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Abstract. We provide the first standard model construction for a powerful class of Universal
Computational Extractors (UCEs; Bellare et al. Crypto 2013) based on indistinguishability
obfuscation. Our construction suffices to instantiate correlation-secure hash functions and
universal one-way functions.

For many cryptographic primitives and in particular for correlation-secure hash functions all
known constructions are in the random-oracle model. Indeed, recent negative results by Wichs
(ITCS 2013) rule out a large class of techniques to prove the security of correlation-secure hash
functions in the standard model. Our construction is based on puncturable PRFs (Sahai und
Waters; STOC 2014) and indistinguishability obfuscation. However, our proof also relies on
point obfuscation under auxiliary inputs (AIPO). This is crucial in light of Wichs’ impossibility
result. Namely, Wichs proves that it is often hard to reduce two-stage games (such as UCEs) to
a “one-stage assumption” such as DDH. In contrast, AIPOs and their underlying assumptions
are inherently two-stage and, thus, allow us to circumvent Wichs’ impossibility result.

Our positive result is also noteworthy insofar as Brzuska, Farshim and Mittelbach (Crypto 2014)
have shown recently, that iO and some variants of UCEs are mutually exclusive. Our results,
hence, validate some of the new UCE notions that emerged as a response to the iO-attack.
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1 Introduction

For many cryptographic primitives, it is easy to construct a secure scheme in the random oracle
model, but it is hard to give a construction in the standard model. For example, correlated-input
hash functions (CIH) which were introduced by Goyal, O’Neill, and Rao [GOR11], are easy to
construct in the random oracle model, because the random oracle itself is secure under correlated
inputs. However, up to now, no standard-model construction is known, and indeed, a recent
black-box separation by Wichs [Wic13] explains why it is so hard to construct them. Namely, the
security definition of a CIH involves a pair of adversaries (A1,A2) and is thus a two-stage game
(i.e., the adversary is not a single algorithm but consists of two separate algorithms). The first
adversary samples correlated inputs (x1, ..., xt). Then a hash key hk is generated and the second
adversary with access to hk needs to distinguish between getting a tuple of random strings and
getting the tuple (H(hk, x1), ...,H(hk, xt)). Now, Wichs employs a meta reduction to show that it
is unlikely to have a black-box reduction R from CIH to a (one-stage) cryptographic assumption
such as the decisional Diffie–Hellman assumption (DDH). Namely, he shows that if such a reduction
to DDH exists, then the DDH assumption is wrong. In his proof, he substantially exploits that the
CIH game is a two-stage game. For a black-box reduction R it must hold that if the reduction
R gets access to a pair of oracles (A1,A2) that break CIH, then RA1,A2 must also break DDH.
Wichs constructs a pair of inefficient (A1,A2) which, however, can be efficiently emulated using
a simulator Sim that is stateful. That is, the simulator simulates both adversaries together while
sharing state between them. As the reduction cannot distinguish between the two settings RA1,A2

and RSim this breaks DDH, and hence, if we believe that DDH is a hard problem, then such an R
cannot exist. His proof is not specific to DDH, but rather applies to any one-stage assumption and
presents a substantial barrier to prove security.

Before coming back to possibilities of circumventing Wichs’ impossibility result let us briefly
talk about two obfuscation techniques that we will employ in this paper: point-function obfuscation
and indistinguishability obfuscation.

Point and indistinguishability obfuscation. A point function px is a function that returns 1
on input x and ⊥ on all other values. A point function obfuscator under auxiliary input AIPO
returns a point function p←$ AIPO(x) that hides the point x even in case the adversary receives
some side-channel information about x. More formally, the security of AIPO is defined as security
for all computationally unpredictable distributions D, that is, D outputs a pair (x, z), where x is a
point and z is some leakage that hides x computationally. AIPO is secure, if for all computationally
unpredictable D, (AIPO(x), z) is indistinguishable from (AIPO(u), z), where (x, z)← D and u is a
uniformly random point. Such AIPO schemes have been constructed in [Can97, BP12].

While point function obfuscators are obfuscation schemes for a very specific class of functionalities
(namely point functions) Garg et al. [GGH+13] have recently revived the study of general obfuscation
schemes with their candidate construction of indistinguishability obfuscation. The notion of indistin-
guishability obfuscation is weaker than VBB-obfuscation—thereby circumventing the impossibility
results of Barak et al. [BGI+01, BGI+12]—and says intuitively that, for any two circuits that compute
the same function, their obfuscations are indistinguishable. With the publication of their candidate,
Garg et al. revived the interest and inspired simultaneous breakthroughs for hard problems in various
sub-areas of cryptography [SW13, BCP14, ABG+13, GGHR14, HSW14, BZ13, BST13, GGG+14]
including functional and deniable encryption, two-round secure multi-party computation, full-domain
hash, poly-many hardcore bits from any one-way function, multi-input functional encryption and
more.
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Correlated-input hash-functions. In this paper, we give the first standard-model construction
for CIHs. On a high-level, our construction is a de facto instantiation of a random oracle. As
the behavior of a PRF is similar to that of a random function, we instantiate the random oracle
by securely delegating a PRF, that is, we obfuscate a PRF with a hard coded key. Indeed,
our hash-function construction only consists of a (puncturable) PRF that is obfuscated via an
indistinguishability obfuscator (iO):

Hash Construction: iO(PRF(k, .)) .

This natural construction has already proved useful in the direct construction of universal hardcore
functions from differing-inputs obfuscation by Bellare, Stepanovs, and Tessaro (BST; [BST13]). We
will discuss BST and the relation to our our work shortly.

Circumventing Wichs’ impossibility result. Although the construction is natural, proving
its security is non-trivial, as the security guarantees of iO do not even allow us to show easily that
it is hard to extract the PRF key. Towards proving the security of our construction, we build on
the puncturable PRF technique by Waters and Sahai [SW13] and combine it with point function
obfuscators secure under auxiliary input (AIPO).

Using AIPOs is crucial to circumvent the impossibility result by Wichs [Wic13], because the
security of AIPOs is defined via a two-stage security game. The first AIPO adversary samples a
point, and the second adversary tries to break the obfuscation of the point function. In a sense,
the impossibility result of Wichs tells us that using a two-stage assumption such as AIPO in the
proof is, indeed, necessary. In particular, iO and PRFs are both one-stage assumptions. Note that,
as AIPOs are only used in the proof and not in the construction, it might be possible that the
same construction can be proven secure without making use of AIPOs possibly through some other
two-stage assumption.

Universal hardcore functions for any one-way function. The same construction also
yields a universal hardcore function for any one-way function. This result has recently been
established by Bellare, Stepanovs, and Tessaro [BST13], however, under different assumptions. For
some classes of one-way functions, they originally assumed a variant of so-called differing-inputs
obfuscation (diO). Differing-inputs obfuscation is a stronger assumption than iO and indeed, it has
been shown conditionally impossible by Garg et al. [GGHW13] assuming special-purpose obfuscators.
Therefore, in the current version of their paper, Bellare et al. [BST13] use variants of diO called
diO− that are not affected by the results of Garg et al. [GGHW13].

Our proof for the same construction, instead, assumes AIPO in addition to iO. Thereby, we are
able to avoid diO variants altogether. As the construction is the same, our proof can be shown
as additional positive evidence for the construction. If iO and one-way functions exist, then the
construction is secure, as long as at least one out of diO− or AIPO exist. Our proof builds on ideas
by Bellare et al. [BST13], and we will discuss their result in the context of presenting our proof
techniques.

Modularizing proofs via UCEs. We could prove the security of our construction directly,
but instead, we split our proof into two parts. First, we show that our construction enjoys some
useful, abstract properties. Then we use results by Bellare et al. [BHK13a] that show that these
abstract properties suffice for the application at hand. This way, we provide a means of using iO in
a black-box way. Our abstraction is a version of UCE security [BHK13a] that we discuss next.
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The UCE Framework by Bellare, Hoang, and Keelveedhi (BHK; [BHK13a]) introduces assump-
tions that allow us to instantiate random oracles in a wide range of applications. Loosely speaking,
UCEs are PRF-like assumptions that split the distinguisher into two parts: a first adversary S that
gets access to a keyed hash function or a random oracle (and which is called the source), and a
second adversary D that gets the hash key hk (and which is called the distinguisher). The two
algorithms together try to guess whether the source was given access to a keyed hash function or to
a random oracle.

Concretely, the UCE notions are defined via a two-stage UCE game (we depict the communication
flow in Figure 1 and the pseudocode in Figure 2). First, the source S is run with oracle access to
Hash to output some leakage L. Subsequently, distinguisher D is run on the leakage L and hash
key hk but without access to oracle Hash. Distinguisher D outputs a single bit b indicating whether
oracle Hash implements a random oracle or hash function H with key hk.

Without any restrictions, (S,D) can easily win the UCE game. For example, say, source S makes
a random query x to receive y ← Hash(x) and outputs (x, y) as leakage. As distinguisher D knows
the hash key hk as well as the leakage (x, y), it can recompute the hash value and check whether
y = H(hk, x). BHK present several possible restrictions on the source which give rise to various
UCE notions.

It turns out to be particularly useful to restrict sources to be computationally unpredictable,
that is, the leakage created by the source S—when interacting with a random oracle— should not
reveal (computationally) any of the source’s queries to Hash. This notion is denoted by UCE[Scup],
where Scup denotes the class of computationally unpredictable sources [BHK13b]. BHK show
that UCE[Scup]-secure hash functions can safely replace a random oracle in a large number of
interesting applications such as hardcore functions or deterministic public-key encryption [BHK13a].
In a recent work Brzuska, Farshim and Mittelbach (BFM;[BFM14]) show that UCE security with
respect to computational unpredictability cannot be achieved in the standard model assuming
indistinguishability obfuscation exists. Several refinements have been proposed since including a
statistical notion of unpredictability denoted by Ssup as well as source classes containing sources that
are structurally required to produce output in a special way (called split sources and bounded parallel
sources) as well as sources which are restricted to only a fixed number of queries [BHK13b, BFM14].

Our notion of UCE security strengthens the notion of unpredictability to what we call strong
unpredictability and we denote the corresponding class of sources by Ss-cup for the computational
variant and by Ss-sup for its statistical version. Namely, we demand that the leakage be (computa-
tionally/statistically) unpredictable even if the predictor additionally gets the answers to the queries
that the source received from the oracle. We give the pseudo-code for strong unpredictability in
Figure 3.

It turns out that UCEs for strongly computationally unpredictable sources that can only make a
single query (denoted by UCE[Ss-cup ∩ S1-query]) already imply hardcore functions for any one-way
function. Furthermore, UCEs for strongly statistically unpredictable sources (denoted UCE[Ss-sup])
imply correlation-secure hash functions. We note that strongly unpredictable sources can be regarded
as a generalization of so-called split sources [BHK13b] which were introduced by BHK after the
BFM impossibility results. We will discuss the exact relationship later.

So far UCEs have only been constructed in idealized models. BHK showed that a random oracle
is UCE-secure in the strongest proposed settings and conjectured that HMAC is UCE-secure if the
underlying compression function is modeled as an ideal function. This conjecture has recently been
confirmed by Mittelbach [Mit14] who shows that HMAC and various Merkle-Damg̊ard variants
are UCE-secure in the ideal compression function model. We note that so far, no standard model
instantiation of any (non-trivial) UCE variant has been proposed and, hence, we present the first
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standard model construction of UCEs.1

Techniques. Our construction is based on indistinguishability obfuscation and similar to many
other recent constructions from iO [SW13, BST13, HSW14, BZ13] our construction also makes
use of puncturable PRFs [SW13] which admit the generation of keys that allow to evaluate the
PRF on all points except for points in a small target set (often containing just a single point).
Our security reduction, however, differs from existing techniques. That is, we make use of point
function obfuscations which allows us to hide the punctured points within our constructed circuits.
Hiding the punctured points was also the key problem in a recent work by Bellare, Stepanovs
and Tessaro [BST13] who show how to build hardcore functions for any one-way function from
indistinguishability obfuscation and differing-inputs obfuscation. They solve the problem elegantly
by using the one-way function from the security game to blind the punctured point by embedding
the image under the one-way function. However, when testing whether a given point is equivalent to
the punctured point this test is not unambiguous which is why they need to assume differing-inputs
obfuscators for certain types of one-way functions. This is where point function obfuscation comes into
the picture which allows us to bypass any assumptions related to differing-input obfuscation variants.
Yet, of course, point obfuscators are as far as is currently known an assumption incomparable to
differing-inputs obfuscation.

We next discuss the specific UCE assumptions that our construction will meet and the relation
to point obfuscation. In Section 3 we will show that our construction is UCE[Ss-cup∩S1-query]-secure
assuming iO, puncturable PRFs and the existence of AIPO. That is, we consider UCE-secure
for computationally strongly unpredictable sources that make a single query. In Section 3.3, we
prove that our construction is also UCE[Ss-sup ∩ Sq-query]-secure, that is, secure against statistically
unpredictable sources that make at most q queries.

As explained, we base the security of our construction on the existence of a different (incompara-
ble) notion of point obfuscation. We consider a notion of AIPO which only needs to be secure against
statistically unpredictable distributions but, in turn, we require it to be q-composable [CD08, BC10].
q-composability intuitively says that an obfuscation remains secure even if an adversary sees q
many (possibly related) obfuscations. The reason that we need q-composable AIPO is that now, the
source is a allowed to make q queries and hence, we need to hide q points in the proof. However,
as we here only consider sources in Ss-sup, that is, sources which are only statistically strongly
unpredictable, it suffices that our AIPO-notion is secure against statistically unpredictable samplers
which weakens the notion of AIPO. Note that, for the proof to work, we need to let the circuit size
of our construction grow, artificially, with the number of queries q. Towards this goal, we use some
padding that does not have any functionality.

In summary we get the following results:

Theorem [informal].

• Our construction is UCE[Ss-cup ∩ S1-query]-secure assuming AIPO secure against computation-
ally unpredictable sources exist.

• Our construction is UCE[Ss-sup∩Sq-query]-secure assuming q-composable AIPO for statistically
unpredictable sources, exist.

1The UCE Framework is very flexible, and hence, it is possible to come up with a UCE restriction that corresponds
to PRF security and is thus easy to achieve in the standard model.
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On the feasibility of our AIPO assumptions. Standard AIPO secure against computationally
unpredictable samplers has been constructed by Canetti in [Can97] under (non-standard) variants
of the DDH assumption and by Bitansky and Paneth in [BP12] under (non-standard) assumptions
on pseudorandom permutations. We present the constructions and the underlying assumptions in
Appendix A. One might hope that AIPO is naturally composable. However, as Canetti et al. [CD08,
BC10] show, this is generally not the case. On the other hand, Bitansky and Canetti [BC10] show that
under the t-Strong Vector Decision Diffie Hellman assumption the original point obfuscation scheme
of Canetti [Can97] composes in the so-called virtual grey-box (VGB) setting. The VGB setting
was introduced by Bitansky and Canetti [BC10] and is a relaxation of the strongest obfuscation
setting the virtual black-box (VBB) setting [BGI+01, BGI+12]. Similarly to VBB obfuscation, VGB
obfuscation is in general not achievable, yet for the class of point functions it seems in reach [BC10].
The VGB setting is particularly interesting because it can be shown that allowing for auxiliary input
does not yield a more powerful notion of obfuscation when considering the VGB setting [BC10].
This result stands in contrast to the VBB setting where allowing auxiliary information results in a
stronger notion. Furthermore, we currently have no candidate constructions for composable point
obfuscation schemes in this stronger setting.

On the feasibility of our UCE notions. In a recent work, Brzuska, Farshim, and Mittelbach
(BFM; [BFM14]) show that, assuming indistinguishability obfuscation exists, no standard model
hash construction can be UCE-secure with respect to computationally unpredictable sources. Our
construction achieves a weaker yet related notion of security, namely UCE-security with respect to
strongly computationally unpredictable sources which raises the question whether the BFM result
can be extended to this setting.

The BFM result crucially hinges on the possibility of extending the output-length of the studied
hash construction such that it is significantly larger than the key size. For example, this can be
achieved by using multiple queries to the hash construction or via extending the output size by
applying a pseudo-random generator. Both approaches fail with our construction: the size of our
hash key grows with the number of allowed queries and since we consider strong unpredictability
it seems implausible to prove the construction PRG(H(·, ·))-secure under the assumption that H is
UCE-secure with respect to strongly computationally unpredictable sources. Thus, we think that
extending the BFM attack is implausible. Furthermore, if it can be extended this would immediately
imply that indistinguishability obfuscation implies the non-existence of AIPO, which would be a
surprising result. We discuss the BFM result in greater detail in Section 5 and note that, even if
an extension of the BFM result were to break AIPOs with computational unpredictability, then
the second construction would not be affected, as it only considers AIPOs secure with respect to
statistically hard-to-invert auxiliary information.

2 Preliminaries

Notation. By λ ∈ N, we denote the security parameter that we give to all algorithms implicitly
in unary representation 1λ. By {0, 1}` we denote the set of all bit-strings of length `, and by {0, 1}∗
the set of all bit-strings of finite length. If x, y ∈ {0, 1}∗ are two bit strings of the same length,
then we denote their inner product over GF(2) by 〈x, y〉. The length of x is denoted by |x|. For
a finite set X, we denote the action of sampling x uniformly at random from X by x←$ X, and
denote the cardinality of X by |X|. We denote by [i] the set {1, . . . , i}. Algorithms are assumed
to be randomized, unless otherwise stated. We call a algorithm efficient or PPT if it runs in time
polynomial in the security parameter. If A is randomized then by y ← A(x; r) we denote that A is
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run on input x and with random coins r and produced output y. If no randomness is specified, then
we assume that A is run with freshly sampled uniform random coins, and write this as y←$ A(x).
We often refer to algorithms, or tuples of algorithms, as adversaries. If E is an event then we denote
by Pr[E] its probability and if X is a random variable, we denote its expectation by E [X]. We
say a function negl(λ) is negligible if negl(λ) ∈ λ−ω(1). We say a function poly is polynomial if
poly ∈ λO(1).

2.1 Obfuscation

Obfuscation has a long tradition within cryptographic research and comes in many flavors. In
the following section we present the various definitions that we use in this paper. We discuss
constructions and candidates in Appendix A.

We start by recalling the strongest definition of virtual black-box (VBB) obfuscation with
auxiliary inputs due to [BGI+01, GK05, BGI+12].

Definition 2.1 (Worst-case obfuscator with auxiliary input). A PPT O is a worst-case obfuscator
with auxiliary input for an ensemble C = {Cλ}λ∈N of families of poly-size circuits if it satisfies:

• Functionality. For any λ ∈ N and C ∈ Cλ, O(C) is a circuit which computes the same
function as C.

• Polynomial slowdown. For any λ ∈ N and C ∈ Cλ, |O(C)| ≤ poly(|C|).

• Virtual black-box. For any PPT adversary A there is a PPT simulator Sim such that for
all sufficiently large λ ∈ N, C ∈ Cλ and z ∈ {0, 1}poly(λ):∣∣∣Pr[A(z,O(C)) = 1]− Pr

[
SimC(z, 1|C|) = 1

]∣∣∣ ≤ negl(λ)

where the probability is taken over the coins of A, Sim and O.

VBB obfuscation with auxiliary input requires that for any PPT adversary given the code of
some functionality (and some auxiliary input) there exists a PPT simulator that given only black-box
access to the functionality (and as input the same auxiliary input) produces a computationally
indistinguishable distribution.

A provably weaker notion of obfuscation called virtual grey-box (VGB) was introduced by
Bitansky and Canetti [BC10]. VGB is defined analogously to VBB with the exception that the
simulator is given unbounded computation time but still restricted to only make polynomially many
oracle queries. We will return to VGB obfuscation when discussing composition of so-called point
function obfuscators.

Indistinguishability obfuscation. While VBB and VGB obfuscation as defined above provably
do not exist in general [BGI+01, BC10] for all circuits, weaker notions such as indistinguishability
obfuscation may well exist. While VBB requires the existence of a simulator, an indistinguishability
obfuscation (iO) scheme, only ensures that the obfuscations of any two functionally equivalent circuits
are computationally indistinguishable. Indistinguishability obfuscation was originally proposed by
Barak et al. [BGI+01] as a potential weakening of virtual-black-box obfuscation. We recall the
definition from [GGH+13].

Definition 2.2. A PPT algorithm iO is called an indistinguishability obfuscator for a circuit class
{Cλ}λ∈N if the following conditions are satisfied:
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• Correctness. For all security parameters λ ∈ N, for all C ∈ Cλ, and for all inputs x we have
that

Pr
[
C ′(x) = C(x) : C ′←$ iO(1λ, C)

]
= 1 .

• Security. For any PPT distinguisher D, for all pairs of circuits C0, C1 ∈ Cλ such that
C0(x) = C1(x) on all inputs x the following distinguishing advantage is negligible:∣∣∣Pr

[
D(1λ, iO(1λ, C1)) = 1

]
− Pr

[
D(1λ, iO(1λ, C0)) = 1

]∣∣∣ ≤ negl(λ) .

Closely related to indistinguishability obfuscation is the notion of differing-inputs obfuscation
(diO) which also goes back to the seminal paper of Barak et al. [BGI+01]. Building on a Theorem
by Boyle, Chung and Pass [BCP14], we are able to avoid diO as an assumption and only use it as
an intermediary concept in our proof. Hence, we defer it to Appendix 2.1.

Differing-Inputs Obfuscation. The notion of differing-inputs obfuscation is closely related to
indistinguishability obfuscation and also goes back to the seminal paper of Barak et al. [BGI+01].
While indistinguishability obfuscation requires circuits to be identical on all inputs, differing-inputs
obfuscation intuitively says that if a distinguisher can tell apart two obfuscated circuits then one
can efficiently extract a value on which the circuits differ. We follow the definition of Ananth et
al. [ABG+13] and Boyle et al. [BCP14] and first define the notion of differing-inputs circuits.

Definition 2.3 (Differing-Inputs Circuits). A circuit family {Cλ}λ∈N with a sample algorithm
(C0, C1, z)←$ Sam(1λ) which samples C0, C1 ∈ Cλ is said to be a differing-inputs family if for all
PPT algorithms A there is a negligible function negl such that:

Pr
[
C0(x) 6= C1(x) : (C0, C1, z)←$ Sam(1λ), x←$ A(1λ, C0, C1, z)

]
≤ negl(λ)

Definition 2.4 (Differing-Inputs Obfuscation). A PPT algorithm diO is a differing-inputs obfusca-
tor for a differing-inputs family ({Cλ}, Sam) if the following holds:

• Correctness. For all security parameters λ ∈ N, for all C ∈ Cλ, and for all inputs x we have
that

Pr
[
C ′(x) = C(x) : C ′←$ diO(1λ, C)

]
= 1 .

• Security. For any PPT distinguisher D, for any (C0, C1, z)←$ Sam(1λ) the following distin-
guishing advantage is negligible:∣∣∣Pr

[
D(1λ, diO(1λ, C1), z) = 1

]
− Pr

[
D(1λ, diO(1λ, C0), z) = 1

]∣∣∣ ≤ negl(λ) .

The notion of differing-inputs obfuscation recently also gained much attention [ABG+13, BCP14,
BP13]. In particular, we will build on the work by Boyle, Chung and Pass [BCP14] who show that
any general indistinguishability obfuscator also yields a mild version of a differing-inputs obfuscator.
That is, any indistinguishability obfuscator for all circuits in P/poly is a also a differing-inputs
obfuscator for circuits that differ on at most polynomially many inputs. We will use their result in
a crucial way on circuits that differ on a single input.

Theorem 2.5 ([BCP14]). Let iO be an indistinguishability obfuscator for P/poly. Let ({Cλ},Sam)
be a differing-inputs family for which there exists a polynomial d : N→ N, such that for all λ ∈ N
and all pairs C0, C1 ∈ Cλ it holds that |{x : C0(x) 6= C1(x)}| ≤ d(λ). Then iO is a differing-inputs
obfuscator for ({Cλ}, Sam).
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Point obfuscation. While indistinguishability, as well as differing-inputs, obfuscation are
obfuscation schemes for general circuits one can also study obfuscation schemes for particular
function classes such as point functions. A point function Ix for some value x ∈ {0, 1}∗ is defined as

Ix(s) :=

{
1 if s = x

⊥ o/w

We consider a variant of point function obfuscators under auxiliary input which was first formalized
by Canetti [Can97], although in a slightly different context. We here give the definition from [BP12].
The first definition formalizes unpredictable distributions which are in turn used to define obfuscators
for point functions.

Definition 2.6 (Unpredictable Distribution). A distribution ensemble D = {Dλ = (Zλ, Yλ)}λ∈N,
on pairs of strings is unpredictable if no poly-size circuit family can predict Yλ from Zλ. That is, for
every poly-size circuit family {Cλ}λ∈N and for all large enough λ:

Pr(z,y)←$ Dn [Cλ(z) = y] ≤ negl(λ)

Definition 2.7 (Auxiliary input point obfuscation for unpredictable distributions (AIPO)). A PPT
algorithm AIPO is a point obfuscator for unpredictable distributions if it satisfies the functionality
and polynomial slowdown requirements as in Definition 2.1, and the following secrecy property: for
any unpredictable distribution D = {Dλ = (Zλ, Yλ)}λ∈N over {0, 1}poly(λ) × {0, 1}λ it holds for any
PPT algorithms A that there exists a negligible function negl such that:∣∣∣Pr(z,y)←$ Dλ

[
A(1λ,AIPO(y), z) = 1

]
− Prz←$ Zλ,u←$ {0,1}λ

[
A(1λ,AIPO(u), z) = 1

]∣∣∣ ≤ negl(λ)

Composable VGB point obfuscation. The definition of AIPO requires that a single point
obfuscation is secure. A natural question to ask is whether the scheme remains secure even if the
adversary is allowed to see multiple obfuscations, possibly of related points. This leads to the
study of composition of obfuscators and the version we consider in this work is composition by
concatenation formalized by Lynn, Prabhakaran, and Sahai [LPS04]:

Definition 2.8 (t-Composable Obfuscation [LPS04]). A PPT machine O is a t-composable obfus-
cator for a circuit ensemble C = {Cλ}λ∈N if it satisfies the functionality and polynomial slow-down
requirements, as in Definition 2.1, and for any PPT distinguisher A and polynomial p, there is a
simulator Sim, such that for any sequence of circuits C1, . . . , Ct ∈ Cλ (where t = poly(λ)), and any
sufficiently large λ:∣∣∣Pr

[
A(O(C1), . . . ,O(Ct)) = 1

]
− Pr

[
SimC1,...,Ct(1|C1|, . . . , 1|Ct|) = 1

]∣∣∣ ≤ 1

p(λ)

where oracle C1, . . . , Ct gets as input (x, i) and returns Ci(x).

Note that while [LPS04] consider t-composability in the VBB setting, we only require the relaxed
VGB setting, that is, we allow the simulator to run in unbounded time. Interestingly, while VBB
obfuscation in the presence of auxiliary input (AI) is a seemingly stronger requirement than plain
VBB obfuscation, Bitansky and Canetti show that AI does not add any power to VGB. Note that
in this setting we can only allow auxiliary input that statistically hides the target points, as the
simulator could otherwise trivially recover the obfuscated points from the auxilliary input.
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Proposition 2.9 ([BC10]). Let O be a VGB obfuscator for a circuit ensemble C = {Cλ}λ∈N. Then
O is also a VGB obfuscator with (statistically unpredictable) auxiliary input for the ensemble.

Bitansky and Canetti, furthermore, show that the point obfuscation scheme of Canetti [Can97]
is a t-composable VGB point obfuscator under the t-Strong Vector Decision Diffie Hellman assump-
tion [BC10]. Note that, as we can first compose and then introduce auxiliary input, this implies
that under the t-Strong Vector Decision Diffie Hellman assumption Canetti’s obfuscation scheme is
also a VGB-AI point obfuscator. We recall the scheme by Canetti [Can97] in Appendix A.

From VGB back to AIPO. In this work we develop techniques to work with AIPOs. In a recent
work, Matsuda and Hanoka [MH14] relate the notions of VGB point obfuscators (resp. VGB-AI
point obfuscators) and AIPO and show that composable VGB-AI point obfuscators imply the
existence of composable AIPO with respect to statistically unpredictable distributions (Matsuda
et al. call this notion AIND-δ-sPUAI [MH14]). Statistically unpredictable distributions are defined
analogously to unpredictable distributions (Definition 2.6) with the exception that we allow the
predictor to run in unbounded time.

2.2 Universal Computational Extractors (UCE)

The UCE Framework by Bellare, Hoang, and Keelveedhi (BHK; [BHK13a]) introduces assumptions
that allow us to instantiate random oracles in a wide range of applications and which are not
succeptible to the impossibility result by Canetti, Goldreich and Halevi [CGH98]. Loosely speaking,
UCEs are PRF-like assumptions that split the distinguisher into two parts: a first adversary S that
gets access to a keyed hash function or a random oracle (and which is called the source), and a
second adversary D that gets the hash key hk (and which is called the distinguisher). The two
algorithms together try to guess whether the source was given access to a keyed hash function or to
a random oracle.

Concretely, the UCE notions are defined via a two-stage UCE game (we depict the communication
flow in Figure 1 and the pseudocode in Figure 2). First, the source S is run with oracle access to
Hash to output some leakage L. Subsequently, distinguisher D is run on the leakage L and hash
key hk but without access to oracle Hash. Distinguisher D outputs a single bit b indicating whether
oracle Hash implements a random oracle or hash function H with key hk.

Without any restrictions, (S,D) can easily win the UCE game. For example, say, source S makes
a random query x to receive y ← Hash(x) and outputs (x, y) as leakage. As distinguisher D knows
the hash key hk as well as the leakage (x, y), it can recompute the hash value and check whether
y = H(hk, x). BHK present several possible restrictions on the source which give rise to various
UCE notions.

It turns out to be particularly useful to restrict sources to be computationally unpredictable,
that is, the leakage created by the source S —when interacting with a random oracle— should not
reveal (computationally) any of the source’s queries to Hash. This notion is denoted by UCE[Scup],
where Scup denotes the class of computationally unpredictable sources [BHK13b].2 BHK show that
UCE[Scup]-secure hash functions can safely replace a random oracle in a large number of interesting
applications such as hardcore functions or deterministic public-key encryption [BHK13a]. We next
give a formal definition of UCEs.

Formal UCE Definition. In line with [BST13] we consider families of functions F consisting of
algorithms F.KGen, F.kl, F.Eval, F.il and F.ol. Algorithm F.KGen is a PPT algorithm taking the

2The notion was originally named UCE1 and later changed to UCE[Scup] [BHK13a, BHK13b].
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S Hash

D(hk) b′

L

x

y

1λ

Figure 1: Schematic of the UCE game.

Main UCES,D
H (λ)

b←$ {0, 1}; hk←$ H.KGen(1λ)

L←$ SHash(1λ)

b′←$ D(1λ, hk, L)
return (b = b′)

Hash(x)

if T [x] = ⊥ then
if b = 1 then T [x]← H.Eval(hk, x)

else T [x]←$ {0, 1}H.ol(λ)
return T [x]

Main PredPS(λ)

done← false; Q← ∅
L←$ SHash(1λ); done← true

Q′←$ PHash(1λ, L)
return (Q ∩Q′ 6= ∅)

Hash(x)

if done = false then
Q← Q ∪ {x}

if T [x] = ⊥ then

T [x]←$ {0, 1}H.ol(λ)
return T [x]

Figure 2: The UCE security game together with the unpredictability
game (on the right). In the UCE game source S has access to Hash,
which returns real or ideal hash values, and leaks L to a distinguisher
D. The latter additionally gets the hash key and outputs a bit b′. On
the right we give the unpredictability game.

security parameter 1λ and outputting a key k ∈ {0, 1}F.kl(λ) where F.kl : N → N denotes the key
length. Functions F.il : N → N and F.ol : N → N denote the input and output length functions
associated to F and for any x ∈ {0, 1}F.il(λ) and k←$ F.KGen(1λ) we have that F.Eval(k, x) ∈
{0, 1}F.ol(λ), where the PPT algorithm F.Eval denotes the “evaluation” function associated to F .

We denote hash functions by H. Let H = (H.KGen,H.Eval,H.kl,H.il,H.ol) be a hash-function
family and let (S,D) be a pair of PPT algorithms. We define the UCE advantage of a pair (S,D)
against H through

AdvuceH,S,D(λ) := 2 · Pr
[

UCES,D
H (λ)

]
− 1 ,

where game UCES,D
H (λ) is shown in Figure 2 on the left (in Figure 1 we give a schematic overview

of the communication within the game).

Unpredictability. Without any further restrictions there are PPT pairs (S,D) that achieve an

advantage in the UCES,D
H (λ) game close to 1. BHK define several possible restrictions for sources

yielding various flavors of UCE assumptions [BHK13a]. Here, we are interested in a strengthened
version of the original computational unpredictability [BHK13a] restriction.

A source S is called computationally unpredictable if the advantage of any PPT predictor P,
defined by

AdvpredS,P (λ) := Pr
[
PredPS(λ)

]
,

is negligible, where game PredPS(λ) is shown in Figure 2 on the right.3 In line with [BHK13b], we call
the class of all computationally unpredictable sources Scup, where Scup denotes the class (set) of all
computationally unpredictable sources. Similarly, we define the class of statistically unpredictable
sources where the predictor in game PredPS(λ) can run in unbounded time but is still restricted to
only polynomially many oracle queries. The class of statistically unpredictable sources is denoted
by Ssup.

3We here only present the simple unpredictability definition which BHK show to be equivalent to the full
unpredictability notion, but which is easier to work with.
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UCE Security. We say a hash function H is UCE secure for sources S ∈ S denoted by UCE[S],
if for all PPT sources S ∈ S and all PPT distinguishers D the advantage AdvuceH,S,D(λ) is negligible.
In that way we get the UCE assumptions UCE[Scup] and UCE[Ssup].

2.3 Puncturable PRFs

Besides point function obfuscation schemes, our main ingredient in the upcoming proofs are so-called
puncturable pseudorandom functions (PRF) [SW13]. A family of puncturable PRFs G :=(G.KGen,
G.Puncture, G.kl, G.Eval, G.il, G.ol) consists of functions that specify input length, output length
and key length as well as a key generation algorithm k ← G.KGen, a deterministic evaluation
algorithm G.Eval(k, x) that takes a key k, an input x of length G.il(1λ) and outputs a value y of
length G.ol(1λ). Additionally, there is a PPT puncturing algorithm G.Puncture which on input
a polynomial-size set S ⊆ {0, 1}G.il(λ), outputs a special key kS . A family of functions is called
puncturable PRF if the following two properties are observed

• Functionality preserved under puncturing. For every PPT adversary A such that A(1λ)
outputs a polynomial-size set S ⊆ {0, 1}G.il(λ), it holds for all x ∈ {0, 1}G.il(λ) where x /∈ S
that:

Pr
[
G.Eval(k, x) = G.Eval(kS , x) : k←$ G.KGen(1λ), kS←$ G.Puncture(k, S)

]
= 1

• Pseudorandom at punctured points. For every PPT adversary (A1,A2) such that A1(1λ)
outputs a set S ⊆ {0, 1}G.il(λ) and state σ, consider an experiment where k ← G.KGen(1λ)
and kS = G.Puncture(k, S). Then we have∣∣∣Pr

[
A2(σ, kS , S,G.Eval(k, S)) = 1

]
− Pr

[
A2(σ, kS , S, UG.ol(λ)·|S|) = 1

]∣∣∣ ≤ negl(λ)

where Eval(k, S) denotes the concatenation of Eval(k, x1), . . . ,Eval(k, xk) where S = {x1, . . . , xk}
is the enumeration of the elements of S in lexicographic order, negl is a negligible function,
and U` denotes the uniform distribution over {0, 1}`.

As observed by [BW13, BGI14, KPTZ13] puncturable PRFs can, for example, be constructed
from pseudorandom generators via the GGM tree-based construction [GGM84]. Note that, as AIPO
implies one-way functions (see Lemma B.1) AIPO, thus, also implies the existence of puncturable
PRFs.

3 UCEs from iO and point obfuscation

In this section we present our constructions of UCEs from iO and AIPO. We first define the
precise UCE notions that our constructions achieve and introduce the UCE restriction of strong
unpredictability. We will then in Section 3.2 present a construction of a UCE-secure function with
respect to sources which are strongly computationally unpredictable and which make exactly one
oracle query. In Section 3.3 we will show how to extend the construction to allow for a constant
number of queries by switching to a statistical version of strong unpredictability.

Interestingly, our construction for both cases is basically the same modulo circuit padding. That
is, our constructions depend on an obfuscation of a circuit, which in both cases is the same but
padded to a different length. A larger, but functionally equivalent, circuit seems to be necessary to
allow for multiple source queries.

We will discuss applications of our constructions in Section 4. In Section 5 we will discuss why
our construction does not (seem to) fall pray to the BFM attacks on computationally unpredictable
sources [BFM14].
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Main stPredPS(λ)

X∗, Y ∗ ← { }
b←$ {0, 1}
L←$ SHash(1λ)

x′←$ PHash(1λ, L, Y ∗)

return (x′ ∈ X∗)

Hash(x)

X∗ ← X∗ ∪ {x}
y←$ {0, 1}H.ol(λ)

Y ∗ ← Y ∗ ∪ {y}
return y

Splt Source SHash(1λ)

(L0,x)←$ S0(1λ)

for i = 1, . . . , |x| do y[i]←$ Hash(x[i])

L1←$ S1(1λ,y);L← (L0, L1)

return L

Figure 3: On the left: the strong unpredictability game where the predictor, in addition to the leakage is also given
the result of the Hash queries. Note that we only consider sources S that make a single query to Hash. On the right:
the definition of split sources [BHK13b]. A split source S = Splt[S0, S1] consists of two parts S0 and S1 that jointly
generate leakage L and neither part gets direct oracle access to Hash.

3.1 Strongly unpredictable and q-query sources

We now introduce the precise source restrictions for our upcoming UCE constructions. We define a
new restriction that we call strong unpredictability and which can be seen as either a stronger form
of unpredictability or a relaxed version of split sources. Secondly, we consider sources that make
only a bounded number of oracle queries.

Strong unpredictability. We consider sources which are strongly unpredictable both in the
computational and in the statistical sense. We denote by Ss-cup the class of sources which are
strongly, computationally unpredictable and by Ss-sup the class of strongly, statistically unpredictable
sources.

Strong unpredictability is a stronger requirement than unpredictability and we require that the
leakage hides queries to Hash even if the predictor is given the query results. We say that a source
S is called strongly computationally unpredictable if the advantage of any PPT predictor P, defined
by

AdvstpredS,P (λ) := Pr
[
stPredPS(λ)

]
,

is negligible, where game stPredPS(λ) is shown in Figure 3. For the case of strongly statistically
unpredictable sources (Ss-sup) we allow the predictor to be unbounded in its running time, but
restrict the number of oracle queries to be bounded polynomially.

In order to circumvent the BFM attacks on computationally unpredictable sources BHK introduce
the notion of split sources [BHK13b]. A source S is called split source, denoted by S ∈ Ssplt if
it can be decomposed into two algorithms S0 and S1 such that neither part gets direct access to
oracle Hash. We give the pseudocode of split sources in Figure 3 on the right. In a first step
algorithm S0 outputs a leakage string L0 together with a vector x. Then, each of the entries in x is
queried to Hash and the results stored in vector y. The second algorithm S1 is then run on vector
y to produce the second part of the leakage L1.

It is easily established that split sources are a (strict) subclass of strongly unpredictable sources,
that is, Ssplt ∩ Scup ( Ss-cup (and similarly in the statistical case Ssplt ∩ Ssup ( Ss-sup). For this
note that the leakage L0 of the first algorithm of a split source is independent of any oracle answers.
Similarly, if the oracle is implemented by a random oracle (which is the case in the unpredictability
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experiment) then the leakage L1 of the second algorithm is independent of any actual oracle query.
The inclusion is strict. Consider, for example, a source that queries Hash on x to receive y to
then output PRFx(y) that is the image of a pseudorandom function at point y under key x. This
distribution could not be simulated by a split source. We thus get

Lemma 3.1. The class of split sources is a strict subclass of strongly unpredictable sources:

Ssplt ∩ Scup ( Ss-cup and Ssplt ∩ Ssup ( Ss-sup

Q-query UCE. Our first construction will only admit sources which make exactly one query. We
call such sources single-query sources and denote the corresponding source class by S1-query. We
will later relax this notion to allow for any constant number of queries. We call the corresponding
sources q-query sources and denote their source class by Sq-query. We note that sources restricted to
a constant number of queries are also discussed in [BHK13b].

3.2 A UCE construction secure against sources in Ss-cup ∩ S1-query

We will now present our construction which depending on different assumptions on the existence
of point obfuscators will achieve UCE[Ss-cup ∩ S1-query]-security or UCE[Ss-sup ∩ Sq-query]-security.
Note that depending on the number of supported queries the construction needs to pad the circuit
before obfuscating it.

Construction 3.2. Let s : N→ N, let G be a puncturable PRF and let iO be an indistinguishability
obfuscator for all circuits in P/poly. We define our hash function family H as

H.KGen(1λ)

k←$ G.KGen(1λ)

hk←$ iO(PAD(s(λ), G.Eval(k, ·)))
return hk

H.Eval(hk, x)

C ← hk

return C(x)

where PAD : N× {0, 1}∗ −→ {0, 1}∗ denotes a deterministic padding algorithm that takes as input
an integer and a circuit and outputs a functionally equivalent circuit padded to length s(λ).4

That is, the key generation algorithm H.KGen(1λ) runs k ← G.KGen(1λ) and returns iO(G.Eval(k, ·)),
i.e., an obfuscation of the evaluation circuit of PRF G with key k hardwired into it. Function H.Eval
is basically a universal Turing machine which runs input x on the obfuscated circuit hk.

Theorem 3.3. If G is a secure puncturable PRF, if iO is a secure indistinguishability obfuscator and
if AIPO exists, then the hash function family H defined in Construction 3.2 is UCE[Ss-cup∩S1-query]-
secure.

We prove the theorem via a sequence of 5 games (depicted in Figure 4) where game Game1
denotes the original UCE[Ss-cup ∩ S1-query] game with hidden bit b fixed to 1. We first present the
games and subsequently the analysis of the individual game hops. Let S ∈ Ss-cup ∩ S1-query.

Game1: The first game is the original UCE[Ss-cup ∩ S1-query]-game. Here, the hash key hk is an
obfuscation of the circuit C1[k](x) := G.Eval(k, x) (see Figure 4) where k is a key for the
puncturable PRF.

4Function s needs to be chosen in accordance with the puncturable PRF to allow for the required number of
puncturings.

15



Game1(λ)

x∗, y∗ ← ⊥
k←$ G.KGen(1λ)

L←$ SHash(1λ)

hk←$ iO(C1[k])

b′←$ D(1λ, hk, L)

return (1 = b′)

Hash(x)

x∗ ← x

y∗ ← G.Eval(k, x)

return y∗

Game2(λ)

x∗, y∗ ← ⊥
k←$ G.KGen(1λ)

L←$ SHash(1λ)

p←$ AIPO(x∗)

k∗ ← G.Puncture(k, x∗)

hk←$ iO(C2[k
∗, p, y∗])

b′←$ D(1λ, hk, L)

return (1 = b′)

Hash(x)

x∗ ← x

y∗ ← G.Eval(k, x)

return y∗

Game3(λ)

x∗, y∗ ← ⊥
k←$ G.KGen(1λ)

L←$ SHash(1λ)

p←$ AIPO(x∗)

k∗ ← G.Puncture(k, x∗)

hk←$ iO(C2[k
∗, p, y∗])

b′←$ D(1λ, hk, L)

return (1 = b′)

Hash(x)

x∗ ← x

y∗←$ {0, 1}H.ol(λ)

return y∗

Game4(λ)

x∗, y∗ ← ⊥
k←$ G.KGen(1λ)

L←$ SHash(1λ)

p←$ AIPO(x∗)

hk←$ iO(C3[k, p, y
∗])

b′←$ D(1λ, hk, L)

return (1 = b′)

Hash(x)

x∗ ← x

y∗←$ {0, 1}H.ol(λ)

return y∗

Game5(λ)

x∗, y∗ ← ⊥
k←$ G.KGen(1λ)

L←$ SHash(1λ)

hk←$ iO(C4[k])

b′←$ D(1λ, hk, L)

return (1 = b′)

Hash(x)

x∗ ← x

y∗←$ {0, 1}H.ol(λ)

return y∗

Circuit C1[k](x)

return G.Eval(k, x)

Circuit C2[k
∗, p, y∗](x)

if p(x) = ⊥ then // if x 6= x∗

return G.Eval(k∗, x)

return y∗

Circuit C3[k, p, y
∗](x)

if p(x) = ⊥ then

return G.Eval(k, x)

return y∗

Circuit C4[k](x)

return G.Eval(k, x)

iO PRF iO AIPO + iO + [BCP14]

Figure 4: The games used in the proof of Theorem 3.3 on the top and the used circuits on the bottom. To highlight
the changes from game to game we have marked the changed lines with a light gray background color. By C[k](x) we
denote that circuit C depends on k (during construction time) and takes x as input. The arrows above the games
indicate the security reduction to get from Gamei to Gamei+1.

Game2: Let x∗ be the single query that the source S makes to its Hash oracle and let y∗ :=
G.Eval(k, x∗). Game2 is similar to Game1 except that we puncture the PRF at x∗. Namely, the
hash key hk does not consist of an obfuscation of C1[k] anymore, but rather of an obfuscation
of the circuit C2[k

∗, p, y∗]. The circuits C1[k] and C2[k
∗, p, y∗] are functionally equivalent.

However, instead of the normal PRF key, C2 uses a punctured PRF key k∗ which is punctured
at value x∗ (or equivalently, at all values x where p(x) = 1). Here, p is computed as the AIPO
obfuscation of the point function Ix∗ and hence, p(x) = 1 if and only if x is equal to the single
hash query x∗ of the source. On input a value x, circuit C2[k∗, p, y∗] checks whether p(x) = ⊥
(i.e., if x 6= x∗): if so, it returns G.Eval(k∗, x), otherwise it outputs y∗.

Game3: The game is equivalent to Game2 except that oracle Hash now samples y∗ uniformly at
random instead of invoking G.Eval(k, .). Note that C2[k

∗, p, y∗] is parametrized by y∗.

Game4: The game is equivalent to the previous game except that now an obfuscation of circuit
C3[k, p, y∗] is used as hash key hk. Circuit C3[k, p, y∗] is identical to circuit C2[k∗, p, y∗], except
that it uses the original PRF key k instead of the punctured key k∗. Note that circuits
C3[k, p, y

∗] and C2[k
∗, p, y∗] have identical input-output behaviour.

Game5: The game is equivalent to the previous game except that now an obfuscation of circuit C4[k]
is used as hash key hk. Circuit C4[k] is our original circuit again, that is, C4[k](·) := G.Eval(k, ·).
Game5 is our intended target. It is the UCE-security game for our construction in the random
oracle world (that is, oracle Hash implements a random oracle).

In Game5 we are in an identical setting to the UCE-game with the hidden bit set to 0. That
is, the Hash oracle answers with randomly chosen values independent of the hash key. Further
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note, that C4 and C1 are identical, that is they are as in the construction. Thus, we can write the
advantage of an adversary (S,D) in the UCE-security game as

AdvuceS,D,H(λ) = Pr
[

UCES,D
H (λ)

∣∣∣ b = 1
]

+ Pr
[

UCES,D
H (λ)

∣∣∣ b = 0
]
− 1

= Pr
[
GameS,D1 (λ)

]
− Pr

[
GameS,D5 (λ)

]
≤

4∑
i=1

∣∣∣Pr
[
GameS,Di (λ)

]
− Pr

[
GameS,Di+1(λ)

]∣∣∣
It remains to show that the individual games are negligibly close.

Analysis Game1(λ) to Game2(λ). In order to reduce to the security to iO, we show that,
by construction, the circuits C1[k] and C2[k

∗, p, y∗] compute the same function. If p(x) = ⊥,
then C2[k

∗, p, y∗] returns G.Eval(k∗, x). If p(x) = 1, then then x = x∗ and C2[k
∗, p, y∗] returns

y∗ = G.Eval(k, x∗) = G.Eval(k, x). Hence, on all inputs x, C2[k
∗, p, y∗] returns G.Eval(k, x) and so

does C1[k].
As the circuits C1[k] and C2[k∗, p, y∗] compute the same functionality, iO(C1[k]) and iO(C2[k∗, p, y∗])

are indistinguishable and we can bound the difference between games Game1 and Game2 by the
distinguishing advantage against the indistinguishability obfuscator iO. We now formalize this
intuition.

Firstly, let us externalize some of the variables that the games use and introduce a unified
notation for Game1 and Game2. For i ∈ {1, 2}, let Gamei[k, r, y

∗, k∗](λ) be equal to the game
Gamei(λ) where key k is chosen as PRF key, source S uses randomness r, which defines its single
query to Hash, the result to that query is y∗ and the punctured key is chosen as k∗ (if such a
punctured key exists, namely only in Game2). Note that the query x∗ of the source is well-defined
by its randomness. We define A[k, r, y∗, k∗](C) to be an adversary against the indistinguishability
obfuscator iO that gets a circuit C as input, where C is either an obfuscation of circuit C1[k] or
an obfuscation of circuit C2[k

∗, p, y∗], where p is a point obfuscation of the point generated by S
with randomness r. Adversary A[k, r, y∗, k∗](C) runs source S(r) to get the query x∗, returns y∗ on
the single Hash query and receives leakage L. It then runs distinguisher D on input (1λ, C, L) and
outputs whatever D outputs. We present the pseudo-code of the adversary in Figure 5:

If C = C1[k] then adversary A[k, r, y∗, k∗](C) perfectly simulates game Game1[k, r, y
∗](λ) and

if C = C2[k
∗, p, y∗] then the adversary simulates Game2[k, r, y

∗, k∗](λ). Thus, we can rewrite the
difference between the two games’ distributions

Pr[Game1(λ)]− Pr[Game2(λ)]

as

Ek,r,y∗
[

Pr[Game1[k, r, y
∗](λ)]

]
− Ek,r,y∗,k∗

[
Pr[Game2[k, r, y

∗, k∗](λ)]
]

= Ek,r,y∗,k∗
[

Pr[Game1[k, r, y
∗](λ)]− Pr[Game2[k, r, y

∗, k∗](λ)]

]

= Ek,r,y∗,k∗
[

Pr
[
A[k, r, y∗, k∗](1λ, iO(C1[k])) = 1

]
− Pr

[
A[k, r, y∗, k∗](1λ, iO(C2[k

∗, p, y∗])) = 1
]]

= Ek,r,y∗,k∗
[
AdvioiO,A[k,r,y∗,k∗],C1[k],C2[k∗,p,y∗]

(λ)
]

≤ max
k,r,y∗,k∗

AdvioiO,A[k,r,y∗,k∗],C1[k],C2[k∗,p,y∗]
(λ)
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iO Adversary A[k, r, y∗, k∗](1λ, C)

L←$ S(r)Hash[y∗](1λ)

b′←$ D(1λ, C, L)

return b′

Hash[y∗](x)

return y∗

PRF Adversary A1(1
λ)

run S(1λ) until it makes query x∗ and

denote by σ the state at this point

S ← {x∗}
return (S, σ)

A2(1
λ, σ, kS , S, τ)

x∗ ← S

L←$ continue computation of S with state σ and

answer its query with τ

p←$ AIPO(Ix∗ )

hk←$ iO(C2[kS , p, τ ])

b′←$ D(1λ, hk, L)

return b′

Figure 5: Pseudo-code of the iO adversary used in game transition from Game1 to Game2 on the left, and the
puncturable PRF adversary used in the transition of Game2 to Game3 on the right.

By the security of the indistinguishability obfuscator, the advantage of any efficient adversary is
negligible and, hence, also maxk,r,y∗,k∗ Adv

io
iO,A[k,r,y∗,k∗],C1[k],C2[k∗,p,y∗]

(λ) is negligible.

Analysis Game2(λ) to Game3(λ). We reduce the difference between Game2 and Game3 to the
security of the puncturable PRF G. We define an adversary (A1,A2) against the puncturable
PRF as follows. On input the security parameter, adversary A1 runs source S(1λ) on the security
parameter. When source S makes its single Hash query x∗, adversary A1 stops, outputs {x∗} as
puncture set S together with the current state σ of the source S. Adversary A2 gets as input state σ,
the punctured key k∗ = kS , the puncture point {x∗} = S and a target value τ which is either
G.Eval(k, x∗) or a uniformly random value. Adversary A2 uses the source’s state σ to continue the
simulation of the source S, which expects an answer from its Hash oracle. The adversary A2 passes
value τ to S and receives leakage L. It then constructs an obfuscation p←$ AIPO(Ix∗) as well as an
obfuscation hk←$ iO(C2[k

∗, p, τ ]). Subsequently, it runs distinguisher D on input (1λ, hk, L) and
outputs whatever D outputs. We give the pseudo-code of the adversary in Figure 5.

If τ = G.Eval(k, x∗), then adversary (A1,A2) perfectly simulates Game2 and otherwise it perfectly
simulates Game3. Thus, we have that

Pr[Game2(λ)]− Pr[Game3(λ)] ≤ Advp-prfG,A1,A2
(λ)

which by the security of the puncturable PRF G is negligible.

Analysis Game3(λ) to Game4(λ). We show that the circuits C2[k∗, p, y∗] and C3[k, p, y∗] compute
the same function. As the functionality of punctured PRFs is preserved under puncturing, for all x
where p(x) = ⊥, it holds that C2[k

∗, p, y∗](x) = G.Eval(k∗, x) = G.Eval(k, x) = C3[k, p, y
∗]. For x

with p(x) = 1, by definition, both circuits C2[k
∗, p, y∗](x) and C3[k, p, y

∗] return y∗.
As both circuits are equal, iO(C2[k

∗, p, y∗]) and iO(C3[k, p, y
∗]) are indistinguishable by the

security of indistinguishability obfuscation. Analogously to the first game hop, we get that

Pr[Game3(λ)]− Pr[Game4(λ)] ≤ max
k,x∗,y∗,k∗

AdvioiO,A[k,x∗,y∗,k∗],C2[k∗,p,y∗],C3[k,p,y∗]
(λ) .
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diO Sampler Sam(1λ)

x∗, y∗ ← ⊥
k←$ G.KGen(1λ)

L←$ SHash(1λ)

p←$ AIPO(Ix∗ )

return (C3[k, p, y
∗], C4[k], L)

Hash(x)

x∗ ← x

y∗←$ {0, 1}H.ol(λ)

return y∗

diO Adversary A(1λ, C, L)

b′←$ D(1λ, C, L)

return b′

AIPO Adversary B1(1λ)

x∗, y∗ ← ⊥
L←$ SHash(1λ)

k←$ G.KGen(1λ)

r←$ {0, 1}H.il(λ)

b← 〈r, x∗〉
return (x∗, (b, r, y∗, L))

B2(1λ, b, r, k, L, p)

c← ⊥
τ←$ Ext(C3[k, p, y

∗], C4[k], L)

if τ = ⊥ then

c←$ {0, 1}
else if 〈r, τ〉 = b then

c← 1

else c← 0

return c

Figure 6: On the left, pseudo-code of the differing-inputs sampler Sam that we use in the transition from Game3
to Game4. We present the differing-inputs adversary A in the middle and the AIPO adversary (B1,B2) on the right.
Both of them are used in the game transition from Game4 to Game5. Note that the Hash oracle given to S in the
description of B1 is equivalent to the Hash oracle used by sampler Sam on the left.

Analysis Game4(λ) to Game5(λ). By construction, the circuits C3[k, p, y
∗] and C4[k] only differ

on points where p(x) is not equal to ⊥, that is, they differ on a single point, which is the query
point x∗. We will bound the difference between games Game4 and Game5 by the differing-inputs
security of the indistinguishability obfuscator iO. For this, we build on a result by Boyle, Chung
and Pass (here given as Theorem 2.5) who show that any indistinguishability obfuscator is also a
differing-inputs obfuscator for differing-inputs circuits which differ on at most polynomially many
points [BCP14]. As explained above, our circuits differ only on a single point and we can, thus,
apply their theorem. In order to argue with the security property of differing-inputs obfuscation, we
need to show that the family of circuit pairs (C3[k, p, y∗], C4[k], Sam) is differing-inputs, where Sam
is the circuit sampler that runs the same steps as game Game4 up-to and including the obfuscation of
the point function Ix∗ , constructs circuits C3[k, p, y

∗] and C4[k], and outputs (C3[k, p, y
∗], C4[k], L).

We give the pseudo-code of sampler Sam in Figure 6.

Claim 3.4. If p is a secure AIPO obfuscator, then the family of circuit pairs (C3[k, p, y∗], C4[k],Sam)
is differing-inputs.

Before proving Claim 3.4, we show how to use it to prove that the difference between Game4(λ)
and Game5(λ) is small. Theorem 2.5 by Boyle et al. [BCP14] says that, if a family is differing-inputs
and only differs on at most polynomially many points, then their indistinguishability obfuscations are
indistinguishable. Claim 3.4 establishes that the family (C3[k, p, y

∗], C4[k],Sam) is differing-inputs,
and we already observed that circuits C3[k, p, y∗] and C4[k] only differ on a single input value. Hence,
Theorem 2.5 allows us to do an analysis similar to the one from the first game hop. That is, we define
adversary A which gets as input a circuit C and leakage L where C is either an indistinguishability
obfuscation of circuit C3[k, p, y∗] or of circuit C4[k]. It runs distinguisher D on input (1λ, C, L) and
outputs whatever D outputs. We give the pseudo-code of adversary A in Figure 6.

If C = iO(C3[k, p, y
∗]), then adversary A perfectly simulates Game4(λ), and if C = iO(C4[k]),

then it perfectly simulates Game5(λ). Thus, we have

Pr[Game4(λ)]− Pr[Game5(λ)] ≤ AdvdioiO,A,C3,C4,Sam(λ) ≤ negl(λ)

19



We now proceed to proving Claim 3.4. Assume there exists an adversary (i.e., an extractor) Ext
against the differing-inputs of the above circuit family which receives as input (C3[k, p, y∗], C4[k], L)
and outputs a value τ such that C3[k, p, y∗](τ) 6= C4[k](τ). Then, p(τ) = 1 and thus, intuitively, Ext
breaks the AIPO property of the point obfuscation scheme. Let us now make this intuition formal.

We construct adversary (B1,B2) where B1 describes an unpredictable distribution. On input the
security parameter, B1 runs source S(1λ) and answers its single Hash query x∗ with a uniformly
random value y∗ and then receives leakage L from S. B1 chooses draws a random string r. It then
computes b := 〈r, x∗〉 and finally outputs (x∗, (b, r, y∗, L)).

Adversary B2 gets as input the security parameter, the auxiliary input (b, r, y∗, L) and an
obfuscation p which is either an obfuscation of point function Ix∗ or of a point function Iu for a
uniformly random u. It samples a random key k←$ G.KGen(λ) and constructs circuits C3[k, p, y∗] and
C4[k]. It then calls Ext on input (C3[k, p, y∗], C4[k], L) to receive a value τ . If Ext outputs τ = ⊥, then
B2 flips a bit and returns the outcome of the bitflip. Else, if τ is such that C3[k, p, y∗](τ) 6= C4[k](τ)
and hence p(τ) = 1. B2 outputs 1 if 〈r, τ〉 equals b and 0 otherwise.

If p is an obfuscation of Ix∗ then circuits C3[k, p, y
∗] and C4[k] differ on input τ if and only if

τ = x∗, unless y∗ = G.Eval(k, x), which happens only with negligible probability. Hence, if the
differing-inputs adversary Ext outputs τ , then τ = x∗ and, thus, with probability 1, B2 will output 1.
If, on the other hand, p is an obfuscation of Iu, then the circuits C3[k, p, y∗] and C4[k] differ on input
τ if and only if τ = u. Hence, if the differing-inputs adversary Ext outputs τ , then τ = u and thus, B
will only output 1 with probability 1

2 (since Pr[ 〈u, r〉 = b] = 1
2). Let us make the probability analysis

formal. Let d = 0 describe the event that in the AIPO-game, Ix∗ gets obfuscated, and d = 1 describe
the event that in the AIPO-game, Iu gets obfuscated for a random u. Let ε be the probability that
Ext returns a value τ 6= ⊥ in the differing-inputs game, that is, ε := Pr[⊥ 6= Ext | d = 0]. Note, that
for readability we do not specify the input of adversaries Ext and B2 in the following treatment. We
now consider the distinguishing probability of adversary B2

Pr[B2 = 1 | d = 0]− Pr[B2 = 1 | d = 1]

which can be rewritten as

= Pr[B2 = 1 | d = 0,Ext 6= ⊥ ] · Pr[Ext 6= ⊥ | d = 0] +

Pr[B2 = 1 | d = 0,Ext = ⊥ ] · Pr[Ext = ⊥ | d = 0]−
Pr[B2 = 1 | d = 1]

= Pr[Ext 6= ⊥ | d = 0] +
1

2
· Pr[Ext = ⊥ | d = 0]− Pr[B2 = 1 | d = 1]

= Pr[Ext 6= ⊥ | d = 0] +
1

2
·
(

1− Pr[Ext 6= ⊥ | d = 0]
)
− Pr[B2 = 1 | d = 1]

=
1

2
· Pr[Ext 6= ⊥ | d = 0] +

1

2
− Pr[B2 = 1 | d = 1]
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In the following, we consider the random variable U to describe the underlying choice of point
function Iu (in case d = 1).

=
1

2
ε+

1

2
− Pr[B2 = 1 | d = 1,Ext 6= ⊥ ] · Pr[Ext 6= ⊥ | d = 1] +

Pr[B2 = 1 | d = 1,Ext = ⊥ ] · Pr[Ext = ⊥ | d = 1]

=
1

2
ε+

1

2
−

1

2H.il(λ)

∑
u∈{0,1}H.il(λ)

(
Pr[B2 = 1 | d = 1, U = u,Ext 6= ⊥ ] · Pr[Ext 6= ⊥ |U = u, d = 1] +

Pr[B2 = 1 | d = 1, U = u,Ext = ⊥ ] · Pr[Ext = ⊥ |U = u, d = 1]

)
If extractor Ext outputs a value u (given that d = 1), then the probability of B2 of outputting 1, that
is, Pr[B2 = 1 | d = 1, U = u,Ext 6= ⊥ ] is equivalent to PrR,b [ 〈R, u〉 = b] where random variable R
denotes the choice of value r by B1 to compute b = 〈r, x∗〉. Note that extractor Ext is independent
of R and b and, thus, we have that PrR,b [ 〈R, u〉 = b] = 1

2 .

=
1

2
ε+

1

2
−

1

2H.il(λ)

∑
u∈{0,1}H.il(λ)

(
PrR,b [ 〈R, u〉 = b] · Pr[Ext 6= ⊥ |U = u, d = 1] +

1

2
· Pr[Ext = ⊥ |U = u, d = 1]

)

=
1

2
ε+

1

2
− 1

2H.il(λ)

∑
u∈{0,1}H.il(λ)

(
1

2
·
(

Pr[Ext 6= ⊥ |U = u, d = 1] + Pr[Ext = ⊥ |U = u, d = 1]
))

=
1

2
ε+

1

2
− 1

2H.il(λ)

∑
u∈{0,1}H.il(λ)

1

2
· 1 =

1

2
ε

To finish the proof of Claim 3.4, we need to argue that B1 implements an unpredictable
distribution. By assumption, the source S is strongly computationally unpredictable (i.e., S ∈ Ss-cup)
and hence leakage L hides x∗ even in the presence of y∗. Thus, to see that B1 defines an unpredictable
distribution, we need to argue that x∗ remains unpredictable if additionally given a single bit of x∗.
But a single bit can be guessed with probability 1

2 . Hence, (B1,B2) breaks the security of the AIPO
obfuscation, which concludes the proof of Claim 3.4 and the proof of Theorem 3.3.

3.3 A UCE construction secure against sources in Ss-sup ∩ Sq-query

In this section we prove that our construction is also UCE-secure with respect to sources which are
strongly unpredictable in a statistical sense and which allow the source to make q-many queries for
any constant q. That is, we consider sources in class Ss-sup ∩ Sq-query.

In case we allow the source to make q many queries, the first observation is that we need to
choose the size of our obfuscated circuit such we can puncture at q many points. For each point, we
will encode a random string into the circuit and thus, the circuit size grows with the number of point
we puncture at. Besides this, the construction is identical to the one before with the exception that
we need a different (incomparable) security property of our point function obfuscation scheme. That
is, we require the point obfuscator to be a q-composable VGB obfuscator secure in the presence of
statistically unpredictable auxiliary information (see Section 2.1).

21



Theorem 3.5. Let q be a polynomial. If G is a secure puncturable PRF, if iO is a secure indis-
tinguishability obfuscator and if there exist a q-composable VGB point obfuscator for statistically
unpredicatable auxiliary input, then the hash function family H defined in Construction 3.2 is
UCE[Ss-sup ∩ Sq-query]-secure.

The proof follows analogously to the proof of Theorem 3.3, except for puncturing at several
points instead of a single point and therefore, we reduce to t-composable VGB point obfuscation.
The proof is deferred to Appendix C. For an overview of the game-hops, see Figure 9.

4 Applications

In the following section we describe the applications that our UCE constructions fulfill. Our
UCE[Ss-cup ∩ S1-query]-secure function can be shown to be a universal hardcore function for any
one-way function and our UCE[Ss-sup ∩ Sq-query]-secure function achieves correlated-input security.
We note that our UCE[Ss-sup ∩ Sq-query] construction is also sufficient to instantiate proof-of-storage
schemes and we refer to [BHK13b] for further details.

4.1 Hash functions secure under correlated inputs

Correlated-input secure hash functions (CIH) demand that an adversary that is able to obtain
a sequence of (potentially correlated) hash values cannot distinguish between these being real or
uniformly random assuming that source values come from a distribution that has super-logarithmic
min-entropy. The notion was introduced by Goyal, O’Neill, and Rao [GOR11] and GOR present
several constructions for limited CIH in the standard model. However, constructions for full CIH are
only known in the random oracle model. Bellare, Hoang, and Keelvedhi show that hash functions
secure under UCE[Ssup ∩ Ssplt]-assumptions are also CIH secure [BHK13b]. With our construction
from Section 3.3 we, thus, get the first candidate construction of CIH-secure hash functions.

Definitions. We present game CIHAH for correlated-input secure hash functions in Figure 7. We
say that a function H is CIH-secure if the advantage of any admissible PPT adversary A = (A1,A2)
defined as

AdvH,A := 2 · Pr
[
CIHAH (λ)

]
− 1

is negligible. An adversary is admissible if on input the security parameter adversary A1 outputs
a vector m of distinct values and of length |m| = v(λ) where v is a polynomial depending on
A1. Furthermore, we require that the guessing probability of each entry is negligible, that is, the
min-entropy of [i] for all i = 1, . . . , v(λ) must be at least super-logarithmic in the security parameter.

Results. BHK give the following theorem [BHK13b]:

Theorem 4.1 ([BHK13b]). If H is UCE[Ssup ∩ Ssplt]-secure then H is a correlated-input hash
function (CIH).

In our construction of a UCE[Ss-sup ∩ Sq-query] the number of queries that we can allow a source
to make can be regarded as a parameter of the key generation function. We give the following
adaption of CIH-secure hash functions called q-CIH-secure hash functions where the number of
queries is specified as part of the key generation process.
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Main CIHAH (λ)

b←$ {0, 1}
hk←$ H.KGen(1λ)

m←$ A1(1
λ)

for i = 1, . . . , |m| do
h0←$ {0, 1}H.ol(λ)

h1←$ H.Eval(hk,m[i])

b′←$ A2(1
λ, hk,hb)

return (b = b′)

Figure 7: The security game for correlated-
input hash functions.

Main HCAF,H(λ)

b←$ {0, 1}
k←$ F.KGen(1λ)

hk←$ H.KGen(1λ)

x←$ {0, 1}λ

y ← F.Eval(k, x)

if b = 1 then r←$ {0, 1}H.ol(λ) else r←$ {0, 1}H.ol(λ)

b′←$ A2(k, hk, y, r)

return (b = b′)

Figure 8: The security game for hardcore func-
tions.

Definition 4.2. Let q be a polynomial. A hash construction H is called q-CIH if its key generation
algorithm takes as input parameter q and if the advantage of any adversary A = (A1,A2) where A1

outputs a message vector of length at most q in the CIHAH game is negligible.

Combining Theorems 3.5 and 4.1 we get:

Proposition 4.3. Let q be a polynomial. If G is a secure puncturable PRF, if iO is a secure
indistinguishability obfuscator and if there exist a q-composable VGB point obfuscator for statistically
unpredicatable auxiliary input, then the hash function family defined in Construction 3.2 is q-CIH
secure.

4.2 Universal hardcore functions

A hardcore function for a one-way function f is a (deterministic) algorithm whose output on a random
point x is indistinguishable from random even given f(x). Random oracles are natural hardcore
functions. BHK show that also UCE-secure functions, secure with respect to computationally
unpredictable split sources are hardcore for any one-way function

Definitions. Let F be a (possibly keyed) one-way function. We say that function H is hardcore
for F if the advantage of any PPT adversary A in game HCAF,H (given in Figure 8) is negligible,
where we define the advantage as

AdvH,A := 2 · Pr
[

HCAF,H(λ)
]
− 1 .

Results. Bellare, Hoang, and Keelvedhi show that any UCE-secure function with respect to split
sources that are computationally unpredictable are universal hardcore functions. We recall their
result:

Theorem 4.4 ([BHK13b]). If H is UCE[Scup∩Ssplt∩S1-query]-secure then H is a hardcore function
for any one-way function.

Combined with Construction 3.2 and Theorem 3.3 we get an instantiation of a universal hardcore
function.

Proposition 4.5. If G is a secure puncturable PRF, if iO is a secure indistinguishability obfuscator
and if AIPO exists, then the hash function family H defined in Construction 3.2 is a universal
hardcore function.
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Bellare, Stepanovs, and Tessaro (BST;[BST13]) have recently given a similar result. That
is, they have shown that the same construction is a universal hardcore function but based their
security proof on a different assumption. Namely, they base their security proof on a weaker form
of differing-inputs obfuscation called diO− where the length of the auxiliary input is restricted
thereby circumventing a conditional impossibility result on differing-inputs obfuscation by Garg
et al. [GGHW13]. Thus, our result can be regarded as further evidence that Construction 3.2 is,
indeed, a universal hardcore function, as the result holds if iO and one-way functions exist and as
least one out of diO− or AIPO exists.

The BR93 PKE scheme. In their seminal paper on random oracles, Bellare and Roggaway
proposed a very simple, yet elegant public-key encryption scheme [BR93] based on a single trapdoor
function f . The public-key of the encryption scheme is set to the evaluation key of the trapdoor
function, and the private key is the set to be the trapdoor. To encrypt a message m the encryption
algorithm chooses a random value x and outputs (f(x),H(x)⊕m), where H is a hash function. For
decryption, one inverts f(x) using the trapdoor and can, thus, recover message m. Bellare et al. show
that we can safely instantiate the hash function with any UCE[Scup ∩ Ssplt ∩ S1-query] [BHK13b].
Combined with Construction 3.2 and Theorem 3.3 we get an instantiation of that scheme.

Proposition 4.6. If f is a trapdoor one-way function, if G is a secure puncturable PRF, if iO is
a secure indistinguishability obfuscator and if AIPO exists, then the BR93 PKE scheme [BR93]
instantiated with f and the hash function family H defined in Construction 3.2 is IND-CPA secure.

5 The BFM impossibility result

In a recent work, Brzuska, Farshim, and Mittelbach [BFM14] show that assuming indistinguishability
obfuscation then no standard model hash construction can be UCE[Scup]-secure, that is, UCE
secure with respect to computationally unpredictable sources. In the following section we discuss
the possibility of the BFM attack being extended to also cover UCE with respect to strongly
unpredictable sources and implications thereof.

The BFM attack. Let us recall the intuition behind the BFM attack. Consider the source SBFM

that makes a single (random) query x to receive Hash(x). It then prepares an indistinguishability
obfuscation of the circuit (H.Eval(·, x) = y), that is the predicate that on input a hash key hk
tests, if H.Eval(hk, x) = y. If y is chosen uniformly at random and if the output length of the
hash function is (much) larger than the key-space, then the probability that there exists some
key hk such that H.Eval(hk, x) = y becomes negligible. This means that the circuit is with high
probability the constant zero circuit and, thus, an indistinguishability obfuscation of the circuit
does not leak anything more than the obfuscation of the constant zero circuit. It follows that the
source is (computationally) unpredictable. A distinguisher, given access to the above circuit can,
however, easily distinguish by simply plugging the hash key hk that it got as input into the circuit
and outputting whatever the circuit outputs. We next give the pseudocode of the BFM adversary:

Source SBFM(1λ)

x←$ {0, 1}H.il(λ)

y ← Hash(x)

C ← (H.Eval(·, x) = y)

C̃←$ iO(C)

return L := C̃

Distinguisher DBFM(1λ, hk, L)

C̃ ← L

b′ ← C̃(hk)

return b′
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In the above intuition we relied upon the output length of the hash function being significantly
larger than the key-size. To bootstrap their attack to hash functions for which this does not hold
BFM simply extended the source to make multiple queries until the combined length of the received
hash values is sufficiently longer than the size of the key. Bellare, Hoang, and Keelvedhi [BHK13c]
point out that the attack can also be extended by applying a pseudorandom generator to the output
of the hash construction. The idea here is, that if H is a UCE[Scup]-secure function then so is
H′(·, ·) := PRG(H(·, ·)) where PRG is a pseudorandom generator.

Implausibility of extending BFM. While it is straight forward to prove that if H is a
UCE[Scup]-secure function then so is H′(·, ·) := PRG(H(·, ·)) this is not the case if we restrict our
sources to be strongly unpredictable, that is, to source class Ss-cup. The reason is that in the
reduction from a predictor to the PRG security the predictor requires the single oracle answer y
as additional input which in the reduction would correspond to the seed of the PRG value. This,
however, means that the reduction given either an image under the PRG or a uniformly random
value must be able to compute the corresponding seed (if it exists) thereby breaking the PRG
security on its own.

Similarly, using multiple queries seems not to allow extending the BFM attack to break our
construction. In our construction the key is an obfuscation of a puncturable PRF. In order to
use the puncturing technique the size of this circuit must be chosen according to the number of
potential puncture points. Thus, the key size of our construction will always be strictly larger than
the combined output length that can be achieved using the allowed number of queries.

Implications of an extended attack. Finally, we want to discuss the implications of a
successful extension of the BFM attacks. In this case we would have the following implications:

1. iO =⇒ ¬UCE[Ss-cup]

2. iO + AIPO =⇒ UCE[Ss-cup]

Combining the two would result in the statement

iO =⇒ ¬AIPO

that is, if indistinguishability obfuscation exists then point function obfuscation secure in the
presence of auxiliary inputs does not exist and vice versa. This would be a rather surprising result as
currently we hope that both forms of obfuscation exists. While iO has been used in numerous works
lately [SW13, BCP14, ABG+13, GGHR14, HSW14, BZ13, BST13], point function obfuscation
secure in the presence of auxilliary inputs has been used, for example, to circumvent black-box
impossibility results and construct 3-round proofs with negligible soundness error satisfying the
zero-knowledge notions weak ZK and witness hiding [GK96] and very recently to construct CCA
secure public key encryption schemes [MH14].

An intriguing direction for further research is, thus, the study of point obfuscation with auxiliary
inputs in the lights of the new results regarding indistinguishability obfuscation. Finally, let us note
that in case AIPOs, indeed, do not exist that our result could be salvaged by considering a statistical
version of strong unpredictability. This fix, was also proposed by BFM (and independently by BHK)
to salvage a large number of applications for UCEs [BFM14].
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A Constructions and candidates for obfuscation schemes

In the following we present existing candidates for indistinguishability obfuscation (which also
yield restricted forms of differing-inputs obfuscation with a beautiful result of Boyle, Chung and
Pass [BCP14]). The constructions itself are, however, not relevant for this work. The assumptions
they are based on, on the other hand, are very relevant as by extension our results imply that some
of these (either the ones related to indistinguishability obfuscation or the assumptions underlying
the constructions for point obfuscation) cannot hold.

Indistinguishability Obfuscation. In a breakthrough paper, Garg et al. [GGH+13] present
a candidate construction for indistinguishability obfuscation. Their candidate is based on an
intractability assumption related to multi-linear maps and their construction yields an indistin-
guishability obfuscator for all circuits in NC1. They go on to show that, if additionally assuming a
perfectly correct leveled fully homomorphic encryption scheme and a perfectly sound non-interactive
witness-indistinguishable proof system that their obfuscator can be bootstrapped to yield an indistin-
guishability obfuscator for all circuits in P/poly. In recent works, Brakerski and Rothblum [BR14b]
and Barak et al. [BGK+14] have further simplified the construction and showed that it is secure
against all generic multi-linear attacks. A very recent result by Ananth et al. [AGIS14] yields a
more efficient construction. Complementary, Pass, Seth and Telang [PST13] show how to base an
adapted construction on a novel assumption they call semantically-secure multilinear encodings.

With their candidate construction and their insightful application of using iO to construct
functional encryption for general circuits Garg et al. [GGH+13] revived the interest in the study
of obfuscation schemes and in particular in the study of indistinguishability obfuscation (see, for
example, [SW13, BR13, HSW14, BR14a, BR14b, GGHR14, BGK+14] and the references therein).

In a very recent work Gentry et al. [GLSW14] show that iO can be based on instance-independent
assumptions and give a construction based on the “Multilinear Subgroup Elimination Assumption”.
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Candidates for Point Obfuscation with Auxiliary Input (AIPO). The study of point
function obfuscation started with Canetti [Can97] who gives a construction that satisfies Definition 2.7
under a strong variant of the DDH assumption. We here present the construction in the formulation
of [BP12] and then present the assumption it is based on.

Construction A.1 (AIPO obfuscator due to [Can97]). Let G := {Gλ}λ∈N be a group ensemble,
where each Gλ is a group of prime order pλ ∈ (2λ−1, 2λ). We define an obfuscator AIPO for points

in the domain Zpλ as follows: Ix
AIPO7→ C(r, rx), where r←$ Gλ is a random generator of Gλ, and

C(r, rx) is a circuit which on input i, checks whether rx = ri.

Assumption A.2 ([Can97],[BP12]). There exists an ensemble of prime order groups G := {Gλ}λ∈N
such that for any unpredictable distribution D = {Dλ = (Zλ, Yλ)}λ∈N with support {0, 1}poly(λ)×Zpλ ,
it holds that for all PPT algorithms A there exists a negligible function negl such that∣∣∣Prr←$ Gλ,←$ (z,x)←$ Dλ [A(z, r, rx) = 1]− Prr←$ Gλ,z←$ Zλ,u←$ Zpλ [A(z, r, ru) = 1]

∣∣∣ ≤ negl(λ)

A second candidate construction for AIPO is due to Bitansky and Paneth [BP12] who adapt
a point obfuscation construction by Wee [Wee05] to allow for auxiliary input. Their construction
is based on an assumption on the existence of strong pseudorandom permutations. Let us recall
the underlying assumption (which generalizes the original assumption due to Wee [Wee05]) before
recalling the construction.

Assumption A.3 ([BP12]). There exists an ensemble of permutation families F = {Fλ = {f}}
such that for any unpredictable distribution ensemble D = {Dλ = (Zλ, Yλ)}λ∈N, the following two
distribution ensembles are also unpredictable:

• ((Zλ, f(Yλ), f);Yλ)

• ((Zλ, f); f(Yλ)),

where in both f←$ Fλ (independently of Dλ).

Based on Assumption A.3, Bitansky and Paneth show that the following construction yields an
AIPO obfuscator satisfying Definition 2.7 [BP12].

Construction A.4 ([BP12]). Let F be a family of permutations as given by Assumption A.3.
AIPO obfuscator AIPO works as follows: given a point y ∈ {0, 1}λ, AIPO samples 3λ permutations
{fi}i∈[3λ] from Fλ and 3λ strings {ri}i∈[3λ] from {0, 1}λ. For every i ∈ [3λ], let f i := fi◦fi−1◦. . .◦f1
(where ◦ denotes composition). Obfuscator AIPO outputs a circuit Cy that has hardcoded into it
the randomness of AIPO, {fi, ri}i∈[3λ] and the bits {bi :=

〈
ri, f

i(y)
〉
}i∈[3λ], where 〈., .〉 denotes the

inner product over GF2. Circuit Cy outputs 1 on a point x if for all i ∈ [3λ] : bi =
〈
ri, f

i(x)
〉
; and 0

otherwise.

B AIPO implies one-way functions

In this section, we show that AIPOs imply one-way functions.

Lemma B.1 (AIPO implies one-way functions). Point Function Obfuscation (that is secure under
auxiliary inputs) implies puncturable PRFs.
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Proof. We show that, like most cryptographic primitives, AIPO implies one-way functions. As one-
way functions imply PRGs [HILL99] and as PRGs imply puncturable PRFs [BW13, BGI14, KPTZ13],
that suffices to prove that AIPO implies puncturable PRFs.

Two distributions that are statistically close and computationally far imply a distributional
one-way function [Gol90], and a distributionally one-way function implies a standard one-way
function [IL89]. The security property of AIPO implies that the obfuscation of Ix for a random x,
where x1 = 0 is indistinguishable from the obfucation of Iu for a random u. Hence, we have two
computationally indistinguishable distributions. Let us argue that they are also statistically far.
With probability 1

2 , the first bit of u does not equal 0 and hence, the obfuscation of u is outside of
the support of the distributions over Ix. Hence, the two random variables have statistical distance
at least 1

2 which concludes the proof.

C Proof of Theorem 3.5

The main differences compared to the proof of Theorem 3.3 is that we now puncture on q many
points and also construct q many point obfuscations and hence, in the analogue to Claim 3.4 we
need to use composable point obfuscations. We now describe the five games and then give the proof
of the analogue to Claim 3.4. We present the pseudocode for the games in Figure 9.

Game1: The first game is the original UCE[Ss-sup ∩ Sq-query]-game. Here, the hash key hk is an
obfuscation of the circuit C1[k](x) := G.Eval(k, x) where k is a key for the puncturable PRF.

Game2: Let x∗1, . . . , x
∗
q denote the q queries that the source S makes to its Hash oracle and let

y∗i := G.Eval(k, x∗i ) (for i = 1, . . . , q). Game2 is similar to Game1 except that we puncture the
PRF on x∗1 to x∗i . Namely, the hash key hk does not consist of an obfuscation of C1[k] anymore,
but rather of an obfuscation of the circuit C2[k∗, p1, . . . , pq, y

∗
1, . . . , y

∗
q ]. The circuits C1[k] and

C2[k
∗, p1, . . . , pq, y

∗
1, . . . , y

∗
q ] are functionally equivalent. However, instead of the normal PRF

key, C2 uses a punctured PRF key k∗ which is punctured at values x∗i (for i = 1, . . . , q). Here,
pi is computed as the point obfuscation of the point function Ix∗i . On input a value x, circuit
C2[k

∗, p1, . . . , pq, y
∗
1, . . . , y

∗
q ] checks whether there exists i ∈ {1, . . . , q} such that pi(x) = ⊥. If

so, it returns y∗i , otherwise it outputs G.Eval(k∗, x).

Game3: The game is equivalent to Game2 except that oracle Hash now samples y∗i uniformly at
random instead of invoking G.Eval(k, .). Note that C2[k∗, p1, . . . , pq, y

∗
1, . . . , y

∗
q ] is parametrized

by y∗i .

Game4: The game is equivalent to the previous game except that we now use an obfuscation of circuit
C3[k, p1, . . . , pq, y

∗
1, . . . , y

∗
q ] as hash key hk. Circuit C3[k, p1, . . . , pq, y

∗
1, . . . , y

∗
q ] is identical to cir-

cuit C2[k∗, p1, . . . , pq, y
∗
1, . . . , y

∗
q ], except that it uses the original PRF key k instead of the punc-

tured key k∗. Note that circuits C3[k, p1, . . . , pq, y
∗
1, . . . , y

∗
q ] and C2[k

∗, p1, . . . , pq, y
∗
1, . . . , y

∗
q ]

have identical input-output behaviour.

Game5: The game is equivalent to the previous game except that now an obfuscation of circuit C4[k]
is used as hash key hk. Circuit C4[k] is our original circuit again, that is, C4[k](·) := G.Eval(k, ·).
Game5 is our intended target. It is the UCE-security game for our construction in the random
oracle world (that is, oracle Hash implements a random oracle).

It remains to give the analogue of Claim 3.4.
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Game1(λ)

X∗, Y ∗ ← []

i← 0

k←$ G.KGen(1λ)

L←$ SHash(1λ)

hk←$ iO(C1[k])

b′←$ D(1λ, hk, L)

return (1 = b′)

Hash(x)

i← i+ 1

X∗[i]← x

Y ∗[i]← G.Eval(k, x)

return Y ∗[i]

Game2(λ)

X∗, Y ∗ ← []

i← 0

k←$ G.KGen(1λ)

L←$ SHash(1λ)

P ← []

for i = 1, . . . , q do

P [i]←$ O(X∗[i])
k∗ ← G.Puncture(k,X∗)

hk←$ iO(C2[k
∗, P, Y ∗])

b′←$ D(1λ, hk, L)

return (1 = b′)

Hash(x)

i← i+ 1

X∗[i]← x

Y ∗[i]← G.Eval(k, x)

return Y ∗[i]

Game3(λ)

X∗, Y ∗ ← []

i← 0

k←$ G.KGen(1λ)

L←$ SHash(1λ)

P ← []

for i = 1, . . . , q do

P [i]←$ O(X∗[i])
k∗ ← G.Puncture(k,X∗)

hk←$ iO(C2[k
∗, P, Y ∗])

b′←$ D(1λ, hk, L)

return (1 = b′)

Hash(x)

i← i+ 1

X∗[i]← x

Y ∗[i]←$ {0, 1}H.ol(λ)

return Y ∗[i]

Game4(λ)

X∗, Y ∗ ← []

i← 0

k←$ G.KGen(1λ)

L←$ SHash(1λ)

P ← []

for i = 1, . . . , q do

P [i]←$ O(X∗[i])

hk←$ iO(C3[k, P, Y
∗])

b′←$ D(1λ, hk, L)

return (1 = b′)

Hash(x)

i← i+ 1

X∗[i]← x

Y ∗[i]←$ {0, 1}H.ol(λ)

return Y ∗[i]

Game5(λ)

X∗, Y ∗ ← []

i← 0

k←$ G.KGen(1λ)

L←$ SHash(1λ)

hk←$ iO(C4[k])

b′←$ D(1λ, hk, L)

return (1 = b′)

Hash(x)

i← i+ 1

X∗[i]← x

Y ∗[i]←$ {0, 1}H.ol(λ)

return Y ∗[i]

Circuit C1[k](x)

return G.Eval(k, x)

Circuit C2[k
∗, P, Y ∗](x)

for i = 1, . . . , q

if P [i](x) = 1 then

return Y ∗[i]

return G.Eval(k∗, x)

Circuit C3[k, P, Y
∗](x)

for i = 1, . . . , q

if P [i](x) = 1 then

return Y ∗[i]

return G.Eval(k, x)

Circuit C4[k](x)

return G.Eval(k, x)

iO PRF iO q-comp. VGB + iO + [BCP14]

Figure 9: The games used in the proof of Theorem 3.5 on the top and the corresponding circuits on the bottom.
Note that we use lists X∗, Y ∗ and P to store queries, answers and point functions.

Claim C.1. If p is a q-composable VGB obfuscator, then the family of circuit pairs

(C3[k, p1, . . . , pq, y
∗
1, . . . , y

∗
q ], C4[k],Sam)

is differing-inputs.

Proof. Assume there exists an adversary (i.e., an extractor) Ext against the differing-inputs of the
above circuit family which receives as input (C3[k, p1, . . . , pq, y

∗
1, . . . , y

∗
q ], C4[k], L) and outputs a

value τ such that C3[k, p1, . . . , pq, y
∗
1, . . . , y

∗
q ](τ) 6= C4[k](τ). Then, pi(τ) = 1 for some i ∈ {1, . . . , q}

and thus, intuitively, Ext breaks the security property of the point obfuscation scheme. Let us now
make this intuition formal.

We construct adversary (B1,B2) where B1 describes a statistically unpredictable distribution.
On input the security parameter, B1 runs source S(1λ). Without loss of generality we assume
that the source’s queries are distinct. Adversray B1 answers the q many distinct Hash queries x∗i
each with a uniformly random value y∗i and then receives leakage L from S. Adversary B1 then

draws a random string r and index j←$ {1, . . . , q}. It computes b :=
〈
r, x∗j

〉
and finally outputs

((x∗1, . . . , x
∗
q), (b, r, j, y

∗
1, . . . , y

∗
q , L)).

Adversary B2 gets as input the security parameter, the auxiliary input (b, r, j, y∗1, . . . , y
∗
q , L),

as well as q obfuscations p1, . . . , pq which are either honest obfuscations of point functions Ix∗i
(for i = 1, . . . , q) or of q uniformly random points. It samples a random key k←$ G.KGen(λ) and
constructs circuits C3[k, p1, . . . , pq, y

∗
1, . . . , y

∗
q ] and C4[k]. It then calls the extractor Ext on input
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(C3[k, p1, . . . , pq, y
∗
1, . . . , y

∗
q ], C4[k], L) to receive a value τ . If Ext outputs τ = ⊥, then B2 flips a

bit and returns the outcome of the bitflip. Else, if τ is such that C3[k, p, y
∗](τ) 6= C4[k](τ) and

pj(τ) = 1, then B2 outputs 1 if 〈r, τ〉 equals b and 0 otherwise. Else, if pj(τ) = ⊥, then B2 also flips
a bit and returns the outcome of the bitflip.

If the obfuscations where chosen honestly with respect to the target points x∗1, . . . , x
∗
q , then circuits

C3[k, p1, . . . , pq, y
∗
1, . . . , y

∗
q ] and C4[k] differ on input τ if and only if τ = x∗i for some i ∈ {1, . . . , q}.

Hence, if the differing-inputs adversary Ext outputs τ , then τ = x∗i for some i ∈ {1, . . . , q} and, thus,
with probability 1/q value τ is equal to x∗j and, hence, B2 will output 1. If, on the other hand, the
obfuscations pi are of random points ui, then the circuits C3[key, p1, . . . , pq, y

∗
1, . . . , y

∗
q ] and C4[k]

differ on input τ if and only if τ = ui for some i ∈ {1, . . . , q}. Hence, if the differing-inputs adversary
Ext outputs τ and τ = uj then B will only output 1 with probability 1

2 (since Pr[ 〈uj , r〉 = b] = 1
2).

The formal analysis is equivalent to the one for Claim 3.4 with an additional loss of factor 1
q for

guessing the right index.
To finish the proof of Claim C.1, we need to argue that B1 implements a statistically unpredictable

distribution. By assumption, the source S is strongly, statistically unpredictable (i.e., S ∈ Ss-sup)
and hence leakage L hides the query points even in the presence of y∗i statistically. Thus, to see
that B1 defines an unpredictable distribution, we need to argue that x∗i remain unpredictable if
additionally given a single bit of x∗j and an index j. But a single bit and index can be guessed with

probability 1
2q . Hence, (B1,B2) breaks the security of the AIPO obfuscation, which concludes the

proof of Claim C.1.
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