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Abstract. Participatory sensing enables new paradigms and markets for information collection based
on the ubiquitous availability of smartphones, but also introduces privacy challenges for participating
users and their data. In this work, we review existing security models for privacy-preserving participa-
tory sensing and propose several improvements that are both of theoretical and practical significance.
We first address an important drawback of prior work, namely the lack of consideration of collusion
attacks that are highly relevant for such multi-user settings. We explain why existing security models
are insufficient and why previous protocols become insecure in the presence of colluding parties. We
remedy this problem by providing new security and privacy definitions that guarantee meaningful forms
of collusion resistance. We propose new collusion-resistant participatory sensing protocols satisfying
our definitions: a generic construction that uses anonymous identity-based encryption (IBE) and its
practical instantiation based on the Boneh-Franklin IBE scheme.
We then extend the functionality of participatory sensing by adding the ability to perform aggregation
on the data submitted by the users, without sacrificing their privacy. We realize this through an
additively-homomorphic IBE scheme which in turn is constructed by slightly modifying the Boneh-
Franklin IBE scheme. From a practical point of view, the resulting scheme is suitable for calculations
with small sensor readings/values such as temperature measurements, noise levels, or prices, which is
sufficient for many applications of participatory sensing.

1 Introduction

Participatory sensing is a novel paradigm for data collection using smartphones or other mobile devices
with applications ranging from sensing of environmental conditions like traffic [29], urban air [37] and noise
level [39,18], or earth quakes [11] to environmental impact measurements [34], sport activities [21], market
aspects like fuel prices [20], or concerns of personal health like diets [40]. They all leverage the high and
increasing distribution of mobile phones, whose number of subscriptions surpassed 6 billion including a high
share of smartphones with sufficient computation power for a variety of sensing tasks.

The employment of people’s mobile phones as sensors however also introduces privacy risks. These
sensors—now carried around by their owners—reveal sensitive location and behavioral information. In many
settings, the sensed data itself is highly privacy-sensitive and requires appropriate protection when published
or reported to a central data pool. Participatory sensing hence introduces the challenging task to handle
the sensed data in a secure and privacy-preserving manner while offering maximal benefit from the obtained
data to its users.

The utility for the above mentioned applications of participatory sensing increases with a growing number
of participants. Providing people with an incentive to participate is therefore of crucial importance. From
a business point of view, it is reasonable to assume that such an incentive is given by a privacy-preserving
version of participatory sensing which may ultimately attract more people to participate. This argument
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becomes even more striking when the sensors are supposed to read very sensitive data such as data related
to the personal health of participants. For instance, in the European Union (cf. European Data Protection
Directive [23]), the data collector must prove sound security and stewardship of such sensitive data, which
can be done through the use of provably secure cryptographic techniques.

The PEPSI Model. The only provably secure cryptographic treatment of participatory sensing so far is
due to De Cristofaro and Soriente [15,17,16], who came up with a clear and concise infrastructural model
and formally specified desirable privacy goals. Their model, called PEPSI, involves mobile nodes that sense
and report data such as temperature, noise level, etc., forming the user basis for participatory sensing,
queriers that represent entities (individuals or organizations) that consume sensed data such as “noise level
on Time Square, New York”, and an intermediate service provider that stores data reports received from
mobile nodes and forwards the data to subscribed queriers. The service provider is an indispensable part of
the infrastructure, needed to provide adequate efficiency and enable asynchronous communication between
(resource-constrained) mobile nodes and queriers. However, its intermediary position, receiving both sensing
data reports as well as interest subscriptions of queriers, induces additional privacy challenges, treated in
PEPSI’s corresponding privacy requirements.

Our Contribution. We show that although PEPSI contains formal definitions of privacy for participatory
sensing, it leaves aside a very important security aspect, namely collusion attacks across different parties. In
an application environment with many interacting mobile nodes and queriers, the possibility that some of
them collude (potentially also with the service provider) in order to gain insight into the interests of others
constitutes a realistic threat with devastating consequences on privacy. For instance, consider a scenario
where a mobile node and a querier, who should be restricted to upload data (or obtain data, in the case
of the querier) for registered interests only, follow the protocol honestly, but collude by exchanging their
obtained keys. In PEPSI, these colluding parties (even if registered only for a single, identical interest),
are able to obtain and decrypt sensor readings for any interest of their choice due to the lack of collusion
resistance, thus completely breaching the privacy of all other mobile nodes in the system. Note that this
form of collusion is already given when a user is registered as both a mobile node and a querier. This simple
example illustrates the high importance of collusion resistance in participatory sensing for the protection of
all participants’ privacy.

We therefore revisit the PEPSI model and protocols from the perspective of collusion resistance and give
more precise definitions for its three main privacy goals, namely node privacy that protects the content and
nature of data reports, query privacy that hides the information for which queriers subscribe, and report
unlinkability that guarantees untraceability of the reports submitted by mobile nodes. In order to distinguish
both models, we refer to our model for a privacy-enhanced participatory sensing infrastructure with collusion
resistance as PEPSICo. Subsequent to defining our extended security model, we give a generic and provably
secure PEPSICo construction using identity-based encryption (IBE) and a concrete instantiation based on
the Boneh-Franklin IBE scheme [3]. Our construction offers collusion resistance and enjoys particularly low
computation, communication, and storage overhead.

Beyond this, in our model we additionally enable support for data aggregation at the service provider that,
besides functional benefits for participatory sensing, helps to further reduce the communication overhead
and to increase the privacy of individual reports. By sending only one aggregated report (with the size of a
single one) instead of several single reports, aggregation reduces the amount of transferred data. Moreover,
aggregated values hide the contained accumulated individual values, thus increasing the privacy of individual
users.

For the purpose of data aggregation, we construct and analyze an additively homomorphic IBE scheme
as a variant of the Boneh-Franklin IBE scheme and prove its security under the Decisional Bilinear Diffie-
Hellman assumption in the random oracle model. This IBE scheme can be directly used within our generic
collusion-resistant participatory sensing protocols to achieve data aggregation. We note that our additively
homomorphic IBE scheme is only suitable for calculations with small sensor readings, which however is
sufficient for most of the above mentioned applications of participatory sensing. For all our constructions,
we analyze the performance and offer comparisons to prior work.
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2 Related Work

Privacy challenges in participatory sensing were pointed out by many different researchers in the past,
emphasizing their importance [43,30] or even suggesting the design of privacy-preserving data aggregation
schemes [10], however without providing concrete solutions. One of the first privacy-aware architectures
is AnonySense [12], aiming at k-anonymity [44] and using mix networks [8], however without providing
confidentiality of reports or queries against the service provider. Later, an extension by Huang et al. [28]
targets `-diversity [33] but still relies on multiple non-colluding parties. Dimitriou et al. [19], with PEPPeR,
aimed at the protection of querier privacy using blind signatures [9], however focused on querier privacy only
and required direct communication between those and mobile nodes.

So far, the only framework that aims at cryptographically provable privacy is PEPSI by De Cristofaro
and Soriente [15,17,16]. It is based on a simple but versatile architecture that involves a trusted setup for the
key generation phase and an untrusted service provider for all later phases (see Section 3 for more details).
In contrast to our work, PEPSI does not allow for data aggregation and, more importantly, does not protect
against collusion attacks which has destructive implications on privacy as we show in Section 3.1.

In the context of secure data aggregation, a lot of work has been done in wireless sensor networks
(see, e.g., [36]), though often focused on external adversaries. Castelluccia et al. [7], e.g., employ symmetric
homomorphic encryption for data aggregation on the path to the service provider, receiving results in the
clear. PoolView by Ganti et al. [25] is an aggregation approach based on perturbation, however designed
for closed communities with a known user set and data distribution. Shi et al. [42] proposed with PriSense
another aggregation approach for participatory sensing where fragmented data is reported via different paths
using so-called cover nodes. For mobile nodes forming a communication ring a private aggregation scheme
was introduced by Li et al. [31].

A different approach to match data reports with queries would be to incorporate encryption with keyword
search, introduced in the public key setting by Boneh et al. [2] and later for the identity-based setting by
Boyen et al. [6]. Keyword search however inherently allows an owner of a detection trapdoor for a keyword
to identify this keyword in a given set, rendering anonymity against the service provider impossible in our
setting.

3 The PEPSI Model

In this section we briefly recall the PEPSI model as introduced by De Cristofaro and Soriente [15,17,16].
Their infrastructure considers the following parties: mobile nodes (MNs) are the devices that sense and
report data, queriers are end-users interested in receiving sensor reports, the network operator (NO) is the
provider of cellular network access for MNs, the service provider (SP) is the intermediary party between
MNs and queriers that relays matching reports to subscribed queriers, and the registration authority (RA)
is the trusted party performing system setup and node registration. The following PEPSI construction was
proposed in [15,17] using an encryption approach derived from the Boneh-Franklin IBE scheme [3]. It uses
groups G, GT of prime order q with a generator g ∈ G and an efficient bilinear map e : G × G 7→ GT such
that e(ga, gb) = e(g, g)ab for all a, b ∈ Zq and e(g, h) 6= 1GT

whenever g, h 6= 1G.

Setup: The RA generates the bilinear group parameters (G = 〈g〉, q, e : G×G→ GT ), picks s ∈R Z∗q as the
master secret key msk and makes Q := gs public. Further, RA chooses a “nonce” z ∈R Z∗q , sets R := gz,
and fixes three cryptographic hash functions H1 : {0, 1}∗ → G, H2, H3 : GT → {0, 1}n.

MN Registration: A MN registers for the sensing of certain data at the RA and obtains the pair (z, id)
where z is the “nonce” from Setup and id the identifier for the readings MN provides.

Query Registration: A querier registers at the RA for some query identifier id∗ (e.g., “temperature in
Berlin, Germany”) and obtains the pair (skid∗ , R) for skid∗ := H1(id∗)s. It then subscribes at the SP to
receive reports for id∗ by sending T ∗ := H2(e(R, skid∗)).

Data Report: In order to submit a data reading m, a MN sends the pair (T, c) := (H2(e(Q,H1(id)z)),
Enck(m)) to the SP (via NO’s infrastructure), with k := H3(e(Q,H1(id)z)) being the key for some
symmetric encryption operation Enc, e.g., AES. T is called a tag.
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Fig. 1. PEPSI scheme as proposed by De Cristofaro and Soriente [15,17,16].

Query Execution: The SP matches received reports with query subscriptions by comparing the tag T of a
report with the stored subscriptions T ∗ and forwards matching reports (T, c) to the according queriers.
The receiving querier computes k∗ := H3(e(R, skid∗)) and m := Deck∗(c).

Nonce Renewal: The RA periodically distributes a fresh z to the MNs and R = gz to the queriers in order
to ban misbehaving MNs.

The PEPSI model identifies three privacy goals, stated here informally: node privacy requires that NO,
SP, unauthorized queriers, and other MNs learn nothing about the data or nature (e.g., query id) of a report
submitted by a MN; query privacy demands that NO, SP, MNs, and other queriers learn nothing about the
query identifier a querier subscribes to; report unlinkability is achieved if no party can link multiple data
reports as originating from the same MN.

3.1 Limitations of PEPSI

With PEPSI [15,17,16], De Cristofaro and Soriente proposed the first cryptographic framework for a formal
analysis of security and privacy in participatory sensing. As mentioned earlier, their model however does not
achieve the required collusion resistance necessary for a secure and privacy-protected participatory sensing
infrastructure and cannot deal with data aggregation at the SP.

While PEPSI excludes some forms of collusions by trust assumptions (e.g., between the SP and queriers),
two types of collusions remain unmentioned4 which lead to serious privacy loopholes in their construction
(full details can be found in Section 4.4):

– Collusion of SP and MN. All MNs possess the (same) “nonce” z allowing to compute key k and tag
T for any identity. The colluding SP and MN can thus together decrypt all reports and determine the
identity behind all query subscriptions the SP receives (breaking node privacy and query privacy).

– Collusion of MN and Querier. The colluding MN and querier can use the “nonce” z to subscribe for
any identity (computing the resp. tag) and decrypt all received reports (computing the resp. key), thus
breaking node privacy.5

Concerning data aggregation, De Cristofaro and Soriente acknowledge [16] that performing aggregation at
the SP would be an expedient capability in the setting of participatory sensing; their constructions however
only allow for single encrypted measurements.

4 The original PEPSI paper [15, Section 4.2] only requires the SP not to collude with the RA or queriers, missing the
collusion attacks mentioned here. In the later journal version [16, Section III.D], De Cristofaro and Soriente assume
an honest-but-curious, non-colluding behavior of all participating parties, i.e., completely exclude the treatment of
collusions in their model.

5 We stress that if no (additional) identity management is implemented to authenticate queriers as such when
interacting with the SP, this attack actually constitutes a total privacy breach as every mobile node can subscribe
for any query identifier without registering as a querier and decrypt all received data reports. The collusion-resistant
model we introduce eliminates this attack independent of identity management.
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Fig. 2. The PEPSICo infrastructure. Mobile nodes (MNs) and queriers (Qs) register to the registration authority
(RA). MNs report data to the service provider (SP), queriers subscribe for reports at the SP. The SP may aggregate
multiple reports and sends reports matching with subscriptions to the according querier, which decodes them.

We argue that collusions, especially one person registering both as mobile node and querier but also—
though to a lesser extent—between MNs and the SP, are a realistic threat in participatory sensing scenarios
with devastating consequences on privacy within PEPSI. Therefore, meaningful forms of collusion resis-
tance must also be reflected in the corresponding privacy definitions. Moreover, it would be desirable—both
performance- and privacy-wise—to directly allow for aggregation of data reports in the underlying model.
This motivates the following revision of the original PEPSI model.

4 PEPSICo: Revised Model for Participatory Sensing

In this section, we propose a revised model for a privacy-enhanced participatory sensing infrastructure which
captures collusion resistance and foresees optional data aggregation, denoted as PEPSICo.

4.1 The PEPSICo Model

The PEPSICo system model (cf. Figure 2) involves mobiles nodes (MNs), queriers, a service provider (SP),
and a registration authority (RA) with identical roles as in the PEPSI model.

Mobile Nodes (MNs): Mobile nodes are devices carried by people or mobile entities that sense data and
report it via, e.g., cellular networks to the service provider.

Queriers: Queriers are end-users that are interested in receiving sensor reports and register at the service
provider for this purpose.

Service Provider (SP): The service provider is the connection party between mobile nodes and queriers
that relays matching data reports to accordingly subscribed queriers.

Registration Authority (RA): The registration authority performs the system setup and handles the
registration of participating parties.

We however drop the network operator, as its attack capabilities in our model are strictly weaker than those
of the service provider. Thus, considering the latter only is sufficient.

Definition 1 (PEPSICo Instantiation). An instantiation of the privacy-enhanced participatory sensing
infrastructure with collusion resistance (PEPSICo instantiation) PI consists of the seven algorithms Setup,
RegisterMN, RegisterQ, ReportData, SubscribeQuery, ExecuteQuery, and DecodeData and, potentially,
the optional AggregateData algorithm defined as follows.
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Setup(1n): The setup is executed by the RA to initialize PI. On input the security parameter n ∈ N, this
probabilistic algorithm outputs the RA’s secret key RAsk and a master public key RApk. RApk contains
a description of the query identity space I and the message space M.

RegisterMN(RApk,RAsk, qid): The MN registration is executed by the RA to register a new MN for a given
query identity qid. On input RApk, RAsk, and a query identity qid ∈ I, this probabilistic algorithm
outputs a mobile node registration value regMNqid for qid, which the RA sends to the MN.

RegisterQ(RApk,RAsk, qid): The querier registration is executed by the RA to register a new querier for
a given query identity qid ∈ I. On input RApk, RAsk, and qid, this probabilistic algorithm outputs a
querier registration value regQqid for qid, which the RA sends to the querier.

ReportData(RApk, regMNqid, qid,m): The data report algorithm is executed by the MN to report a message
m ∈M under some query identity qid ∈ I. On input RApk, a MN registration value regMNqid, qid, and
m, this probabilistic algorithm outputs a data report c, which the MN sends to the SP.

SubscribeQuery(RApk, regQqid, qid): The query subscription is executed by the querier to subscribe for a
given query identity qid ∈ I. On input RApk, a querier registration value regQqid, and qid, this proba-
bilistic algorithm outputs a subscription token s, which the querier sends to the SP.

ExecuteQuery(RApk, c, s): The query execution is executed by the SP. On input the master public key RApk,
a data report c, and a subscription token s, this deterministic algorithm outputs either c (indicating that
c matches with s) or ⊥ (indicating mismatch) to the querier who provided the token s.

DecodeData(RApk, regQqid, qid, c): The data decoding is executed by a querier on a received data report c
to obtain the contained message. On input RApk, a querier registration value regQqid, a query identity
qid ∈ I, and c, this deterministic algorithm outputs either a message m or ⊥, indicating failure.

AggregateData(RApk, c): The optional data aggregation is executed by the SP on a vector of data reports
c = (c1, . . . , ck) and, if all match, outputs a single, aggregated data report. On input RApk and c, this
probabilistic algorithm outputs either a single data report c or ⊥, indicating failure.

If PI provides the AggregateData operation, it is called a PEPSICo instantiation with data aggregation.
To be sound, a PEPSICo instantiation PI has to satisfy the condition that data reports match with query
subscriptions and are decodable using the querier registration value generated for the same query identity,
even if they were previously aggregated by the service provider.

4.2 Trust Assumptions and Adversary Model

In our model, we allow collusions between the SP, mobile nodes, and queriers against other mobile nodes or
queriers. Particularly, we consider mobile nodes to be arbitrary, unauthenticated users. Since our model aims
at the higher-level application of participatory sensing it is assumed that (uncorrupted) parties communicate
over confidential yet not necessarily authenticated channels.

In order to define security and privacy of a PEPSICo instantiation PI, we consider a probabilistic polynomial-
time (PPT) adversary A interacting with PI. We allow for corruptions of MNs, queriers, the SP, and (in
special cases) the RA. Let CIMN resp. CIQ denote the set of identities A learned registration values for
by corrupting MNs resp. queriers and CI := CIMN ∪ CIQ. Corruption of the SP resp. RA is denoted by
CSP = 1 resp. CRA = 1; initially both are 0. A has access to the following oracles:

CorruptMN(qid): On input a query id qid, compute regMNqid ← RegisterMN(RApk,RAsk, qid), provide A
with regMNqid, and add qid to CIMN .

CorruptQ(qid): On input a query id qid, compute regQqid ← RegisterQ(RApk,RAsk, qid), provide A with
regQqid, and add qid to CIQ.

CorruptSP(): Set flag CSP := 1. (This influences subsequent ReportData queries.)

CorruptRA(): Provide A with RAsk and set flag CRA := 1.

ReportData(qid,m, s): On input a query id qid, a message m, and a vector of subscription tokens s =
(s1, . . . , sk), let regMNqid ← RegisterMN(RApk,RAsk, qid) and c← ReportData(RApk, regMNqid, qid,m).
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If CSP = 1, c is given to A. Otherwise A receives c := (c1, . . . , ck), where ci ← ExecuteQuery(RApk,
c, si) for i ∈ {1, . . . , k} (some of the ci may be ⊥).6

SubscribeQuery(qid): On input a query id qid, compute regQqid ← RegisterQ(RApk,RAsk, qid), s ←
SubscribeQuery(RApk, regQqid, qid), and give s to A.

DecodeData(qid, c): On input a query id qid and a data report c, compute regQqid ← RegisterQ(RApk,RAsk,
qid), m← DecodeData(RApk, regQqid, qid, c), and give m to A.

4.3 Privacy and Security Definitions

We proceed by strengthening the definitions of the three central privacy goals for participatory sensing
identified in [15] with collusion resistance.

Node Privacy. Our notion of node privacy formalizes confidentiality of data reports against the SP, unau-
thorized queriers, and other MNs. More precisely, node privacy hides both the message and the query identity
of a report from these parties, even if all of them collude. We thus model node privacy as indistinguishability
of data reports generated using two query identity-message pairs freely chosen by an adaptive adversary that
can obtain data reports, subscribe to queries, and corrupt SP as well as MNs and queriers for other query
identities. Similar to classical security notions for encryption, we distinguish between node privacy under
chosen-ciphertext and under chosen-plaintext attacks, where in the first the adversary has additional access
to the decoding oracle.

Definition 2 (Node Privacy). Let PI be a PEPSICo instantiation and A = (A1,A2) a PPT adversary
interacting with PI via the queries defined in Section 4.2 within the following game GameNP-CCA

PI,A (n):

Setup. Setup(1n) is executed and outputs (RAsk,RApk).
Phase I. A1 receives RApk and has access to the oracles CorruptMN, CorruptQ, CorruptSP, ReportData,

SubscribeQuery, and DecodeData. Eventually, A1 stops and outputs two challenge query identity-message
pairs (qid0,m0), (qid1,m1) and a vector of subscription tokens s = (s1, . . . , sk).

Challenge. A bit b ∈R {0, 1} is chosen, regMNqidb
← RegisterMN(RApk,RAsk, qidb) and c← ReportData(

RApk, regMNqidb
, qidb,mb) are executed. If CSP = 1, set R := (c), otherwise set R := (c1, . . . , ck), where

ci ← ExecuteQuery(RApk, c, si) for i ∈ {1, . . . , k}.
Phase II. A2 receives RApk and R and has access to the oracles from Phase I.
Guess. Eventually, A2 outputs a guess b′ ∈ {0, 1} for b.

Adversary A wins the game, denoted by GameNP-CCA
PI,A (n) = 1, if b = b′, {qid0, qid1} ∩ CI = ∅, and all the

following conditions hold:

1. A did not query SubscribeQuery with qid0 or qid1.
2. If CSP = 1, then A did not query ReportData with qid0 or qid1.
3. In Phase II A did not query DecodeData(qid0,R[i]) or DecodeData(qid1,R[i]) for any element R[i] of

R.

We say PI provides node privacy under chosen-ciphertext attacks (or NP-CCA security) if for all PPT
adversaries A the following advantage function is negligible in n:

AdvNP-CCA
PI,A (n) :=

∣∣∣∣Pr
[
GameNP-CCA

PI,A (n) = 1
]
− 1

2

∣∣∣∣ .
Consider the game GameNP-CPA

PI,A (n), which is identical to GameNP-CCA
PI,A (n), except that A is not given access

to the DecodeData oracle. We say PI provides node privacy under chosen-plaintext attacks (or NP-CPA
security) if for all PPT adversaries A the analogously defined advantage AdvNP-CPA

PI,A (n) is negligible in n.

6 The intuition of separating the cases CSP = 1 and CSP = 0 (i.e., SP is corrupted or not) is as follows: If SP is
corrupted, A sees any data report sent to SP. Otherwise, A only learns reports for which he can provide a matching
subscription token si.
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Remark 1. PEPSICo schemes with data aggregation never provide NP-CCA security, as an adversary in
GameNP-CCA

PI,A (n) can apply the AggregateData algorithm on challenge c and a c′ for known m′ and decode
the result using the DecodeData oracle. Therefore, the desirable privacy flavor in case of aggregation is
NP-CPA.

Query Privacy. By query privacy we formalize the privacy of queriers when subscribing for query identities.
We require that the query identity of a subscription is hidden from the SP as well as MNs and other queriers,
even if all of them collude. Query privacy is thus modeled as indistinguishability of subscription tokens for
two query identities freely chosen by an adaptive adversary that can obtain data reports, subscribe to queries,
and corrupt SP as well as MNs and queriers for other query identities.

Definition 3 (Query Privacy). Let PI be a PEPSICo instantiation and A = (A1,A2) a PPT adversary
interacting with PI via the queries defined in Section 4.2 within the following game GameQP

PI,A(n):

Setup. Setup(1n) is executed and outputs (RAsk,RApk); set CSP := 1.
Phase I. A1 receives RApk and has access to the oracles CorruptMN, CorruptQ, ReportData, SubscribeQuery,

and DecodeData. Eventually, A1 stops and outputs two challenge query identities qid0 and qid1.
Challenge. A bit b ∈R {0, 1} is chosen, regQqidb

← RegisterQ(RApk,RAsk, qidb) and s← SubscribeQuery(
RApk, regQqidb

, qidb) are executed.
Phase II. A2 receives RApk and s and has access to the oracles from Phase I.
Guess. Eventually, A2 outputs a guess b′ ∈ {0, 1} for b.

Adversary A wins the game, denoted by GameQP
PI,A(n) = 1, if b = b′, {qid0, qid1} ∩ CI = ∅, and A did not

query ReportData or SubscribeQuery with qid0 or qid1. We say PI provides query privacy if for all PPT
adversaries A the following advantage function is negligible in n:

AdvQP
PI,A(n) :=

∣∣∣∣Pr
[
GameQP

PI,A(n) = 1
]
− 1

2

∣∣∣∣ .
Report Unlinkability. Report unlinkability prevents the linkage of two reports as originating from the
same MN by any other party, including the RA. As MNs (as well as queriers) are not distinguished by
device identifiers or anything similar in our model, we tie the notion of report unlinkability to the MN
registration value used to generate a data report. We model report unlinkability as indistinguishability of
the MN registration value used to generate a data report for a query identity-message pair freely chosen
by an adaptive adversary that can obtain data reports, subscribe to queries, and corrupt SP, any MN and
querier as well as the RA (after setup).

Definition 4 (Report Unlinkability). Let PI be a PEPSICo instantiation and A = (A1,A2) a PPT
adversary interacting with PI via the queries defined in Section 4.2 within the following game GameRUPI,A(n):

Setup. Setup(1n) is executed and outputs (RAsk,RApk).
Phase I. A1 receives RApk and has access to the oracles CorruptMN, CorruptQ, CorruptSP, CorruptRA,

ReportData, SubscribeQuery, and DecodeData. Eventually, A1 stops and outputs a challenge query identity-
message pair (qid,m).

Challenge. RegisterMN(RApk,RAsk, qid) is executed twice, resulting in registration values regMN0
qid, regMN1

qid.

A bit b ∈R {0, 1} is chosen and c← ReportData(RApk, regMNb
qid, qid,m) is executed.

Phase II. A2 receives RApk, regMN0
qid, regMN1

qid, and c and has access to the oracles from Phase I.
Guess. Eventually, A2 outputs a guess b′ ∈ {0, 1} for b.

Adversary A wins the game, denoted by GameQP
PI,A(n) = 1, if b = b′. We say PI provides report unlinkability

if for all PPT adversaries A the following advantage function is negligible in n:

AdvRU
PI,A(n) :=

∣∣∣∣Pr
[
GameRUPI,A(n) = 1

]
− 1

2

∣∣∣∣ .
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4.4 Collusion Attacks against PEPSI

We conclude the exposition of our model by showing formally that the PEPSI construction [15,17,16] does
not satisfy our requirements on node and query privacy due to collusion attacks. More precisely, considering
PEPSI as an instance of our model, we specify collusion attacks against the two privacy properties that
exploit corrupted mobile nodes:

Collusion against Node Privacy: A1 calls CorruptSP and outputs arbitrary but distinct (qid0,m0), (qid1,
m1) and empty s = (). A2 receives c = (T, c′), calls CorruptMN(qid′) for qid′ /∈ {qid0, qid1}, and
receives regMNqid′ = z. A2 computes T0 := H2(e(Q,H1(id0)z)) and, if T0 = T , outputs 0, otherwise 1.
A = (A1,A2) always wins.

Collusion against Query Privacy: A1 outputs arbitrary but distinct qid0, qid1. A2 receives s = T , calls
CorruptMN(qid′) for qid′ /∈ {qid0, qid1}, and receives regMNqid′ = z.A2 computes T0 := H2(e(Q,H1(id0)z))
and, if T0 = T , outputs 0, otherwise 1. A = (A1,A2) always wins.

Therefore, a new approach is required to maintain privacy protection in a participatory sensing scenario
facing collusion attacks, which we present now.

5 A Generic Solution using Identity-Based Encryption

Preliminaries. Before introducing our generic instantiation, we briefly recap the definitions of an IBE
scheme and the according indistinguishability and anonymity notions due to Boneh and Franklin [3] and
Abdalla et al. [1] we build upon.

Definition 5 (Identity-Based Encryption). An identity-based encryption scheme (IBE scheme) E con-
sists of four algorithms:

– Setup(1n) generates the master public resp. secret key mpk and msk.
– Extract(mpk,msk, id) outputs the private key skid corresponding to an identity id ∈ {0, 1}∗.
– Enc(mpk, id,m) encrypts a message m ∈M to a ciphertext c ∈ C.
– Dec(mpk, skid, c) decrypts a ciphertext c ∈ C to a message m ∈M.

An IBE scheme E is correct if for all id ∈ {0, 1}∗, m ∈ M : Dec(mpk,Extract(mpk,msk, id),Enc(mpk,
id,m)) = m.

Homomorphic IBE: An IBE scheme E is homomorphic if for all id ∈ {0, 1}∗, all m,m′ ∈ M : Dec(mpk,
Extract(mpk,msk, id),Enc(mpk, id,m) ◦ Enc(mpk, id,m′)) = m+m′, where ◦ : C × C 7→ C and + :M×M 7→
M.

Definition 6 (Security Notions for IBE). Let E be an IBE scheme and A a PPT adversary in the
following ANO-IND-ID-CCA game:

GameANO-IND-ID-CCA
E,A (n) : (msk,mpk)← Setup(1n)

((id0,m0), (id1,m1))← AExtract(mpk,msk,·),Dec(skid,·)(mpk)

c← Enc(mpk, idb,mb) for b ∈R {0, 1}
b′ ← AExtract(mpk,msk,·),Dec(skid,·)(mpk, c)

return b = b′

where A must not query the Extract oracle on id0, id1 nor the Dec oracle on skid0
, skid1

and the challenge c.
The advantage of A in winning is defined as AdvANO-IND-ID-CCA

E,A (n) :=
∣∣Pr

[
GameANO-IND-ID-CCA

E,A (n) = 1
]
− 1

2

∣∣.
We say E provides anonymity and indistinguishability under chosen-ciphertext attacks (or ANO-IND-ID-CCA
security) if for all A this advantage is negligible in n.

There are further variants: If we require id0 = id1, the resulting game models only indistinguishability
( IND-ID-CCA security); for m0 = m1 only anonymity (ANO-ID-CCA security). Removing the Dec oracle
results in the respective chosen-plaintext variants (ANO-IND-ID-CPA, IND-ID-CPA, resp. ANO-ID-CPA secu-
rity).
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RA

Setup: (msk,mpk)← E .Setup, RAsk := (msk, k ∈R {0, 1}n), RApk := mpk.
RegisterMN: regMNqid := Tqid := fk(qid).
RegisterQ: regQqid∗ := (skqid∗ ← E .Extract(msk, qid∗), Tqid∗).

MN

ReportData:
c := (T, c′) :=
(Tqid, E .Enc(qid,m)).

Q

SubscribeQuery:
s := T ∗ := Tqid∗ .

DecodeData:
m := E .Dec(skqid∗ , c′).

SP

ExecuteQuery: If T = T ∗ output (T, c′), else output ⊥.
AggregateData: If T1 = · · · = T` output (T, c′) = (T1, c1 ◦ · · · ◦ c`), else output ⊥. (optional)

qid

T
qid

qid
∗

(skq
id
∗ , Tqid

∗ )

(T,
c
′ ) T ∗

(T, c ′)

Fig. 3. Generic PEPSICo instantiation PIIBE based on an IBE scheme E and a PRF f .

Lemma 1. An IBE scheme is ANO-ID-CCA- and IND-ID-CCA-secure if and only if it is ANO-IND-ID-CCA-
secure. The same holds for the chosen-plaintext case.

5.1 Generic PIIBE Construction using Identity-Based Encryption

Our generic PEPSICo scheme, denoted PIIBE and specified in Definition 7, incorporates an IBE scheme E
and a pseudorandom function (PRF) f : {0, 1}n × {0, 1}∗ → {0, 1}n. Figure 3 illustrates its mapping to the
PEPSICo infrastructure.

Definition 7 (PIIBE Scheme). Let E = (Setup,Extract,Enc,Dec) be an identity-based encryption scheme
and f : {0, 1}n × {0, 1}∗ → {0, 1}n a pseudorandom function. The PIIBE scheme is defined as follows:

Setup(1n): Let (msk,mpk) ← Setup(1n) and k ∈R {0, 1}n. Output RAsk := (msk, k) and RApk := mpk. M
is the message space of E, I = {0, 1}∗.

RegisterMN(RApk,RAsk, qid): Let Tqid := fk(qid), output regMNqid := Tqid.
RegisterQ(RApk,RAsk, qid): Let skqid ← Extract(mpk,msk, qid) and compute Tqid := fk(qid). Output regQqid :=

(skqid, Tqid).
ReportData(RApk, regMNqid, qid,m): Output c := (Tqid,Enc(mpk, qid,m)).
SubscribeQuery(RApk, regQqid, qid): Output s := Tqid.
ExecuteQuery(RApk, c, s): Parse c as (T, c′). If T = s output c, else output ⊥.
DecodeData(RApk, regQqid, qid, c): Parse c as (T, c′). Output m := Dec(mpk, skqid, c

′).

If E is homomorphic (cf. Definition 5) w.r.t. some operation ◦, then PIIBE supports data aggregation using
the following generic algorithm:

AggregateData(RApk, c): Parse c as ((T1, c1), . . . , (T`, c`)). If T1 = · · · = T`, compute c′ = c1 ◦ c2 ◦ · · · ◦ c`
and output c = (T1, c

′), otherwise output ⊥.

Soundness of PIIBE follows from the correctness (and for data aggregation also the additive homomorphism)
of E .

Remark 2. While PIIBE uses Tqid := fk(qid) to match reports with subscriptions, one could further accom-
modate time periods to indicate validity of reports/subscriptions and ensure unlinkability of tags across
different time periods. This could for example be achieved by requiring the mobile node resp. querier to
compute H(Tqid, tp) for the current value Tqid (which still has to be kept secret from the adversary) and a
time period tp using a collision-resistant hash function H and treat this values as part of the report c and
the subscription token s.
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5.2 Security Analysis

We obtain the following security result for PIIBE.

Theorem 1 (Privacy and Security of PIIBE). If f is pseudorandom and E provides ANO-IND-ID-CCA
(resp. ANO-IND-ID-CPA) security, then PIIBE provides node privacy under chosen-ciphertext (resp. chosen-
plaintext) attacks, query privacy, and report unlinkability as defined in Definitions 2, 3, and 4.

Proof of Node Privacy. We prove node privacy of PIIBE in two steps: First, we first replace the pseu-
dorandom function f with a real random one and prove this to be indistinguishable. We then show how
an adversary against the instantiation with a random function can be used to break the security of the
underlying IBE scheme E .

Assume we have an adversary A = (A1,A2) against PIIBE with non-negligible advantage AdvNP-CCA
PIIBE,A (n).7

We first consider the game GameNP-CCA∗

PIIBE,A (n), which is like GameNP-CCA
PIIBE,A (n), except that instead of f a real

random function g : {0, 1}n × {0, 1}∗ → {0, 1}n is used to compute the tags Tqid. We argue that ε(n) :=∣∣AdvNP-CCA
PIIBE,A (n)−AdvNP-CCA∗

PIIBE,A (n)
∣∣ is negligible, otherwise A can be used to construct a distinguisher D between

f and g by relaying evaluations of f in the game to its oracle. If D is given oracle access to f , then it acts like
the challenger in GameNP-CCA

PIIBE,A (n), otherwise like in GameNP-CCA∗

PIIBE,A (n). D outputs the game result (i.e., b = b′)
as its own guess and thus has advantage ε to distinguish f and g. As f by assumption is pseudorandom, ε
is negligible.

Thus A’s advantage in the modified game GameNP-CCA∗

PIIBE,A (n) is non-negligible, too. We construct an ad-
versary B with non-negligible advantage in breaking the ANO-IND-ID-CCA security of E which uses A as
follows.

Setup. B receives the master public key mpk in the ANO-IND-ID-CCA game.
Phase I. B provides A1 with RApk = mpk and answers the oracle queries as specified. It uses its Extract

oracle to obtain secret keys skqid for CorruptQ queries, chooses tags Tqid ∈R {0, 1}n at random on first
request (reusing the value later), and relays DecodeData queries to its own Dec oracle.
A1 eventually outputs (qid0,m0), (qid1,m1), and s = (s1, . . . , sk).

Challenge. B forwards (qid0,m0), (qid1,m1) as its own challenge and receives c∗. B chooses T ∈R {0, 1}n
and sets c := (T, c∗). If CSP = 1, B sets R := (c), else R := (c1, . . . , ck) for ci ← ExecuteQuery(RApk, c,
si).

Phase II. B provides A2 with RApk and R and answers queries as above.
Guess. A2 outputs a guess b′ ∈ {0, 1}, which B forwards as its own guess.

As B perfectly simulates GameNP-CCA∗

PIIBE,A (n) for A, we obtain AdvANO-IND-ID-CCA
E,B (n) = AdvNP-CCA∗

PIIBE,A (n), which is
non-negligible. ut

Note that any PIIBE construction with data aggregation can only provide node privacy under chosen-
plaintext attacks (cf. Remark 1). Data aggregation however introduces additional privacy benefits: if queriers
only receive aggregated values (e.g., a sum) then individual measurements submitted by mobile nodes remain
to some extent hidden from potential queriers.

Proof of Query Privacy. Assume we have an adversary A against PIIBE with non-negligible advan-
tage AdvQP

PIIBE,A(n). Similar to the node privacy proof we consider GameQP∗

PIIBE,A(n), which is identical to

GameQP
PIIBE,A(n), except that instead of f a real random function g is used to compute the tags Tqid. This is

likewise indistinguishable for A, i.e.,
∣∣AdvQP

PIIBE,A(n)−AdvQP∗

PIIBE,A(n)
∣∣ is negligible.

In GameQP∗

PIIBE,A(n), A now receives a challenge subscription token s chosen at random. As A is not allowed
to corrupt MNs or queriers registered for qid0 or qid1 or query ReportData or SubscribeQuery on qid0 or qid1,

7 We prove the NP-CCA/ANO-IND-ID-CCA case here, the NP-CPA/ANO-IND-ID-CPA case works identical by remov-
ing the DecodeData oracle queries.
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he receives no further evaluation of g under qid0 or qid1. Thus, for A, the probabilities Pr[g(qid0) = s]
and Pr[g(qid1) = s] are equal for any value s. Hence A can guess b no better than with probability 1

2 , so

AdvQP∗

PIIBE,A(n) = 0 and AdvQP
PIIBE,A(n) is negligible. ut

Proof of Report Unlinkability. As all regMNqid values for the same qid are equal in PIIBE (namely

regMNqid = fk(qid)), A in GameRUPIIBE,A(n) receives in Phase II two identical values regMN0
qid = regMN1

qid =

fk(qid). Thus, regMN0
qid, regMN1

qid, and c received by A are all independent of the bit b which A hence can

guess no better than with probability 1
2 , i.e., AdvRU

PIIBE,A(n) = 0. ut

6 Concrete PEPSICo Instantiations

We now show how our generic PIIBE construction (without and with data aggregation) can be instantiated
in practice.

6.1 PEPSICo Schemes in the Random Oracle and Standard Model

The generic PIIBE construction can directly be instantiated with the IBE scheme proposed by Boneh and
Franklin [3], which provides ANO-IND-ID-CPA security (under the Bilinear Diffie-Hellman (BDH) assump-
tion [3] in the random oracle model). The resulting PEPSICo scheme, denoted PIBF, thus by Theorem 1
provides node privacy under chosen-plaintext attacks, query privacy, and report unlinkability. As our com-
parison in Section 7 shows, PIBF offers the same high practical performance as the original PEPSI scheme.

Since our result in Theorem 1 holds in the standard model, we can easily obtain further PEPSICo schemes
whose security does not require random oracles. For instance, the anonymous IBE schemes by Boyen and
Waters [6] or Gentry [26] can likewise be used as appropriate building blocks to instantiate PIIBE.

6.2 PEPSICo Schemes with Data Aggregation

We continue our presentation of practical PEPSICo instantiations with those allowing for data aggregation.

Additively Homomorphic IBE Scheme. For our PEPSICo scheme with data aggregation we first intro-
duce and analyze an additively homomorphic IBE scheme AIBE that we developed as a modification of the
Boneh-Franklin IBE scheme [3].

Definition 8 (AIBE Scheme). The additively homomorphic IBE scheme AIBE is defined as follows.

Setup(1n). Generate the bilinear group parameters (G = 〈g〉, q, e : G×G→ GT ) with GT = 〈ḡ〉 for ḡ = e(g, g).
Choose x ∈R Z∗q , set y := gx, and fix a cryptographic hash function H : {0, 1}∗ → G∗. The message space
is M = ZM = {0, . . . ,M − 1} ⊆ Zq with M = p(n) < q for some polynomial p, the ciphertext space is
C = G∗ ×GT . Output mpk = (q,G = 〈g〉,GT = 〈ḡ〉, e, y,H) and msk = x.

Extract(mpk,msk, id). Compute and output skid := H(id)x.
Enc(mpk, id,m). Choose r ∈R Z∗q and output c = (gr, ḡm · e(H(id), y)r).
Dec(mpk, skid, c). Parse c as (c1, c2). Compute m := c2/e(skid, c1) and m = logḡ(m) as the discrete logarithm

to the base ḡ of m in GT (which takes polynomial time in n as m < M , cf. the performance discussion
below).

Correctness of AIBE follows from the fact that

logḡ(m) = logḡ(c2/e(skid, c1)) = logḡ(ḡm · e(H(id), y)r/e(H(id)x, gr)) = m.
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Our AIBE scheme is additively homomorphic in the message space M = ZM by element-wise multiplication
of ciphertexts: c · c′ = (gr · gr′ , ḡm · e(H(id), y)r · ḡm′ · e(H(id), y)r

′
) = (gr+r′ , ḡm+m′ · e(H(id), y)r+r′) =

Enc(mpk, id,m+m′ mod q). The beneficial additive homomorphism of our AIBE scheme comes at the cost
of two practical disadvantages: the limited (i.e., only polynomial-sized) messages space and the need to
compute a discrete logarithm for decryption. We will see in Section 6.2 that—though theoretically notable—
both constraints are acceptable in many practical scenarios.

Security Analysis. We now recall the well-known DBDH assumption that is used in Theorem 2 to prove
the security of the AIBE scheme.

Definition 9 (DBDH Assumption). The Decisional Bilinear Diffie-Hellman (DBDH) assumption with
respect to a bilinear group generation algorithm G(1n), n ∈ N, states that for all PPT algorithms A the
advantage function

AdvDBDH
G,A (n) :=

∣∣Pr [A(g, q, e, gx1 , gx2 , gx3 , hb) = b]− 1
2

∣∣
where (G = 〈g〉, q, e : G × G → GT ) ← G(1n) and w, x1, x2, x3 ∈R Zq, h0 = e(g, g)x1x2x3 , h1 = e(g, g)w,
b ∈R {0, 1} is negligible in n.

Theorem 2 (ANO-IND-ID-CPA Security of AIBE). AIBE provides anonymity and indistinguishability
under chosen-plaintext attacks under the DBDH assumption, in the random oracle model.

We prove the ANO-IND-ID-CPA security of AIBE by proving its indistinguishability in Theorem 3 and its
anonymity in Theorem 4, combining both results using Lemma 1.

Theorem 3 (IND-ID-CPA Security of AIBE). If the DBDH assumption holds for G and H is a random
oracle, then AIBE provides IND-ID-CPA security.

Theorem 3 is proven similar to the Boneh-Franklin scheme (cf. [4, Theorem 4.1]). We first introduce the
following public-key version APub of our AIBE scheme.

Definition 10 (APub). Let G be a (symmetric) bilinear group generator. The additively homomorphic
public-key encryption scheme APub is defined as follows.

KeyGen(1n). Generate (G = 〈g〉, q, e : G×G→ GT )← G(1n) with GT = 〈ḡ〉 for ḡ = e(g, g). Choose x ∈R Z∗q ,
h ∈R G∗ and set y := gx. Output pk = (q,G = 〈g〉,GT = 〈ḡ〉, e, y, h) and sk = hx.

Enc(pk,m). Choose r ∈R Z∗q and output c = (gr, ḡm · e(h, y)r).
Dec(sk, c). Parse c as (c1, c2). Compute m := c2/e(sk, c1) and m = logḡ(m).

Correctness of APub follows similarly as for AIBE by

logḡ(m) = logḡ(c2/e(sk, c1)) = logḡ(ḡm · e(h, y)r/e(hx, gr)) = logḡ(ḡm · e(h, g)rx/e(h, g)rx) = m.

First, we show that an attacker against the IND-ID-CPA security of AIBE can be used to break the
IND-CPA security of APub. We then prove that the APub scheme is secure under the DBDH assumption.

Lemma 2. Let H be a random oracle and let A be an adversary against the IND-ID-CPA security of AIBE
with advantage AdvIND-ID-CPA

AIBE,A (n) which issues at most qE key extraction queries. Then there is an adversary

B against the IND-CPA security of APub with advantage AdvIND-CPA
APub,B (n) ≥ 1

e(qE+1) · AdvIND-ID-CPA
AIBE,A (n), where

e ≈ 2.72 is the base of the natural logarithm.

Proof. We construct adversary B, which interacts with A in the IND-ID-CPA game and controls the random
oracle H, as follows.8

B receives the public key pk = (q,G = 〈g〉,GT = 〈ḡ〉, e, y, h) in the IND-CPA game and provides A with
the master public key mpk = (q,G = 〈g〉,GT = 〈ḡ〉, e, y,H), where H is the random oracle controlled by B,
which handles queries to H and Extract queries by A as follows.

8 Note that this proof works nearly identical to the corresponding proof of Lemma 4.2 in [4].
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H-queries. A can query H at any time. In order to answer those queries consistently, B keeps a (initially
empty) list H list of tuples 〈idi, hi, xi, ci〉 and responds to queries of H with identity idi as follows:
– If idi appears in H list in a tuple 〈idi, hi, xi, ci〉, B responds with H(idi) = hi.
– Otherwise, B chooses ci ∈R {0, 1} with Pr[ci = 0] = δ (for some δ to be determined later) and
xi ∈R Z∗q at random. If ci = 0, it sets hi := gxi , else it sets hi := hxi . Finally, B adds the tuple

〈idi, hi, xi, ci〉 to H list and outputs H(idi) = hi.
Note that, as xi ∈R Z∗q is chosen at random, the output hi is uniformly distributed in G∗.

Extract-queries. B responds on queries of Extract with identity idi by first computing hi ← H(idi) as
described above. Let 〈idi, hi, xi, ci〉 be the corresponding tuple in H list. If ci = 1, then B fails and
aborts the attack. Otherwise, it outputs ski := yxi . Note that, as ci = 0, H(idi) = hi = gxi and thus
ski = yxi = hxi = H(idi)

x as desired.

At some point in time, A outputs an identity id∗ and two messages m0 and m1. B forwards the messages to
its own challenger and receives the encryption c = (c1, c2) of mb for a random b ∈ {0, 1}. Now B computes
hi ← H(idi) as described above. Let 〈idi, hi, xi, ci〉 be the corresponding tuple in H list. If ci = 0, B fails and

aborts the attack. Otherwise, B responds to A with c′ = (c
x−1
i

1 , c2), where x−1
i is the inverse of xi in Z∗q . Note

that c′ is a valid AIBE-encryption of mb under identity id∗ since hi = hxi and thus (for r′ := rx−1
i )

c′ = (c
x−1
i

1 , c2) = (grx
−1
i , ḡmb · e(h, y)r) = (grx

−1
i , ḡmb · e(h, y)rxix

−1
i )

= (grx
−1
i , ḡmb · e(hxi , y)rx

−1
i ) = (gr

′
, ḡmb · e(hi, y)r

′
).

A continues and might issue H- or Extract-queries, which B handles as described above. Finally, A outputs
a guess b′ which B forwards to its own challenger.

If B does not abort, it perfectly simulates the IND-ID-CPA game for A, as the responses to H-queries are
uniformly and independently distributed in G∗, the Extract-queries are answered correctly, and c′ is a proper
AIBE encryption of mb. Thus in this case, AdvANO-ID-CPA

APub,B (n) ≥ AdvANO-IND-ID-CPA
AIBE,A (n). It remains to analyze

the probability that B does not abort, which is δqE for the qE for the phases where A may issue Extract-
queries and 1 − δ for the challenge phase, i.e., the overall probability that B does not abort is δqE (1 − δ).
This value is maximized at δopt = 1− 1

qE+1 , thus for δopt, B does not abort with probability at least 1
e(qE+1) .

This results in the overall advantage AdvIND-CPA
APub,B (n) ≥ 1

e(qE+1) ·AdvIND-ID-CPA
AIBE,A (n) for B. ut

Lemma 3. Let A be an adversary against the IND-CPA security of APub with advantage AdvIND-CPA
APub,A (n).

Then there is an algorithm B that breaks the DBDH assumption with AdvDBDH
G,B (n) = 1

2 ·AdvIND-CPA
APub,A (n).

Proof. We construct adversary B, which interacts with A in the IND-CPA game as follows. B receives elements
(g, q, e, gx1 , gx2 , gx3 , hb) (where h0 = e(g, g)x1x2x3 and h1 = e(g, g)w for w ∈R Zq). It provides A with
pk = (q,G = 〈g〉,GT = 〈ḡ〉, e, y, h), where ḡ := e(g, g), y := gx1 and h := gx2 . A outputs two messages m0

and m1. B chooses b′ ∈R {0, 1} and r ∈R Z∗q at random, computes c = (c1, c2) = (gr, ḡmb′ · hb), and provides
A with c. Finally, A outputs a guess b′′. If b′ = b′′, B outputs 0, otherwise 1. Observe that if b = 0, c is a
valid encryption of mb′ , whereas otherwise, hb is completely random in GT , i.e., c2 perfectly hides mb′ . This
leads to

Pr[B outputs b] = Pr[A outputs b′ | b = 0] · Pr[b = 0] + Pr[A outputs 1− b′ | b = 1] · Pr[b = 1]

=
(

AdvIND-CPA
APub,A (n) + 1

2

)
· 1

2 + 1
2 ·

1
2 = 1

2 ·AdvIND-CPA
APub,A (n) + 1

2

and thus AdvDBDH
G,B (n) = 1

2 ·AdvIND-CPA
APub,A (n). ut

Combining Lemma 2 and 3, if H is a random oracle, an adversary A with AdvIND-ID-CPA
AIBE,A (n) can be used

by an algorithm B to break the DBDH assumption with AdvDBDH
G,B (n) ≥ 1

2e(qE+1) · AdvIND-ID-CPA
AIBE,A (n). This

proves Theorem 3. ut
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Theorem 4 (ANO-ID-CPA Security of AIBE). If the DBDH assumption holds for G and H is a random
oracle, then AIBE provides ANO-ID-CPA security.

Proof. From Theorem 3 and the assumptions we know that AIBE is IND-ID-CPA-secure. Assume now we have
an adversary A against the ANO-ID-CPA security of AIBE with advantage AdvANO-ID-CPA

AIBE,A (n). We construct
an adversary B against the IND-ID-CPA security of AIBE as follows: B forwards the received mpk to A and
relays Extract-queries to its own oracle. When A outputs (id0, id1,m), B chooses b′ ∈R {0, 1} and R ∈R Zq

at random, outputs (idb′ ,m,R) as its own challenge request, and receives a ciphertext c = (c1, c2) (c is an
encryption of m if b = 0, of R otherwise) which it outputs as its response to A. Finally, A outputs a guess b′′.
If b′ = b′′, B outputs 0, otherwise 1. Observe that if b = 0, c is a valid encryption of m under idb′ and thus
B perfectly simulates the ANO-ID-CPA game for A. If however b = 1, then gR and thus also c2 is uniformly
distributed in GT and hence independent of idb′ , resulting in A being not able to guess b′ better than with
probability 1

2 . Therefore

Pr[B outputs b] = Pr[A outputs b′ | b = 0] · Pr[b = 0] + Pr[A outputs 1− b′ | b = 1] · Pr[b = 1]

=
(

AdvANO-ID-CPA
AIBE,A (n) + 1

2

)
· 1

2 + 1
2 ·

1
2 = 1

2 ·AdvANO-ID-CPA
AIBE,A (n) + 1

2

and thus AdvIND-ID-CPA
AIBE,B (n) = 1

2 ·AdvANO-ID-CPA
APub,A (n). ut

Combining Theorems 3 and 4, Lemma 1 implies Theorem 2, i.e., AIBE is ANO-IND-ID-CPA-secure. ut

Performance Discussion and Analysis of AIBE. The additive homomorphism of AIBE has a limitation
in that the computation of discrete logarithms in GT is required to perform the decryption operation.
Therefore, AIBE is suited only for messages from a short interval. By means of brute force it would take on
average M/2 multiplications in GT to check whether m̄ = ḡi for each i in [0,M−1]. Using Pollard’s kangaroo
method [38] to compute discrete logarithms in the interval [0,M − 1] requires expected time O(

√
M). As

a third option, constant decryption time can be achieved with a polynomial-size lookup table with stored
powers of ḡ. The time required to compute such a table equals the time of a complete brute-force run in
[0,M − 1].

We implemented both the brute-force and Pollard’s kangaroo method using the Pairing-Based Cryptog-
raphy (PBC) library [32] (in version 0.5.12) with a symmetric type-a pairing, which is defined over the elliptic
curve y2 = x3 + x with 160-bit group order and embedding degree 2. The measurements of computing the
discrete logarithm x ∈R [0,M ] for a given ḡx ∈ GT performed on a 2.10GHz Intel(R) Core(TM)2 Duo T8100
CPU with 2GB RAM running Kubuntu 10.04 resulted in, on average, 0.004 · M2 ms for the brute-force and

0.185 ·
√
M ms (average coefficient) for Pollard’s kangaroo method. The latter outperforms the brute-force

approach for message spaces with over 1, 000 elements and remains feasible even for complete 32-bit integer
values (9.084 sec).9 Our AIBE scheme thus remains practical when aggregating small values in ZM , i.e.,
integers of up to 32-bit length.

Note that the restriction of AIBE to a polynomial message space is typical for additively homomorphic
encryption schemes based on the Decisional (Bilinear) Diffie-Hellman assumption where messages are en-
crypted in the exponents. Examples are the exponential ElGamal scheme (where, in contrast to the original
version [22], messages are encrypted in the exponent as Enc(m) = (gr, gm · hr)) used, e.g., in electronic
voting schemes [14], the homomorphic scheme by Boneh, Goh, and Nissim [5], or the encryption scheme
incorporating secret sharing proposed by Shi et al. [41].

PEPSICo Scheme with Data Aggregation. We now instantiate the generic PIIBE construction with the
AIBE scheme and denote the resulting PEPSICo scheme with data aggregation as PIAIBE, depicted in Figure 4.
Combining Theorems 1 and 2, the resulting scheme provides node privacy under chosen-plaintext attacks,

9 Note that decryption in our scenario will not be performed by mobile devices but by queriers with computing
power comparable to our test machine.
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RA

Setup: RAsk := (x ∈R Z∗q , k ∈R {0, 1}n), RApk := (g, y := gx, H).
RegisterMN: regMNqid := Tqid := fk(qid).
RegisterQ: regQqid∗ := (skqid∗ := H(qid∗)x, Tqid∗).

MN

ReportData:
r ∈R Z∗q , c := (Tqid, c

′),
c′ = (c1, c2) = (gr, ḡm ·
e(H(qid), y)r).

Q

SubscribeQuery:
s := T ∗ := Tqid∗ .

DecodeData: m :=
logḡ(c2/e(skqid∗ , c1)).

SP

ExecuteQuery: If T = T ∗ output (T, c′), else output ⊥.

AggregateData: If T1 = · · · = T` output (T, c′) =
(
T1,
(∏`

i=1 ci,1,
∏`

i=1 ci,2
))

, else output ⊥.

qid

T
qid

qid
∗

(skq
id
∗ , Tqid

∗ )

(T,
c
′ ) T ∗

(T, c ′)

Fig. 4. PEPSICo instantiation with data aggregation PIAIBE based on the AIBE scheme and a pseudorandom function f .

query privacy, and report unlinkability (under the DBDH assumption in the random oracle model). We
evaluate its practical performance in Section 7.

Besides the additional privacy achieved by report aggregation (cf. Section 5.2), our PIAIBE scheme allows
for a second powerful privacy mechanism. Consider a participatory sensor network with tree-based routing
where mobile nodes route their messages along a path of other nodes to the service provider. In such a
scenario, the AggregateData operation of PIAIBE can already be executed by MNs on the path (remember
that no secret key is needed), thus further increasing the privacy of MNs and data reports vis-à-vis the
SP. This approach moreover is computationally cheap for MNs as the aggregation of two data reports in
PIAIBE requires only two group multiplications. Though not representable in our PEPSICo model, the security
proven for PIAIBE presumably carries over also to such tree-based routing setting with aggregation performed
along the path to the SP.

Similar to Section 6.1, we obtain a secure PEPSICo instantiation with data aggregation in the standard
model using an appropriate, ANO-IND-ID-CPA-secure additively homomorphic IBE scheme. While no scheme
has been proposed as such, we can build one based on Gentry’s scheme [26], leveraging its multiplicative
homomorphism in GT by usage of gm ∈ GT instead of m ∈ GT (i.e., similar to AIBE). The resulting scheme is
less efficient though than our AIBE scheme and can be proven secure only under the less common Decisional
Augmented Bilinear Diffie-Hellman Exponent assumption (cf. [26]).

General Statistics. It is an interesting observation (whose details lie outside the scope of this paper)
that due to the additively homomorphic property of the introduced IBE scheme and the fact that legitimate
queriers will have the secret key to decrypt, any statistics can be computed in a secure two-party computation
manner between the service provider and the querier. This can be done by using the standard “blinding”
technique from Cramer et al. [13] to realize secure two-party computation of any function. With this approach,
the querier only learns the requested statistics without learning anything at all.

6.3 Variants with Anonymous Registration

Depending on the participatory sensing scenario, it might be desirable to hide the interests of mobile nodes
and queriers not only from the service provider, but also from the registration authority. Without going into
great detail, we conclude the presentation of our PEPSICo instantiations with a short discussion on how to
conceal the interests of mobile nodes and queriers at registration time.

For the mobile node registration, our generic PIIBE instantiation could make use of an oblivious pseudo-
random function (OPRF) [35,24], that allows for a PRF evaluation fk(x) in a two-party protocol between a
client (providing the input x) and a server (providing the key k), such that the client learns the PRF value
fk(x), but the server learns nothing. In our setting, the mobile node could register at the RA by (interactive)
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Table 1. Comparison of computation and communication overhead of PEPSI [15] and our PIBF and PIAIBE schemes
(cf. Sections 6.1 and 6.2).

PEPSI PIBF PIAIBE

Algorithm Comp. Comm. Comp. Comm. Comp. Comm.

Setup 2E – 1E – 1E –
RegisterMN – n 1f n 1f n
RegisterQ 1E 2G 1f+1E 1G+n 1f+1E 1G+n
ReportData 1E+1P+2H 2n 2E+1P+2H 1G+2n 3E+1P+1H 2G+n
SubscribeQuery 1P+1H n – n – n
ExecuteQuery – 2n – 1G+2n – 2G+n
DecodeData 1P+1H – 1P+1H – 1P+1DL –
AggregateData n/a n/a n/a n/a ≈ 0∗ –

E — modular exponentiation in G or GT ; P — pairing evaluation; H — hash function evaluation; f — PRF evaluation;
DL — computation of discrete logarithm; G — group element in G or GT ; n — message length, Hash/PRF output length
∗ The AggregateData algorithm of PIAIBE requires 2` group multiplications to aggregate ` ciphertexts, negligible compared to the other
units used.

evaluation of an OPRF on input qid (the query identity) and key k (provided by the RA). As in PIIBE, the
mobile node would obtain Tqid = fk(qid) as registration token, whereas the RA would not learn the query
identity the mobile node is interested in.

In the querier registration, the tag Tqid∗ for query identity qid∗ could be computed in the same way as for
the mobile node registration using an OPRF. Moreover, the querier could obtain its secret key skqid∗ from
the RA in an oblivious way by using a blind identity-based encryption scheme [27]. Combining both OPRF-
based tags and blind identity-based encryption10, our generic PIIBE instantiation thus allows for anonymous
registration of mobile nodes and queriers wrt. the registration authority.

7 Performance Evaluation and Comparisons

We now evaluate the performance of our two concrete PEPSICo schemes: PIBF from Section 6.1 and PIAIBE
from Section 6.2. In particular, we compare the induced computation, communication, and storage overhead
of the two schemes with the original PEPSI scheme [15,17], though keeping in mind that it does not fulfill
the requirements of node and query privacy in our model due to collusion attacks.

Table 1 shows the computation and communication overhead introduced by PEPSI, PIBF, and PIAIBE.
PEPSI and PIBF perform similar in computation, except that PIBF uses a pseudorandom function for tag
generation. Computation overhead of PIAIBE (the only scheme providing data aggregation) is significantly
higher only for the DecodeData operation, which requires computation of a discrete logarithm. Note that
DecodeData is not executed by the (resource-constrained) mobile nodes, but by queriers with a presumable
computing power comparable to the machine running our test measurements. In return, PIAIBE saves de-
cryption time if reports are aggregated, requiring only 2(` − 1) cheap group multiplications to aggregate `
reports. Our measurements for discrete logarithm and pairing computation11 show that PIAIBE outperforms
PIBF wrt. the decryption overhead if messages are integers between 0 and about 1000—independently of how
many messages are aggregated in an arbitrary large message space.

Concerning communication costs, the only practical difference is in the length of ciphertexts. While
ciphertexts in PEPSI have the same length as messages, in PIBF and PIAIBE they additionally contain one group
element of G (PIAIBE uses another group element of G instead of an n-bit string in the second component—a
difference negligible in practice). Aggregation in PIAIBE however allows for huge savings (a factor ` for `
aggregated reports) in the communication between SP and queriers. More important, PIBF and PIAIBE do not

10 Anonymous registration based on an OPRF in a symmetric setting resp. a blind IBE scheme in an asymmetric
setting has been separately discussed also as an extended capability of the PEPSI scheme [16].

11 Discrete logarithm in interval [0,M ]: 0.18
√
M ms. Pairing: 5.99 ms (cf. Section 6.2).
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Table 2. Comparison of space requirements of PEPSI [15] and our PIBF and PIAIBE schemes (cf. Sections 6.1 and 6.2).

Component PEPSI PIBF PIAIBE

RA Public Key RApk 3G+n 3G+n 3G+n
RA Secret Key RAsk 1G+2n 2n 2n
MN Registration Value regMNqid n n n
Querier Registration Value regQqid 2G 1G+n 1G+n
Data Report c 2n 1G+2n 2G+n
Subscription Token s n n n

G — group element in G or GT ; n — message length, Hash/PRF output length

require any periodic update operations as opposed to the regular “nonce renewal” of PEPSI, saving further
computation and communication resources.

Table 2 shows the (virtually identical) space requirements of all three schemes. The use of a pseudorandom
function to generate tags in PIBF and PIAIBE saves one group element in RAsk, whereas data reports c in PIBF
and PIAIBE contain one additional group element (PIAIBE also uses another group element that replaces the
n-bit string in the second component of the ciphertext). Additionally, the aggregation of reports possible in
PIAIBE further saves storage capacity of the SP and queriers.

In summary, PIBF performs similar to PEPSI wrt. computation overhead and key sizes and has only
slightly higher communication overhead, while providing stronger node privacy, query privacy, and report
unlinkability guarantees in the presence of colluding parties. For small messages, PIAIBE is almost as fast
as the PIBF scheme while achieving the same level of security and enabling support for aggregation. The
latter property allows for a significant reduction of the communication overhead between service provider
and queriers and can offer more stringent privacy guarantees with respect to individual data reports.

8 Conclusion and Outlook

Participatory sensing allows for novel paradigms of information collection, but also introduces privacy chal-
lenges for data report and data retrieval. We presented PEPSICo, a refined version of the PEPSI model [15]
that protects data confidentiality and user privacy under collusion attacks and additionally allows for data
aggregation. Our generic and concrete instantiations leveraging anonymous identity-based encryption (IBE)
achieve full privacy as well as equally high practical performance as earlier approaches. For future work,
constructing an efficient additively homomorphic IBE scheme with exponential-sized message space remains
an open problem of independent interest in the setting of data aggregation.
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