Cryptanalysis of and Improvement on Biometric-based User Authentication Scheme for C/S System

Younsung Choi, Dongho Won

Abstract— Password-based authentication schemes are convenient, but vulnerable to simple dictionary attacks. Cryptographic secret keys are safe, but difficult to memorize. More recently, biometric information has been used for authentication schemes. Das proposed a biometric-based authentication scheme, but it has various vulnerabilities. Jiping et al. improved Das's scheme, but some vulnerabilities remain. In this paper, we analyze the cryptanalysis of Jiping et al.'s authentication scheme and propose the security enhanced biometric-based user authentication scheme for the C/S System.

I. INTRODUCTION

Remote identity-based authentication schemes are based on using only passwords. The password-based authentication schemes are the simple and convenient method to have a user authenticated in order to provide services of a computing or communication system [1-7]. However, only passwords are easy to break by using simple dictionary attacks. To overcome this problem, cryptographic secret keys and passwords are used in the remote user authentication schemes [8-10]. But the long and random cryptographic keys are difficult to memorize. So they must be stored somewhere, it is very weak point. To solve problem, various biometric-based authentication schemes are proposed. Das proposed new authentication scheme but has various vulnerability [11], so Jiping et al proposed the security improved biometric-based user authentication scheme for C/S system than Das's scheme [12]. But Jiping et al's scheme still has security problems. In section 2, we study related works. In section 3, we briefly review the Jiping et al's biometric-based remote user authentication scheme using smart cards. In section 4, we analyze the security vulnerability of Jiping et al's authentication scheme and suggest solution. Finally, we conclude the paper in section 5.

II. RELATED WORKS

A. Smart card Attack

Various researchers have observed that confidential information stored in all smart cards could be extracted by physically monitoring power consumption like SPA and DPA. When a user loses a smart card, an attacker can analyze it. So various schemes leave it vulnerable to off-line password attacks. And attacker can be authenticate to server without user's ID and password.

Younsung Choi is with the School of Information and Communication Engineering, Sungkyunkwan University, korea (e-mail: yschoi@security.re.kr).

Dongho Won is with the School of Information and Communication Engineering, Sungkyunkwan University, korea (e-mail: dhwon@security.re.kr).

B. Biometric-based Authentication

Biometrics refers to the quantifiable data related to human characteristics and traits. Example include to fingerprint, face recognition, DNA, palm print, hand geometry, iris, retina, odour/scent, typing rhythm, gait, and voice. Biometrics-based authentication is used in identification and access control. Biometric information cannot be lost or forgotten and is very difficult to copy or share and forge or distribute. And also, biometric information cannot be guessed easily and is not easier to break than others.

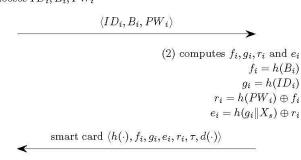
C. Das's Biometric-based User Authentication Scheme

Das proposed biometric-based remote user authentication which is inherently more reliable and secure than usual traditional password-based remote authentication schemes. But this scheme has security vulnerability to replay attack, denial-of-service attack, user impersonation attack, and password change problem. Moreover, this scheme does not provide mutual authentication between the user and server.

III. REVIEW OF JIPING ET AL.'S SCHEME

Das proposes biometric-based authentication scheme but this scheme is various security problems. To solve these problems, Jiping et al proposed improved biometric-based authentication scheme [12]. For convenience, we use notations shown in Table 1.

TABLE I: NOTATION


Notation	Description
Ci	Client
S_i	Server
R_{i}	Registration center
PW_i	Password shared between C_i and S_i
ID_i	Identity of the user C_i
\mathbf{B}_{i}	Biometric template of the user C_i
d(⋅)	Symmetric parametric function
τ	Predetermined threshold
$h(\cdot)$	A secure one-way hash function
X_{s}	A secret information maintained by the server
R_c	A random number chosen by C_i
$R_{\rm s}$	A random number chosen by S_i
$A\parallel B$	Data A concatenates with data B
$A \oplus B$	XOR operation of A and B

A. Registration Phase

In the registration phase, remote user C_i has to perform the following registration steps. Figure 1 shows the registration phase of Das scheme.

Client (C_i) Registration Center (R_i)

(1) chooses ID_i, B_i, PW_i

(3) receives smart card

Fig. 1. Registration phase of Jiping et al's scheme

- (1) The user C_i inputs personal biometric B_i on a device and sends the identity ID_i and password PW_i to the registration center R_i in person.
- (2) The registration center R_i computes $f_i = h(B_i)$, $g_i = h(\text{ID}_i)$, $r_i = h(\text{PW}_i) \oplus f_i$, and $e_i = h(g_i \parallel X_s) \oplus r_i$. X_s is secret information shared by R_i and S_i . X_s and passwords of the corresponding users are not disclosed to any others for all secure future communications.
- (3) Registration center R_i loads $(h(\cdot), f_i, g_i, e_i, r_i, \tau, d(\cdot))$ on the user's smart card and sends this information to the user C_i using a secure channel.

B. Login Phase

In the login phase, remote user C_i has to perform the following login steps. Figure 2 show the login phase.

Client (C_i) Server (S_i)

- (1) inserts the smart card and B'_i
- (2) verifies whether $d(B_i, B'_i) < \tau$?
- (3) if it holds, then C_i inputs his/her password PW_i
- (4) computes $r'_i = h(PW_i) \oplus f_i$ and verifies whether $d(r_i, r'_i) < \tau$?
- (5) if it holds, the smart card computes the following:

$$M_{1} = e_{i} \oplus r'_{i}$$

$$M_{2} = h(R_{c}||T)$$

$$M_{3} = M_{1} \oplus M_{2}$$

$$(7)$$

$$\langle g_{i}, M_{2}, M_{3}, T \rangle$$

Fig. 2. Login phase of Jiping et al's scheme

- (1) C_i first inserts user's smart card into the card reader of a terminal and inputs user's biometric template, B'_i , on the device. If $d(B_i, B'_i) > \tau$, login phase is terminated. Otherwise, C_i passes the biometric verification and then inputs user's password PW_i.
- (2) Smart card computes $r'_i = h(PW_i) \oplus f_i$. If $d(r'_i, r_i) > \tau$, then password is not correct, so the system terminates the session; otherwise, the smart card computes $M_1 = e_i \oplus r'_i$, which is equal to $h(g_i \parallel X_s)$, $M_2 = h(R_c \parallel T)$, where R_c is a random number generated by the user Ci and T is the current timestamp of Ci's system, and $M_3 = M_1 \oplus M_2$.
- (3) Finally, the user C_i sends the message $\langle g_i, M_2, M_3, T \rangle$ to the remote server S_i .

C. Authentication Phase

In the authentication phase, remote user C_i and server S_i have to perform the following authentication phase. When the remote server S_i receives the login message $\langle g_i, M_2, M_3, T \rangle$ at time T^* , it will perform the following steps as shown in figure 3 to authenticate whether the user C_i is legitimate or not. Figure 3 show the authentication phase.

- (1) Check T. If $(T^*-T) > \Delta T$, the authentication phase is terminated, where ΔT is the expected time interval for the transmission delay of the system. Otherwise, if $(T^*-T) \leq \Delta T$, the authentication steps will be performed.
- (2). S_i checks the accuracy of C_i 's ID_i. It computes $M_4 = h(g_i || X_s)$ using the secret value X_s maintained by the server S_i and then computes $M_5 = M_4 \oplus M_3$ and verifies whether $M_5 = M_2$ or not. If it does not accurate, then S_i rejects C_i 's login request. The verification is successful, the next step will be performed.
- (3) S_i computes $M_6 = h(R_s \parallel T_s)$ and $M_7 = M_4 \oplus M_6$, where T_s is the timestamp of the server S_i , and then S_i sends message $\langle M_4, M_6, M_7, T_s \rangle$ to the user C_i .
- (4) After receiving the message $\langle M_4, M_6, M_7, T_s \rangle$ at time T^{***} , C_i checks the freshness of T_s by verifying $(T^{***} T_s) > \Delta T$. If it holds, the following session is terminated; otherwise C_i computes $M_8 = M_4 \oplus M_7$ and then verifies whether $M_8 = M_6$. If it does not hold, C_i terminates the session. Otherwise, it goes to the next step.
- (5) C_i computes $M_9 = M_4 \oplus M_6$ and then verifies whether $M_9 = M_7$. If it does not hold, S_i is rejected by C_i ; otherwise, if it holds, C_i computes $M_{10} = h(R_c \parallel T')$, where T is the current timestamp of the user C_i , and then computes $M_{11} = M_7 \oplus M_{10}$ and sends the message $\langle M_{11}, R_c, T' \rangle$ to the remote server S_i .
- Step 6. When S_i receives the message $\langle M_{11}, R_c, T' \rangle$ at time T^{***} , it checks $(T^{***}-T') > \Delta T$. If it holds, the authentication phase is terminated. Otherwise, if it does not hold, S_i computes $M_{12} = h(R_c||T')$ and then computes $M_{13} = M_4 \oplus M_6 \oplus M_{12}$. After computing M_{13} , then S_i verifies whether $M_{13} = M_{11}$. If it holds, S_i accepts C_i 's login request; otherwise, S_i rejects the login request.

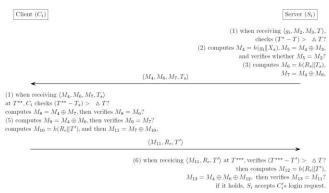


Fig 3. Authentication phase of Jiping et al's scheme

D. Password Change Phase.

In Jiping et al.'s scheme, user C_i can freely change the password PW_{old^i} to a new one PW_{new^i} . The password change procedure is performed as follows.

(1) C_i inserts the smart card into the card reader and offers user's personal biometrics B'_i . The smart card computes f'i =

 $h(B'_i)$ and verifies it by checking $d(f'_i, f_i) \le \tau$. Where $f_i = h(B_i)$ is the information stored in the smart card.

- (2) If it holds, C_i inserts old password PW_{old} and new password PW_{new} . Otherwise the password change procedure is terminated
- (3) Smart card performs $r'_i = h(PW_{old}i) \oplus f'_i$ and checks $d(r'_i, r_i) \le \tau$. r_i is the information stored in the smart card.
- (4) If it holds, the smart card computes $r'_i = h(PW_{new}i) \oplus f_i$, $e'_i = e_i \oplus r_i (= h(ID_i \parallel X_s))$, and $e''_i = e'_i \oplus r_i$.
- (5) Finally, replace e_i with e''_i and r_i with r''_i on the smart card.

IV. CRYPTANALYSIS OF JIPING ET AL.'S SCHEME

Jiping et al enhanced the security of Das's authentication scheme and proposed the new authentication scheme. But Jiping et al's authentication scheme still has security problem. These problems are server masquerading attack, stolen smart card attack and authentication without login phase.

A. Server Masquerading Attack

Attacker can masquerade as legitimate server if attacker knows $h(g_i || X_s)$. It is reason that server authenticates user using only $h(g_i / | X_s)$. Figure 4 shows the phase of server masquerading attack. Firstly, attacker intercepts client's message $\langle g_i, M_2, M_3, T \rangle$. Then, attacker calculates $h(g_i || X_s)$ using $M_2 \oplus M_3$. Because $h(g_i // X_s) = e_i \oplus r_i = M_2 \oplus M_3$. The attacker computes M_4 , M_6 , M_7 and T_A using $h(g_i || X_s)$ and sends them to client. The client check and authenticate messages. And the attacker receives M_{II} , R_c and T', then attacker checks the success to masquerades as server. The client is authenticated with the attacker. In Jiping et al's scheme, the attacker can execute server masquerading attack. To solve this problem, it is necessary to add another security information to authenticate with server and client. The Attacker has to not compute the security information using communicate message between server and client.

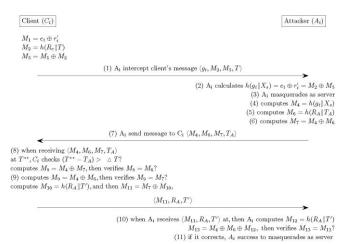


Fig. 4. Server Masquerading Attack

B. Stolen Smartcard Attack

Kocher et al. and Messerges et al. pointed out that the confidential information stored in all existing smart cards could be extracted by physically monitoring its power consumption. Therefore, if the user loses his smart card, all secrets in the smart card may be revealed by attacker [13,14].

In Jiping et al.'s scheme, a smart card stores various secrets

for the login and authentication of user. The smart card for user ID_i includes $(h(\cdot), f_i, g_i, e_i, r_i, \tau, d(\cdot))$. So if attacker gets or steals user's smart card, attacker can obtain and know f_i , g_i , r_i of user_i. The attacker can calculate $h(PW_i)$ and $h(ID_i)$, then attacker executes off-line password attack using rainbow table, dictionary attack and brute attack. So the attacker can obtain ID_i and PW_i . It is reason that ID_i and PW_i are protected using $h(\cdot)$. To solve this problem, it is necessary to add random number with high-entropy. Figure 5 shows the phase of stolen smart card attack.

Attacker

gets(steals) user's smart card

obtains information from smart card using SPA and DPA

$$\rightarrow$$
 gets $h(\cdot), f_i, g_i, e_i, r_i, \tau$ and $d(\cdot)$

Attacker knows f_i, g_i, r_i

$$r_i = h(PW_i) \oplus f_i$$

$$\rightarrow h(ID_i) = g_i$$

$$\rightarrow h(PW_i) = r_i \oplus f_i$$

executes off-line password attack

ightarrow figures out user's ID and password ID_i, PW_i Fig. 5. Stolen smart card attack

C. Authentication without Login Phase.

In Jiping et al.'s scheme, attacker can be authenticate with server without login phase. To skip the login phase, the attacker need to still or get the user's smart card. In other words, if the attacker obtain user's smart card, the attacker can be authenticate to server without user's ID_i , PW_i and user's biometric information B_i . Figure 6 shows the phase of authentication without login phase.

Attacker

gets(steals) user's smart card

obtains information from smart card using SPA and DPA

$$\rightarrow$$
 gets $h(\cdot), f_i, g_i, e_i, r_i, \tau$ and $d(\cdot)$

computes M_1, M_2, M_3

 \rightarrow generates random number R_c

 $\rightarrow M_1 = e_i \oplus r_i$

 $\rightarrow M_2 = h(R_c || T)$

 $\rightarrow M_3 = M_1 \oplus M_2$

sends login and authentication message to S_i

$$\rightarrow \langle g_i, M_2, M_3, T \rangle$$

receives $S_i's$ message

 $ightarrow \langle M_4, M_6, M_7, T_s
angle$

computes M_{11}, R_c, T'

 \rightarrow generates timestamp T'

 $\rightarrow M_{10} = h(R_c \| T')$

 $\rightarrow M_{11} = M_8 \oplus M_{10}$

sends authentication message to S_i

$$\rightarrow \langle M_{11}, R_c, T' \rangle$$

 \rightarrow attacker can be authenticated with S_i Fig. 6. Authentication without login phase Firstly, attacker gets or steals the user's smart card and obtains information from smart card using SPA and DPA. So the attacker can generate and compute the R_c , M_1 , M_2 and M_3 using this information. And the attacker sends $\langle g_i, M_2, M_3, T \rangle$ to the server. Then, the attacker receives $\langle M_4, M_6, M_7, T_s \rangle$ and then, the attacker can computes $\langle M_{11}, R_c, T' \rangle$ and send these messages to server. So attacker can be authenticated to the server without user's ID_i , PW_i and the user's biometric information B_i . To solve this problem, it is necessary to add information of user's PW_i or B_i to authentication messages.

V. PROPOSED SCHEME

In this section, to solve Jiping et al's security problem, we propose security enhanced biometric-based user authent -ication Scheme for the C/S System.

A. Proposed registration phase

The registration procedure of proposed scheme is described in Fig. 7

Client (C_i) Registration Center (R_i) (1) chooses ID_i , PW_i generates B_i, K computes $\overline{PW}_i = h(PW_i) ||K|$ $\langle ID_i, B_i, \overline{PW}_i \rangle$ (2) computes f_i, g_i, r_i, R_i, P_i and e_i $f_i = h(B_i)$ $g_i = h(ID_i)$ computes $Gen(B_i) = (R_i, P_i)$ $r_i = h(PW_i) \oplus f_i \oplus R_i$ $e_i = h(g_i || X_s) \oplus r_i \oplus R_i$ $z_i = h(Y||) \oplus R_i$ smart card $\langle h(\cdot), f_i, g_i, e_i, r_i, P_i, z_i \tau, d(\cdot) \rangle$ (3) receives smart card inputs K to smart card Fig. 7 Proposed Registration Phase

B. Proposed login phase

And now, the login procedure of proposed scheme is described in Fig. 8

Client (C_i) (1) inserts the smart card and B_i' (2) verifies whether $d(B_i, B_i') < \tau$?
(3) if it holds, then C_i inputs his/her password PW_i (4) computes $R = Rep(B_i, P_i)$ (5) computes $r_i' = h(PW_i) \oplus f_i \oplus R_i$ and verifies whether $d(r_i, r_i') < \tau$?
(6) if it holds, the smart card computes the following: $M_1 = e_i \oplus r_i' \oplus h(R_i) = h(g_i || X_s)$ $M_2 = h(R_c || T)$ $M_3 = M_1 \oplus M_2 \oplus h(SID_i || Y)$ $AUID_i = g_i \oplus h(h(SID_i || Y) || T)$ (7)

Fig. 8 Proposed Login Phase

C. Proposed authentication phase

The authentication procedure of proposed scheme is described in Fig. 9

```
Client (C_i)
                                                                           Server (S_i)
                                          (1) when receiving \langle AUID_i, M_2, M_3, T \rangle,
                                                             checks (T^* - T) > \triangle T?
                                       (2) computes g_i = AUID_i \oplus h(h(SID_i)||T)
                computes M_4 = h(g_i || X_s), M_5 = M_4 \oplus M_3 \oplus h(SID_i || Y) || T),
                                                      and verifies whether M_5 = M_2?
                                                        (3) computes M_6 = h(R_s || T_s),
                           computes S_1 = M_4 \oplus h(h(SID_i||Y)||T_s) \oplus T_S \oplus R_S,
                                                                          M_7 = M_4 \oplus M_6,
                                     \langle S_1, M_6, M_7, T_s \rangle
(1) when receiving \langle M_4, M_6, M_7, T_s \rangle
at T^{**}, C_i checks (T^{**} - T_s) > \triangle T?
computes M_8 = M_4 \oplus M_7, then verifies M_8 = M_6?
computes R_S = M_1 \oplus h(h(SID_i||Y)||T_s) \oplus T_S \oplus S_1
computes S_2 = M_1 \oplus h(h(SID_i||Y)||T_s) \oplus T_S \oplus R_C
(5) computes M_9 = M_4 \oplus M_6, then verifies M_9 = M_7?
computes M_{10} = h(R_c || T'), and then M_{11} = M_7 \oplus M_{10},
                                     \langle S_2, M_{11}, R_c, T' \rangle
    (6) when receiving \langle M_{11}, R_c, T' \rangle at T^{***}, verifies (T^{***} - T') > \Delta T?
                                                    then computes M_{12} = h(R_c || T'),
                             M_{13} = M_4 \oplus M_6 \oplus M_{12}, then verifies M_{13} = M_{11}?
                             \texttt{computes} R_C = M_4 \oplus h(h(SID_i \| Y) \| T_s) \oplus T_S \oplus S_2
```

$$SK = h(AUID_i || SID_i || R_C || R_S)$$
Fig. 9 Proposed Authentication Phase

if it holds, S_i accepts C_i 's login request.

VI. CONCLUSION

In this paper, we analyze the cryptanalysis of Jiping et al.'s biometric-based user authentication scheme for the client/server system. Jiping et al. proposed an improved authentication scheme to solve the problem of vulnerabilities in Das's scheme. However, Jiping et al.'s scheme has some remaining security problems: the server-masquerading attack, stolen smart-card attack and authentication without login phase. To solve this problem, it is necessary to add secret information to the registration, login and authentication phases. And we proposed security enhanced biometric-based user authentication Scheme for the C/S System.

REFERENCES

- [1] C. T. Li, "An enhanced remote user authentication scheme providing mutual authentication and key agreement with Smart Cards," in Proceedings of the 5th International IEEE Computer Society Conference on Information Assurance and Security, pp. 517–520, Xi'an, China, 2009.
- [2] K. H. M. Wong, Z. Yuan, C. Jiannong, and W. Shengwei, "A dynamic user authentication scheme for wireless sensor networks," in Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC '06), pp. 244–251, Taichung, Taiwan, June 2006.
- [3] T. H. Lee, "Simple dynamic user authentication protocols for wireless sensor networks," in Proceedings of the 2nd International Conference on Sensor Technologies and Application pp.657–660, CapEsterel, France, August 2008.
- [4] B. Vaidya, J. J. Rodrigues, and J. H. Park, "User authentication schemes with pseudonymity for ubiquitous sensor network in NGN," *International Journal of Communication Systems*, vol. 23, no. 9-10, pp. 1201–1222, 2010.

- [5] N.-Y. Lee and Y.-C. Chiu, "Improved remote authentication scheme with smart card," *Computer Standards and Interfaces*, vol. 27, no. 2, pp. 177–180, 2005.
- [6] M. KimandC. K. Koc, "Asimple attackon a recently introduced hash-based strong-password authentication scheme," *International Journal of Network Security*, vol. 1, no. 2, pp. 77–80, 2005...
- [7] L.-C. Ko, "A novel dynamic user authentication scheme for wireless sensor networks," in Proceedings of the IEEE International Symposium on Wireless Communication Systems, pp. 608–612, Reykjavik, Iceland, October 2008.
- [8] J.Nam, K.K.R. Choo, M. Kim, J. Paik and D. Won, "Dictionary Attacks against Password-Based Authenticated Three-Party Key Exchange Protocols", KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, Volume 7, NO. 12, December 2013, pp.3244-3260.
- [9] J.Nam, K. K. R. Choo, J. Kim, Kang, H. K. Kim, J. Paik, and D. Won (2014). Password-Only Authenticated Three-Party Key Exchange with Provable Security in the Standard Model. *The Scientific World Journal*, 2014.
- [10] H. Jeong, D. Won and S. Kim, "Weaknesses and Improvement of Secure Hash-Based Strong-Password Authentication Protocol", *Journal of Information Science and Engineering*, Volume 26, Number 5, September 2010, pp.1845-1858.
- [11] A. K. Das, "Analysis and improvement on an efficient biometric-based remote user authentication scheme using smart cards." *Information Security*, IET 5.3 (2011): 145-151.
- [12] L. Jiping, D. Yaoming, X. Zenggang, and L. Shouyin, "An Improved Biometric-Based User Authentication Scheme for C/S System", International Journal of Distributed Sensor Networks, 2014.
- [13] P. Kocher, J. Jaffe, B. Jun, "Differential power analysis", the 19th Annual International Cryptology Conference on Advances in Cryptology, 1999, 388-397.
- [14] T. S. Messerges,; E. A. Dabbish, R. H. Sloan, "Examining smart-card security under the threat of power analysis attacks", *Computers. IEEE Transactions on Computers*, 2002, 51(5), 541-552
- [15] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, "Examining smart-card security under the threat of power analysis attacks. *IEEE Transactions on Computers*, 51(5), 541-552