
Compact VSS and Efficient Homomorphic UC Commitments

Ivan Damgård, Bernardo David, Irene Giacomelli, and Jesper Buus Nielsen?

Dept. of Computer Science, Aarhus University

Abstract. We present a new compact verifiable secret sharing scheme, based on this we present the first construc-
tion of a homomorphic UC commitment scheme that requires only cheap symmetric cryptography, except for a
small number of seed OTs. To commit to a k-bit string, the amortized communication cost is O(k) bits. Assuming
a sufficiently efficient pseudorandom generator, the computational complexity is O(k) for the verifier and O(k1+ε)
for the committer (where ε < 1 is a constant). In an alternative variant of the construction, all complexities are
O(k ·polylog(k)). Our commitment scheme extends to vectors over any finite field and is additively homomorphic.
By sending one extra message, the prover can allow the verifier to also check multiplicative relations on committed
strings, as well as verifying that committed vectors a, b satisfy a = ϕ(b) for a linear function ϕ. These prop-
erties allow us to non-interactively implement any one-sided functionality where only one party has input (this
includes UC secure zero-knowledge proofs of knowledge). We also present a perfectly secure implementation of
any multiparty functionality, based directly on our VSS. The communication required is proportional to a circuit
implementing the functionality, up to a logarithmic factor. For a large natural class of circuits the overhead is even
constant. We also improve earlier results by Ranellucci et al. on the amount of correlated randomness required for
string commitments with individual opening of bits.

1 Introduction

A commitment scheme is perhaps the most basic primitive in cryptographic protocol theory, but is nev-
ertheless very powerful and important both in theory and practice. Intuitively, a commitment scheme is a
digital equivalent of a secure box: it allows a prover P to commit to a secret s by putting it into a locked
box and give it to a verifier V . Since the box is locked, V does not learn s at commitment time, we say the
commitment is hiding. Nevertheless, P can later choose to give V the key to the box to let V learn s. Since
P gave away the box, he cannot change his mind about s after commitment time, we say the commitment is
binding.

Commitment schemes with stand-alone security (i.e., they only have the binding and hiding properties)
can be constructed from any one-way function, and already this most basic form of commitments implies
zero-knowledge proofs for all NP languages. Commitments with stand-alone security can be very efficient
as they can be constructed from cheap symmetric cryptography such as pseudorandom generators [Nao91].

However, in many cases one would like a commitment scheme that composes well with other primitives,
so that it can be used as a secure module that will work no matter which context it is used in. The strongest
form of security we can ask for here is UC security [Can01]. UC commitments cannot be constructed
without set-up assumptions such as a common reference string [CF01]. On the other hand, a construction of
UC commitment in such models implies public-key cryptography [DG03] and even multiparty computation
[CLOS02] (but see [DNO10] for a construction based only on 1-way functions, under a stronger set-up
assumption).

With this in mind, it is not surprising that constructions of UC commitments are significantly less effi-
cient than stand-alone secure commitments. The most efficient UC commitment schemes known so far are
based on the DDH assumption and requires several exponentiations in a large group [Lin11,BCPV13]. This
means that the computational complexity for committing to k-bit strings is typically Ω(k3).
? The authors acknowledge support from the Danish National Research Foundation and The National Science Foundation of China

(under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Computation, within which part of this
work was performed; and also from the CFEM research center (supported by the Danish Strategic Research Council) within
which part of this work was performed. Partially supported by Danish Council for Independent Research via DFF Starting the
European Research Commission Starting Grant 279447.



Our Contribution We first observe that even if we cannot build practical UC commitments without using
public-key technology, we might still confine the use of it to a small once-and-for-all set-up phase. This
is exactly what we achieve: given initial access to a small number of oblivious transfers, we show a UC
secure commitment scheme where the only computation required is pseudorandom bit generation and a few
elementary operations in a finite field. The number of oblivious transfers we need does not depend on the
number of commitments we make later. The main observation we make is that we can reach our goal by
combining the oblivious transfers with a “sufficiently compact” Verifiable Secret Sharing Scheme (VSS)
that we then construct. The VSS has applications on its own as we detail below.

To commit to a k-bit string, the amortized communication cost is O(k) bits. The computational com-
plexity is O(k) for the verifier and O(k1+ε) for the committer (where ε < 1 is a constant). This assumes
a pseudorandom generator with linear overhead per generated bit1. In an alternative variant of the con-
struction, all complexities are O(k · polylog(k)). After the set-up phase is done, the prover can commit by
sending a single string. Our construction extends to commitment to strings over any finite field and is addi-
tively homomorphic, meaning that given commitments to strings a, b, the verifier can on his own compute
a commitment to a + b, and the prover can open it while revealing nothing beyond a + b. Moreover, if
the prover sends one extra string, the verifier can also compute a commitment to a ∗ b, the coordinate-wise
product of a and b. Finally, again by sending one extra string, the prover can allow the verifier to check that
committed vectors a, b satisfy a = ϕ(b) for a linear function ϕ. These extra strings have the same size as a
commitment, up to a constant factor.

On the technical side, we take the work from [FJN+13] as our point of departure. As part of their
protocol for secure 2-party computation, they construct an imperfect scheme (which is not binding for all
commitments). While this is good enough for their application, we show how to combine their scheme with
an efficient VSS that is compact in the sense that it allows to share several values from the underlying field,
while shares only consist of a single field element. This is also known as packed secret sharing [FY92].

Our construction generalises the VSS from [CDM00] to the case of packed secret sharing. We obtain a
VSS where the communication needed is only a constant factor larger than the size of the secret. Privacy for
a VSS usually just says that the secret remains unknown to an unqualified subset of players until the entire
secret is reconstructed. We show an extended form of privacy that may be of independent interest: the secret
in our VSS is a set of ` vectors s1, ..., s`, each of length `. We show that any linear combination of s1, ..., s`
can be (verifiably) opened and players will learn nothing beyond that linear combination. We also build
two new VSS protocols, both of which are non-trivial extensions. The first allows the dealer to generate
several sharings of the value 0`. For an honest dealer, the shares distributed are random even given the extra
verification information an adversary would see during the VSS. This turns out to be crucial in achieving
secure multiplication of secret-shared or committed values. The second new protocol allows us to share two
sets of vectors s1, ..., s` and s̃1, ..., s̃` such that it can be verified that ϕ(s1) = s̃1, . . . , ϕ(s`) = s̃` for a
linear function ϕ. In the commitment scheme, this is what allows us to verify that two shared or committed
vectors satisfy a similar linear relation.

Before we discuss applications, a note on an alternative way to view our commitment scheme: A VSS
is essentially a multiparty commitment scheme. Therefore, given our observation that VSS and OT gives us
efficient UC commitment, it is natural to ask whether our construction could be obtained using “MPC-in-
the-head” techniques. Specifically, the IPS compiler [IPS08] is a general tool that transforms a multiparty
protocol into a 2-party protocol implementing the same functionality in the OT hybrid model. Indeed, ap-

1 This seems a very plausible assumption as a number of different sufficient conditions for such PRG’s are known. In [IKOS08]
it is observed that such PRGs follow Alekhnovich’s variant of the Learning Parity with Noise assumption. Applebaum [App13]
shows that such PRGs can be obtained from the assumption that a natural variant of Goldreich’s candidate for a one-way function
in NC0 is indeed one-way. The improved HILL-style result of Vadhan and Zheng [VZ12] implies that such PRGs can be obtained
from any exponentially strong OWF that can be computed by a linear-size circuit.

2



plying IPS to our VSS does result in a UC commitment protocol. However, while this protocol is somewhat
similar to ours, it is more complicated and less efficient (see Appendix D for more details).

Applications. One easily derived application of our scheme is an implementation of any two-party func-
tionality where only one party has input, we call this a one-sided functionality. This obviously includes UC
secure zero-knowledge proofs of knowledge for any NP relation. Our implementation is based on a Boolean
circuit C computing the desired output.

We will focus on circuits that are not too “oddly shaped”. Concretely, we assume that every layer of the
circuit is Ω(`) gates wide, except perhaps for a constant number of layers. Here one may think of ` as a
statistical security parameter, as well as the number of bits one of our commitments contains. Second, we
want that the number of bits that are output from layer i in the circuit and used in layer j is either 0 or Ω(`)
for all i < j. We call such circuits well-formed. In a nutshell, well-formed circuit are those that allow a
modest amount of parallelization, namely a RAM program computing the circuit can always execute Ω(`)
bit operations in parallel and when storing bits for later use or retrieving, it can always adress Ω(`) bits at a
time. In practice, since we can treat ` as a statistical security parameter, its value can be quite small(e.g., 80),
in particular very small compared to the circuit size, and hence a requirement that the circuit be well-formed
seems rather modest. Using the parallelisation technique from [DIK10], we can evaluate a well-formed
circuit using only parallel operations on `-bit blocks, and a small number of different permutations of bits
inside blocks. This comes at the cost of a log-factor overhead.

Some circuits satisfy an even nicer condition: if we split the bits coming into a layer of C into `-bit
blocks, then each such block can be computed as a linear function of blocks from previous layers, where the
function is determined by the routing of wires in the circuit. Such a function is called a block function. If
each block function depends only on a constant number of previous blocks and if each distinct block function
occurs at least ` times, then C is called regular (we can allow that a constant number of block functions do
not satisfy the condition). For instance, block ciphers and hash functions do not spread the bits around much
in one round, but repeat the same operations over many rounds and hence tend to have regular circuits. Also
many circuits for arithmetic problems have a simple repetitive structure and are therefore regular.

Theorem 1. For any one-sided two-party functionality F that can be computed by Boolean circuit C, there
exists a UC secure non-interactive implementation of F in the OT hybrid model. Assuming C is well-formed
and that there exists a linear overhead PRG, the communication as well as the receiver’s computation is in
O(log(|C|)|C|). If C is regular, the complexities are O(|C|).

We stress that the protocol we build works for any circuit, it will just be less efficient if C is not well-
formed 2. We can also apply our VSS directly to implement multiparty computation in the model where
there are clients who have inputs and get output and servers who help doing the computation.

Theorem 2. For any functionality F taking inputs from a constant number of clients, there exists a UC
perfectly secure implementation of F in the client/server model assuming at most a constant fraction of
the servers and all but one of the clients may be corrupted. If C is well-formed, the total communication
complexity is in O(log(|C|)|C|). If C is regular, the complexity is O(|C|).

We are not aware of any other approach that would allow us to get perfect security and “constant rate”
for regular circuits3.

2 It is possible to use MPC-in-the-head techniques to prove results that have some (but not all) of the properties of Theorem 1.
Essentially one applies the IPS compiler to a multiparty protocol, either a variant of [DI06] (described in [IKOS09]), or the
protocol from [DIK10]. In the first case, the verifier’s computation will be asymptotically larger than in our protocol, in the
second case, one cannot obtain the result for regular circuits since [DIK10] has at least logarithmic overhead for any circuit since
it cannot be based on fields of constant size.

3 Using [DIK10] would give at least logarithmic overhead for any circuit, using variants of [DI06] would at best give statistical
security.

3



A final application comes from the fact that our commitment protocol can be interpreted as an uncon-
ditionally secure protocol in the model where correlated randomness is given. In this model, it was shown
in [RTWW11] that any unconditionally secure protocol that allows commitment to N bits where each bit
can be individually opened, must use Ω(Nk) bits of correlated randomness, where k the security parameter.
They also show a positive result that partially circumvents this lower bound by considering a functionality
FN,rcom that allows commitment to N bits where only r < N bits can be selectively and individually opened.
When r is O(1), they implement this functionality at constant rate, i.e., the protocol requires only O(1) bits
of correlated randomness per bit committed to. We can improve this as follows:

Theorem 3. There exists a constant-rate statistically secure implementation of FN,rcom in the correlated ran-
domness model, where r ∈ O(N1−ε) for any ε > 0.

We find it quite surprising that r can be “almost” N , and still the lower bound for individual opening does
not apply. What the actual cut-off point is remains an intriguing open question.

Related Work In [DIK+08], a VSS was constructed that is also based on packed secret sharing (using
Shamir as the underlying scheme). This construction relies crucially on hyper invertible matrices which
requires the field to grow with the number of players. Our construction works for any field, including F2.
This would not be so important if we only wanted to commit and reveal bits: we could use [DIK+08] with
an extension field, pack more bits into a field element and still get constant communication overhead, but
we want to do (Boolean) operations on committed bits, and then “bit-packing” will not work. It therefore
seems necessary to construct a more compact VSS in order to get our results. In [BBDK00], techniques
for computing functions of shared secrets using both broadcast channels and private interactive evaluation
are introduced. However, their constructions are based specifically on Shamir’s LSSS and do not allow
verification of share validity.

In recent independent work [GIKW14], Garay et al. also construct UC commitments using OT, VSS and
pseudorandom generators as the main ingredients. While the basic approach is closely related to ours, the
concrete constructions are somewhat different, leading to incomparable results. In [GIKW14] optimal rate
is achieved, as well as a negative result on extension of UC commitments. On the other hand, we focus more
on computational complexity and achieve homomorphic properties as well as non-interactive verification of
linear relations inside committed vectors4.

2 Preliminaries

In this section we introduce the basic definitions and notation that will be used throughout the paper. We
denote sampling a value r from a distribution D as r ← D. We say that a function ε is negligible if there
exists a constant c such that ε(n) < 1

p(n) for every polynomial p and n > c. Two sequences X = {Xκ}κ∈N
and Y = {Yκ}κ∈N of random variables are said to be computationally indistinguishable, denoted by X

c
≈

Y , if for every non-uniform probabilistic polynomial-time (PPT ) distinguisher D there exists a negligible
function ε(·) such that for every κ ∈ N, | Pr[D(Xκ) = 1] − Pr[D(Yκ) = 1] |< ε(κ). Similarly two
sequences X and Y of random variables are said to be statistically indistinguishable, denoted by X

s
≈ Y , if

the same relation holds for unbounded non-uniform distinguishers.

2.1 Universal Composability

The results presented in this paper are proven secure in the Universal Composability (UC) framework intro-
duced by Canetti in [Can01]. We consider security against static adversaries, i.e. all corruptions take place

4 Our work has been recognised by the authors of [GIKW14] as being independent.

4



Functionality FHCOM

FHCOM proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

– Commit Phase: Upon receiving a message (commit, sid, ssid, Ps, Pr,m) from Ps, where m ∈ {0, 1}λ, record the
tuple (ssid, Ps, Pr,m) and send the message (receipt, sid, ssid, Ps, Pr) to Pr and S. (The lengths of the strings λ is
fixed and known to all parties.) Ignore any future commit messages with the same ssid from Ps to Pr . If a message
(abort, sid, ssid) is received from S, the functionality halts.

– Reveal Phase: Upon receiving a message (reveal, sid, ssid) from Ps: If a tuple (ssid, Ps, Pr,m) was previously
recorded, then send the message (reveal, sid, ssid, Ps, Pr,m) to Pr and S. Otherwise, ignore.

– Addition: Upon receiving a message (add, sid, ssid, Ps, ssid1, ssid2, ssid3) from Pr: If tuples (ssid1, Ps, Pr,m1),
(ssid2, Ps, Pr,m2) were previously recorded and ssid3 is unused, record (ssid3, Ps, Pr,m1 + m2) and send the
message (add, sid, ssid, Ps, ssid1, ssid2, ssid3, success) to Ps, Pr and S.

– Multiplication: Upon receiving a message (mult, sid, ssid, Ps, ssid1, ssid2, ssid3) from Pr: If tuples
(ssid1, Ps, Pr,m1), (ssid2, Ps, Pr,m2) and (ssid3, Ps, Pr,m3) were previously recorded, and if m3 = m1 ∗m2,
send the message (mult, sid, ssid, Ps, ssid1, ssid2, ssid3, success) to Ps, Pr and S. Otherwise, send message
(mult, sid, ssid, Ps, ssid1, ssid2, ssid3, fail) to Ps, Pr and S.

– Linear Function Evaluation: Upon receiving a message (linear, sid, ssid, Ps, ϕ, ssid1, ssid2), where ϕ is a lin-
ear function, from Ps: If the tuple (ssid1, Ps, Pr,m1) was previously recorded and ssid2 is unused, store
(ssid2, Ps, Pr, ϕ(m1)) and send (mult, sid, ssid, Ps, ssid1, ssid2, success) to Ps, Pr and S.

Fig. 1. Functionality FHCOM

Functionality F t,nOT

F t,nOT interacts with a sender Ps, a receiver Pr and an adversary S.

– Upon receiving a message (sender, sid, ssid, x0, . . . , xn) from Ps, where each xi ∈ {0, 1}λ , store the tuple
(ssid, x0, . . . , xn) (The lengths of the strings λ is fixed and known to all parties). Ignore further messages from Ps
to Pr with the same ssid.

– Upon receiving a message (receiver, sid, ssid, c1, . . . , ct) from Pr , check if a tuple (ssid, x0, . . . , xn) was recorded. If
yes, send (received, sid, ssid, xc1 , . . . , xct) to Pr and (received, sid, ssid) to Ps and halt. If not, send nothing to Pr
(but continue running).

Fig. 2. Functionality F t,nOT

befor the execution of the protocol. We consider active adversaries who may deviate from the protocol in
any arbitrary way. It is known that UC commitments cannot be obtained in the plain model [CF01]. In order
to overcome this impossibility, our protocol is proven secure in the FOT -hybrid model in, where all parties
are assumed to have access to an ideal 1-out-of-2 OT functionality. In fact, our protocol is constructed in the
F t,nOT -hybrid model (i.e. assuming access to t-out-of-n OT), which can be subsequently reduced to the FOT -
hybrid model via standard techniques for obtaining F t,nOT from FOT [Nao91,BCR86,NP99]. We denote by
or F t,nOT (λ) an instance of the functionality that takes as input from the sender messages in {0, 1}λ. Notice
that FOT can be efficiently UC-realized by the protocols in [PVW08], which can be used to instantiate our
commitment protocol. We define our commitment functionality FHCOM in Figure 1 and F t,nOT in Figure 2,
further definitions can be found in Appendix A.

2.2 Linear Secret Sharing

In very short terms, a linear secret sharing scheme is a secret sharing scheme defined over a finite field F,
where the shares are computed as a linear function of the secret (consisting of one or more field elements)
and some random field elements. A special case is Shamir’s well known scheme. However, we need a more
general model for our purposes. We follow the approach from [CDP12] and recall the definitions we need
from their model.

5



Definition 1. A linear secret sharing scheme S over the finite field F is defined by the following parameters:
number of players n, secret length `, randomness length e, privacy threshold t and reconstruction threshold
r. Also, a n×(`+e) matrixM over F is given and S must have r-reconstruction and t-privacy as explained
below. If l > 1, then S is called a packed linear secret sharing scheme.

Let d = `+ e and let P = {P1, . . . , Pn} be the set of players, then the row number i of M , denoted by
mi, is assigned to player Pi. If A is a player subset, then MA denotes the matrix consisting of rows from M
assigned to players in A.

To share a secret s ∈ F`, one first forms a column vector f ∈ Fd where s appears in the first ` entries
and with the last e entries chosen uniformly at random. The share vector of s in the scheme S is computed
as c = M · f and its i-th component c[i] is the share given to the player Pi. We will use π` to denote the
projection that outputs the first ` coordinates of a vector, i.e. π`(f) = s.

Now, t-privacy means that for any player subset A of size at most t, the distribution of MA · f is
independent of s. It is easy to see that this is the case if and only if there exists, for each position j in s, a
sweeping vector wA,j . This is a column vector of d components such that MA ·wA,j = 0 and π`(wA,j) is
a vector whose j-th entry is 1 while all other entries are 0.

Finally, r-reconstruction means that for any player subset B of size at least r, s is uniquely determined
from MB · f . It is easy to see that this is the case if and only if there exists, for each position j in s, a
reconstruction vector rB,j . This is a row vector of |B| components such that for any f ∈ Fd, rB,j ·MB ·f =
f [j], where f [j] is the j-th entry in f .

A packed secret sharing scheme was constructed in Franklin and Yung [FY92]. However, to get our re-
sults, we will need a scheme that works over constant size fields, such an example can be found in [CDP12].

Multiplying shares: for v,w ∈ Fk, where v ⊗i w = (v[i]w[j])j 6=i, the vector v ⊗ w ∈ Fk2 is defined
by v⊗w = (v[1]w[1], . . . ,v[k]w[k],v ⊗1 w, . . . ,v ⊗k w). If M is the matrix of the linear secret sharing
scheme S , we can define a new scheme Ŝ considering the matrix M̂ , whose i-th row is the vectormi⊗mi.
Clearly M̂ has n rows and d2 columns and for any f1,f2 ∈ Fd it holds that

(
M · f1

)
∗
(
M · f2

)
=

M̂ ·
(
f1 ⊗ f2

)
where ∗ is just the Schur product (or componentwise product). Note that if t is the privacy

threshold of S, then the scheme Ŝ also has the t-privacy property. But in general it does not hold that the Ŝ
has r-reconstruction. However, suppose that Ŝ has (n− t)-reconstruction, then S is said to have the t-strong
multiplication property.

In particular, if S has the t-strong multiplication property, then for any player set A of size at least n− t
and for any index j = 1, . . . , ` there exists a row vector r̂A,j such that r̂A,j ·

[(
MA · f1

)
∗
(
MA · f2

)]
=

s1[j]s2[j] for any s1, s2 ∈ F`.

3 Packed Verifiable Secret-Sharing

In a Verifiable Secret-Sharing scheme (VSS) a dealer distributes shares of a secret to the players in P in
such a way that the honest players are guaranteed to get consistent shares of a well-defined secret or agree
that the dealer cheated. In this section we present a packed verifiable secret sharing protocol that generalizes
and combines the ideas of packed secret sharing from [FY92] and VSS based on polynomials in 2 variables
from [BOGW88]. The protocol is not a full-blown VSS, as it aborts as soon as anyone complains, but this
is all we need for our results. The proofs for all lemmas in this section can be found in Appendix B.

The protocol can be based on any linear secret-sharing scheme S over F as defined in Section 2. We
assume an active adversary who corrupts t players and possibly the dealer, and we assume that at least r
players are honest. The protocol will secret-share ` column vectors s1, . . . , s` ∈ F`. In the following, F will
be a d × d matrix with entries in F and for 1 ≤ i ≤ n we will define hi = F ·m>i and gi = mi · F . It is

6



then clear that mj · hi = gj ·m>i for 1 ≤ i, j ≤ n. We will use f b to denote the b-th column of F . The
protocol is shown in Figure 3.

Packed Verifiable Secret-Sharing Protocol πV SS

1. Let s1, . . . , s` ∈ F` be the secrets to be shared. The dealer chooses a random d × d matrix F with entries in F, subject
to π`(f b) = sb for any b = 1, . . . , `.

2. The dealer sends hi and gi to Pi.
3. Each player Pj sends gj ·m>

i to Pi, for i = 1, . . . , n.
4. Each Pi checks, for j = 1, . . . , n, that mj · hi equals the value received from Pj . He broadcasts Accept if all checks

are OK, otherwise he broadcasts Reject.
5. If all players said Accept, then each Pj stores, for b = 1, . . . , `, gj [b] as his share of sb, otherwise the protocol aborts.

Fig. 3. The VSS protocol

For a column vector v ∈ Fd, we will say that v shares s ∈ F`, if π`(v) = s and each honest player
Pj holds mj · v. In other words, c = M · v forms a share vector of s in exactly the way we defined in the
previous section. We now show some basic facts about πV SS :

Lemma 1 (completeness). If the dealer in πV SS is honest, then all honest players accept and the column
vector f b shares sb for any b = 1, . . . , `.

Lemma 2 (soundness). If the dealer in πV SS is corrupt, but no player rejects, then for b = 1, . . . , `, there
exists a column vector vb and a bit string sb such that vb shares sb.5

Finally we need to show privacy. For VSS protocols this is normally just a result saying that if the dealer
is honest, then the shares held by corrupt players have distribution independent of the secrets, the sb’s.
However, we need in the following a more elaborate result saying that if we open any linear function of sb’s,
then no further information on the sb’s is released.

To be more precise about this, assume T : F` 7→ F`′ , where `′ ≤ `, is a surjective linear function. By
T (s1, . . . , s`), we mean a tuple (u1, . . . ,u`

′
) of column vectors in F` s.t. ub[a] = T (s1[a], . . . , s`[a])[b].

Put differently, if we arrange the column vectors s1, . . . , s` in a ` × ` matrix, then what happens is that we
apply T to each row, and let the ub’s be the columns in the resulting matrix. In a completely similar way, we
define a tuple of `′ column vectors of length d by the formula T (f1, . . . ,f `) = (w1, . . . ,w`′). It is easy to
see that if f1, . . . ,f ` share s1, . . . , s`, thenw1, . . . ,w`′ share u1, . . . ,u`

′
, since the players can apply T to

the shares they received in the first place, to get shares of u1, . . . ,u`
′
. In the following we will abbreviate

and use T (F ) to denote T (f1, . . . ,f `).
Now, by opening T (s1, . . . , s`), we mean that the (honest) dealer makes T (F ) public, which allows

anyone to compute T (s1, . . . , s`). We want to show that, in general, if T (s1, . . . , s`) is opened, then the
adversary learns T (s1, . . . , s`) and no more information about s1, . . . , s`. This is captured by Lemma 3.
Suppose that A = {Pi1 , . . . , Pit} is a set of players corrupted by the adversary.

Lemma 3 (privacy). Suppose the dealer in πV SS is honest. Now, in case 1 suppose he executes πV SS with
input s1, . . . , s` and then opens T (s1, . . . , s`). In case 2, he executes πV SS with input s̃1, . . . , s̃` and then
opens T (s̃1, . . . , s̃`). If T (s1, . . . , s`) = T (s̃1, . . . , s̃`), then the views of the adversary in the two cases are
identically distributed.

As the last step, we show an extra randomness property satisfied by the share vectors obtained by Pro-
tocol πV SS . If C is a a × b matrix, define π`(C) as the a × ` matrix given by the first ` columns of C
and π`(C) as the ` × b matrix given by the first ` rows of C. Note that, if V is a d × ` matrix such that

5 Recall that this just means that π`(vb) = sb and secret sharing with vb produces the shares held by the honest parties in the
protocol, i.e., (Mvb)[j] = gj [b] for all honest Pj .

7



π`(V ) = (s1, . . . , s`), then the dealer might have chosen V as the first ` columns in his matrix F . We want
to show that given the adversary’s view, any V could have been chosen, as long as it is consistent with the
adversary’s shares of s1, . . . , s`.

Lemma 4 (randomness of the share vectors). Suppose that the dealer in πV SS is honest and let A =
{Pi1 , . . . , Pit} be a set of players corrupted by the adversary. If we define GA as the matrix whose j-th row
is gij , then all the d × ` matrices V such that π`(V ) = (s1, . . . , s`) and MA · V = π`(GA) are equally
likely, even given the adversary’s entire view.

For the applications of πV SS that we will show in Section 5, we will required some new specialized
forms of πV SS , whose details are given in the following two sections.

3.1 Apply a linear map to all the secrets

Let ϕ : F` → F` be a linear function. Suppose that the dealer executes two correlated instances of Protocol
πV SS in the following way: first the dealer executes πV SS with input s1, . . . , s` choosing matrix F in step
1, later on, he executes πV SS with input ϕ(s1), . . . , ϕ(s`) under the condition that the matrix chosen for the
second instance, Fϕ, satisfies π`(fϕ,i) = ϕ(π`(f

i)) for i = 1, . . . , d. The dealer sends to Pi vectors hi and
gi and also the vectors hϕ,i = Fϕ ·m>i , gϕ,i = mi · Fϕ. The protocol is shown in figure 4.

Packed Verifiable Secret-Sharing Protocol for ϕ, πϕV SS

1. Let s1, . . . , s` ∈ F` be the secrets to be shared. The dealer chooses two random d × d matrices F , Fϕ subject to
π`(f

b) = sb for any b = 1, . . . , ` and π`(fϕ,i) = ϕ(π`(f
i)) for any i = 1, . . . , d.

2. The dealer sends hi, gi, hϕ,i and gϕ,i to Pi.
3. Each player Pj sends gj ·m>

i and gϕ,j ·m>
i to Pi, for i = 1, . . . , n.

4. Each Pi checks, for j = 1, . . . , n, that mj · hi and mj · hϕ,i are equal to the values received from Pj and also that
π`(h̃

i
) = ϕ

(
π`(h

i)
)
. He broadcasts Accept if all checks are OK, otherwise he broadcasts Reject.

5. If all players said Accept, then each Pj stores, for b = 1, . . . , `, gj [b] and gϕ,j [b] as his share respectively of sb and
ϕ(sb), otherwise the protocol aborts.

Fig. 4. The VSS protocol for ϕ

The completeness of the πϕV SS protocol is trivial to prove. Moreover we will show we the following
lemma 5 and 6, that also the properties of soundness and privacy are still valid for the πϕV SS protocol.

Lemma 5. If the dealer in πϕV SS is corrupt, but no player rejects, then for any b = 1, . . . , ` there exist
column vectors vb, vϕ,b and sb, sϕ,b such that vb shares sb, vϕ,b shares sϕ,b and ϕ

(
sb
)

= sϕ,b.

Lemma 6. Suppose the dealer in πϕV SS is honest. Now, in case 1 suppose the dealer executes πϕV SS with
input s1, . . . , s` and in case 2, he executes πϕV SS with input s̃1, . . . , s̃`. Let A = {Pi1 , . . . , Pit} be a set of
players corrupted by the adversary, then the adversary’s view in the two cases are identically distributed.

Finally we show the randomness property satisfied by the pair of share vectors of si, ϕ(si) obtained by
the πϕV SS protocol.

Lemma 7. Suppose that the dealer in πϕV SS is honest and let A = {Pi1 , . . . , Pit} be a set of players
corrupted by the adversary. If we define GA as the matrix whose j-th row is gij and Gϕ,A as the matrix
whose jth column is gϕ,ij , then all the pairs of d × ` matrices (V, Vϕ) such that π`(V ) = (s1, . . . , s`),
π`(Vϕ) = (ϕ(s1), . . . , ϕ(s`)), MA · V = π`(GA) and MA · Vϕ = π`(Gϕ,A) are equally likely, even given
the adversary’s entire view.

8



3.2 Sharing zero

We are interested in modifying Protocol πV SS in order to share several times just the vector 0, i.e. the all
zeros vector. Suppose that the d×d random matrix F chosen by the dealer has the first ` rows equal to zero.
Let R be the e× d matrix formed by the last e rows of F , then

hi = F ·m>i =
(

0, . . . , 0, R ·m>i
)>

gi = mi · F = (mi[`+ 1], . . . ,mi[d]) ·R

Given the special form of the vectors hi, the players can check not only that the shares are consistent, but
also that they are consistent with 0. Define h0,i =

(
R ·m>i

)>, m0,i = (mi[`+ 1], . . . ,mi[d]) and M0,A

as the matrix whose rows are the vectorsm0,i with Pi ∈ A. The protocol in this case is shown in Figure 5.

Packed Verifiable Secret-Sharing Protocol for 0’s π0
V SS

1. The dealer chooses a random e× d matrix R with entries in F,
2. The dealer sends h0,i and gi to Pi.
3. Each player Pj sends gj ·m>

i to Pi, for i = 1, . . . , n.
4. Each Pi checks that for j = 1, . . . , n, m0,j ·h0,i equals the value received from Pj . He broadcasts Accept if all checks

are OK, otherwise he broadcasts Reject.
5. If all players saidAccept, then each Pj stores, for b = 1, . . . , `, gj [b] as his b-th share of 0, otherwise the protocol aborts.

Fig. 5. The VSS protocol for 0’s

Again the completeness of Protocol π0V SS is trivial. We will show the soundness property in Lemma 8,
while privacy is not required in this special case.

Lemma 8. If the dealer in π0V SS is corrupt, but no player rejects, then there exist column vectors v1, . . . ,v`

each of which shares 0 ∈ F`.

Finally we show that the randomness property that is satisfied by the share vectors obtained in Protocol
πV SS is also satisfied by the share vectors of 0 obtained by Protocol π0V SS .

Lemma 9. Suppose that the dealer is honest and he executes Protocol π0V SS . Let A = {Pi1 , . . . , Pit} be a
set of players corrupted by the adversary and define GA as the matrix whose j-th row is gij , then all the
e× ` matrices V such that M0,A · V = π`(GA) are equally likely, even given the adversary’s entire view.

4 Low Overhead UC Commitments

In this section we introduce our construction of UC commitments with low overhead. A main ingredient will
be the n-player VSS scheme from the previous section. We will use n as the security parameter. We will
assume throughout that the underlying linear secret sharing scheme S is such that the parameters t and r
are Θ(n), and furthermore that S has t-strong multiplication. We will call such an S a commitment-friendly
linear secret sharing scheme.

The protocol first does a set-up phase where the sender executes the VSS scheme “in his head”, where
the secrets are random strings r1, . . . , r`. The VSS is secure against t corrupted players. Next, he chooses
n seeds x1, . . . , xn for a pseudorandom generator G, and F t,nOT is used to transfer a subset of t seeds to
the verifier. Finally, the sender sends the view of each virtual VSS player to the receiver, encrypted with
G(x1), . . . , G(xn) as “one-time pads”. Note that the receiver can decrypt t of these views and check that
they are consistent, and also he now knows t shares of each ri.

9



To commit tom ∈ {0, 1}`, the sender picks the next unused secret rη and sendsm+ rη.
To open, the sender reveals m and the vector fη (from the VSS) that shares rη. The receiver can now

compute all shares of rη and check that they match those he already knows.
Intuitively, this is binding because the sender does not know which VSS players the receiver can watch.

This means that the sender must make consistent views for most players, or be rejected immediately. But if
most views are consistent, then the (partially encrypted) set of shares of rη that was sent during set-up is
almost completely consistent. Since the reconstruction threshold is smaller than n by a constant factor this
means that the prover must change many shares to move to a different secret, and the receiver will notice
this with high probability, again because the sender does not know which shares are already known to the
receiver.

Hiding follows quite easily from security of the PRG G and privacy of the VSS scheme, since the
receiver only gets t shares of any secret.

The Commit and Reveal phases of protocol πHCOM are described in Figure 6 while the necessary steps
for addition, multiplication and linear function evaluation are described separately in Section 5 for the sake
of clarity.

The proof of the following theorem can be found in the appendix.

Theorem 4. LetG : {0, 1}`PRG → {0, 1}2(`+e) be a pseudrandom generator and let πV SS be a packed ver-
ifiable secret sharing scheme as described in Section 3 with parameters (M, r, t), based on a commitment-
friendly secret sharing scheme. Then protocol πHCOM UC-realizes FHCOM in the F t,nOT (`PRG)-hybrid
model in the presence of static, active adversaries.

Complexity It is evident that in the set-up phase, or later, Ps could execute any number of instances of
the VSS and send the resulting views of players encrypted with the seeds {xi}, as long as we have a PRG
with sufficient stretch. This way we can accommodate as many commitments as we want, while only using
the OT-functionality once6. Therefore, the amortised cost of a commitment is essentially only what we pay
after the OT has been done. We now consider what the cost will be per committed bit in communication
and computation. Using the linear secret sharing scheme from [CDP12], we can get a commitment friendly
secret sharing scheme over a constant size field, so this means that the communication overhead is constant.

As for computation, under plausible complexity assumptions, there exists a PRG where we pay only a
constant number of elementary bit operations per output bit (see, e.g., [VZ12]), so the cost of computing the
PRG adds only a constant factor overhead for both parties. As for the computation of Pr, let us consider the
set-up phase first. Let C be the set of players watched by Pr, and let GC , HC be matrices where we collect
the hi and gj’s they have been assigned. Then what Pr wants to check is thatMCHC = GCM

>
C . In [DZ13],

a probabilistic method is described for checking such a relation that has complexity O(n2) field operations
and fails with only negligible probability. This therefore also adds only a constant factor overhead because
one VSS instance allows commitment to `2 bits which is Θ(n2). Finally, in the reveal phase Pr computes
Mfη and verifies a few coordinates. If one can check Θ(n) such commitments simultaneously, the same
trick from [DZ13] can be used, and we get an overall constant factor overhead for Pr. We note that checking
many commitments in one go is exactly what we need for the application to non-interactive proofs we
describe later.

For Ps, using the scheme from [CDP12], there is no way around doing standard matrix products which
can be done in O(n2+σ) complexity for σ < 1. This gives us overhead nσ per committed bit.

6 It is not hard to see that since a corrupt Ps looses as soon as Pr sees a single inconsistency, Ps cannot get any advantage from
executing a VSS after other commitments have been done.

10



Protocol πHCOM in the F t,nOT (`PRG)-hybrid model

Let G : {0, 1}`PRG → {0, 1}2(`+e) be a pseudorandom generator and let πV SS be a packed verifiable secret sharing scheme
as described in Section 3 with parameters (M, r, t) based on a commitment-friendly linear secret sharing scheme. A sender
Ps and a receiver Pr interact between themselves and with F t,nOT (`PRG) as follows:

Setup Phase: At the beginning of the protocol Ps and Pr perform the following steps and then wait for inputs.

1. For i = 1, . . . , n, Ps uniformly samples a random string xi ∈ {0, 1}`PRG . Ps sends (sender, sid, ssid, x1, . . . , xn) to
F t,nOT (`PRG).

2. Pr uniformly samples a set of t indexes c1, . . . , ct ← [1, n] and sends (receiver, sid, ssid, c1, . . . , ct) to F t,nOT .
3. Upon receiving (received, sid, ssid) from F t,nOT , Ps uniformly samples n random strings ri ← {0, 1}`, i = 1, . . . , `

and internally runs πV SS using r1, . . . , rn as input, constructing n strings ((hi)>, gi), i = 1, . . . , n of length

2(` + e) from the vectors generated by πV SS . Ps computes ((h̃
i
)>, g̃i) = ((hi)>, gi) + G(xi) and sends

(sid, ssid, ((h̃
1
)>, g̃1), . . . , ((h̃

n
)>, g̃n)) to Pr .

4. Upon receiving (received, sid, ssid, xc1 , . . . , xct) from F t,nOT and (sid, ssid, ((h̃
1
)>, g̃1), . . . , ((h̃

n
)>, g̃n)) from Ps,

Pr computes ((hcj )>, gcj ) = ((h̃
cj
)>, g̃cj ) − G(xcj ), 1 ≤ j ≤ t and uses the procedures of πV SS to check that the

shares gc1 , . . . , gct are valid, i.e. it checks that mj · hi = gj ·m>
i for i, j ∈ {c1, . . . , ct}. If all shares are valid Pr

stores (ssid, sid, ((hc1)>, gc1), . . . , ((h
ct)>, gct)), otherwise it halts.

Commit Phase:

1. Upon input (commit, sid, ssid, Ps, Pr,m), Ps chooses an unused random string rη
a, computes m̃ = m + rη and

sends (sid, ssid, η, m̃) to Pr .
2. Pr stores (sid, ssid, m̃) and outputs (receipt, sid, ssid, Ps, Pr).

Reveal Phase:

1. Upon input (reveal, sid, ssid, Ps, Pr), to reveal a message m, Ps reveals the random string rη by sending
(sid, ssid,m,fη) to Pr .b

2. Pr receives (sid, ssid, η,m,fη), computes Mfη = (g1[η], . . . , gn[η])
>, checks that gj [η] = gj [η] for j ∈

{c1, . . . , ct} and that m = m̃ − rη . If the shares pass this check, Pr outputs (reveal, sid, ssid, Ps, Pr,m). Other-
wise, it rejects the commitment and halts.

a We say that a string rη is unused if it has not been selected by Ps for use in any previous commitment.
b Recall that fη denotes the η-th column of F , π`(fη) = rη and that Mfη = (g1[η], . . . , gn[η])

>, i.e. fη determines the
shares of rη generated in the setup phase.

Fig. 6. Protocol πHCOM in the F t,nOT (`PRG)-hybrid model

Finally, if we use instead standard packed secret sharing based on polynomials, the field size must be
linear in n, but on the other hand we can use FFT algorithms in our computations. This gives a poly-
logarithmic overhead for both players in communication and computation.

5 Homomorphic Properties

In this section, we show how to implement the add, multiply and linear function commands in FHCOM. As
before, we assume a commitment-friendly linear secret sharing scheme S .

We first need some notation: consider a single commitment as we defined it in the previous section and
note that the data pertaining to that commitment consists of a vector f and the committed value m held by
Ps, whereas Pr holds m + π`(f) as well as a subset of the coordinates of Mf . We will refer to the vector
m+ π`(f) as the message field of the commitment.

We will use comS(m,f) as a shorthand for all this data, where the subscript S refers to the fact that the
matrix M of S defines the relation between the data of Ps and that of Pr. Whenever we write comS(m,f),
this should also be understood as stating that the players in fact hold the corresponding data.

11



The expression comS(m,f) + comS(m′,f ′) means that both players add the corresponding vectors
that they hold of the two commitments, and store the result. It is easy to see that we have

comS(m,f) + comS(m′,f ′) = comS(m+m′,f + f ′)

Furthermore, comS(m,f) ∗ comS(m′,f ′) means that the players compute the coordinate-wise product of
corresponding vectors they hold and store the result. We have

comS(m,f) ∗ comS(m′,f ′) = comŜ(m ∗m′,f ⊗ f ′)

Note that Ŝ appears in the last term. Recall that the coordinates of f ⊗ f ′ are ordered such that indeed the
vector π`(f) ∗ π`(f ′) appears in the first ` coordinates of f ⊗ f ′.

Now, in order to support the additional commands, we will augment the set-up phase of the protocol:
in addition to πV SS , Ps will execute π0V SS and πϕV SS . For π0V SS we use Ŝ as the underlying linear secret
sharing scheme, where the other VSS schemes use S. Furthermore, we need an instance of πϕV SS for each
linear function ϕ we want to support. As before, all the views of the virtual players are sent to Pr encrypted
under the seeds xi. Pr checks consistency of the views as well as the special conditions that honest players
check in π0V SS and πϕV SS .

Note that if one instance of πV SS has been executed, this allows us to extract data for ` commitments.
Likewise, an execution of π0V SS allows us to extract ` commitments of form comŜ(0`,u) for a random u,
where by default we set the message field to 0. Finally, having executed πϕV SS , we can extract ` pairs of
form comS(r,f r), comS(ϕ(r),f ′r) where r is random such that r = π`(f r) and ϕ(r) = π`(f

′
r). Again,

for these commitments we set the message field to 0. The protocols are shown in Figure 7.

Generalizations In the basic case we are committing to bit strings, and we note that we can trivially get
negation of bits using the operations we already have: Given comS(m,f), Ps commits to 1` so we have
comS(1`,f ′), we output comS(m,f) + comS(1`,f ′) and Ps opens comS(1`,f ′) to reveal 1`.

If we do the protocol over a larger field than F2, it makes sense to also consider multiplication of a
commitment by a public constant. This is trivial to implement, both parties simply multiply their respective
vectors by the constant.

Protocols for addition, multiplication and linear operations

Setup Phase: Is augmented by executions of π0
V SS and πϕV SS as described in the text. Throughout, opening a commitment

comS(m,f) means that Ps sends m,f and Pr verifies, as in πHCOM .
Addition: Given commitments comS(m,f), comS(m

′,f ′), output

comS(m,f) + comS(m
′,f ′) = comS(m+m′,f + f ′).

Multiplication: Given commitments comS(a,fa), comS(b,f b), and comS(c,fc) extract the next unused commitment
from π0

V SS , comŜ(0
`,u). Form a default commitment comS(1

`,f1), where π`f1 = 1` and the other coordinates are 0.
This can be done by only local computation. Ps opens the following commitment to reveal 0`:

comS(a,fa) ∗ comS(b,f b)− comS(c,fc) ∗ comS(1
`,f1) + comŜ(0

`,u) = comŜ(a ∗ b− c,fa ⊗ f b − fc ⊗ f1 +u)

Linear Function Given commitment comS(m,f), extract from πϕV SS the next unused pair comS(r,fr), comS(ϕ(r),f
′
r).

Ps opens comS(m,f) − comS(r,fr) to reveal m − r. Both parties compute ϕ(m − r) and form a vector v such that
π`(v) = ϕ(m− r) and the rest of the entries are 0. Output

comS(ϕ(r),f
′
r) + comS(ϕ(m− r),v) = comS(ϕ(m),f ′

r + v)

Fig. 7. Protocol for homomorphic operations on commitments.

12



Proof intution The protocol in Figure 7 can be proven secure by essentially the same techniques we used for
the basic commitment protocol, but we need in addition the specific properties of πV SS , π0V SS and πϕV SS .
First of all, it is clear that in the case when the sender is corrupted and the receiver is honest, a simulator
for this protocol can extract the messages (and share vectors) in the commitments by following the same
procedure as the simulator for the basic commitment protocol. The specific properties of the VSS protocols
πV SS , π0V SS and πϕV SS come into play when constructing a simulator for the case when the sender is honest
and the receiver is corrupted.

In the protocol for computing the addition of two commitments, the simulator for a corrupted sender can
simply use the same procedure as in the case of the commitment protocol for extracting the messagesm,m′

and proceed using this information. Security then follows from the same arguments as before. In the case
when the receiver is corrupted, the simulator can also proceed as the commitment protocol simulator, i.e.
by committing to random messages and then generating a valid opening to the real messages received from
FHCOM. However, in this case, security follows from Lemma 3, which shows that we can construct a vector
f̂ corresponding to an arbitrary linear function of f and f ′ such that the components of M f̂ checked by the
corrupted receiver are the same as the ones revealed at the setup phase. This vector can be used to simulate
the honest Ps opening the sum.

In the protocol for verifying multiplicative relations, the simulator for a corrupted sender can use the
same procedure as in the case of the commitment protocol to extract the messages a, b, c, proceeding the
simulation with this information. Security follows from the same arguments provided for the simulator for
the commitment protocol and also from Lemma 8, which guarantees that comŜ(0`,u) is really a commit-
ment to 0` if the checks in the setup phase are successful. In the case when the receiver is corrupted, the
simulator generates commitments to random messages and later on computes valid openings corresponding
to the real messages received from FHCOM. Computing such valid openings for arbitrary messages (in the
sense that the components of the share vectors revealed in the setup phase are the same) is guaranteed by
Lemma 3 for both πV SS and π0V SS .

In the protocol for linear function evaluation, the simulator for a corrupted sender can use the same
procedure as in the case of the commitment protocol to extract the message m and proceeds from there.
Security in this case follows from the same arguments used for the simulator for the commitment protocol
and from Lemma 5, which guarantees that commitments that pass the tests at the setup phase are valid. In
the case when the receiver is corrupted, the simulator commits to random messages and later on generates
openings to the valid messages received from FHCOM. Lemma 3 (for πV SS) and Lemma 6 (for πϕV SS)
guarantee that it is possible to generate new vectors f (resp. f ′r) corresponding to an arbitrary message such
that the components of Mf (resp. Mf ′r) revealed in the setup phase are the same.

6 Applications

6.1 Two-party One-sided Functionalities

In this section we consider applications of our implementation of FHCOM. We will implement a one-sided
functionality where only one party Ps has input x and some verifier is to receive output y, where y = C(x)
for a Boolean circuit C.

The basic idea of this is straightforward: Ps commits to each bit in x and to each output from a gate in
C that is produced when x is the input. Now we can use the commands of FHCOM to verify for each gate
that the committed output is the correct function of the inputs. Finally, Ps opens the commitment to the final
output to reveal y.

However, we would like to exploit the fact that our commitments can contain `-bit strings and support
coordinate-wise operations on `-bit strings in parallel. To this end, we can exploit the construction found
in [DIK10] (mentioned in the introduction), that allows us to construct from C a new circuit C ′ computing

13



the same function as C, but where C ′ can be computed using only operations in parallel on `-bit blocks as
well as log ` different permutations of the bits in a block. We can support both types of operations (since a
permutation of coordinates is a linear function) and since we only need a small number of different permu-
tations, the required set-up phase can be very efficient. Since the required permutations do not depend on C,
the set-up phase can even be independent of C. But it can also be executed on the fly when C is known, and
this will only add a constant factor overhead. The construction always works, but if C is well-formed, C ′

will be of size O(log(|C|)|C|). If instead C is regular as defined in the introduction we can instead do the
required rerouting of bits between layers by evaluating linear block functions. Since regularity requires that
any block function occurring is used several times, we can prepare commitments for checking such linear
relations efficiently.

With these observations, we can use FHCOM operations to compute C ′ instead of C. The difference to
the first simplistic idea is that now every position in a block is used for computation. Therefore the protocol
implementing this will have several nice properties: first of all, it is non-interactive, assuming the very first
step doing the OT has been done. This is because Ps, since he knows C, can predict which multiplications
and permutation operations Pr will need to verify, so he can compute the required opening information for
commitments and send them immediately. Second, if we use the linear secret sharing scheme from [CDP12]
as the basis for commitments, then the size of the entire proof as well as of the verifier’s computation will
be of size O(|C| log |C|) for well formed circuits. If C is regular we will get complexity O(|C|)): instead
of using [DIK10] we can implement the rerouting between layers by evaluating the block functions directly.
This can be done by calling the Linear Function operation from FHCOM a constant number of times for each
block function. Thus we get the results claimed in Theorem 1.

6.2 Multiparty Computation

Due to space constraints the material on MPC based on our VSS (Theorem 2) is in Appendix E.

6.3 String Commitment with Partial Individual Opening

Here we wish to implement a functionality FN,rcom that first allows Ps to commit to N bits and then to open
up to r bits individually, where he can decide adaptively which bits to open. We do this in the correlated
random bits model where a functionality is assumed that initially gives bit strings to Ps and Pr with some
prescribed joint distribution, the implementation must be statistically secure with error probability 2−k.

Note that our protocol can be seen as a protocol in this model if we let players start from the strings that
are output by the PRG. In this case we get statistically secure commitments with error probability 2−Θ(`)

(since ` is Θ(n)). So we can choose ` to be Θ(k) and get the required error probability. Then one of our
commitments can be realised while consuming O(k) = O(`) correlated random bits.

Note that we can open a single bit in a commitment to a as follows: to open the j’th bit aj the prover
commits to ej , a vector with 1 in position j and 0 elsewhere and to c which has aj in position j and 0’s
elsewhere. Now the multiplication check is done on commitments to a, ej and c, and Ps opens ej and c. Pr
does the obvious checks and extracts aj . It is trivial to show that this is a secure way to reveal only aj and
we consume O(`) correlated random bits since only a constant number of commitments are involved.

Now we can implement FN,rcom with N = `u and r = `u−1 for some u, and the implementation is done
by having Ps commit to the N bits in the normal way using u commitments, and when opening any single
bit, we execute the above procedure. This consumes a total of O(N + r`) = O(N) correlated random bits.
Thus the consumption per bit committed to is O(1). Furthermore, we have r = N (u−1)/u = N1−1/u, so we
get the result of Theorem 3 by choosing a large enough u.

14



Acknowledgements

We thank Yuval Ishai for pointing out interesting applications of our results and Ignacio Cascudo for clari-
fying key facts about algebraic geometric secret sharing schemes.

References

[App13] Benny Applebaum. Pseudorandom generators with long stretch and low locality from random local one-way functions.
SIAM Journal on Computing, 42(5):2008–2037, 2013.

[BBDK00] Amos Beimel, Mike Burmester, Yvo Desmedt, and Eyal Kushilevitz. Computing functions of a shared secret. SIAM
J. Discrete Math., 13(3):324–345, 2000.

[BCPV13] Olivier Blazy, Celine Chevalier, David Pointcheval, and Damien Vergnaud. Analysis and improvement of lindells uc-
secure commitment schemes. In Michael Jacobson, Michael Locasto, Payman Mohassel, and Reihaneh Safavi-Naini,
editors, Applied Cryptography and Network Security, volume 7954 of Lecture Notes in Computer Science, pages 534–
551. Springer Berlin Heidelberg, 2013.

[BCR86] G. Brassard, Claude Crepeau, and J.-M. Robert. Information theoretic reductions among disclosure problems. In
Foundations of Computer Science, 1986., 27th Annual Symposium on, pages 168–173, Oct 1986.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In STOC, pages 1–10, 1988.

[BTH06] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party computation with dispute control. In Theory of
Cryptography, pages 305–328. Springer, 2006.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, pages 136–145.
IEEE Computer Society, 2001.

[CC06] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure multi-party computations over
small fields. In Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 521–536.
Springer, 2006.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General secure multi-party computation from any linear secret-
sharing scheme. In Bart Preneel, editor, EUROCRYPT, volume 1807 of Lecture Notes in Computer Science, pages
316–334. Springer, 2000.

[CDP12] Ronald Cramer, Ivan Damgård, and Valerio Pastro. On the amortized complexity of zero knowledge protocols for
multiplicative relations. In Adam Smith, editor, ICITS, volume 7412 of Lecture Notes in Computer Science, pages
62–79. Springer, 2012.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor, CRYPTO, volume 2139
of Lecture Notes in Computer Science, pages 19–40. Springer, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and multi-party
secure computation. In STOC, pages 494–503, 2002.

[DG03] Ivan Damgård and Jens Groth. Non-interactive and reusable non-malleable commitment schemes. In Lawrence L.
Larmore and Michel X. Goemans, editors, STOC, pages 426–437. ACM, 2003.

[DI06] Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In Advances in Cryptology-CRYPTO 2006,
pages 501–520. Springer, 2006.

[DIK+08] Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam Smith. Scalable multiparty computation
with nearly optimal work and resilience. In Advances in Cryptology–CRYPTO 2008, pages 241–261. Springer, 2008.

[DIK10] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation and the computational
overhead of cryptography. In Proceedings of EuroCrypt, pages 445–465, Springer Verlag 2010.

[DNO10] Ivan Damgård, Jesper Buus Nielsen, and Claudio Orlandi. On the necessary and sufficient assumptions for uc compu-
tation. In Theory of Cryptography, pages 109–127. Springer, 2010.

[DZ13] Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation of boolean circuits using preprocessing. In
Theory of Cryptography, pages 621–641. Springer, 2013.

[FJN+13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Sebastian Nordholt, and Claudio Orlandi.
Minilego: Efficient secure two-party computation from general assumptions. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages 537–556. Springer, 2013.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (extended abstract). In STOC,
pages 699–710. ACM, 1992.

[GIKW14] Juan Garay, Yuval Ishai, Ranjit Kumaresan, and Hoeteck Wee. On the complexity of uc commitments. To appear in
EuroCrypt 2014, 2014.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant computational overhead.
In Cynthia Dwork, editor, STOC, pages 433–442. ACM, 2008.

15



[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs from secure multiparty
computation. SIAM J. Comput., 39(3):1121–1152, 2009.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer–efficiently. In Advances
in Cryptology–CRYPTO 2008, pages 572–591. Springer, 2008.

[Lin11] Yehuda Lindell. Highly-efficient universally-composable commitments based on the ddh assumption. In Kenneth G.
Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 446–466. Springer, 2011.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158, 1991.
[NP99] Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries. In Michael Wiener, editor, Advances in Cryp-

tology CRYPTO 99, volume 1666 of Lecture Notes in Computer Science, pages 573–590. Springer Berlin Heidelberg,
1999.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious transfer.
In David Wagner, editor, Advances in Cryptology CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science,
pages 554–571. Springer Berlin Heidelberg, 2008.

[RTWW11] Samuel Ranellucci, Alain Tapp, Severin Winkler, and Jürg Wullschleger. On the efficiency of bit commitment reduc-
tions. In Advances in Cryptology–ASIACRYPT 2011, pages 520–537. Springer, 2011.

[VZ12] Salil Vadhan and Colin Jia Zheng. Characterizing pseudoentropy and simplifying pseudorandom generator construc-
tions. In Proceedings of the 44th symposium on Theory of Computing, pages 817–836. ACM, 2012.

A Universal Composability

In this section we will present definitions pertaining to the Universal Composability Framework of [Can01]
according to the syntax of [CLOS02] and refer the readers to [Can01,CLOS02] for further definitions and
details.

In the UC framework, the entities involved in both the real and ideal world executions are modeled
as probabilistic Interactive Turing Machines (ITM) that receive and deliver messages through their input
and output tapes, respectively. In the ideal world execution, dummy parties (possibly controlled by an ideal
adversary S referred to as the simulator) interact directly with the ideal functionality F , which works as a
trusted third party that computes the desired primitive. In the real world execution, several parties (possibly
corrupted by a real world adversary A) interact with each other by means of a protocol π that realizes the
ideal functionality. The real and ideal executions are controlled by the environment Z , an entity that delivers
inputs and reads the outputs of the individual parties, the adversary A and the simulator S. After a real or
ideal execution, Z outputs a bit, which is considered as the output of the execution. The rationale behind
this framework lies in showing that the environment Z (that represents all the things that happen outside
of the protocol execution) is not able to efficiently distinguish between the real and ideal executions, thus
implying that the real world protocol is as secure as the ideal functionality.

We denote by REALπ,A,Z(κ, z, r̄) the output of the environment Z in the real-world execution of pro-
tocol π between n parties with an adversary A under security parameter κ, input z and randomness r̄ =
(rZ , rA, rP1 , . . . , rPn), where (z, rZ), rA and rPi are respectively related to Z ,A and party i. Analogously,
we denote by IDEALF ,S,Z(κ, z, r̄) the output of the environment in the ideal interaction between the simu-
lator S and the ideal functionality F under security parameter κ, input z and randomness r̄ = (rZ , rS, rF ),
where (z, rZ), rS and rF are respectively related to Z , S and F . The real world execution is represented by
the ensemble REALπ,A,Z = REALπ,A,Z(κ, z, r̄), κ ∈ N, z ∈ {0, 1}∗ with a uniformly chosen r̄, while the
ideal execution is represented by IDEALF ,S,Z = IDEALF ,S,Z(κ, z, r̄), κ ∈ N, z ∈ {0, 1}∗ with a uniformly
chosen r̄.

Our protocol is run in a FOT -hybrid model, i.e. we assume that the parties have access to a 1-out-of-2
OT ideal functionality FOT . In this model, honest parties do not communicate with the ideal functionality
directly, but instead the adversary delivers all the messages to and from the ideal functionality. We consider
the communication channels to be ideally authenticated, so that the adversary may read but not modify these
messages. Unlike messages exchanged between parties, which can be read by the adversary, the messages
exchanged between parties and the ideal functionality are divided into a public header and a private header.
The public header can be read by the adversary and contains non-sensitive information (such as session

16



identifiers, type of message, sender and receiver). On the other hand, the private header cannot be read
by the adversary and contains information such as the parties’ private inputs. We denote the ensemble of
environment outputs that represents the execution of a protocol π in a G-hybrid model as HYBRIDGπ,A,Z
(defined analogously to REALπ,A,Z ). UC security is then formally defined as:

Definition 2. An n-party (n ∈ N) protocol π is said to UC-realize an ideal functionality F in the G-hybrid
model if, for every adversaryA, there exists a simulator S such that, for every environment Z , the following
relation holds:

IDEALF ,S,Z
c
≈ HYBRIDGπ,A,Z

Adversarial Model: In this work we consider security against static adversaries, i.e. all parties are cor-
rupted before the execution of the protocol begins. We consider active adversaries who may deviate from
the protocol in any arbitrary way.

Setup Assumption: It is known that UC commitments (as well as most “interesting” functionalities) cannot
be obtained in the plain model [CF01]. In order to overcome this impossibility, UC protocols require a setup
assumption, that basically models a resource that is made available to all parties before execution starts.
The security of our protocol is proved in the OT-hybrid model (referred to as the FOT -hybrid model in
[Can01,CLOS02]), where all parties are assumed to have access to an ideal 1-out-of-2 OT functionality.

In this work we UC realize a homomorphic string commitment scheme, which is modeled by FHCOM, a
(modified) version of the FMCOM functionality introduced in [CLOS02]. We denote by FHCOM an instance
of the functionality that takes messages in {0, 1}λ as input. FHCOM basically adds commands for homomor-
phic operations over commitments and an abort in the Commit Phase to FMCOM. The abort is necessary to
deal with inconsistent commitments that could be sent by a corrupted party. FHCOM is defined in Figure 1.

As mentioned before, our protocol is proven to UC-realize FHCOM in the FOT -hybrid model. In fact,
our protocol is constructed in the F t,nOT -hybrid model (i.e. assuming access to t-out-of-n OT), which can be
subsequently reduced to the FOT − hybrid model via standard techniques for obtaining F t,nOT from FOT
[Nao91,BCR86,NP99]. We define FOT in Figure 8 and F t,nOT in Figure 2 following the syntax of [CLOS02].
Once again, FOT (λ) denotes an instance of the functionality that takes as input from the sender messages
in {0, 1}λ. Notice that FOT can be efficiently UC-realized by the protocols in [PVW08], which can be used
to instantiate our commitment protocol.

Functionality FOT

FOT interacts with a sender Ps, a receiver Pr and an adversary S.

– Upon receiving a message (sender, sid, ssid, x0, x1) from Ps, where each xi ∈ {0, 1}λ , store the tuple (ssid, x0, x1)
(The lengths of the strings λ is fixed and known to all parties). Ignore further messages from Ps to Pr with the same ssid.

– Upon receiving a message (receiver, sid, ssid, c) from Pr , check if a tuple (ssid, x0, x1) was recorded. If yes, send
(received, sid, ssid, xc) to Pr and (received, sid, ssid) to Ps and halt. If not, send nothing to Pr (but continue running).

Fig. 8. Functionality FOT (λ)

B Proofs of results for VSS

Lemma 1 (completeness for πV SS) If the dealer in πV SS is honest, then all honest players accept and the
column vector f b shares sb for any b = 1, . . . , `.

17



Proof. The first claim is trivial. For the second, note first that π`(f b) = sb by construction of F , and second
that each honest Pj holds the share gj [b] = mj · f b.

Lemma 2 (soundness for πV SS) If the dealer in πV SS is corrupt, but no player rejects, then for b =
1, . . . , `, there exists a column vectors vb and a bit strings sb such that vb shares sb.

Proof. Assume without loss of generality that (at least) players in the set D = {P1, . . . , Pr} are honest. For
b = 1, . . . , `, let rD,b be the reconstruction vectors guaranteed by r-reconstruction of S. Then we define

vb =

r∑
i=1

rD,b[i] · hi

Note also that since all players accept, all honest players accept and therefore we have mj · hi = gj ·m>i
for all honest Pi, Pj . It follows that for all honest Pj we have

mj · vb =

r∑
i=1

rD,b[i] ·mj · hi =

r∑
i=1

rD,b[i] · gj ·m>i .

Now, gj ·m>i is a scalar and hence equal to its own transpose. Hence gj ·m>i = (gj ·m>i )> = mi · g>j .
Plugging into the above sum, we get

mj · vb =
r∑
i=1

rD,b[i] ·mi · g>j = rD,b ·MD · g>j = gj [b].

which is exactly the b-th share held by Pj . We can define sb by sb[a] = vb[a] for a = 1, . . . , `, and the
lemma follows.

Lemma 3 (privacy for πV SS) Suppose the dealer in πV SS is honest and let A = {Pi1 , . . . , Pit} be a
set of players corrupted by the adversary. Now, in case 1 suppose the dealer executes πV SS with input
s1, . . . , s` and then opens T (s1, . . . , s`). In case 2, he executes πV SS with input s̃1, . . . , s̃` and then opens
T (s̃1, . . . , s̃`). If T (s1, . . . , s`) = T (s̃1, . . . , s̃`), then the views of the adversary in the two cases are iden-
tically distributed.

Proof. Let m = ` − `′. We can assume m > 0 since if m = 0, full information on the secrets is released
and there is nothing to prove. Let the row vectors e1, . . . , em be a basis for the kernel of T . Then, since
T (s1, . . . , s`) = T (s̃1, . . . , s̃`), there exists a set of coefficients αi,j for i = 1, . . . , `, j = 1, . . . ,m such
that

(s1[i], . . . , s`[i]) +
m∑
j=1

αi,j · ej = (s̃1[i], . . . , s̃`[i])

or equivalently

sb[i] +
m∑
j=1

αi,j · ej [b] = s̃b[i]

Recall that by the t-privacy property of S, for any u = 1, . . . `, there exist vectors wA,u such that π`(wA,u)
has 1 in position u and 0 elsewhere and MA · wA,u = 0. Moreover we can construct row vectors wv for
v = 1, . . . ,m such that π`(wv) = ev and MA ·w>v = 0. This is easily done by lettingwv be an appropriate
linear combination of the transposes of the wA,u’s, for u = 1, . . . , `. We then define Wv,u = wA,u · wv.

18



Note that this is a matrix (rather than a scalar). Now, let F be any matrix that might be used for the sharing
in case 1, and define

F̃ = F +W, where W =
∑̀
u=1

m∑
v=1

αu,v ·Wv,c

Let f b[a] be the entry in row a and column b of F (which is sb[a]). We therefore get, by construction of the
Wv,u’s, that for 1 ≤ a, b ≤ `:

f̃
b
[a] = f b[a] +

∑̀
u=1

m∑
v=1

αu,v ·Wv,u[a, b]

= sb[a] +
∑̀
u=1

m∑
v=1

αu,v ·wA,u[a]wv[b]

= sb[a] +

m∑
v=1

αa,v ·wv[b]

= sb[a] +
m∑
v=1

αa,v · ev[b]

= s̃b[a]

So we see that F̃ is a matrix that could have been used in case 2. Further, since by construction the Wv,u’s
satisfy MA ·Wv,u = Wv,u ·M>A = all-0 matrix, it is easy to see that then also f̃ ik = f ik and g̃ik = gik for
any player Pik in A. So this means the adversary’s view of the πV SS protocol is the same whether we use F
or F̃ .

Consider now the information the adversary sees when T (s1, . . . , s`), respectively T (s̃1, . . . , s̃`), is
opened. In case 1, the dealer reveals T (F ) and in the other case T (F + W ) = T (F ) + T (W ). We claim
that in fact T (W ) is an all-0 matrix so that in fact the same information is revealed in the two cases. To see
this, note that we have

T (W ) = T (
∑̀
u=1

m∑
v=1

αu,v ·Wv,u) =
∑̀
u=1

m∑
v=1

αu,v · T (Wv,u)

Recall that Wv,u = wA,u ·wv. This means that if r is any row of Wv,u, then π`(r) is a multiple of ev. Since
ev is in the kernel of T , we have that T (Wv,u) is an all-0 matrix, and hence so is T (W ).

In conclusion, adding W induces a 1-1 mapping between matrices used in case 1 and in case 2, and this
mapping keeps the adversary’s view constant. The lemma follows.

Remark 1. We may generalize the privacy result even further: the dealer might execute several instances of
πV SS and open a linear combination of values from more than one of these instances. This can be shown to
be secure in the same sense as we just proved by a similar argument, and we leave the details to the reader.

Remark 2. If we take T as the trivial function that maps all inputs to 0, then lemma 3 implies the usual
privacy property for VSS protocols. In this case W is defined as W =

∑`
i=1

∑`
j=1

(
s̃j [i]− sj [i]

)
·(

wA,i · (wA,j)>
)

and it allows the dealer to execute twice the πV SS protocol (first with input s1, . . . , s`

and after with input s̃1, . . . , s̃`) in such a way that for each player in A (a set of at most t corrupted players)
his share of sb is equal to his share of s̃b for b = 1, . . . , `. Indeed if in case 1 the dealer chose the matrix F
to share s1, . . . , s`, then in case 2 he can use the matrix F̃ = F + W to share s̃1, . . . , s̃`. By definition of
W we have thatmi · F = mi · F̃ and F ·m>i = F̃ ·m>i for any Pi in A.

19



Lemma 4 (randomness of the share vectors in πV SS) Suppose that the dealer in πV SS is honest and let
A = {Pi1 , . . . , Pit} be a set of players corrupted by the adversary. If we define GA as the matrix whose j-th
row is gij , then all the d× ` matrices V such that π`(V ) = (s1, . . . , s`) and MA · V = π`(GA) are equally
likely, even given the adversary’s entire view.

Proof. Suppose that V and Ṽ are two different d × ` matrices such that π`(V ) = π`(Ṽ ) and MA · V =
MA · Ṽ = π`(GA) and call respectively vi and ṽi their columns. Observe that MA · (ṽi − vi) = 0 for any
i = 1, . . . , `. Let H be the matrix defined by

H =
∑̀
i=1

[
(ṽi − vi) ·

(
wA,i

)>]
where wA,i is a sweeping vector as defined in Section 2. It is easy to see that π`(H) is the all-0 matrix and
that the i-th column of H is equal to ṽi − vi for any i = 1, . . . , `. Now consider a d × d matrix F such
that π`(F ) = V and define F̃ = F + H . It is clear that π`(F̃ ) = Ṽ and F has the secrets s1, . . . , s` in
the left-top corner. So if we prove that the adversary’s view of Protocol πV SS is the same whether F or F̃
is used in the first step, then the lemma follows. The information given to the players in the set A during
the execution of the πV SS protocol with F or with F̃ can be written respectively as MA · F , F ·M>A and
MA · F̃ , F̃ ·M>A . Furthermore

MA · F̃ = MA · F +MA ·H

F̃ ·M>A = F ·M>A +H ·M>A

Since MA · (ṽi − vi) = 0 for any i = 1, . . . , `, by the definition of H we have that MA · H is an all-0
matrix. The same holds for H ·M>A since the sweeping vectors satisfy MA ·wA,i = 0 for any i = 1, . . . , `.

Lemma 5 (soundness for πϕV SS) If the dealer in πϕV SS is corrupt, but no player rejects, then for any b =
1, . . . , ` there exist column vectors vb, vϕ,b and sb, sϕ,b such that vb shares sb, vϕ,b shares sϕ,b andϕ

(
sb
)

=
sϕ,b.

Proof. From lemma 2 applied to both the correlated executions of πV SS , we know that for any b = 1, . . . , `
there exist column vectors vb, vϕ,b and sb, sϕ,b such that vb shares sb and vϕ,b shares sϕ,b. In particular,
from the proof of lemma 2 we know that

vb =
r∑
i=1

rD,b[i] · hi and sb = π`(v
b)

vϕ,b =

r∑
i=1

rD,b[i] · hϕ,i and sϕ,b = π`(v
ϕ,b)

where we assume w.l.o.g. that the players inD = {P1, . . . , Pr} are honest. Thus the condition ϕ
(
sb
)

= sϕ,b

follows from the similar condition given for the first ` components of the vectors hi and hϕ,i.

Lemma 6 (privacy for πϕV SS) Suppose the dealer in πϕV SS is honest. Now, in case 1 suppose the dealer
executes πϕV SS with input s1, . . . , s` and in case 2, he executes πϕV SS with input s̃1, . . . , s̃`. Let A =
{Pi1 , . . . , Pit} be a set of players corrupted by the adversary, then the adversary’s view in the two cases are
identically distributed.

20



Proof. Throughout this proof let ei be the column vector of F` that has 1 in position i and 0 elsewhere. By
the t-privacy property of S, for c = 1, . . . , `, there exist vectors wA,c in Fd such that π`(wA,c) = ec and
MA ·wA,c = 0. As in remark 2, we define

W =
∑̀
i=1

∑̀
j=1

(
s̃j [i]− sj [i]

)
·
(
wA,i · (wA,j)>

)
Since the b-th column of wA,i · (wA,j)> is the vector wA,j [b] ·wA,i, then

π`(w
b) =

∑̀
i=1

∑̀
j=1

(
s̃j [i]− sj [i]

)
·wA,j [b] · ei =

=
∑̀
j=1

wA,j [b] ·
∑̀
i=1

(
s̃j [i]− sj [i]

)
· ei =

=
∑̀
j=1

wA,j [b] ·
(
s̃j − sj

)
where wb is the b-th column of W . In particular π`(wb) = s̃b − sb for any b ≤ `.

Moreover there exists a set of coefficients βi,j , with i = 1, . . . , ` and j = 1, . . . , ` such that

ϕ(ei) =
∑̀
j=1

βi,j · ej

Now define for i = 1, . . . , ` column vectors vA,i =
∑̀
j=1

βi,j · wA,j , observing that π`(vA,c) = ϕ(ec) and

MA · vA,c = 0. Finally take

Wϕ =
∑̀
i=1

∑̀
j=1

(
s̃j [i]− sj [i]

)
·
(
vA,i · (wA,j)>

)
The b-th column of vA,i · (wA,j)> is the vector wA,j [b] · vA,i. So if wϕ,b is the b-th column of Wϕ, then

π`(w
ϕ,b) =

∑̀
i=1

∑̀
j=1

(
s̃j [i]− sj [i]

)
·wA,j [b] · ϕ(ei) =

=
∑̀
j=1

wA,j [b] ·
∑̀
i=1

(
s̃j [i]− sj [i]

)
· ϕ(ei) =

=
∑̀
j=1

wA,j [b] ·
(
ϕ(s̃j)− ϕ(sj)

)
In particular π`(wϕ,b) = ϕ

(
π`(w

b)
)

and π`(wϕ,b) = ϕ(s̃b)− ϕ(sb) for any b ≤ `.
Let F and Fϕ be any pair of matrices that might be used in case 1 and define F̃ = F + W and

F̃ϕ = Fϕ +Wϕ. From the properties already observed for the columns of W and Wϕ, it follows that F̃ and

21



F̃ϕ form a pair or matrices that could have been used in case 2. Moreover, by construction of W and Wϕ,
we have that

MA ·W = MA ·Wϕ = W ·M>A = Wϕ ·M>A = all-0 matrix

Thus it holds that MA · F = MA · F̃ , F ·M>A = F̃ ·M>A , MA · Fϕ = MA · F̃ϕ and Fϕ ·M>A = F̃ϕ ·M>A .
This means that the adversary’s view is the same in the two cases and hence the lemma is proved.

Lemma 7 (randomness of the share vectors in πϕV SS) Suppose that the dealer in πϕV SS is honest and let
A = {Pi1 , . . . , Pit} be a set of players corrupted by the adversary. If we define GA as the matrix whose j-th
row is gij andGϕ,A as the matrix whose jth column is gϕ,ij , then all the pairs of d×`matrices (V, Vϕ) such
that π`(V ) = (s1, . . . , s`), π`(Vϕ) = (ϕ(s1), . . . , ϕ(s`)), MA ·V = π`(GA) and MA ·Vϕ = π`(Gϕ,A) are
equally likely, even given the adversary’s entire view.

Proof. Suppose that (V, Vϕ) and (Ṽ , Ṽϕ) are two different pairs that satisfy the hypothesis of the lemma and
repeat the same construction seen in the proof of Lemma 4 for each components.

Lemma 8 (soundness for π0V SS) If the dealer in π0V SS is corrupt, but no player rejects, then there exist
column vectors v1, . . . ,v` each of which shares 0 ∈ F`.

Proof. Assume w.l.o.g. that the players in D = {P1, . . . , Pr} are honest and define

vb =
r∑
i=1

rD,b[i] ·
(

0
h0,i

)
where rD,b are the reconstruction vectors defined in Section 2. In the same way as in the proof of lemma 2,
it follows from the conditionm0,j · h0,i = gj ·m>i that vb shares 0.

Lemma 9 (randomness of the share vectors in π0V SS) Suppose that the dealer is honest and he executes
Protocol π0V SS . Let A = {Pi1 , . . . , Pit} be a set of players corrupted by the adversary and define GA as the
matrix whose j-th row is gij , then all the e× ` matrices V such that M0,A · V = π`(GA) are equally likely,
even given the adversary’s entire view.

Proof. Let V and Ṽ be two e× ` matrices that satisfy M0,A ·V = M0,A · Ṽ = π`(GA) and call respectively
vi and ṽi their columns. Observe thatM0,A ·(ṽi−vi) = 0 for any i = 1, . . . , `. LetH be the matrix defined
by

H =
∑̀
i=1

[
(ṽi − vi) ·

(
wA,i

)>]
wherewA,i is a sweeping vector as defined in Section 2. Since π`(wA,i) has 1 in position i and 0 elsewhere,
the i-th column of H is equal to ṽi − vi for any i = 1, . . . , `. Now consider a e × d matrix R such that
π`(R) = V and define R̃ = R + H . It is clear that π`(R̃) = Ṽ , so if we prove that the adversary view of
Protocol π0V SS is the same whether R or R̃ is used in the first step, then the lemma follows. The information
given to the set A during the execution of Protocol π0V SS with R or with R̃ can be written respectively as
M0,A ·R, R ·M>A and M0,A · R̃, R̃ ·M>A . Furthermore

M0,A · R̃ = M0,A ·R+M0,A ·H

R̃ ·M>A = R ·M>A +H ·M>A
Since M0,A · (ṽi − vi) = 0 for any i = 1, . . . , `, by the definition of H we have that M0,A ·H is an all-0
matrix. The same holds for H ·M>A since the sweeping vectors satisfy MA ·wA,i = 0 for any i = 1, . . . , `.

22



C Proof of Security for πHCOM

We prove the security of πHCOM by constructing a simulator (or ideal adversary) that runs an internal copy
of the real world adversary A and acts as the F t,nOT functionality to extract the committed values in the case
of a corrupted sender, and uses the properties of πV SS to handle the case of a corrupted receiver. The cases
where the parties are both honest are handled trivially.

We analyze the cases when only Ps is corrupted and when only Pr is corrupted separately.

Simulating communication with Z: The simulator S delivers all messages exchanged between Z and A
as if they were communicating directly.

Simulating the setup phase when Ps is corrupted and Pr is honest:

1. Acting as F t,nOT , S receives (sender, sid, ssid,x1, . . . ,xn). S also receives and stores

(sid, ssid, ((h̃
1
)>, g̃1), . . . , ((h̃

n
)>, g̃n)).

2. S uniformly samples a set of t indexes c1, . . . , ct ← [1, n], stores ((hci)>, gci) = ((h̃
ci

)>, g̃ci) −
G(xci), 1 ≤ i ≤ t and runs the same check the receiver does in the protocol. If the check succeeds S
continues, otherwise it sends abort to FHCOM and halts.

3. S now attempts to reconstruct the secrets Ps has defined. It constructs a set H of consistent VSS players
as follows: Initially H contains all players. Now, if H contains a pair of inconsistent players i, j, i.e.,
where we have mj · hi 6= gj ·m>i , then these players are deleted from H . We repeat until no further
pairs can be deleted. If the size of H is larger than the reconstruction threshold r, then S uses the
reconstruction procedure from the proof of Lemma 2 to compute a set of secrets r1, . . . , r`. Otherwise,
it sends abort to FHCOM and halt.

Simulating the commit phase when Ps is corrupted and Pr is honest:

1. S stores (sid, ssid, η, m̃), computesm = m̃−rη and sends (commit, sid, ssid, Ps, Pr,m) to FHCOM.

Simulating the reveal phase when Ps is corrupted and Pr is honest:

1. S receives (sid, ssid,m,fη), computes Mfη = (g1[η], . . . , gn[η])>, checks that gj [η] = gj [η] for
j ∈ {c1, . . . , ct} and that m = m̃ − rη. If the shares pass this check, S sends (reveal, sid, ssid) to
FHCOM. Otherwise, it does nothing.

Lemma 10. Statistical Binding: Let πV SS be a packed verifiable secret sharing scheme as described in
Section 3 with parameters (M, r, t) based on a commitment-friendly linear secret sharing scheme. When Ps
is corrupted and Pr is honest, the following relation holds for every static active adversary A and every
environment Z:

IDEALFHCOM,S,Z
s
≈ HYBRID

Ft,nOT
πHCOM ,A,Z

Proof. Setup Phase: The simulator S acts exactly like a honest receiver Pr would, so the distribution of
the messages exchanged with A is exactly the same as in πHCOM . The only way something different could
happen in the simulation is therefore if the check of Pr succeeds, but S has to abort because the reconstruc-
tion of the ri’s fails. However, we show that this only happens with negligible probability: let 0 < ε < 1 be
a constant such that n− εn ≥ r, recall that r is δn for some constant δ so we choose such that 1− ε > δ. If
the set H has size at least r then reconstruction succeeds, but if not, then the complement of H has size at
least εn, and we now show that in this case the check of Pr succeeds with negligible probability. Recall that

23



the complement of H consists of pairs of inconsistent players, so we split this set in two halves A,B of size
at least nε/2 where each player in A has a “brother” in B he is inconsistent with. We will assume that the t
players we check are chosen independently at random, choosing always t players as in the protocol incurs
a larger chance of choosing bigger sets which will only increase the chance of catching an inconsistency.
Consider choosing the first t/2 players to check. We expect that t/2 · ε/2 of these will be in A, and by
a Chernoff bound we will see at least tε/4 − µt except with negligible probability, where we can choose
µ < ε/4. Let A′ be this set. Now, when we choose the last t/2 players to check we will see an inconsistency
if we choose even one of the brothers of players in A′. Since we have t(ε/4 − µ) brothers and t is Θ(n),
there is constant probability of hitting an inconsistency each time we choose a player, so missing all t/2
times happens with negligible probability.

Commit Phase: In the commit phase, S just follows the protocol.
Reveal Phase: Once again, the simulator S acts exactly like a honest receiver Pr would, so the distri-

bution of the messages exanged with A is exactly the same as in πHCOM . The only way to distinguish is
therefore if FHCOM behaves in a way that is inconsistent with the simulation. This can only happen if the
corrupted Ps opens successfully a valuem′ that is different from the one S sent to FHCOM. From the above
argument for the set-up phase and Lemma 2 we can assume that the of shares cη of rη determined in the
set-up are all consistent, except for a subset of size at most εn (otherwise Pr’s check would fail). Now, to
change a set of n− εn consistent shares into one that determines a different secret one must change at least
n(1− ε)− r shares (r is the reconstruction threshold). This means that if Ps claims a secret different from
m he must show us a set of shares that differ from cη in at least n(1− ε)− r = n(1− ε− δ) positions, and
since 1− ε− δ is a positive constant, the check by Pr will spot one of these changes except with negligible
probability.

The above argument only explicitly applies to one run of the VSS. Consider now the case where we
do many runs. Since we do the OTs only once, all runs will have the same watch list. Consider two runs,
indexed by I and J . Each run will have its own sets, HI and Hj , of consistent parties. When we add two
commitments from run number I or run number J and open such a commitment, we can only be guaranteed
that the resulting sharing is consistent for the parties HI ∩HJ . So, we need that the size of HI ∩HJ stays
above r, or the adversary might be able to open a sum of commitments from different blocks to a different
value from the sum of the values in the commitments being summed. However, if HI ∩HJ does not have
size at least r, then the complement has size at least εn. Furthermore, each “party” in the complement is
caught either in execution I or in execution J , as Pr is checking both executions the same way. Hence it
does not matter in which execution the inconsistency is located, it contributes to detection with the same
probability as in the above analysis, and it follows as above that then the complement of HI ∩HJ can have
size at most εn and hence HI ∩HJ has size at least r.

Simulating the setup phase when Ps is honest and Pr is corrupted:

1. For i = 1, . . . , n, S uniformly samples a random string xi ∈ {0, 1}`PRG . Acting as F t,nOT , upon receiving
(receiver, sid, ssid, c1, . . . , cu), S sends (received, sid, ssid,x1, . . . ,xn) to A.

2. S uniformly samples k random strings ri ← {0, 1}`, i = 1, . . . , n and runs πV SS using r1, . . . , rk as
input, constructing n strings ((hi)>, gi), i = 1, . . . , n of length 2(` + e) from the vectors generated

by πV SS . S computes ((h̃
i
)>, g̃i) = ((hi)>, gi) + G(xi) for i ∈ {c1, . . . , ct}, randomly samples

((h̃
i
)>, g̃i)← {0, 1}2(`+e) for i ∈ {1, . . . , n} \ {c1, . . . , ct} and sends

(sid, ssid, ((h̃
1
)>, g̃1), . . . , ((h̃

n
)>, g̃n)) to Pr.

Simulating the commit phase when Ps is honest and Pr is corrupted:

24



1. Upon receiving a message (receipt, sid, ssid, Ps, Pr) from FHCOM, S chooses an unused random string
rη, samples a random message m′ ← {0, 1}`, computes m̃ = m′ + rη and sends (sid, ssid, η, m̃) to
A.

Simulating the reveal phase when Ps is honest and Pr is corrupted:

1. Upon receiving a message (reveal, sid, ssid, Ps, Pr,m) from F t,nOT , S constructs an appropriate f
η

such
that π`(f

η
) = m′+rη−m andMf

η
yields gcj [η] = gcj [η] for j = 1, . . . , t. S sends (sid, ssid,m, f

η
)

to A. Notice that a share vector f
η

with these properties can be constructed following the procedures of
Lemma 3 as noted in Remark 2.

Lemma 11. Computational Hiding: Let G : {0, 1}`PRG → {0, 1}2(`+e) be a pseudrandom generator and
let πV SS be a packed verifiable secret sharing scheme as described in Section 3 with parameters (M, r, t)
based on a commitment-friendly linear secret sharing scheme. When Ps is honest and Pr is corrupted, the
following relation holds for every static active adversary A and every environment Z:

IDEALFHCOM,S,Z
c
≈ HYBRID

Ft,nOT
πHCOM ,A,Z

Proof. Before we proceed to analyze the simulator, let’s define a hybrid game where the encrypted shares
((h̃

i
)>, g̃i) = ((hi)>, gi) + G(xi) for i ∈ {1, . . . , n} \ {c1, . . . , ct} are replaced by uniformly random

strings ((h
i
)>, gi)← {0, 1}2(`+e). It’s clear that S can do that since it knows the choice values {c1, . . . , ct}.

Suppose that both the real world execution and the ideal world simulation run this modified version of
πHCOM . Notice that any environment Z that distinguishes this game from a real execution of πHCOM
actually distinguishes between a uniformly random string and the output of the PRG, breaking the pseudo-
randomness property of the PRG.

We show that if both simulation and the real world execution run this computationally indistinguishable
variant, then they are perfectly indistinguishable, this is clearly sufficient to show the lemma.

Setup Phase: The simulator S runs the setup exactly like a honest sender would do in the hybrid,
resulting in the same distribution.

Commit Phase: S deviates from the protocol by sampling a random message m′ ← {0, 1}` and com-
mitting to it by computing m̃ = m′ + rη and sending (sid, ssid, η, m̃) to A, instead of committing to the
real messagem. Nevertheless, notice that them′ is perfectly hidden by the random pad rη, which is in turn
perfectly hidden from A since he only has access to t shares and the secret sharing schemes guarantees that
the joint distribution of at most t shares is completely independent from the secret.

Reveal Phase: Upon input (reveal, sid, ssid, Ps, Pr,m), S computes an alternative random pad r′ that
yields m = m̃ + r′. S then constructs a vector fη such that Mfη results a share vector of r′ where the
shares revealed in the setup phase appear in the same positions, i.e. Mfη = (g1[η], . . . , gn[η])> and such
that that gj [η] = gj [η] for j ∈ {c1, . . . , ct}. This allows the opening values sent by S to have exactly the
same distribution as real opening values and pass the validity tests even though the revealed message is
different. Notice that such a share vector can be constructed using the procedures in Remark 2. S sends
(sid, ssid,fη) to A.

Theorem 4 Let G : {0, 1}`PRG → {0, 1}2(`+e) be a pseudrandom generator and let πV SS be a packed ver-
ifiable secret sharing scheme as described in Section 3 with parameters (M, r, t), based on a commitment-
friendly secret sharing scheme. Then protocol πHCOM UC-realizes FHCOM in the F t,nOT (`PRG)-hybrid
model in the presence of static active adversaries. Formally, there exists an ideal adversary S such that
the following relation holds for every static active adversary A and every environment Z:

25



IDEALFHCOM,S,Z
c
≈ HYBRID

Ft,nOT
πHCOM ,A,Z

Proof. The case where both parties are honest is straightforward. Thus, the proof follows from Lemma 10
and Lemma 11.

D The relation between our scheme and IPS

In this section, we give some details on the extent to which our scheme can be seen as the result of applying
the IPS compiler to our VSS. The compiler starts from a multiparty outer protocol that implements some
target functionality with active security. Together with an inner protocol that only needs to be passively
secure and assuming access to OT, it builds a two party protocol implementing the same target functionality.
The outer protocol is assumed to be in the client/server model with a small number of clients who have
inputs and get outputs and many servers who execute the computation. Our VSS can be seen as having one
client that has input (the dealer) and one that gets output, when the secret is opened. Thus, if IPS can be
applied with the VSS as outer protocol, we will obtain a commitment protocol.

However, this will not work for the basic version of the IPS compiler because it assumes that the outer
protocol has no communication directly between the servers. Our VSS does not satisfy this. But IPS suggests
two ways to get rid of this limitation:

The first one involves changing the compiler to use a more complicated inner protocol. Using this
method, we would obtain a commitment protocol that is inherently interactive, in contrast to our construc-
tion.

The second method involves precompiling the outer protocol by routing all server-to-server messages
via (some of) the clients. The idea is that when a server wants to send a message, it will secret share it
among two special clients who then sends the shares to the receiver. It is shown in the IPS paper that if this
is done using what they call non-malleable secret sharing, the resulting protocol is still secure, but now with
a smaller corruption threshold. We can use this method by adding two clients to the VSS to do the rerouting,
they have no inputs or outputs and at most one of them can be corrupted.

We can apply the basic IPS compiler to this modified protocol, and then because only one client has
input, we can make the inner protocol be a dummy protocol. This removes the interaction and the result is
a commitment protocol that is somewhat similar to ours, but more complicated because of the rerouting in
the underlying VSS and less efficient by a constant factor because of the extra secret sharing involved and
the degradation of the corruption threshold.

E Using the VSS for MPC

In this section we sketch how to use our VSS to construct an MPC protocol as claimed in Theorem 3.

Preliminaries. First we note that the VSS protocols we describe are not full-fledged VSSs as they abort
if there are conflicts found. But this can handled efficiently using known techniques for dispute control
(see [BTH06]) as long as we do enough VSS instances in parallel. This way the efficiency of our VSS is
preserved up to a constant factor and additive terms. So in the following we will assume that we have VSS
available in the standard sense.

We will write S(a,fa) for the set of shares of vector a generated using randomness fa, similarly for Ŝ,
where S is a commitment friendly secret sharing scheme, and will assume that no more than t players can
be corrupted, where t is the privacy threshold. As before, we will choose the block size ` for the VSS such
that it is linear in n, the number of servers.

26



We will also need that S and Ŝ allow for error correction: if one is given a set of shares S(a,fa) where
a small enough constant fraction of the shares have been modified, then one can efficiently reconstruct the
entire set of shares. This also means that (perhaps by solving a set of linear equations) one can come up
with a vector w such that S(a,w) equals the set of shares you reconstructed. In general it may not have
to be the case that w = fa. Everything we do in the following will work even if this is not the case, but
for readability we will assume that they are equal, i.e., we assume that fa can be reconstructed. The secret
sharing scheme from [CC06] can easily be modified to suit our requirements, basically because it works
similarly to Shamir’s scheme, but with polynomials replaced by rational functions on smooth projective
irreducible curves. We will need to work over a constant size extension field of characteristic 2 (size 64 will
be enough), but this only gives a constant factor overhead.

In our protocol, we will need a supply of pairs of random share vectors among the servers of form

S(r,f r), Ŝ(r, f̂ r),

where r is random and unknown to the adversary. We do this by letting each client deal such a pair and then
add up contributions from all clients. This will be efficient enough as there are only a constant number of
clients and will be secure as we assume at least one client is honest.

To have a single client C produce S(r,f r), Ŝ(r, f̂ r), we first run the VSS to produce the two sets of
shares (actually ` of them in one go). We need to make sure that the same vector is contained by both sets
of shares in a pair. Let S(1`,f1) be a default sharing of the all-1 vector with public and fixed randomness.
Then note that

S(r,f r) ∗ S(1`,f1)− Ŝ(r, f̂ r) = Ŝ(0`,f r ⊗ f1 − f̂ r)

Consider that we have ` instances of such differences (because we ran two VSS protocols in the first place),
and that C knows the vectors of form f r ⊗ f1 − f̂ r. If C chooses some more column vectors that also start
with ` 0’s, then we have exactly the set-up for the π0V SS protocol. So now we run this with C as dealer and
if we get accept, then we know that the pairs of share vectors C produced are well formed.

Note that this gives us a general way for a player to show that two sets of shares, under S, respectively
Ŝ, determine the same secret, provided he knows the underlying random vectors.

We also need a supply of share vectors of form S(r,f r),S(ϕ(r),f ′
r) for a linear function ϕ, this is

easy, we just have all clients execute πϕV SS and add the resulting sets of shares.

The Protocol. The actual protocol follows the pattern of many similar protocols: the clients start by VSS-ing
their inputs, and then we work our way through the circuit, where by the nature of the secret sharing, we
will be doing ` gates in parallel throughout. The standard representation of any vector a occurring in the
computation is of form S(a,fa).

Addition gates are trivial: by linearity, we have for any two share vectors that

S(a,fa) + S(b,f b) = S(a+ b,fa + f b).

For a multiplication gate, players will do local multiplication so we get

S(a,fa) ∗ S(b,f b) = Ŝ(a ∗ b,fa ⊗ f b).

We now need to convert this to a sharing under S of the same value. To do this we take the next unused pair
S(r,f r), Ŝ(r, f̂ r) and compute by local addition

Ŝ(a ∗ b,fa ⊗ f b) + Ŝ(r, f̂ r) = Ŝ(a ∗ b+ r,fa ⊗ f b + f̂ r)

27



Now all servers send their shares in this value to a single server Pi. He reconstructs a∗b+r and fa⊗f b+f̂ r
which is possible by assumption on S. He then creates S(a ∗ b + r,u) and sends shares to the servers.
Assuming Pi did this correctly, we can compute

S(a ∗ b+ r,u)− S(r,f r) = S(a ∗ b,u− f r)

which was the goal. To make sure that Pi acted correctly, we have him prove that Ŝ(a∗b+r,fa⊗f b+ f̂ r)
and S(a ∗ b+ r,u) contain the same value, and this can be done using the same procedure we had a client
do above, if we make sure that Pi is assigned to handle at least ` multiplications.

Once the computation is done, we have share vectors of the output that we open towards the client who
is to receive.

Routing Bits Between Layers. In order to allow us to evaluate the circuit using only parallel computation,
we need to route the bits correctly between layers of the circuit. We can do this by using the [DIK10]
approach to transform the circuit, or by computing the rerouting directly if the circuit is regular. In any case,
this will require us to take a sharing S(a,fa) and compute S(ϕ(a),f ′

a) for a linear function ϕ where we
can assume that the same function is to be applied to at least ` blocks. This can be done by taking a pair
S(r,f r),S(ϕ(r),f ′

r), compute

S(a,fa) + S(r,f r) = S(a+ r,fa + f r)

and send all shares of this value to a single player Pi. He can reconstruct a+r and fa+f r, compute ϕ(a+r)
and make a sharing S(ϕ(a+ r),v). Assuming Pi acted correctly we can compute by local addition

S(ϕ(a+ r),v)− S(ϕ(r),f ′
r) = S(ϕ(a),v − f ′

r).

To check that Pi did this correctly, we observe that we have sharings S(a+r,fa+f r) and S(ϕ(a+r),v)
where Pi knows the involved randomness. This can be seen as part of the set-up of the πϕV SS protocol. So Pi
completes the set-up and we execute πϕV SS with Pi as dealer. If this accepts, we know that Pi acted correctly.

This completes the sketch of the protocol. The proof of security is straightforward.

Efficiency By inspection, one sees that every operation we do only incurs communication of at most a
linear number of bits per bit of data we compute on. In particular this is true because the openings in the
multiplication and linear function subprotocols are handled by a single player: an opening to one player
communicates n bits, but the sharing contains Θ(n) bits. Therefore this protocol satisfies the claims of
Theorem 2.

28


