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Abstract. The Sponge function is known to achieve 2c/2 security, where c is its capacity. This
bound was carried over to keyed variants of the function, such as SpongeWrap, to achieve a
min{2c/2, 2κ} security bound, with κ the key length. Similarly, many CAESAR competition sub-
missions are designed to comply with the classical 2c/2 security bound. We show that Sponge-
based constructions for authenticated encryption can achieve the significantly higher bound of
min{2b/2, 2c, 2κ}, with b > c the permutation size, by proving that the CAESAR submission
NORX achieves this bound. Furthermore, we show how to apply the proof to five other Sponge-
based CAESAR submissions: Ascon, CBEAM/STRIBOB, ICEPOLE, Keyak, and two out of the
three PRIMATEs. A direct application of the result shows that the parameter choices of these
submissions are overly conservative. Simple tweaks render the schemes considerably more efficient
without sacrificing security. For instance, NORX64 can increase its rate and decrease its capacity
with 128 bits and Ascon-128 can encrypt three times as fast, both without affecting the provable
security level.
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1 Introduction

Authenticated encryption schemes, cryptographic functions that aim to provide both privacy
and authenticity of data, have gained renewed attention in light of the recently commenced
CAESAR competition [15]. A common approach to building such schemes is to design a mode
of operation for a block cipher, as in CCM [31], OCB1-3 [19,22,23], and EAX [8]. Nevertheless
a significant fraction of the CAESAR competition submissions use modes of operation for
permutations.

Most of the permutation-based modes follow the basic design of the Sponge construc-
tion [13]: their outputs are computed from a state value, which in turn is repeatedly updated
using key, nonce, associated data, and plaintext by calling a permutation. The state is divided
into a rate part of r bits, through which the user enters plaintext, and a capacity part of c
bits, which is out of the control of the user.

The security of the Sponge construction as a hash function follows from the fact that the
user can only affect the rate, hence an adversary only succeeds with significant probability if it
makes on the order of 2c/2 permutation queries, as this many are needed to produce a collision
in the capacity [13]. Keyed versions of the Sponge construction, such as KeyedSponge [12]
and SpongeWrap [11], are proven up to a similar bound of 2c−a given a limit of 2a on online
complexity, but are furthermore restricted by the key size κ to 2κ. The permutation-based
CAESAR candidates are no exception and recommend parameters based on either the 2c/2

bound or 2c−a bound with maximal online complexity 2a, as shown in Table 1.

1.1 Our Results

Contrary to intuition, a wide range of permutation-based authenticated encryption schemes
achieve a significantly higher level of security: we prove that the security bound is limited by



Table 1: Parameters and the achieved mode security levels of seven CAESAR submissions. We
remark that ICEPOLE consists of three configurations (two with security level 128 and one
with security level 256) and Keyak of four configurations (one with an 800-bit state and three
with a 1600-bit state)

b c r κ τ security

Ascon [16]
320 192 128 96 96 96

320 256 64 128 128 128

CBEAM [27] 256 190 66 128 64 128

ICEPOLE [21]
1280 254 1026 128 128 128

1280 318 962 256 128 256

Keyak [14]
800 252 548 128..224 128 128..224

1600 252 1348 128..224 128 128..224

NORX [4]
512 192 320 128 128 128

1024 384 640 256 256 256

GIBBON/

HANUMAN
[2]

200 159 41 80 80 80

280 239 41 120 120 120

STRIBOB [28] 512 254 258 192 128 192

min{2(r+c)/2, 2c, 2κ} as opposed to min{2c/2, 2κ}. The main proof in this work is for NORX [4],
but we demonstrate that it directly carries over to the CAESAR submissions Ascon [16],
CBEAM/STRIBOB3 [24,26–28], ICEPOLE [21], Keyak [14], and two out of three PRIMATEs
[2]. Additionally, we note that it directly applies to SpongeWrap [11] and DuplexWrap [14],
upon which Keyak is built.

Our results imply that all of these CAESAR candidates have been overly conservative in
choosing their parameters since a smaller capacity would have lead to the same bound. For
instance, Ascon-128 could have taken (c, r) = (128, 192) instead of (256, 64) to have the same
level of security, NORX64 (the proposed mode with 256-bit security) would achieve the same
level of security if its rate were 128 bits larger, and GIBBON-120 and HANUMAN-120 could
increase their rate by a factor of 4 without significantly affecting the security level.

We note that these observations only concern the mode security, where characteristics of
the underlying permutation are set aside. Specifically, the concrete security of the underlying
permutations plays a fundamental role in the choice of parameters. For instance, the authors of
Ascon, NORX, and PRIMATEs [2, 4, 16] acknowledge that non-random properties of some of
the underlying primitives exist. Although these properties are harmless, a non-hermetic design
approach for the primitives affects the parameter choices.

1.2 Outline

We present our security model in Section 2. A security proof for NORX is derived in Section 3.
In Section 4 we show that the proof of NORX directly generalizes to the CAESAR submissions
Ascon, CBEAM/STRIBOB, ICEPOLE, Keyak, and two out of three PRIMATEs, as well as
to SpongeWrap and DuplexWrap. The work is concluded in Section 5, where we also discuss
possible generalizations to Artemia [1] and π-Cipher [17].

3 Both use the BLNK Sponge mode [25]. We note that CBEAM has been withdrawn after an attack by
Minaud [20], but in this work we focus on modes of operation.
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2 Security Model

For n ∈ N, let Perm(n) denote the set of all permutations on n bits. When writing x
$←− X for

some finite set X , we mean that x gets sampled uniformly at random from X . For x ∈ {0, 1}n,
and a, b ≤ n, we denote by [x]a and [x]b the a leftmost and b rightmost bits of x, respectively.
For tuples (j, k), (j′, k′) we use the lexicographical order: (j, k) > (j′, k′) means that j > j′ or
(j = j′ and k > k′).

Let Π be an authenticated encryption scheme, which is specified by an encryption function
E and a decryption function D:

(C,A)←− EK(N ;H,M, T ) and M/⊥ ←− DK(N ;H,C, T ;A) .

Here N denotes a nonce value, H a header, M a message, C a ciphertext, T a trailer, and A
an authentication tag. The values (H,T ) will be referred to as associated data. If verification
is correct, then the decryption function DK outputs M , and ⊥ otherwise. The scheme Π is
also determined by a set of parameters such as the key size, state size, and block size, but
these are left implicit. In addition, we define $ to be an ideal version of EK , where $ returns

(C,A)
$←− {0, 1}|M |+τ on input of a new (N ;H,M, T ).

We follow the convention in analyzing modes of operation for permutations by modeling
the underlying permutations as being drawn uniformly at random from Perm(b), where b is a
parameter determined by the scheme. We note that irregularities in the underlying permutation
may invalidate the underlying assumption.

An adversary A is a probabilistic algorithm that has access to one or more oracles O,
denoted AO. By AO = 1 we denote the event that A, after interacting with O, outputs 1. We
consider adversaries A that have unbounded computational power and whose complexities are
solely measured by the number of queries made to their oracles. These adversaries have query
access to the underlying idealized permutations, EK or its counterpart $, and possibly DK .
The key K is randomly drawn from {0, 1}κ at the beginning of the security experiment. The
security definitions below follow [6,18].

Privacy

Let p denote the list of underlying idealized permutations of Π. We define the advantage of
an adversary A in breaking the privacy of Π as follows:

Advpriv
Π (A) =

∣∣∣Prp,K

(
Ap±,EK = 1

)
−Prp,$

(
Ap±,$ = 1

)∣∣∣ ,
where the probabilities are taken over the random choices of p, $,K, and the random choices of
A, if any. The fact that the adversary has access to both the forward and inverse permutations
in p is denoted by p±. We assume that adversary A is nonce-respecting, which means that it
never makes two queries to EK or $ with the same nonce. By Advpriv

Π (qp, qE , λE) we denote
the maximum advantage taken over all adversaries that query p± at most qp times, and that
make at most qE queries of total length at most λE blocks to EK or $. We remark that this
privacy notion is also known as the CPA security of an (authenticated) encryption scheme.

Integrity

As above, let p denote the list of underlying idealized permutations of Π. We define the
advantage of an adversary A in breaking the authenticity of Π as follows:

Advauth
Π (A) = Prp,K

(
Ap±,EK ,DK forges

)
,
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where the probability is taken over the random choices of p,K, and the random choices of A,
if any. Here, we say that “A forges” if DK ever returns a valid message (other than ⊥) on input
of (N ;H,C, T ;A) where (C,A) has never been output by EK on input of a query (N ;H,M, T )
for some M . We assume that adversary A is nonce-respecting, which means that it never
makes two queries to EK with the same nonce. Nevertheless, A is allowed to repeat nonces in
decryption queries. By Advauth

Π (qp, qE , λE , qD, λD) we denote the maximum advantage taken
over all adversaries that query p± at most qp times, that make at most qE queries of total
length at most λE blocks to EK , and at most qD queries of total length at most λD blocks to
DK/⊥.

3 NORX

We introduce NORX at a level required for the understanding of the security proof, and refer
to Aumasson et al. [4] for the formal specification. Let p be a permutation on b bits. All b-bit
state values are split into a rate part of r bits and a capacity part of c bits. We denote the
key size of NORX by κ bits, the nonce size by ν bits, and the tag size by τ bits. The header,
message, and trailer can be of arbitrary length, and are padded using 10∗1-padding to a length
of a multiple of r bits. Throughout, we denote the r-bit header blocks by H1, . . . ,Hu, message
blocks by M1, . . . ,Mv, ciphertext blocks by C1, . . . , Cv, and trailer blocks by T1, . . . , Tw.

Unlike other permutation-based schemes, NORX allows for parallelism in the encryption
part, which is described using a parameter D ∈ {0, . . . , 255} corresponding to the number of
parallel chains. Specifically, if D ∈ {1, . . . , 255} NORX has D parallel chains, and if D = 0 it
has v parallel chains, where v is the block length of M or C.

NORX consists of five proposed parameter configurations: NORXW -R-D for (W,R,D) ∈
{(64, 4, 1), (32, 4, 1), (64, 6, 1), (32, 6, 1), (64, 4, 4)}. The parameter R denotes the number of
rounds of the underlying permutation p, and W denotes the word size which we use to set
r = 10W and c = 6W . The default key and tag size are κ = ν = 4W . The corresponding
parameters for the two different choices of W , 64 and 32, are given in Table 1.

Although NORX starts with an initialization function init which requires the parameters
(D,R, τ) as input, as soon as our security experiment starts, we consider (D,R, τ) fixed and
constant. Hence we can view init as a function that maps (K,N) to (K‖N‖0b−κ−ν) ⊕ const,
where const is irrelevant to the mode security analysis of NORX, and will be ignored in the
remaining analysis.

After init is called, the header H is compressed into the rate, then the state is branched
into D states (if necessary), the message blocks are encrypted in a streaming way, the D
states are merged into one state (if necessary), the trailer is compressed, and finally the tag
A is computed. All rounds are preceded with a domain separation constant XORed into the
capacity: 01 for header compression, 02 for message encryption, 04 for trailer compression,
and 08 for tag generation. If D 6= 1, domain separators 10 and 20 are used for branching and
merging, along with pairwise distinct lane indices idk for k = 1, . . . , D (if D = 1 we write
id1 = 0).

The privacy of NORX is proven in Section 3.1 and the authenticity in Section 3.2. In both
proofs we consider an adversary that makes qp permutation queries and qE encryption queries
of total length λE . In the proof of integrity, the adversary can additionally make qD decryption
queries of total length λD. To aid the analysis, we compute the number of permutation calls
made via the qE encryption queries. The exact same computation holds for decryption queries
with the parameters defined analogously.
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Fig. 1: NORX with D = 2

Consider a query to EK , consisting of u header blocks, v message blocks, and w trailer
blocks. We denote its corresponding state values bysinit; sH0 , . . . , s

H
u ;


sM1,0, . . . , s

M
1,v1

...
...

sMD,0, . . . , s
M
D,vD

 ; sT0 , . . . , s
T
w; stag

 , (1)

as outlined in Figure 1. Here,
∑D

k=1 vk = v. If there are no branching and merging phases, i.e.
D = 1, then the state values corresponding to the branching and merging, {sM1,0, . . . , sMD,0} and

sT0 , are left out of the tuple. Note that the length of this tuple equals the number of primitive
calls made in this encryption query, as every state value corresponds to the input of exactly
one primitive call. A simple calculation shows that if the jth EK query is of length u+ v + w
blocks, it results in u+v+w+3 state values if D = 1, in u+v+w+D+4 state values if D > 1,
and in u + 2v + w + 4 state values if D = 0.4 We denote the number of state values by σE,j ,
where the dependence on D is suppressed as D does not change during the security game. In
other words, σE,j denotes the number of primitive calls in the jth query to EK . Furthermore,
we define σE to be the total number of primitive evaluations via the encryption queries, and
find that

σE :=

qE∑
j=1

σE,j ≤


2λE + 4qE , if D = 0 ,

λE + 3qE , if D = 1 ,

λE + (D + 4)qE , if D > 1 .

(2)

This bound is rather tight. Particularly, for D = 0 an adversary can meet this bound by
only making queries without header and trailer. For queries to DK we define σD,j and σD
analogously.

3.1 Privacy of NORX

Theorem 1. Let Π = (E ,D) be NORX based on an ideal underlying primitive p. Then,

Advpriv
Π (qp, qE , λE) ≤

3(qp + σE)2

2b+1
+

(
8eqpσE

2b

)1/2

+
rqp
2c

+
qp + σE

2κ
,

where σE is defined in (2).

4 For D = 0, the original specification dictates an additional 10b−21-padding for every complete message block.
This means that lanes 1, . . . , v − 1 consist of two rounds. We do not take this padding into account, noting
that it is unnecessary for the security analysis.
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Theorem 1 can be interpreted as implying that NORX provides privacy security as long as
the total complexity qp + σE does not exceed min{2b/2, 2κ} and the total number of primitive
queries qp, also known as the offline complexity, does not exceed 2c/r. See Table 1 for the
security level of the various parameter choices of NORX.

To achieve our bound, we demonstrate that while some types of collisions may happen
with probability 1/2c, these do not significantly influence the bound: one can expect about
(qp + σE)2/2r such collisions to occur. The formal security proof is more detailed, and in part
implicitly relies on the usage of multiplicities [10]. Furthermore, we remark that, at the cost
of readability and simplicity of the proof, the bound could be improved by a constant factor.

Proof. We consider any adversary A that has access to either (p±, EK) or (p±, $) and whose
goal is to distinguish these two worlds. For brevity, we write

Advpriv
Π (A) = ∆A(p±, EK ; p±, $) . (3)

We start with a PRP-PRF switch [3,7], in which we make a transition from p± to a primitive
f± defined as follows. This primitive f± maintains an initially empty list F of query/response
tuples (x, y). For F , we denote its set of domain and range values by dom(F) and rng(F),
respectively. For a forward query f(x) with x ∈ dom(F), the corresponding value y = F(x) is
returned. For a new forward query f(x), the response y is randomly drawn from {0, 1}b, then
if y is in rng(F) the primitive aborts, otherwise the tuple (x, y) is added to F . The description
for f−1 is similar. The usage of F will remain implicit in the remaining usage of f±. Now,
p± and f± behave identically as long as the latter does not abort. Given that the adversary
triggers at most qp + σE evaluations of f , such an abort happens with probability at most(
qp+σE

2

)
/2b ≤ (qp + σE)2/2b+1. This PRP-PRF switch needs to be applied to both the real and

ideal world, to get

∆A(p±, EK ; p±, $) ≤ ∆A(f±, EK ; f±, $) +
(qp + σE)2

2b
. (4)

We restrict our attention to A with oracle access to (f±, F ), where F ∈ {EK , $}. Without loss
of generality, we can assume that the adversary only queries full blocks and that no padding
rules are involved. We can do this because the padding rules are injective, allowing the proof
to carry over to the case of fractional blocks with 10∗1-padding.

We introduce some terminology. Queries to f± are denoted (xi, yi) for i = 1, . . . , qp, while
queries to F are written as elements (Nj ;Hj ,Mj , Tj ;Cj , Aj) for j = 1, . . . , qE . If F = EK , the
state values are denoted as in (1), subscripted with a j:sinit

j ; sHj,0, . . . , s
H
j,u;


sMj,1,0, . . . , s

M
j,1,v1

...
...

sMj,D,0, . . . , s
M
j,D,vD

 ; sTj,0, . . . , s
T
j,w; stag

j

 . (5)

If the structure of (5) is irrelevant we refer to the tuple as (sj,1, . . . , sj,σE,j ), where we use the
convention to list the elements of the matrix column-wise. In this case, we write parent(sj,k) to
denote the state value that lead to sj,k, with parent(sj,1) := ∅ and parent(sTj,0) := (sMj,1,v1

, . . . ,

sMj,D,vD). We remark that the characteristic structure of NORX, with the D parallel states,
only becomes relevant in the two technical lemmas that will be used at the end of the proof.
We point out that sj,1 corresponds to the initial state value of the evaluation, which requires
special attention throughout the remainder of the proof.

We define two collision events, guess and hit. Let i ∈ {1, . . . , qp}, j, j′ ∈ {1, . . . , qE}, k ∈
{1, . . . , σE,j}, and k′ ∈ {1, . . . , σE,j′}:

guess(i; j, k) ≡ xi = sj,k ,

hit(j, k; j′, k′) ≡ parent(sj,k) 6= parent(sj′,k′) ∧ sj,k = sj′,k′ .
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Event guess(i; j, k) corresponds to a primitive call in an encryption query hitting a direct
primitive query, or vice versa, while hit(j, k; j′, k′) corresponds to non-trivial primitive calls
colliding in encryption queries. We write guess = ∨i;j,kguess(i; j, k), hit = ∨j,k;j′,k′hit(j, k; j′, k′),
and set event = guess ∨ hit.

The remainder of the proof is divided as follows. In Lemma 1 we prove that (f±, EK) and
(f±, $) are indistinguishable as long as ¬event holds. In other words,

∆A(f±, EK ; f±, $) ≤ Pr
(
Af±,EK sets event

)
. (6)

Then, in Lemma 2 we bound this term by
qpσE + σ2

E/2
2b

+

(
8eqpσE

2b

)1/2

+
rqp
2c

+
qp + σE

2κ
. Noting

that
qpσE + σ2

E/2
2b

≤ (qp + σE)2

2b+1
, this completes the proof via equations (3,4,6). ut

Lemma 1. Given that event does not occur, (f±, EK) and (f±, $) are indistinguishable.

Proof. The outputs of f± are sampled uniformly at random in both (f±, EK) and (f±, $),
except when such an output collides with a state of an EK evaluation in the real world.
However, this event is excluded by assuming ¬guess, hence it suffices to only consider queries
to the big oracle F ∈ {EK , $}.

Let Nj be a new nonce used in the F -query (Nj ;Hj ,Mj , Tj), with corresponding ciphertext
and authentication tag (Cj , Aj). Denote the query’s state values as in (5). Let u, v, and w
denote the number of padded header blocks, padded message blocks, and padded trailer blocks,
respectively.

By the definition of $, in the ideal world we have (Cj , Aj)
$←− {0, 1}|Mj |+τ . We will prove

that (Cj , Aj) is identically distributed in the real world, under the assumption that guess∨ hit
does not occur. Denote the message blocks of Mj by Mj,k,` for k = 1, . . . , D and ` = 1, . . . , vk.

We know that sHj,u is new and that f(sHj,u) does not collide with any other f -query because

otherwise ¬event would have been violated. Since sMj,k,0 = f(sHj,u)⊕ idk we conclude that sMj,k,0
is new for k = 1, . . . , D, as otherwise event would be set. Similarly, sMj,k,` is new for all ` > 0.
The ciphertext blocks Cj,k,` are computed as

Cj,k,` = Mj,k,` ⊕ [f(sMj,k,`−1)]r .

As the state value sMj,k,`−1 has not been evaluated by f before (neither directly nor indirectly

via an encryption query), f(sMj,k,`−1) outputs a uniformly random value from {0, 1}b, hence

Cj,k,`
$←− {0, 1}r. We remark that similar reasoning shows that a ciphertext block corresponding

to a truncated message block is uniformly randomly drawn as well, yet from a smaller set. The

fact that Aj
$←− {0, 1}τ follows the same reasoning, using that stag

j is a new input to f . Thus,

Aj = [f(stag
j )]τ

$←− {0, 1}τ . ut

Lemma 2. Pr
(
Af±,EK sets event

)
≤
qpσE + σ2

E/2
2b

+

(
8eqpσE

2b

)1/2

+
rqp
2c

+
qp + σE

2κ
.

Proof. Consider the adversary interacting with (f±, EK), and let Pr (guess ∨ hit) denote the
probability we aim to bound. For i ∈ {1, . . . , qp}, define

key(i) ≡ [xi]
κ = K ,

and key = ∨i key(i). Event key(i) corresponds to a primitive query hitting the key. Let j ∈
{1, . . . , qE} and k ∈ {1, . . . , σE,j}, and consider any threshold ρ ≥ 1, then define

multi(j, k) ≡
[
maxα∈{0,1}r

∣∣{j′ ≤ j, 1 < k′ ≤ k : α ∈ {[sj′,k′ ]r, [f(sj′,k′)]
r}
}∣∣ ] > ρ .

7



Event multi(j, k) is used to bound the number of states that collide in the rate part. Note that
state values sj′,1 are not considered here as they will be covered by key. We define multi =
multi(qE , σE,qE ), which is a monotone event. By basic probability theory,

Pr (guess ∨ hit) ≤ Pr (guess ∨ hit | ¬(key ∨multi)) + Pr (key ∨multi) . (7)

In the remainder of the proof, we bound these probabilities as follows: we consider the ith
forward or inverse primitive query (for i ∈ {1, . . . , qp}) or the kth state of the jth construction
query (for j ∈ {1, . . . , qE} and k ∈ {1, . . . , σE,j}), and bound the probability that this evaluation
makes guess ∨ hit satisfied, under the assumption that this query does not set key ∨multi and
also that guess ∨ hit ∨ key ∨multi has not been set before. For the analysis of Pr (key ∨multi)
a similar technique is employed.5

Event guess. This event can be set in the ith primitive query (for i = 1, . . . , qp) or in any
state evaluation of the jth construction query (for j = 1, . . . , qE). Denote the state values of
the jth construction query as in (5). Consider any evaluation, assume this query does not set
key ∨multi and assume that guess∨ hit∨ key ∨multi has not been set before. Firstly, note that
xi = sinit

j for some i, j would imply key(i) and hence invalidate our assumption. Therefore, we

can exclude sinit
j from further analysis on guess. For i = 1, . . . , qp, let ji ∈ {1, . . . , qE} be the

number of encryption queries made before the ith primitive query. Similarly, for j = 1, . . . , qE ,
denote by ij ∈ {1, . . . , qp} the number of primitive queries made before the jth encryption
query.

– Consider a primitive query (xi, yi) for i ∈ {1, . . . , qp}, which may be a forward or an inverse
query, and assume it has not been queried to f± before. If it is a forward query xi, by ¬multi
there are at most ρ state values s with [xi]

r = [s]r, and thus xi = s with probability at
most ρ/2c. Here, we remark that the capacity part of s is unknown to the adversary and it
guesses it with probability at most 1/2c. A slightly more complicated reasoning applies for
inverse queries. Denote the query by yi. By ¬multi there are at most ρ state values s with
[yi]

r = [f(s)]r, hence yi = f(s) with probability at most ρ/2c. If yi equals f(s) for any of
these states, then xi = s, otherwise xi = s with probability at most

∑ji
j=1 σE,j/2

b. Therefore

the probability that guess is set via a direct query is at most
qpρ
2c +

∑qp
i=1

∑ji
j=1

σE,j
2b

;

– Next, consider the probability that the jth construction query sets guess, for j ∈ {1, . . . , qE}.
For simplicity, first consider D = 1, hence the message is processed in one lane and we can
use state labeling (sj,1, . . . , sj,σE,j ). We range from sj,2 to sj,σE,j (recall that sj,1 = sinit

j can
be excluded) and consider the probability that this state sets guess assuming it has not been
set before. Let k ∈ {2, . . . , σE,j}. The state value sj,k equals f(sj,k−1)⊕ v, where v is some
value determined by the adversarial input prior to the evaluation of f(sj,k−1), including
input from (Hj ,Mj , Tj) and constants serving as domain separators. By assumption, guess∨
hit has not been set before, and f(sj,k−1) is thus randomly drawn from {0, 1}b. It hits any xi
(i ∈ {1, . . . , ij}) with probability at most ij/2

b. Next, consider the general case D > 1. We
return to the labeling of (5). A complication occurs for the branching states sMj,1,0, . . . , s

M
j,D,0

5 Formally, this proof technique relies on the following paradigm. Note that there is an ordering of the qp +
σE primitive queries, and we can reformulate guess(`), hit(`), key(`), and multi(`) for ` = 1, . . . , qp + σE
analogously. Defining event(`) = guess(`) ∨ hit(`) and help(`) = key(`) ∨multi(`), then

Pr (event) ≤ Pr (event(qp + σE) | ¬event(1 · · · qp + σE − 1) ∧ ¬help(1 · · · qp + σE)) +

Pr (event(1 · · · qp + σE − 1) ∨ help(1 · · · qp + σE)) ,

and inductively Pr (event) ≤
∑qp+σE
`=1 Pr (event(`) | ¬event(1 · · · `− 1) ∧ ¬help(1 · · · `)) +

Pr (help(`) | ¬help(1 · · · `− 1)). This formulation would however merely reduce the readability of the
proof.
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and the merging state sTj,0. Starting with the branching states, these are computed from

sHj,u as  sMj,1,0
...

sMj,D,0

 = f(sHj,u)⊕

 v1
...
vD

 ,

where v1, . . . , vD are some distinct values determined by the adversarial input prior to
the evaluation of the jth construction query. These are distinct by the XOR of the lane
numbers id1, . . . , idD. Any of these nodes equals xi for i ∈ {1, . . . , qp} with probability at
most ijD/2

b. Finally, for the merging node sTj,0 we can apply the same analysis, noting
that it is derived from a sum of D new f -evaluations. Concluding, the jth construction
query sets guess with probability at most ijσE,j/2b (we always have in total at most σE,j
new state values). Summing over all qE construction queries, we get

∑qE
j=1 ijσE,j/2

b.

Concluding,

Pr (guess | ¬(key ∨multi)) ≤ qpρ

2c
+

qp∑
i=1

ji∑
j=1

σE,j
2b

+

qE∑
j=1

ijσE,j
2b

=
qpρ

2c
+
qpσE
2b

.

Here we use that
∑qp

i=1

∑ji
j=1 σE,j+

∑qE
j=1

∑σE,j
k=1 ij = qpσE , which follows from a simple counting

argument.

Event hit. We again employ ideas of guess, and particularly that as long as guess∨hit is not set,
we can consider all new state values (except for the initial states) to be randomly drawn from a
set of size 2b. Particularly, we can refrain from explicitly discussing the branching and merging
nodes (the detailed analysis of guess applies) and label the states as (sj,1, . . . , sj,σE,j ). Clearly,
sj,1 6= sj′,1 for all j, j′ by uniqueness of the nonce. Any state value sj,k for k > 1 (at most σE−qE
in total) hits an initial state value sj′,1 only if [sj,k]

κ = K, which happens with probability at
most σE/2κ, assuming sj,k is generated randomly. Finally, any two other states sj,k, sj′,k′ for
k, k′ > 1 collide with probability at most

(
σE−qE

2

)
/2b. Concluding, Pr (hit | ¬(key ∨multi)) ≤(

σE
2

)
/2b + σE/2κ.

Event key. For i ∈ {1, . . . , qp}, the query sets key(i) if [xi]
κ = K, which happens with

probability 1/2κ (assuming it did not happen in queries 1, . . . , i− 1). The adversary makes qp
attempts, and hence Pr (key) ≤ qp/2κ.

Event multi. We again use the principles from the analysis for guess of construction queries
(note that this part does not rely on multi itself). Particularly, consider a new state value sj,k−1;
then for a fixed state value x ∈ {0, 1}b it satisfies f(sj,k−1) = x or sj,k = f(sj,k−1) ⊕ v = x
for some predetermined v with probability at most 2/2b. Now, let α ∈ {0, 1}r. More than ρ

state values hit α with probability at most
(
σE
ρ

)
(2/2r)ρ ≤

(
2eσE
ρ2r

)ρ
, using Stirling’s approxi-

mation (x! ≥ (x/e)x for any x). Considering any possible choice of α, we obtain Pr (multi) ≤
2r
(

2eσE
ρ2r

)ρ
.

Addition of the four bounds via (7) gives

Pr (guess ∨ hit) ≤
qpσE + σ2

E/2
2b

+
qpρ

2c
+
qp + σE

2κ
+ 2r

(
eσE
ρ2r

)ρ
.
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Putting ρ = max

{
r,
(

2eσE2c

qp2r

)1/2
}

gives

Pr (guess ∨ hit) ≤
qpσE + σ2

E/2
2b

+ 2

(
2eqpσE

2b

)1/2

+
rqp
2c

+
qp + σE

2κ
,

assuming 2eqpσE/2b < 1 (which we can do, as the bound would otherwise be void anyway).
This completes the proof. ut

3.2 Authenticity of NORX

Theorem 2. Let Π = (E ,D) be NORX based on an ideal underlying primitive p. Then,

Advauth
Π (qp, qE , λE , qD, λD) ≤ (qp + σE + σD)2

2b
+

(
8eqpσE

2b

)1/2

+
rqp
2c

+
qp + σE + σD

2κ
+

(qp + σE + σD)σD
2c

+
qD
2τ

,

where σE , σD are defined in (2).

The bound is more complex than the one of Theorem 1, but intuitively implies that NORX
offers authenticity as long as it offers privacy and the number of forgery attempts σD is limited,
where the total complexity qp +σE +σD should not exceed 2c/σD. See Table 1 for the security
level for the various parameter choices of NORX. Needless to say, the exact bound is more
fine-grained.

Proof. We consider any adversary A that has access to (p±, EK ,DK) and attempts to make
DK output a non-⊥ value. As in the proof of Theorem 1, we apply a PRP-PRF switch to find

Advauth
Π (A) = Pr

(
Ap±,EK ,DK forges

)
≤ Pr

(
Af±,EK ,DK forges

)
+

(qp + σE + σD)2

2b+1
. (8)

Then we focus on A having oracle access to (f±, EK ,DK). As before, we assume without loss
of generality that the adversary only makes full-block queries.

We inherit terminology from Theorem 1. The state values corresponding to encryption and
decryption queries will both be labeled (j, k), where j indicates the query and k the state value
within the jth query. If needed we will add another parameter δ ∈ {D, E} to indicate that a
state value sδ,j,k is in the jth query to oracle δ, for δ ∈ {D, E} and j ∈ {1, . . . , qδ}. Particularly,
this means we will either label the state values as in (5) with a δ appended to the subscript,
or simply as (sδ,j,1, . . . , sδ,j,σδ,j ).

As before, we employ the collision events guess and hit, but expanded to the new notation
with δ = E . Next, we define two D-related collision events Dguess and Dhit. Let i ∈ {1, . . . , qp},
(D, j, k) be a decryption query index, and (δ′, j′, k′) be an encryption or decryption query index:

Dguess(i; j, k) ≡ xi = sD,j,k ,

Dhit(j, k; δ′, j′, k′) ≡ parent(sD,j,k) 6= parent(sδ′,j′,k′) ∧ sD,j,k = sδ′,j′,k′ ,

We again write Dguess = ∨i;j,kDguess(i; j, k) and hit = ∨j,k;δ′,j′,k′Dhit(j, k; δ′, j′, k′), and define
event = guess ∨ hit ∨ Dguess ∨ Dhit.

Observe that from (8) we get

Pr
(
Af±,EK ,DK forges

)
≤Pr

(
Af±,EK ,DK forges | ¬event

)
+Pr

(
Af±,EK ,DK sets event

)
. (9)

A bound on the probability that A sets event is derived in Lemma 3.
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The remainder of this proof centers on the probability that A forges given that event does
not happen. Such a forgery requires that [f(stag

D,j)]
τ = Aj for some decryption query j. By

¬event, we know that stag
D,j is a new state value for all j ∈ {1, . . . , qD}, hence f ’s output under

stag
D,j is independent of all other values and uniformly distributed for all j. As a result, we know

that the jth forgery attempt is successful with probability at most 1/2τ . Summing over all qD
queries, we get

Pr
(
Af±,EK ,DK forges | ¬event

)
≤ qD

2τ
,

and the proof is completed via (8,9) and the bound of Lemma 3, where we again use that
qpσE + σ2

E/2
2b

≤ (qp + σE + σD)2

2b+1
. ut

Lemma 3. Pr
(
Af±,EK ,DK sets event

)
≤
qpσE + σ2

E/2
2b

+

(
8eqpσE

2b

)1/2

+
rqp
2c

+
qp + σE + σD

2κ
+

(qp + σE)σD + σ2
D/2

2c
.

Proof. Recall that event = guess ∨ hit ∨ Dguess ∨ Dhit. Employing events key and multi from
Lemma 2, we find:

Pr (guess ∨ hit ∨ Dguess ∨ Dhit) ≤ Pr (guess ∨ hit ∨ Dguess ∨ Dhit | ¬(key ∨multi)) +

Pr (key ∨multi) .
(10)

The proof builds upon Lemma 2, and in particular we will use the same proof technique of
running over all queries and computing the probability that a query sets event, assuming event
has not been set before. The bounds on Pr (guess ∨ hit | ¬(key ∨multi)) and Pr (key ∨multi)
carry over from Lemma 2 verbatim, where we additionally note that for a given query, the
previous decryption queries are of no influence as by hypothesis Dguess ∨ Dhit was not set
before the query in question. We continue with the analysis of Dguess and Dhit.

Event Dguess. Note that the adversary may freely choose the rate part in decryption queries
and primitive queries. Indeed, the ciphertext values that A chooses in decryption queries define
the rate parts of the state values. Consequently, Dguess gets set as soon as there is a primitive
state and a decryption state whose capacities are equal. This happens with probability at most
Pr (Dguess | ¬(key ∨multi)) ≤ qpσD/2c.

Event Dhit. A technicality occurs in that the adversary can reuse nonces in decryption.
To increase readability, we first state that any decryption state s satisfies [s]κ = K only
with probability at most σD/2κ, and in the remainder we can exclude this case. Next, we
define an event innerhit. Let (δ, j, k) and (δ′, j′, k′) be two decryption query indices, and let
const ∈ {0, 01⊕ 02, 01⊕ 04, 01⊕ 08, 01⊕ 10, 02⊕ 04, 02⊕ 08, 02⊕ 20, 02⊕ 20⊕ idi, 04⊕ 08}:

innerhit(δ, j, k; δ′, j′, k′; const) ≡ parent(sδ,j,k) 6= parent(sδ′,j′,k′) ∧
[sδ,j,k]c = [sδ′,j′,k′ ]c ⊕ const .

Note that for any choice of indices and const, we have Pr (innerhit(δ, j, k; δ′, j′, k′; const)) ≤
1/2c.

We consider the general case D 6= 1. Consider the j̄th decryption query (N ;H,C, T ;A).
Say it consists of u header blocks H1 · · ·Hu, v ciphertext blocks C1 · · ·Cv, and w trailer blocks
T1 · · ·Tw, and write its state values as in (1). Let (Nδ,j ;Hδ,j , Cδ,j , Tδ,j ;Aδ,j) be an older cipher-
text tuple that shares the longest common blockwise prefix with (N ;H,C, T ;A). Note that this
tuple may not be unique (for instance if N is new), and that it may come from an encryption
or decryption query. Say that this query consists of uδ,j header blocks, vδ,j ciphertext blocks,
and wδ,j trailer blocks, and write its state values as in (5). We proceed with a case distinction.
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(1) (N ;H,C, T ) = (Nδ,j;Hδ,j, Cδ,j, Tδ,j) but A 6= Aδ,j. In this case the query renders
no new states and Dhit cannot be set by definition;

(2) (N ;H,C) = (Nδ,j;Hδ,j, Cδ,j) but T 6= Tδ,j. Let ` ∈ {1, . . . ,min{w,wδ,j},∞} be
minimal such that T` 6= Tδ,j,`, where ` =∞ means that T is a substring of Tδ,j (if w < wδ,j)
or vice versa (if w > wδ,j). We make a further distinction between ` =∞ and ` <∞.
(a) ` = ∞. Note that sTmin{w,wδ,j} = sTδ,j,min{w,wδ,j} ⊕ 04 ⊕ 08. If this input to f is old, it

implies innerhit(δ, j,min{w,wδ,j}; δ′, j′, k′; 04 ⊕ 08) for some (δ′, j′, k′) older than the
current query (D, j̄,min{w,wδ,j}), which is the case with probability at most 1/2c (for
all possible index tuples). Otherwise, f generates a new value and new state value s
(sTw+1 if w > wδ,j or stag if w < wδ,j), which sets Dhit if it sets innerhit with an older
state sδ′,j′,k′ under const = 0. This also happens with probability at most 1/2c for any
(δ′, j′, k′). This procedure propagates to stag. In total, the j̄th decryption query sets

Dhit with probability at most
∑σD,j̄

k=1

σE+σD,1+···+σD,j̄−1+(k−1)

2c ;
(b) ` < ∞. In this case sT`−1 = sTδ,j,`−1 and sT` = sTδ,j,` ⊕ (T`‖0c)⊕ (Tδ,j,`‖0c) 6= sTδ,j,`.

6 As

before, sT` is a new input to f , except if innerhit(δ, j, `; δ′, j′, k′; 0) for some (δ′, j′, k′)
older than the current query (D, j̄, `). This is the case with probability at most 1/2c

for all possible older queries. The procedure propagates to stag as before, and the same
bound holds;

(3) (N ;H) = (Nδ,j;Hδ,j) but C 6= Cδ,j. The analysis is similar but a special treatment
is required to deal with the merging phase. Consider the ciphertext C to be divided into
blocks Ck,` for k = 1, . . . , D and ` = 1, . . . , vk. Similarly for Cδ,j . For k = 1, . . . , D, let
`k ∈ {1, . . . ,min{vk, vδ,j,k},∞} be minimal such that Ck,`k 6= Cδ,j,k,`k . Again, `k = ∞
means that Ck is a substring of Cδ,j,k (if vk ≤ vδ,j,k) or vice versa (if vk ≥ vδ,j,k). We make
a further distinction between whether or not (`1, . . . , `D) = (∞, . . . ,∞).
(a) (`1, . . . , `D) = (∞, . . . ,∞). As C 6= Cδ,j , there must be a k such that vk 6= vδ,j,k

and thus that Ck is a strictly smaller substring of Cδ,j,k or vice versa. Consequently,
sCk,vk = sCδ,j,k,vk ⊕ 02⊕ 20⊕ idk[min{vk, vδ,j,k} = 1] (or ⊕ 02⊕ 04 if D = 1 and there is
no merging phase, or ⊕ 02⊕ 08 if there is furthermore no trailer). Then, this state is
new to f except if innerhit(δ, j, k, vk; δ

′, j′, k′; const) is set for the const described above
(we slightly misuse notation here in that vk is input to innerhit). This means that also
sT0 will be new except if it hits a certain older state, which happens with probability
1/2c. The reasoning propagates up to stag as before, and the same bound holds;

(b) (`1, . . . , `D) < (∞, . . . ,∞). Let k be such that `k < ∞. Then, sCk,`k−1 = sCδ,j,k,`k−1

and sCk,`k = Ck,`k‖[sCδ,j,k,`k ]c 6= sCδ,j,k,`k . The reasoning of case (2b) carries over for all
future state values;

(4) N = Nδ,j but H 6= Hδ,j. The analysis follows fairly the same principles, albeit using
const ∈ {0, 01⊕ 02, 01⊕ 04, 01⊕ 08, 01⊕ 10};

(5) N 6= Nδ,j. The nonce N is new (hence the query shares no prefix with any older query).
There has not been an earlier state s that satisfies [s]κ = K (by virtue of the analysis in
hit and key, and the first step of this event Dhit). Therefore, sinit is new by construction
and a simplification of above analysis applies.

Summing over all queries:

Pr (Dhit | ¬(key ∨multi)) ≤
qD∑
j̄=1

σD,j̄∑
k=1

σE + σD,1 + · · ·+ σD,j̄−1 + (k − 1)

2c
+
σD
2κ

≤
σEσD +

(
σD
2

)
2c

+
σD
2κ

,

6 Note that if (δ, j) were not unique, then we similarly have sT`−1 = sTδ′,j′,`−1 and sT` = sTδ′,j′,` ⊕ (T`‖0c) ⊕
(Tδ′,j′,`‖0c) 6= sTδ′,j′,` for all other queries (δ′, j′) with the same prefix (possibly XORed with 04⊕ 08).
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where the last term comes from the exclusion of the event that any decryption state satisfies
[s]κ = K.

Together with the bound of Lemma 2 we find via (10),

Pr (event) ≤
qpσE + σ2

E/2
2b

+

(
8eqpσE

2b

)1/2

+
rqp
2c

+
qp + σE + σD

2κ
+

(qp + σE)σD + σ2
D/2

2c
.

This completes the proof. ut

4 Other CAESAR Submissions

In this section we discuss how the mode security proof of NORX generalizes to the CAESAR
submissions Ascon, the BLNK mode underlying CBEAM/STRIBOB, ICEPOLE, Keyak, and
two out of the three PRIMATEs. Before doing so, we make a number of observations and note
how the proof can accommodate small design differences.

– NORX uses domain separation constants at all rounds, but this is not strictly necessary and
other solutions exist. In the privacy and integrity proofs of NORX, and more specifically
at the analysis of state collisions caused by a decryption query in Lemma 3, the domain
separations are only needed at the transitions between variable-length inputs, such as
header to message data or message to trailer data. This means that the proofs would equally
hold if there were simpler transitions at these positions, such as in Ascon. Alternatively,
the domain separation can be done by using a different primitive, as in GIBBON and
HANUMAN, or a slightly more elaborated padding, as in BLNK, ICEPOLE, and Keyak;

– The extra permutation evaluations at the initialization and finalization of NORX are not
strictly necessary: in the proof we consider the monotone event that no state collides
assuming no earlier state collision occurred. For instance, in the analysis of Dhit in the
proof of Lemma 3, we necessarily have a new input to p at some point, and consequently
all next inputs to p are new (except with some probability);

– NORX starts by initializing the state with init(K,N) = (K‖N‖0b−κ−ν) ⊕ const for some
constant const and then permuting this value. Placing the key and nonce at different
positions of the state does not influence the security analysis. The proof would also work
if, for instance, the header is preceded with K‖N or a properly padded version thereof and
the starting state is 0b;

– In a similar fashion, there is no problem in defining the tag to be a different τ bits of the
final state; for instance, the rightmost τ bits;

– Key additions into the capacity part after the first permutation are harmless for the mode
security proof. Particularly, as long as these are done at fixed positions, these have the
same effect as XORing a domain separation constant.

These five modifications allow one to generalize the proof of NORX to Ascon, CBEAM and
STRIBOB, ICEPOLE, Keyak, and two PRIMATEs, GIBBON and HANUMAN. The only
major difference lies in the fact none of these designs accommodates a trailer, hence all are
functions of the form

(C,A)←− EK(N ;H,M) and M/⊥ ←− DK(N ;H,C;A) ,

except for one instance of ICEPOLE which accommodates a secret message number. Addition-
ally, these designs have σδ ≤ λδ + qδ for δ ∈ {D, E} (or σδ ≤ λδ + 2qδ for CBEAM/STRIBOB).
We always write H = (H1, . . . ,Hu) and M = (M1, . . . ,Mv) whenever notation permits. In
below sections we elaborate on these designs separately, where we slightly deviate from the
alphabetical order to suit the presentation. Diagrams of all modes are given in Figure 2. The
parameters and achieved provable security levels of the schemes are given in Table 1.
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Fig. 2: CAESAR submission modes discussed in Section 4
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4.1 Ascon

Ascon is a submission by Dobraunig et al. [16] and is depicted in Figure 2a. It is originally
defined based on two permutations p1, p2 that differ in the number of underlying rounds. We
discard this difference, considering Ascon with one permutation p.

Ascon initializes its state using init that maps (K,N) to (0b−κ−ν‖K‖N) ⊕ const, where
const is determined by some design-specific parameters set prior to the security experiment.
The header and message can be of arbitrary length, and are padded to length a multiple of r
bits using 10∗-padding. An XOR with 1 separates header processing from message processing.
From the above observations, it is clear that the proofs of NORX directly carry over to Ascon.

4.2 ICEPOLE

ICEPOLE is a submission by Morawiecki et al. [21] and is depicted in Figure 2c. It is originally
defined based on two permutations, p1 and p2, that differ in the number of underlying rounds.
We discard this difference, considering ICEPOLE with one permutation p.

ICEPOLE initializes its state as NORX does, be it with a different constant. The header
and message can be of arbitrary length, and are padded as follows. Every block is first appended
with a frame bit: 0 for header blocks H1, . . . ,Hu−1 and message block Mv, and 1 for header
block Hu and message blocks M1, . . . ,Mv−1. Then, the blocks are padded to length a multiple
of r bits using 10∗-padding. In other words, every padded block of r bits contains at most r−2
data bits. This form of domain separation using frame bits suffices for the proof to go through.
One variant of ICEPOLE also allows for a secret message number Msecret, which consists of
one block and is encrypted prior to the processing of the header, similar to the message. As
this secret message number is of fixed length, no domain separation is required and the proof
can easily be adapted. From above observations, it is clear that the proofs of NORX directly
carry over to ICEPOLE. Without going into detail, we note that the same analysis can be
generalized to the parallelized mode of ICEPOLE [21].

4.3 Keyak

Keyak is a submission by Bertoni et al. [14]. The basic mode for the serial case is depicted in
Figure 2d, yet due to its hybrid character it is slightly more general in nature. It is built on
top of SpongeWrap [11].

Keyak initializes its state by 0b, and concatenates K, N , and H using a special padding
rule:

Hpad(K,N,H) = keypack(K, 240) ‖ enc8(1) ‖ enc8(0) ‖ N ‖ H ,

where enc8(x) is an encoding of x as a byte and keypack(K, `) = enc8(`/8)‖K‖10−κ−1 mod (`−8).
The key-nonce-header combination Hpad(K,N,H) and message M can be of arbitrary length,
and are padded as follows: first, every block is appended with two frame bits, being 00 for
header blocks (Hpad(K,N,H))1, . . . , (Hpad(K,N,H))u−1 and 01 for (Hpad(K,N,H))u, and 11

for message blocks M1, . . . ,Mv−1 and 10 for Mv. Then, the blocks are padded to length a
multiple of r bits using 10∗1-padding. In other words, every padded block of r bits contains
at most r− 2 data bits. This form of domain separation using frame bits suffices for the proof
to go through. Due to above observations, our proof readily generalizes to SpongeWrap [11]
and DuplexWrap [14], and thus to Keyak. Without going into detail, we note that the same
analysis can be generalized to the parallelized mode of Keyak [14]. Additionally, Keyak also
supports sessions, where the state is re-used for a next evaluation. Our proof generalizes to
this case, simply with a more extended description of (1).
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4.4 BLNK (CBEAM and STRIBOB)

CBEAM and STRIBOB are submissions by Saarinen [24,26–28]. Minaud identified an attack
on CBEAM [20], but we focus on the modes of operation. Both modes are based on the BLNK
Sponge mode [25], which is depicted in Figure 2b.

The BLNK mode initializes its state by 0b, compresses K into the state (using one or two
permutation calls, depending on κ), and does the same with N . Then, the mode is similar to
SpongeWrap [11], though using a slightly more involved domain separation system similar to
the one of NORX. Due to above observations, our proof readily generalizes to BLNK [25], and
thus to CBEAM and STRIBOB.

4.5 PRIMATEs: GIBBON and HANUMAN

PRIMATEs is a submission by Andreeva et al. [2], and consists of three algorithms: APE,
GIBBON, and HANUMAN. The APE mode is the more robust one, and significantly differs
from the other two, and from the other CAESAR submissions discussed in this work, in
the way that ciphertexts are derived and because the mode is secure against nonce misusing
adversaries [3]. We now focus on GIBBON and HANUMAN, which are depicted in Figures 2e
and 2f. GIBBON is based on three related permutations p = (p1, p2, p3), where the difference
in p2, p3 is used as domain separation of the header compression and message encryption
phases (the difference of p1 from (p2, p3) is irrelevant for the mode security analysis). Similarly,
HANUMAN uses two related permutations p = (p1, p2) for domain separation.

GIBBON and HANUMAN initialize their state using init that maps (K,N) to
0b−κ−ν‖K‖N . The header and message can be of arbitrary length, and are padded to length
a multiple of r bits using 10∗-padding. In case the true header (or message) happens to be
a multiple of r bits long, the 10∗-padding is considered to spill over into the capacity. From
above observations, it is clear that the proofs of NORX directly carry over to GIBBON and
HANUMAN. A small difference appears due to the usage of two different permutations: we
need to make two PRP-PRF switches for each world. Concretely this means that the first term

in Theorem 1 becomes
5(qp+σE)2

2b+1 and the first term in Theorem 2 becomes
3(qp+σE+σD)2

2b+1 .

5 Conclusions

In this work we analyzed one of the Sponge-based authenticated encryption designs in de-
tail, NORX, and proved that it achieves security of approximately min{2b/2, 2c, 2κ}, sig-
nificantly improving upon the traditional bound of min{2c/2, 2κ}. Additionally, we showed
that this proof straightforwardly generalizes to five other CAESAR modes, Ascon, BLNK (of
CBEAM/STRIBOB), ICEPOLE, Keyak, and PRIMATEs. Our findings indicate an overly
conservative parameter choice made by the designers, implying that some designs can improve
speed by a factor of 4 at barely any security loss.

It is expected that the security proofs also generalize to the modes of Artemia [1] and π-
Cipher [17]. However, they deviate slightly more from the other designs. Artemia is based on the
JH hash function [32] and XORs data blocks in both the rate and capacity part. It does not use
domain separations, rather it encodes the lengths of the inputs into the padding at the end [5].
Therefore, a generalization of the proof of NORX to Artemia is not entirely straightforward.
π-Cipher, on the other hand, is structurally different in the way it maintains state. A so-called
“common internal state” is used throughout the evaluation. For the processing of the header
(or similarly the message) the state is forked into u chains to process H1, . . . ,Hu in parallel,
resulting in u tag values, which are added into the common internal state. Due to this design
property, the deviation of π-Cipher from NORX is too large to simply claim that the proof
carries over.

16



The results in this work are derived in the ideal permutation model, where the underlying
primitive is assumed to be ideal. We acknowledge that this model does not perfectly reflect the
properties of the primitives. For instance, it is stated by the designers of Ascon, NORX, and
PRIMATEs that non-random (but harmless) properties of the underlying permutation exist.
Furthermore, it is important to realize that the proofs of security for the modes of operation
in the ideal model do not have a direct connection with security analysis performed on the
permutations, as is the case with block ciphers modes of operation. Nevertheless, we can use
these proofs as heuristics to guide cryptanalysts to focus on the underlying permutations,
rather than the modes themselves.
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