed not balanced. Similarly, transparency order of bent func-
tions have been incorrectly studied later in [5]. To clarify the situation, below we show how the
assumption that the coordinate functions are balanced lead to the definition of transparency order.

If Fj is balanced, then |SK,0| = |SK,1| = 2n−1 and one can show (see (24) in Appendix A for
details)

∆K,K̇(j, β) = −m
2n

∑
x∈Fn2

(−1)Fj(x⊕K) +
1

2n

m∑
i=1

(−1)βi
∑
x∈Fn2

(−1)Fj(x⊕K)⊕Fi(x⊕K̇).

As the first term of right hand side will vanish due to Assumption 1 on balancedness of the
co-ordinate functions, we obtain

∆K,K̇(j, β) =
1

2n

m∑
i=1

(−1)βi
∑
x∈Fn2

(−1)Fj(x⊕K)⊕Fi(x⊕K̇). (6)

As explained above (and also in [13]), the correlation between F (x ⊕ K̇) ⊕ β and F (x ⊕ K)
is measured for each key given all possible input x to the S-box. We need to derive the values of
∆K,K̇(j, β) for two cases, namely, K = K̇ and K 6= K̇.

Assumption 2. The analysis of [13] assumes that Fi ⊕ Fj is balanced for all i and the fixed j.



In general, we obtain (see (25) in Appendix A for details)

∆K,K̇(j, β) =
1

2n

(−1)βjAFj (K ⊕ K̇) +
m∑

i=1,i 6=j
(−1)βiCFi,Fj (K ⊕ K̇)

 . (7)

Thus, for K = K̇, we have

∆K̇,K̇(j, β) = (−1)βj +
1

2n

m∑
i=1,i 6=j

(−1)βiCFi,Fj (0). (8)

Note that, if Fi⊕Fj is balanced for all i and the fixed j, then CFi,Fj (0) = 0 and thus, ∆K̇,K̇(j, β) =

(−1)βj . In fact, if one considers an n× n S-box which is a permutation (e.g., the 8× 8 S-box used
in AES), then CFi,Fj (0) is always zero.

One may note that Assumptions 1 and 2 are satisfied when the involved (n,m) S-box is balanced
(which is the case of the vast majority of cryptographic S-boxes).

In single bit DPA attack the expression ∆K,K̇(j, β) is calculated for all possible pairs (K, K̇) for
a fixed j. Here j denotes the position of the co-ordinate function of the S-box, where the power trace
is observed. In case of multi-bit differential power attack this j varies for all co-ordinate functions,
i.e., j varies from 1 to m. Thus, the following quantity δK,K̇ has been defined for multi-bit DPA as
follows [13, Equation (10)]:

δK,K̇(β) = |
m∑
j=1

∆K,K̇(j, β)|. (9)

We would like to point out that this definition has the problem in properly modelling multi-bit
DPA attack as well as in the final expression of TO, for taking the absolute value after making the
sum. This will always make the TO maximum at all-zero or all-one point. We will later revisit this
definition by considering the quantity

∑m
j=1 |∆K,K̇(j, β)|.

For the case K = K̇ we have,

δK̇,K̇(β) =

∣∣∣∣∣∣
m∑
j=1

(−1)βj +
1

2n

m∑
i=1,i 6=j

(−1)βiCFi,Fj (0)

∣∣∣∣∣∣ .
Given Assumption 2, we have

δK̇,K̇(β) =

∣∣∣∣∣∣
m∑
j=1

(−1)βj

∣∣∣∣∣∣ = |m− 2H(β)|. (10)

For K 6= K̇, we have,

δK,K̇(β) =
1

2n

∣∣∣∣∣∣
m∑
j=1

(−1)βjAFj (K ⊕ K̇) +
m∑

i=1,i 6=j
(−1)βiCFi,Fj (K ⊕ K̇)

∣∣∣∣∣∣ . (11)

Assumption 3. The analysis of [13] assumes that CFi,Fj (K ⊕ K̇) can be considered to be zero for
all the cases making certain assumptions on independence.



Note that, this is not true as we cannot have all the values zero in cross-correlation spectrum
in general. In fact, we will later present a detailed study for the 8× 8 S-box used in AES that will
clearly show the limitation of the Assumption 3 made in [13].

Given Assumption 3, we have

δK,K̇(β) =
1

2n

∣∣∣∣∣∣
m∑
j=1

(−1)βjAFj (K ⊕ K̇)

∣∣∣∣∣∣ . (12)

In the case of the multi-bit DPA attack, for all possible pairs of keys (K, K̇), one can compute
the values of δK,K̇(β). It is expected that if K = K̇, then δK,K̇ takes the maximum value for some β.
From the designer’s point of view, the S-boxes should be chosen in such a manner so that for other
pairs (K, K̇), the values of δK,K̇(β) do not deviate much from the value of δK̇,K̇(β) for resistance
against DPA. Thus, the TO is defined as follows in [13]:

τF = max
β∈Fn2

τβF , where, τβF =

 1

2n − 1

∑
K∈Fn2
K 6=K̇

(
δK̇,K̇(β)− δK,K̇(β)

) . (13)

Suppose K ⊕ K̇ = a. Then by substituting the values of δK̇,K̇ from (10) and δK,K̇ from (12), we get

τβF = |m− 2H(β)| − 1

2n(2n − 1)

∑
a∈Fn∗2

∣∣∣∣∣∣
m∑
j=1

(−1)βjAFj (a)

∣∣∣∣∣∣ , (14)

and thus,

τF = max
β∈Fm2

|m− 2H(β)| − 1

22n − 2n

∑
a∈Fn∗2

∣∣∣∣∣∣
m∑
j=1

(−1)βjAFj (a)

∣∣∣∣∣∣
 , (15)

which is the same as (1) presented in [13]. As we have described, the work in [13] considered a few
assumptions, but several critical comments can be made on that. To be specific, we point out the
following.

– Assumption 1 is logical and it works for practical S-boxes that the co-ordinate Boolean functions
are balanced. However, given this assumption, it is not possible to consider unbalanced co-
ordinate functions in the S-box under this definition. However, this had been improperly done
in [13, 5] in concluding certain results related to bent functions.

– Assumption 2 is also logical in the sense that it is quite practical to consider that the XOR of
two co-ordinate functions should be balanced.

– Assumption 3 considers that the cross-correlation spectrum between two co-ordinate functions
will contain all zero values due to certain independence. This is indeed not correct and one
should specifically calculate these value that we will also present here. As example, for the 8×8
S-box used in AES, the values in the spectrum are indeed significant. Ignoring this significance
led to the redundant definition of τF in [13] where it does not depend on β at all as we have
described in Section 2.



3.1 Considering the cross-correlation terms

For a proper measure, we need to add the cross-correlation terms as given in (11). Thus, we should
consider the following definition for further investigation in this area.

τ ′
β
F = |m− 2H(β)| (16)

− 1

2n(2n − 1)

∑
a∈Fn∗2

∣∣∣∣∣∣
m∑
j=1

(−1)βjAFj (a) +

m∑
i=1,i 6=j

(−1)βiCFi,Fj (a)

∣∣∣∣∣∣ .
Similar to Proposition 1, one may note that under the modified definition of τ ′βF as given in (16),

τ ′βF and τ ′βF are equal (see (26) in Appendix A for details). Let us now consider τ ′F as in (17).
This definition will only be valid for the n×m S-boxes F = (F1, . . . , Fm), where each co-ordinate
function Fi and further the functions Fi ⊕ Fj for 0 ≤ i 6= j ≤ m are balanced.

τ ′F = max
β∈Fm2

|m− 2H(β)| − 1

22n − 2n

∑
a∈Fn∗2

∣∣∣∣∣∣
m∑
j=1

(−1)βjAFj (a) +
m∑

i=1,i 6=j
(−1)βiCFi,Fj (a)

∣∣∣∣∣∣
 .(17)

Unfortunately, similar to (15), this definition also becomes redundant for cryptographically strong
S-boxes. This is because, the magnitude of the values in autocorrelation and cross-correlation
spectra of cryptographically strong n-variable Boolean functions are of the order of 2

n
2 . Thus, the

term |m − 2H(β)| will dominate hugely and naturally it will be maximum when β has all-zero or
all-one pattern.

Now consider the definition from cryptanalysts’ viewpoint. The power traces will be available
to the attacker and she can analyse the data off-line to guess the correct key. Thus, the attacker
will try to use the power traces in such a way so that the correct key K̇ can be distinguished from
the other keys.
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Fig. 2. Values of τβF (in Yellow) and τ ′
β
F (in Blue) as β varies over F8

2 for AES S-box. The 8-bit patterns of β are
written as their integer values.



In Figure 2, for AES S-box, we show the values of τβF and τ ′βF for different values of β. The

figure shows that for some values of β, τβF and τβF are negative. This implies that for those values
of β, δK,K̇(β) is not maximum when K = K̇. The negative value of average deviation of δK,K̇(β)
with respect to δK̇,K̇(β) indicates that for some K, δK̇,K̇(β) < δK,K̇(β). (There are some K for
which δK̇,K̇(β) > δK,K̇(β) too). This phenomenon prevents the attacker to guess the correct key.
This happens due to considering the absolute value after taking the sum of ∆K,K̇(j, β) for different
j’s in [13] (see also (9)). Note that if the precharge logic β is indeed all-zero or all-one, then the
existing idea of [13] works well. However, as H(β) becomes closer to m

2 , the term |m−2H(β)| reduces

substantially, making τβF and τ ′βF negative in some cases, that makes the definition unacceptable
from cryptanalytic point of view.

4 Redefining TO: where to take the absolute values

As explained before (5), we try to identify the correct key from power related information and thus
the quantity ∆K,K̇(j, β) has been defined to model that. When we extend that for multiple bits,
from cryptanalysts’ point of view, we want to add the absolute values to identify the correct key
with better confidence for any β. This motivates us to revisit the definition in (9) and we provide
the modified definition that models the practical situation more logically.

δK,K̇(β) =

m∑
j=1

|∆K,K̇(j, β)|. (18)

Let us continue our analysis with this definition in (18). With this the value of δK̇,K̇(β) as in (10)
is updated as:

δK̇,K̇(β) =

m∑
j=1

|(−1)βj | = m. (19)

Note that the term related to H(β) is removed in this case. This is indeed important as otherwise
this Hamming weight of β was influencing the complete measure without any real justification and
making the definition redundant by maximizing it for all-zero or all-one β.

For the cases K 6= K̇, the expression of (11) will be modified to

δK,K̇(β) =
1

2n

m∑
j=1

∣∣∣∣∣∣(−1)βjAFj (K ⊕ K̇) +

m∑
i=1,i 6=j

(−1)βiCFi,Fj (K ⊕ K̇)

∣∣∣∣∣∣
=

1

2n

m∑
j=1

∣∣∣∣∣∣AFj (K ⊕ K̇) +
m∑

i=1,i 6=j
(−1)βi⊕βjCFi,Fj (K ⊕ K̇)

∣∣∣∣∣∣ (20)

Thus, we need to modify (16) to obtain

τβF = m− 1

2n(2n − 1)

∑
a∈Fn∗2

m∑
j=1

∣∣∣∣∣∣AFj (a) +

m∑
i=1,i 6=j

(−1)βi⊕βjCFi,Fj (a)

∣∣∣∣∣∣ . (21)



One may note that under this definition too, we have

τβF = τβF . (22)

Consequently, modifying (17), we obtain

τF = max
β∈Fm2

m− 1

22n − 2n

∑
a∈Fn∗2

m∑
j=1

∣∣∣∣∣∣AFj (a) +

m∑
i=1,i 6=j

(−1)βi⊕βjCFi,Fj (a)

∣∣∣∣∣∣
 . (23)

Remark 1. From the designers point of view, it is important to consider the β for which τβF will be
minimum. In this case, the attacker’s advantage is minimum when β is in the circuit as the precharge
logic value. On the other hand, if the precharge logic value is such that τβF is maximum, then that
will make the attacker’s advantage maximum in this model. In particular, given any precharge logic
value β, the DPA should be possible and that is clearly noted through our definition.

One may note that our revised definition of TO (as well in the case of earlier definition in [13])
is invariant under the affine transformation of the S-Box. We obtained an interesting lower bound
of τF as presented in Appendix B in detail. The main combinatorial contribution in this bound is
that, all the cross-correlation terms could be replaced by Walsh spectrum values.

4.1 Example with some existing S-boxes

Let us first refer to the 8× 8 S-box F of AES [1]. The graphical representation τF (β) is presented

in Figure 3 and one may note the symmetry due to τβF = τβF . We have noted that the minimum
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Fig. 3. Values of τβF as β varies over F8
2 for AES S-box. The 8-bit patterns of β are written as their integer values.

value of τβF is 6.82083 which occurs at β = βmin = (0, 0, 0, 1, 0, 0, 1, 1) (integer value 19) and its
complement, whereas the maximum value is 6.91605 which occurs at β = βmax = (0, 1, 1, 1, 1, 1, 1, 0)
(integer value 126) and its complement. Thus, we have τF = 6.91605. From the designers point



of view, it is better to use βmin as the precharge logic as in that case more effort will be required
(than when any other β is the precharge logic) to identify the peak corresponding to the correct
key. Our lower bound of τF presented in Theorem 2 of Appendix B provides the value 6.51457. We
have also analyzed the family of S-boxes in the context of Prince [3] (details in Appendix C). Our
analysis shows that all the eight different 4 × 4 S-boxes are not of the same property in terms of
the values of τβF .

5 Conclusion

In this paper we have critically analysed the definition of Transparency Order (TO) as presented
in [13] almost a decade back. Surprisingly, there are a few inconsistencies in the definition as well
as in the interpretation of the definition that went unnoticed for such a long time. We have pointed
those out in this paper. There were several implicit assumptions considered in [13] for studying the
definition. While some of them were logical, the one assuming all the values in cross-correlation
spectra zero under some independence condition was indeed not correct. A few correct assumptions
on balancedness of component functions were made in [13], but the definition was applied to bent
functions (unbalanced) in [13, 5] that lead to wrong conclusions. The definition of [13] considered
maximization over all β ∈ Fm2 , but we have proved that the maximum is automatically attained for
all-zero and all-one β, making the definition of [13] redundant. Then we have made a detailed step
by step analysis of DPA in Hamming weight model where the value β is considered to be constant
in precharge logic implementation. We have identified all the issues that provided the redundant
definition of TO in [13] and misled further research. Finally we have provided a revised definition
of Transparency Order (TO) that takes care of both designers’ and cryptanalysts’ viewpoints. We
have presented numerical data for the AES S-box and the family of S-boxes used in the context of
Prince.
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Appendix A: Detailed calculations

∆K,K̇(j, β) in terms of S-box parameters

∆K,K̇(j, β) = − 1

2n−1

∑
x∈Fn2

(−1)Fj(x⊕K)H
(
F (x⊕ K̇)⊕ β

)
(24)

= − 1

2n−1

∑
x∈Fn2

(−1)Fj(x⊕K)
m∑
i=1

(Fi(x⊕ K̇)⊕ βi)

= − 1

2n−1

∑
x∈Fn2

(−1)Fj(x⊕K) 1

2

(
m−

m∑
i=1

(−1)Fi(x⊕K̇)⊕βi

)

= −m
2n

∑
x∈Fn2

(−1)Fj(x⊕K) +
1

2n

m∑
i=1

(−1)βi
∑
x∈Fn2

(−1)Fj(x⊕K)⊕Fi(x⊕K̇)

Calculations related to ∆K,K̇(j, β)

∆K,K̇(j, β) = Q1 +Q2, where (25)

Q1 =
1

2n

∑
x∈{0,1}n

(−1)βj (−1)Fj(x⊕K)⊕Fj(x⊕K̇) =
(−1)βj

2n
AFj (K ⊕ K̇), for i = j, and

Q2 =
1

2n

m∑
i=1,i 6=j

(−1)βi
∑

x∈{0,1}n
(−1)Fj(x⊕K)⊕Fi(x⊕K̇), for i 6= j

=
1

2n

m∑
i=1,i 6=j

(−1)βiCFj ,Fi(K ⊕ K̇).



Proof of τ ′βF = τ ′βF

τ ′
β
F = |m− 2H(β)|

− 1

2n(2n − 1)

∑
a∈Fn∗2

∣∣∣∣∣∣
m∑
j=1

(−1)βjAFj (a) +
m∑

i=1,i 6=j
(−1)βiCFi,Fj (a)

∣∣∣∣∣∣
= |m− 2H(β)|

− 1

2n(2n − 1)

∑
a∈Fn∗2

∣∣∣∣∣∣
m∑
j=1

−(−1)βjAFj (a)−
m∑

i=1,i 6=j
(−1)βiCFi,Fj (a)

∣∣∣∣∣∣
= |m− 2H(β)|

− 1

2n(2n − 1)

∑
a∈Fn∗2

∣∣∣∣∣∣
m∑
j=1

(−1)βjAFj (a) +

m∑
i=1,i 6=j

(−1)βiCFi,Fj (a)

∣∣∣∣∣∣
= τ ′

β
F . (26)

Appendix B: A lower bound of τF using Walsh spectrum only

We present a lower bound of τF for a given F = (F1, . . . , Fm). The following result will be used to
derive the bound.

Lemma 1. Suppose e, f, g, h are Boolean functions of n-variables. Then∑
a∈Fn2

Ce,f (a)Cg,h(a) =
1

2n

∑
a∈Fn2

We(a)Wf (a)Wg(a)Wh(a).

Proof. Suppose Fn2 = {a0, . . . , a2n−1}. It is known that

[Ce,f (a0), . . . , Ce,f (a2n−1)]Hn = [We(a0)Wf (a0), . . . ,We(a2n−1)Wf (a2n−1)]

[Cg,h(a0), . . . , Cg,h(a2n−1)]Hn = [Wg(a0)Wh(a0), . . . ,Wg(a2n−1)Wh(a2n−1)],

where Hn is the Hadamard matrix of order 2n × 2n. Take the product

[Ce,f (a0), . . . , Ce,f (a2n−1)]Hn
(

[Cg,h(a0), . . . , Cg,h(a2n−1)]Hn
)T

= [We(a0)Wf (a0), . . . ,We(a2n−1)Wf (a2n−1)]

 Wg(a0)Wh(a0
...

Wg(a2n−1)Wh(a2n−1)


Since, HnHTn = 2nI2n×2n , where I2n×2n is the identity matrix of order 2n × 2n, then from the
product, we have ∑

a∈Fn2

Ce,f (a)Cg,h(a) =
1

2n

∑
a∈Fn2

We(a)Wf (a)Wg(a)Wh(a).

Theorem 2. For F = (F1, . . . , Fm) : Fn2 → Fm2 , the value of τF has the following lower bound



m−
√
2n−1

(22n−2n)

m∑
j=1

( m∑
i=1

∑
a∈Fn2

∗

W 2
Fi(a)W 2

Fj (a) + 2
∑

1≤i<k≤m

∑
a∈Fn2

∗

WFi(a)W 2
Fj (a)WFk(a)

) 1
2

.

Proof. It is clear that τF ≥ τ0F . So we calculate a lower bound of τ0F . From (21) we get

τ0F = m− 1

(22n − 2n)

m∑
j=1

∑
a∈Fn∗2

|AFj (a) +
m∑
i=1
i 6=j

CFi,Fj (a)|

(27)

Applying Cauchy-Schwarz inequality we get∑
a∈Fn∗2

|
m∑
i=1

CFi,Fj (a)| ≤
(

(2n − 1)
∑
a∈Fn∗2

( m∑
i=1

CFi,Fj (a)
)2) 1

2

=

(
(2n − 1)

∑
a∈Fn2

[( m∑
i=1

CFi,Fj (a)
)2
−
( m∑
i=1

CFi,Fj (0)
)2]) 1

2

=

(
(2n − 1)

∑
a∈Fn2

( m∑
i=1

CFi,Fj (a)
)2) 1

2

(28)

Note that ∑
a∈Fn2

( m∑
i=1

CFi,Fj (a)
)2

=
∑
a∈Fn2

m∑
i=1

C2Fi,Fj (a) + 2
∑
a∈Fn2

∑
1≤i<k≤m

CFi,Fj (a)CFk,Fj (a)

=
m∑
i=1

∑
a∈Fn2

C2Fi,Fj (a) + 2
∑

1≤i<k≤m

∑
a∈Fn2

CFi,Fj (a)CFk,Fj (a)

Then applying Lemma 1,∑
a∈Fn2

( m∑
i=1

CFi,Fj (a)
)2

=
m∑
i=1

∑
a∈Fn2

W 2
Fi(a)W 2

Fj (a) + 2
∑

1≤i<k≤m

∑
a∈Fn2

WFi(a)W 2
Fj (a)WFk(a).

Replacing this value of
∑

a∈Fn2

(∑m
i=1 CFi,Fj (a)

)2
in (28), an upper bound of

∑
a∈Fn∗2

|
∑m

i=1 CFi,Fj (a)|
is obtained. Then using this upper bound in (27), we get a lower bound of τ0F as follows

m−
√
2n−1

(22n−2n)

m∑
j=1

( m∑
i=1

∑
a∈Fn2

W 2
Fi(a)W 2

Fj (a) + 2
∑

1≤i<k≤m

∑
a∈Fn2

WFi(a)W 2
Fj (a)WFk(a)

) 1
2

.

Note that τβF assumes that all the coordinate functions are balanced, therefore the above bound
can be written as

m−
√
2n−1

(22n−2n)

m∑
j=1

( m∑
i=1

∑
a∈Fn2

∗

W 2
Fi(a)W 2

Fj (a) + 2
∑

1≤i<k≤m

∑
a∈Fn2

∗

WFi(a)W 2
Fj (a)WFk(a)

) 1
2

.

This serves as a lower bound of τF . ut



Appendix C: Analysis for the S-boxes in context of Prince

Eight 4 × 4 S-boxes are referred in [3]. In Table 1 we show the maximum and minimum values of

τβF for each of the S-boxes.

S-Box βmax (as integer) maxβ∈F42
τβF βmin (as integer) minβ∈F42

τβF
S-box-1 0 2.46667 1 1.63333

S-box-2 2 2.56666 1 1.7

S-box-3 2 2.53333 1 1.66667

S-box-4 4 2.46667 1 1.56667

S-box-5 4 2.53333 2 2.16667

S-box-6 0 2.46667 6 2.1

S-box-7 6 2.5 5 2.23333

S-box-8 2 2.66667 7 2.2

Table 1. Maximum (corresponding to βmax) and minimum (corresponding to βmin) values of τβF as β varies over F4
2

for the eight Prince S-boxes (available in Table 3 of Appendix C in the eprint version of [3]).

The complete graphical representation for the eight S-boxes are presented next in Figure 4.
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