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Abstract. Using FPGAs to compute the discrete logarithms of elliptic
curves is a well-known method. However, until to date only CPU clus-
ters succeeded in computing new elliptic curve discrete logarithm records.
This work presents a high-speed FPGA implementation that was used
to compute the discrete logarithm of a 113-bit Koblitz curve. The core
of the design is a fully unrolled, highly pipelined, self-sufficient Pollard’s
rho iteration function. An 18-core Virtex-6 FPGA cluster computed the
discrete logarithm of a 113-bit Koblitz curve in extrapolated 24 days.
Until to date, no attack on such a large Koblitz curve succeeded using
as little resources or in such a short time frame.
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1 Introduction

It is possible to repeatedly fold a standard letter-sized sheet of paper at the
midway point about six to seven times. In 2012, some MIT students [10] were
able to fold an 1.2 kilometer long toilet paper 13 times. And every time the paper
was folded, the number of layers on top of each other doubled. Therefore, the
MIT students ended up with 213 = 8192 layers of paper on top of each other.
And poor Eve’s job was to manually count all layers one by one.

Similar principles apply in cryptography, although bigger numbers are in-
volved. In elliptic curve cryptography (ECC) were dlog2 ne-bit private keys are
used, Eve does not have to iterate through all possible n keys. Instead, Eve
would use the more efficient parallelizable Pollard’s rho algorithm that finishes
in approximately

√
n steps. The omnipresent question is how big n has to be

such that even the most powerful adversaries are not able to reconstruct a pri-
vate key. Especially in embedded, cost-sensitive applications, it is important to
use keys that are only as large as necessary.

Discrete logarithms over elliptic curves were computed in the past [9, 19] and
several experimental baselines were established. Since then, committees [3, 6]
steadily increased the minimal n by simply applying Moore’s law. However, it is
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necessary to practically compute discrete logarithms to check to which margin
the current standards hold.

The task of computing a discrete logarithm can be split into the work done
by researchers and the work done by machines. This paper presents both a novel
hardware architecture and the discrete logarithm of a 113-bit Koblitz curve. The
highly pipelined, high-speed, and practically extensively tested ECC Breaker
FPGA design was used to solve the discrete logarithm of a 113-bit Koblitz curve
in extrapolated1 24 days using mere 18 FPGAs. Therefore, ECC breaker is the
first FPGA design to be used to solve a large discrete logarithm. Further, based
on ECC Breaker it is even possible to compute discrete logarithms of even larger
binary-field elliptic curves. Substantiated by practical experimentation, this pa-
per will make a notable contribution to the community’s activity of breaking
larger elliptic curves and carving new standards.

This paper is structured as follows: Section 2 gives an overview on related
work. Section 3 revisits some mathematical foundations and Section 4 summa-
rizes the experiments with different iteration functions. The most suitable iter-
ation function was implemented in hardware, which is described in Section 5.
As the design is flexible enough to attack larger elliptic curves, Section 6 gives
runtime and cost approximations. Section 7 summarizes the learned lessons and
Section 8 concludes the paper. Appendix A gives an overview of the targeted
curve parameters and pseudo-randomly chosen target points.

2 Related Work

Certicom [11] introduced ECC challenges in 1997 to increase industry accep-
tance of cryptosystems based on the elliptic curve discrete logarithm problem
(ECDLP). They published system parameters and point challenges for different
security levels. Since then, the hardest solved Certicom challenges are ECCp-
109 for prime-field based elliptic curves, done by Monico et al. using a cluster of
about 10,000 computers (mostly PCs) for 549 days, and ECC2-109 for binary-
field based elliptic curves, also done by Monico et al., computing on a cluster
of around 2,600 computers (mostly PCs) for around 510 days. Harley et al. [19]
solved an ECDLP over a 109-bit Koblitz-curve Certicom challenge (ECC2K-108)
with public participation using up to 9,500 PCs in 126 days.

As the Certicom challenges lie far apart (ECCp-131 is 2,048 times more
complex than ECCp-109), also self-generated challenges have been broken. A
discrete logarithm defined over a 112-bit prime-field elliptic curve was solved by
Bos et al. [9], utilizing 200 Playstation 3s for 6 months. A single playstation
reached a throughput of 42 · 106 iterations per second (IPS). This work presents
the discrete logarithm of a 113-bit binary-field Koblitz curve that used 18 FPGAs
for extrapolated 24 days and reached a throughput of 165 · 106 iterations per
FPGA per second.

Further, several attempts and approximations were done in order to attack
larger elliptic curves using FPGAs. Dormale et al. [26] targeted ECC2-113,

1 The attack actually run for 47 days but not all FPGAs were active at all times.
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ECC2-131, and ECC2-163 using Xilinx Spartan 3 FPGAs performing up to
20 · 106 IPS. Most promising is the work of Bailey et al. [5] who attempt to
break ECC2K-130 using Nvidia GTX 295 graphics cards, Intel Core 2 Extreme
CPUs, Sony PlayStation 3s, and Xilinx Spartan 3 FPGAs. Their FPGA imple-
mentation has a throughput of 33.7 · 106 IPS and was later improved by Fan et
al. [13] to process 111 · 106 IPS. Other FPGA architectures were proposed by
Güneysu et al. [17], Judge and Schaumont [21], and Mane et al. [23]. Güneysu
et al.’s Spartan 3 architecture performs about 173 · 103 IPS, Judge and Schau-
mont’s Virtex 5 architecture executes 2.87 · 106 IPS, and Mane et al.’s Virtex 5
architecture does 660 · 103 IPS.

So far, non of their FPGA implementations have been successful in solving
ECDLPs. This work on the other hand presents a practically tested architecture
which can be used to attack both Koblitz curves and binary-field Weierstrass
curves.

3 Mathematical Foundations

To ensure a common vocabulary, it is important to revisit some of the basics.
Hankerson et al. [18] and Cohen et al. [12] shall be consulted for further details.

3.1 Elliptic Curve Cryptography

This paper focuses on Weierstrass curves that are defined over binary extension
fields K = F2m . The curves are defined as E/K : y2 +xy = x3 +ax2 +b, where a
and b are system parameters and a tuple of x and y which fulfills the equation is
called a point P = (x, y). Using multiple points and the chord-and-tangent rule,
it is possible to derive an additive group of order n, suitable for cryptography.
The number of points on an elliptic curve is denoted as #E = h · n, where n is
a large prime and the cofactor h is typically in the range of 2 to 8. The core of
all ECC-based cryptographic algorithms is a scalar multiplication Q = kP , in
which the scalar k ∈ [0, n− 1] is multiplied with a point P to derive Q.

As computing Q = kP can be costly, a lot of research was done on the
efficient and secure computation of Q = kP . A subset of binary Weierstrass
curves, known as Koblitz curves (also known as anomalous binary curves), have
some properties which make them especially interesting for fast implementations.
They may make use of a map σ(x, y) = (x2, y2), σ(∞) = (∞), an automorphism
of order m known as a Frobenius automorphism. This means that there exists
an integer λj such that σj(P ) = λjP . Another automorphism, which is not
only applicable to Koblitz curves, is the negation map. The negative of a point
P = (x, y) is −P = (x, x+ y). It holds for some λneg that −P = λnegP .

3.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

The security of ECC lies in the intractability of the ECDLP: Given the two points
Q and P , connected by Q = kP , it is practically infeasible to compute the scalar
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0 ≤ k < n. As standardized elliptic curves are designed such that neither the
Pohlig-Hellman attack [27], nor the Weil and Tate pairing attacks [14, 25], nor
the Weil descent attack [16] apply, the standard algorithm to compute a discrete
logarithm is Pollard’s rho algorithm [28].

The main idea behind Pollard’s rho algorithm is to define an iteration func-
tion f that defines a random cyclic walk over a graph. Using Floyd’s cycle-finding
algorithm, it is possible to find a pair of colliding triples, each consisting of a
point Xi and two scalars ci and di. As X1 = X2 = c1P + d1Q = c2P + d2Q
and (d2 − d1)Q = (d2 − d1)kP = (c1 − c2)P , it is possible to compute
k = (c1 − c2)(d2 − d1)−1 mod n. Pollard’s rho algorithm expects to encounter
such a collision after

√
πn
2 steps.

In order to parallelize the attack efficiently, Van Oorschot and Wiener [31]
introduced the concept of distinguished points. Distinguished points are a subset
of points, which satisfy a particular condition. Such a condition can be a specific
number of leading zero digits of a point’s x-coordinate or a particular range
of Hamming weights in normal basis. Those distinguished points are stored in
a central database, but can be computed in parallel. The number of instances
running in parallel is linearly proportional to the achievable speedup. Note that
each instance starts with a random starting triple and uses one of the iteration
functions f which are discussed in the following section.

4 Selecting the Iteration Function

As the iteration function will be massively parallelized and synthesized in hard-
ware, it is crucial to evaluate different iteration functions and select the most
suitable one. In this work, the iteration functions by Teske [30], Wiener and
Zuccherato [32], Gallant et al. [15], and Bailey et al. [4] were checked for their
practical requirements and achievable computation rates. Table 1 summarizes
the experiments done in software on a 41-bit Koblitz curve.

What all iteration functions have in common is that they update a state,
henceforth referred to as triple, consisting of two scalars ci, di ∈ [0..n− 1] and a
pointXi = ciP+diQ. An iteration function f deterministically computesXi+1 =
f(Xi) and updates ci+1 and di+1 accordingly, such that Xi+1 = ci+1P + di+1Q
holds. A requirement on f is that it should be easily computable and to have
the characteristics of a random function.

Teske’s r-adding walk [30] is a nearly optimal choice for an iteration func-
tion. It partitions the elliptic curve group into r distinct subsets {S1, S2, ..., Sr}
of roughly equal size. If a point Xi is assigned to Sj , the iteration function com-
putes f(Xi) = Xi + R[j], with R[] being an r-sized table consisting of linear
combinations of P and Q. After approximately

√
πn
2 steps, Teske’s r-adding

walk finds two colliding points for all types of elliptic curves.

The Frobenius automorphism of Koblitz curves can not only be used to
speedup the scalar multiplication, but also to improve the expected runtime
of a parallelized Pollard’s rho by a factor of

√
m. Wiener and Zuccherato [32],
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Table 1. Implementation results of all tested iteration functions.

Reference Iteration function Expected Measured
iterations iterations

Teske [30] f(Xi) = Xi +R[j] 929 · 103 906 · 103

Wiener and Zuccherato [32] f(Xi) = min
0≤l<m

{
σl(Xi +R[j]

}
145 · 103 147 · 103

Gallant et al. [15] f(Xi) = Xi + σl(Xi) 145 · 103 166 · 103

Bailey et al. [4] f(Xi) = Xi + σ(l mod 8)+3(Xi) 145 · 103 183 · 103

Gallant et al. [15], and Bailey et al. [4] proposed iteration functions which should
achieve this

√
m-speedup.

Wiener and Zuccherato [32] proposed to calculate f(Xi) = σl(Xi+R[j]) ∀ l ∈
[0,m− 1] and choose the point, which has the smallest x-coordinate when inter-
preted as an integer. Gallant et al. [15] introduced an iteration function based
on a labeling function L, which maps the equivalence classes defined by the
Frobenius automorphism to some set of representatives. The iteration function
is then defined as f(Xi) = Xi+σ

l(Xi), where l = hashm(L(Xi)). Bailey et al. [4]
suggested to compute f(Xi) = Xi + σ(l mod 8)+3(Xi) to reduce the complexity
of the iteration function.

Additionally to the Frobenius automorphism, it is possible to use a negation
map to improve the expected runtime by a factor of

√
2. The negation map

compares Xi with −Xi and selects the point with the smaller y-coordinate when
interpreted as an integer. Although the potential speed-up seems very promising,
there is an unfortunate challenge associated with the negation map; the problem
of fruitless cycles which is discussed in Section 7.

In order to make sure that the potential iteration functions work as promised,
a 41-bit Koblitz curve was used to evaluate the iteration functions with a C
implementation on a PC (cf. Table 1). As labeling function L, the Hamming
weight of the x-coordinate in normal basis was used. The hash function was
disregarded. Table 1 summarizes the average number of iterations (computing
100 ECDLPs) of all tested iteration functions using four parallel threads. The
experiments showed that the average number of iterations of Gallant’s and Bai-
ley’s iteration functions are 13-24 % higher compared to the iteration function by
Wiener and Zuccherato. Additionally, with a probability of 14-20 % some of the
parallel threads produced identical sequences of distinguished points. Restarting
the threads regularly or on-demand would counter this problem. Not countering
the problem of fruitless threads would increase the average runtime of Gallant’s
iteration function by another 29 %.

As Wiener and Zuccherato’s iteration function achieved the best speed and
does not have the problem of fruitless threads, it was chosen to be implemented
in hardware. Additionally, by leaving out the automorphism, the hardware can
be used to attack general binary-field Weierstrass curves as well.
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5 ECC Breaker Hardware

Before the actual hardware architecture and its most critical components are
discussed, it is important to review the most basic design assumptions and core
ideas of the ECC Breaker design.

5.1 Basic Assumptions and Decisions

ASIC vs FPGA Design. In literature it is possible to find a lot of FPGA and
ASIC designs optimized for some crucial characteristic. Some authors even dare
to compare FPGA and ASIC results. However, several of the largest components
in ASIC designs, e.g., registers, RAM, or integer multipliers, are for free in an
FPGA design. For instance, every slice comes with several registers. Therefore,
adding pipeline stages in a logic-heavy FPGA design comes basically for free.
For this paper, Xilinx Virtex-6 ML605 evaluation boards were chosen because
of availability. Note that all following design decisions were made to maximize
the performance of ECC Breaker on this particular board.

Design Goals. As Pollard’s rho algorithm is perfectly parallelizeable, the design
goal clearly is to maximize the throughput per (given) area. Note that the speed
(iterations per seconds) of an attack is linearly proportional to the throughput
and inversely proportional to the chip area (more instances per FPGA also
increase the speed). Therefore, the most basic design decision was whether to go
for many small or a single large FPGA design.

Core Idea. In an earlier design, many area-efficient architectures were consid-
ered, each coming with a single F2m multiplier, F2m squarer, and F2m adder per
instance. The main problems of this design were the costly multiplexers and the
low utilization of the hardware. Therefore the design principle of ECC Breaker
is a single, fully unrolled, fully pipelined iteration function. In order to keep all
pipeline stages busy, the number of pipeline stages equals the amount of triples
processed within ECC Breaker.

ECC Breaker versus Related Work. (i) In the current setup, the interface
between ECC Breaker and desktop is a simple, slow, serial interface. This might
be a challenge for related implementations but not for ECC Breaker. The imple-
mented iteration function does not require mechanisms to detect fruitless cycles
or threads and the on-chip distinguished points (triple) storage assures that only
distinguished triples have to be read. (ii) The proposal by Fan et al. [13] to per-
form simultaneous inversion and therefore save some finite-field multipliers was
not picked because their proposal introduces many multiplexers and a complex
control logic, and might not fully utilize the available hardware. (iii) Further,
ECC Breaker stands on its own by coming with prime field Fn arithmetic which
has only a minor impact on the size of the hardware (< 3 %). Additionally, it
proved indispensable during development that processed triples could be easily
verified.
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Fig. 1. Top-level view of ECC breaker on the left. Iteration Function on the right.

Generalization of ECC Breaker. Although the current version of ECC
Breaker is carefully optimized for a 113-bit binary-field Koblitz curve, the under-
lying architecture and design approach is also suitable for larger elliptic curves,
e.g, a 131-bit Koblitz curve. In Section 6, approximations review the expected
runtimes and potential costs to attack such a larger curve.

5.2 The Architecture

The basic architecture of ECC Breaker is presented in Figure 1. The core of
ECC Breaker is a circular, self-sufficient, fully autonomous iteration function.
A (potentially slow) interface is used to write the NextInput register. If the
current stage of the pipeline is not active, the pipeline is fed with the triple
from the NextInput register. This is done until all stages of the pipeline process
data. If a point is distinguished, it is automatically added to the distinguished
point storage (a sufficiently large block RAM). At periodic but time-insensitive
intervals the host computer can read all distinguished points that accumulated
within the storage.

The iteration function itself consists of several components: a point addition
module, a point automorphism module, two Fn adders, two Fn multipliers, two
block-RAM based tables and several block-RAM based FIFOs to care for data-
dependencies.

5.3 ECC Breaker Components

Point addition module. No matter which iteration function is selected, an
affine point addition module is always necessary. In the case of binary Weierstrass
curves, the formulas for a point addition (x3, y3) = (x1, y1) + (x2, y2) are x3 =
µ2 +µ+x1 +x2 +a and y3 = µ(x1 +x3) +x3 +y1, with µ = (y1 +y2)/(x1 +x2).
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Fig. 2. Simplified point addition module.
The grey shaded blocks are without regis-
ters.
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Fig. 3. Point automorphism unit with m
comparator units.

Special cases of points being equivalent, inverse of each other, or the identity are
not handled by the hardware as they are very unlikely to occur in practice.

Figure 2 shows the implemented point addition module which directly maps
the formulas from above. Two F2m multiplier, one F2m inverter, and five FIFOs
are necessary to compute a point addition in 184 cycles. Note that it is not
possible to get rid of the costly inversion as the result of the point addition must
be available in affine coordinates (cf. [26]).

Point automorphism module. In order to speed-up Pollard’s rho algorithm
for Koblitz curves, it is necessary to uniquely map m points from the same
equivalence class to a single point. As ECC Breaker follows Wiener and Zuccher-
ato’s [32] approach of interpreting the field elements as integers and comparing
them, it was necessary to design a module that does m squarings and m compar-
isons as efficiently as possible. This module relies on normal basis representation
and is depicted in Figure 3. It converts x and y into normal basis, finds the
smallest x within the normal basis, rotates y appropriately, and transforms x
and y back into a canonical polynomial representation. As the m exponents of x
(x(2

i)) are computed by simple rewiring (x rotated by i steps), and the smallest
x is found using a binary comparison tree, no canonical F2m squarer is needed.

As optimization, only the t = 70 most significants bits of x are compared.
This means that if two numbers with t equivalent most significant bits are com-
pared, no unique minimum is found. However, the probability for that is only



Solving the Discrete Logarithm of a 113-bit Koblitz Curve 9

2−t. For i =
√

πn
2m iterations and m · i comparisons, the probability for not

selecting the smaller value is only 1− (1− 2−t)m·i = 0.00081 for m = 113.
In respect to the overall design, the point automorphism module requires

14% of all slices and is about 5.6 times smaller than the point addition module
(in terms of slices). The majority of the point automorphism module is the
comparator tree. The basis transformations are fairly cheap and make up only
20% of the point automorphism module.

F2m inverse. An Euclidean-based inversion algorithm is not deterministic and
therefore hard to compute with a pipelined hardware module. Thus, within ECC
Breaker computing the inverse on Fermat’s little theorem, an inversion by ex-
ponentiation. Fortunately, an exponentiation with 2m−2 can be computed very
efficiently using Itoh and Tsujii’s [20] exponentiation trick, needing 112 squarers
and 8 multipliers for m = 113.

F2m normal basis. The advantage of a normal basis is that a squaring is a
simple rotation operation. The disadvantage of a normal basis is that a F2m

multiplication is fairly complex to compute. ECC breaker uses per default a
normal, canonical polynomial representation.

Only within the point automorphism module the normal basis rendered ad-
vantageous. The necessary matrix multiplication for a basis transformation can
be implemented very efficiently. As the matrix is constant, on average m/2 of
the input signals are xored per output signal. Based on the results from Table 2,
666 LUTs are needed per basis transformation.

Experiments show that the normal basis could also reduce the area of the
consecutive squaring units within the F2m inverse. The 14, 28, and 56 squarers
currently need 1 582, 3 164, and 6 328 LUTs, respectively. Doing two basis trans-
formations and a rotation within normal basis would actually save area. Also,
accumulating the two transformation matrices into a single matrix would further
reduce the area. However, as all squarers together only need 11% of all slices and
10% of all LUTs, the potential area improvement is rather limited. Therefore,
contrary to [5, 13], ECC Breaker only uses a normal basis number representation
within the point automorphism module.

F2m multiplier. As in total ten F2m multipliers are needed for the point addi-
tion module and the F2m inversion module, the F2m multipliers have the largest
effect on the area footprint of the ECC Breaker design. For ECC Breaker, the fol-
lowing multiplier designs on a Virtex-6 FPGA were evaluated (post-synthesis):
(i) A simple 113-bit parallel polynomial multiplier needs 5,497 LUTs. (ii) A Mas-
trovito multiplier [24] interprets the F2m multiplication as matrix multiplication
and performs both a polynomial multiplication and the reduction step simulta-
neously. Unfortunately, it needs 7,104 LUTs. A polynomial multiplication and
reduction with the used pentanomial can be implemented much more efficiently.
(iii) Bernstein [7] combines some refined Karatsuba and Toom recursions for his
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Table 2. Hierarchical representation of final hardware design (post place-and-route).

Entity Instances Cycles Registers LUTs Slices

top 1 58,784 62,655 100%
iteration function 1 210 57,332 60,826 98%

point addition 1 184 35,691 43,177 79%
F2m inverse 1 168 29,809 35,126 65%
F2m multiplier 8 7 14,958 28,273 51%
F2m squarer 112 1 12,543 6,325 11%

F2m multiplier 2 7 3,738 7,127 13%
point automorphism 1 16 15,189 14,372 14%

comparator tree 1 7 13,238 10,529 10%
basis transformation 4 1 452 2,664 3%

Fn multiplier 2 26 3,650 2,000 2%
Fn adder 2 9 1,308 1,051 1%

batch binary Edwards multiplier. The code from [8] for a 113-bit polynomial
multiplier needs 4,409 LUTs. (iv) Finally, the best results were achieved with a
slightly modified binary Karatsuba multiplier, described by Rodrıguez-Henrıquez
and Koç [29]. Their recursive algorithm was applied down to a 16×16-bit multi-
plier level, which is synthesized as standard polynomial multiplier. The formulas
for the resulting multiplier structure are given in Appendix B. The design only
requires 3,757 LUTs. At last the design was equipped with several pipeline stages
such that it can be clocked with high frequencies.

Fn multiplier. Computing prime-field multiplications in hardware can be a
troublesome and very resource-intensive task. In the case of a Virtex-6, dedi-
cated DSP slices were used for integer multiplications. As a result, the two Fn
multipliers are very resource efficient and require only 2% of all slices.

6 Results and Transferability of Results

The construction of the current ECC Breaker design was an iterative process
that continuously optimized the speed, the area, and the power consumption of
all components. To make maximal use of the available resources, the available
block RAMs and DSP slices were used whenever possible. Table 2 gives the
number of registers and LUTs needed for all components of a 113-bit Koblitz-
curve ECC Breaker design. The design was synthesized and mapped with Xilinx
ISE 14.6.

ECC Breaker requires (post place-and-route) 47% of all available slices
(17,782/37,680), 41% of all LUTs (62,657/150,720), 19% of all registers
(58,788/301,440), 37% of all DSP macros (290/768), and less than 10% of all
block RAMs. The biggest components are the point addition module and the
F2m inverse module. Although already extensively optimized, the 10 F2m mul-
tipliers require about 64% of all slices. As the place-and-route tool performs
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Table 3. ECC Breaker on different FPGAs (post synthesis).

Series Part Number LUTs of total Registers max Freq. Develop. Price
[MHz] Kit [USD]

Point Addition w/o Automorphism

Virtex-6 XC6VLX240T 57,294 38% 37,060 261 ML605 2,495
Spartan-6 XC6SLX150T 57,686 62% 37,715 147 LX150T 995

Point Addition w/ Automorphism

Virtex-6 XC6VLX240T 86,409 57% 55,881 261 ML605 2,495
Artix-7 XC7A200T 86,478 64% 55,848 264 AC701 999
Virtex-7 XC7VX485T 86,391 28% 55,704 313 VC707 3,495
Kintex-7 XC7K325T 86,391 42% 55,704 313 KC705 1,695

optimizations across module borders, the slice counts of all components are just
approximations.

6.1 ECC Breaker on Different FPGAs

As the VHDL code is portable, the suitability of ECC Breaker was also evaluated
for other Xilinx FPGAs. Although size was a secondary optimization goal, ECC
Breaker has been designed for a particular Virtex-6 FPGA. So it does not come
with surprise that ECC Breaker does only fit into certain FPGAs that come with
certain features. For instance, the used ML605 development board incorporates
a Virtex-6 FPGA that comes with 768 DSPs (of which 290 are used).

An overview of synthesis results on different FPGAs is given in Table 3.
Fortunately, the ECC Breaker design is perfectly suitable for all kind of the lat-
est Xilinx Virtex-7 (targets high performance designs), Kintex-7 (targets best
performance per cost), and Artix-7 (low cost) FPGA devices. The Virtex-7 and
Kintex-7 development boards can even fit multiple ECC Breaker instances. How-
ever, the Kintex-7 KC705 development board fits the most instances per cost.
The prices are taken from www.avnet.com [1], do not contain taxes and do not
contain potential bulk discounts.

Also smaller FPGAs were considered. Especially the Spartan-6 LX150T-
series is of special interest as they are part of SciEngines RIVYERA’s S6-LX150
FPGA cluster [2]. Unfortunately, Spartan-6 FPGAs come with 180 DSPs at
maximum and therefore the LX150T could be only used to attack non-Koblitz
binary-field curves.

6.2 Expected Runtimes

Using the synthesis results from Table 3, several performance approximations
of different elliptic-curve targets were performed (cf. Table 4). Note that the
results are very optimistic as they are post-synthesis, the FPGAs are running
at the maximum frequency, and a single FPGA contains multiple instances of
ECC Breaker.
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Computing a discrete logarithm of a 113-bit Koblitz curve (denoted as
ECC2K-112) can be done in about 3 days, when a cluster of 256 Spartan-6
FPGAs would be available. With the same cluster, it would be possible to at-
tack a 113-bit binary-field curve (denoted as ECC2-112) in 28 days.

The Certicom challenge ECC2K-130 targeted by Bailey et al. [5] and Fan et
al. [13] can be computed in 127 days, assuming a budget of one million USD.
The Certicom challenge ECC2-131 can be computed in 145 days, assuming a
budget of ten million USD. Targeting the smallest standardized NIST curve B-
163 would take 520 years, assuming a budget of one billion USD, which would be
a reasonable budget of certain agencies. However, if there were one billion USD
to be spent, it would be more reasonable to go for a dedicated ASIC design.

7 Lessons Learned

After spending months of research time on continuously improving the ECC
Breaker design, there are some important insights that need to be discussed.

Maximum Achievable Frequency. As ECC Breaker is a fairly complex and
large design, the hardware synthesizer reached its limit when it comes to max-
imum frequency approximations. In most cases, it was only possible to reach a
fraction of the theoretically given frequency after mapping and routing.

Limited by Power Consumption. However, it was not even possible to run
the ML605 development boards at maximum post-map-and-route frequency. An
average power consumption of about 12 Ampere at the internal power supply
resulted in a sporadic emergency switch-off with which the power controller
protected itself. This is rather strange, considering that the internal power supply
is designed to support 20 Ampere. Therefore it was necessary to reduce the clock
frequency further in order to achieve a stable operation. Finally, ECC Breaker
was running at 165 MHz even though the synthesizer approximated a maximum
clock frequency of 275 MHz.

Table 4. Best-case runtimes and costs for different elliptic curves and FPGAs.

Series Target Freq. Inst- FPGAs Costs Iterations exp. Runt.
[MHz] ances [103 USD] [days]

Virtex-6 ECC2K-112 261 1 17 42 8.5 · 1015 22
Spartan-6 ECC2K-112 147 1 256 255 8.5 · 1015 3

Virtex-6 ECC2-112 261 2 17 42 90.3 · 1015 118
Spartan-6 ECC2-112 147 1 256 255 90.3 · 1015 28

Kintex-7 ECC2K-130 313 2 590 1,000 4,055.4 · 1015 127
Kintex-7 ECC2-131 313 2 5,900 10,001 46,239.1 · 1015 145
Kintex-7 ECC2-163 313 1 589,971 1,000,001 3,030.3 · 1021 189,934
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Multiple Instances per FPGA. It was previously mentioned that some FP-
GAs fit multiple ECC Breaker instances. However, it has yet to be tested whether
two ECC Breaker instances per FPGA at lower clock frequency outperform a
single instance, clocked with a higher frequency. Especially under consideration
of the previously discussed routing and power problems, multiple ECC Breaker
instances per FPGA might not be feasible.

Fruitless Cycles. An initial implementation made use of a negation map.
However, the possibility of a fruitless cycle in which Xi+1 = f(Xi) = Xi +
R[j] − R[j] = Xi rendered the hardware implementation with negation map
useless. The probability that a fruitless cycle occurs is p = 1

2·m·r , r being the
number of branches and m the size of the automorphism. The probability to
encounter a fruitless cycle after i iterations is 1− (1−p)i. Given 1,024 branches,
an automorphism of size 113, and a clock rate of 165 MHz, the iteration function
was trapped in a cycle with a probability of 99% after less than one second. It is
subject to future research how to efficiently get rid of the fruitless-cycle problem
in a fully pipelined hardware design.

8 Conclusion

This work presents a circular, self-sufficient, highly pipelined, fully autonomous
hardware design that was used to practically compute the discrete logarithm of a
113-bit Koblitz curve within extrapolated 24 days on mere 18 Virtex-6 FPGAs.
However, because of the scalability and adaptability of ECC Breaker, even more
complex results can be expected. This work will bring the community one step
closer to solving the ECC2K-130 challenge.
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T. Lange, N. Mentens, C. Paar, F. Regazzoni, P. Schwabe, and L. Uhsadel. The
Certicom Challenges ECC2-X. IACR Cryptology ePrint Archive, Report 2009/466,
2009.

5. D. V. Bailey, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos, H.-C. Chen, C.-M.
Cheng, G. van Damme, G. de Meulenaer, L. J. D. Perez, J. Fan, T. Güneysu,
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A Targeted Curve and Target Point Pair Selection

The selection of the curve parameters for a 113-bit Koblitz curve are quite
straightforward. However, to proof that the discrete logarithm was actually com-
puted without knowing it in advance, a point generation function was needed.
The Sage code in Listing 1.1 was used to deterministically and randomly gen-
erate two points with order n. As they are generated randomly, their discrete
logarithm is unknown. Table 5 summarizes the used curve parameters.

Listing 1.1. Fraction of Sage code used to pseudo-randomly generate point targets.

import hashlib

for i in range (0 ,10):

H = hashlib.sha256(str(i))

PX = str_to_poly(H.hexdigest ())

PY = PolynomialRing(K, ’PY’).gen()

ROOTS = (PY^2+PX*PY+PX^3+a*PX^2+b). roots()

if len(ROOTS) > 0:

PY = ROOTS [0][0]

P = E([PX ,PY])

P = P*cofactor

print i, poly_to_str(P[0]), poly_to_str(P[1])



16 Erich Wenger and Paul Wolfger

Table 5. Curve parameters of targeted 113-bit elliptic curve.

m 113
irreducible polynomial x113 + x5 + x3 + x2 + 1
irreducible polynomial 0x2000000000000000000000000002d

elliptic curve E y2 + xy = x3 + ax2 + b
curve parameter a 1
curve parameter b 1
order n 0xfffffffffffffffdbf91af6dea73

cofactor h 2
point P.x 0x0a27644cfced9667d2084f8be061c

point P.y 0x0d5acd887d5585dd75c5d07165699

point Q.x 0x189037f88aed8e32400b16d2b1a6e

point Q.y 0x00e4718fb1e9f50f845ff162ff59c

scalar k such that Q = kP 0x276c233740d817000b80478fde46

B Top level Binary Karatsuba F2113 multiplier formulas.

Algorithm 1 gives the top-level F2113 multiplier formulas. KS64, KS32, and KS16
are 64-bit, 32-bit, and 16-bit binary Karatsuba multipliers, respectively.

Algorithm 1 Calculate c = a× b, with a, b being m-bit binary polynomials.

Input: a, b
Output: c = a× b
1: mab1 ← (a[112..64]⊕ a[63..0])× (b[112..64]⊕ b[63..0]) . KS64
2: cl1 ← a[63..0]× b[63..0] . KS64
3: cl2 ← a[95..64]× b[95..64] . KS32
4: cl3 ← a[111..96]× b[111..96] . KS16
5: mab2 ← (a[95..64]⊕ a[111..96])× (b[95..64]⊕ b[111..96]) . KS32

6: ma3 ← b[112]× a[111..96]
7: mb3 ← a[112]× b[111..96]
8: m3 ← ma3 ⊕mb3

9: c3[32]← a[112]× b[112]
10: c3[30..0]← cl3
11: c3[31..16]← c3[31..16]⊕m3

12: m2 ← mab2 ⊕ cl2 ⊕ c3
13: c2[62..0]← cl2
14: c2[97..64]← c3
15: c2[94..32]← c2[94..32]⊕m2

16: m1 ← mab1 ⊕ cl1 ⊕ c2
17: c[126..0]← cl1
18: c[225..128]← c2
19: c[190..64]← c[190..64]⊕m1


