
Finding collisions for MD4 hash algorithm using

hybrid algorithm

Marko Carić

caric.marko@gmail.com

May 28, 2014

Abstract

The modification of message that meets the sufficient conditions
for collision is found in the last step of differential attack proposed by
Wang et all. (2005) on MD4 hash algorithm. Here we show how this
attack phase, finding a collision starting from the list of sufficient con-
ditions for the collision, can be implemented using a combination of two
algorithms - evolutionary algorithm and hill climbing. Hybridization
of evolutionary algorithm and hill climbing is a well-known technique
for improving solutions, but it isn’t applied to this domain (at least by
information that author has collected).

Keywords— Evolutionary algorithm, hill climbing, hash algorithm, MD4,
collision, differential attack

1 Introduction

A cryptographic hash algorithm for arbitrary message M computes fixed-size
bit string hash value h(M) such that any change of M significantly must
change h(M). For example, the hash algorithm MD4 [5] for an arbitrary
message computes its hash value of 128 bits in length. The request that
a good hash algorithm should meet is that for a given message M it is
practically impossible to find another message M ′ such that h(M) = h(M ′).
Often, stricter requirement is set it should be virtually impossible to find a
pair of messages (M,M ′) (collision) such that h(M) = h(M ′). In the case
of differential attack on a hash algorithm, we follow the evolution of two
similar messages that pass through the algorithm. Differential attack on a
hash algorithm can be divided into four phases:

1

1. Selection of message difference,

2. Finding the differential path,

3. Finding sufficient conditions for collision,

4. Finding messages that satisfy sufficient conditions.

The first two stages can be automated to some extent [8, 9]. One way of
realizing the last phase is to gradually modify randomly selected message.
The modification of the message in different rounds of the MD4 algorithm
is different in terms of difficulty. Modification to satisfy the conditions of
the first round is the easiest; it requires changing one message word (basic
modification). Modification to satisfy the conditions of the second round is
more complicated; as it must not disarrange the already fulfilled conditions
of the first round, it is necessary to change more than one word of message
(advanced modification). Typically, a brute force is used to find modification
satisfying the conditions of the third round. That is why the tendency is
to include the most conditions for the modification of message in the first
round [3]. One way to realize message modification is achieved using SAT
solvers [6]. Based od author’s knowledge, there is no other effective way for
solving this step.

This paper proposes a possibility of the realization of the last phase of
the attack independently either by using evolutionary algorithms (EA) or
by hill climbing, or by their combination. Alternating EA and hill climbing
can improve the efficiency of EA while overcoming the lack of robustness of
hill climbing.

2 Description of MD4

Let B = {0, 1}. MD4 algorithm for arbitrary message M calculates the hash
value h(M) ∈ B128. An iterative compression function f : B128 × B512 →
B128 is defined using functions F,G,H : B32 ×B32 ×B32 → B32:

F (X,Y, Z) = XY ∨ X̄Z = (X ∧ Y) ∨ (¬X ∧ Z)

G(X,Y, Z) = XY ∨XZ ∨ Y Z = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)

H(X,Y, Z) = X ⊕ Y ⊕ Z

where ∧,∨,¬,⊕ are bit operations AND, OR, NEG, XOR applied 32 times
to the corresponding bits of the arguments. Let X + Y , X − Y denote the

2

sum and difference X and Y modulo 232, and let X � s be the result of
the cyclical shift of the contents of X for s bits to the left. Let ti ∈ B32,
i = −3,−2, ...48, T = (t−3, t−2, t−1, t0) ∈ B128 and M = (M0,M1, ...M15) ∈
B128. Then f(T,M) = (t−3 + t45, t−2 + t46, t−1 + t47, t0 + t48) where

ti = (ti−4 + fi(ti−3, ti−2, ti−1) +Mpi + ci)� si, i = 1, 2, ..., 48, (1)

and values fi, ci, pi, si, i = 1, 2, ..., 48, are shown in the following tables:

i fi ci si
1...16 F 0x00000000 3 7 11 19 3 7 11 19 3 7 11 19 3 7 11 19
17...32 G 0x5a827999 3 5 9 13 3 5 9 13 3 5 9 13 3 5 9 13
33...48 H 0x6ed9eba1 3 9 11 15 3 9 11 15 3 9 11 15 3 9 11 15

i pi
1...16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
17...32 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
33...48 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Calculation of ti, i = 16(j − 1) + k, k = 1, 2, ..., 16 (1) makes the jth
round of MD4, j = 1, 2, 3.

Before calculating hash value, the messageM is first padded to the multi-
ple of 512 by one, 447−|M | mod 512 zeroes (where a mod b ∈ {0, 1, ..., b−
1} denotes the remainder of a division of b by a) and 64 bits to represent a
binary number |M |. Let expanded message be M0,M1, ...,Mn−1, Mi ∈ B512,
i = 1, 2, ..., n− 1. The hash value of the message M is h(M) = Hn, where

H0 = (67452301, 10325476, efcdab89, 98badcfe), (2)

(hex), and Hi = f(Hi−1,Mi−1), i = 1, 2, ..., n.

3 Differential path and set of sufficient conditions

To find collisions for MD4 algorithm it is enough to find collisions for
the compression function f , i.e. an arbitrary pair (M,M ′) ∈ B512, M =
(M0,M1, ...,M15), M

′ = (M ′0,M
′
1, ...,M

′
15), such that f(H0,M) = f(H0,M

′),
where H0 is a constant (2). This equation is equivalent to (t45, t46, t47, t48) =
(t′45, t

′
46, t

′
47, t

′
48), where, according to (1)

ti = (ti−4 + fi(ti−3, ti−2, ti−1) +Mpi + ci)� si,

t′i = (t′i−4 + fi(t
′
i−3, t

′
i−2, t

′
i−1) +M ′pi + ci)� si, i = 1, 2, ..., 48,

(3)

3

The message difference corresponding to collision (M,M ′) is a series of
differences (modulo 232) ∆M = M ′−M = (∆M0,∆M1, ...,∆M15) = (M ′0−
M0,M

′
1 −M1, ...,M

′
15 −M15). Let ti[j] and ti[−j] be the values obtained

from ti by changing the j-th bit; thereby, ti[j] means that the value of the
j-th bit is changed from zero to one, while ti[−j] means that value of the jth
bit is changed from one to zero. More generally, let ti[±j1,±j2, ...,±jl] be
obtained by changing the values of bits in indicated indexes. The differential
path is a series of expressions of the form

ti[±j1,±j2, ...,±jl], l = l(i), i = 1, ..., 48 (4)

where l = 0 for i = 45, 46, 47, 48. In order for a pair (M,M ′) to be a
collision, a set of sufficient conditions for a pair (M,M ′) is determined by
the differential (4) and conditions (3). This can be obtained starting from
the properties of functions F , G i H. A message M that satisfies a set
of sufficient conditions is called a weak message. If M is a weak message
and M ′ = M + ∆M , then the pair (M,M ′) is collision. In this paper
we use two message differences: ∆m4 = 22, ∆mi = 0, i 6= 4 [1, 11] and
∆m1 = 231, ∆m2 = 231 − 228, ∆m16 = −216, ∆mi = 0, i 6= 1, 2, 16 [4, 9].
The first message difference corresponds to a set of 62 conditions [11], that
is obtained starting from the differential path that consists of two branches:

t5[6]
3−→ t9[−9, 10]

3−→ t13[12]
3−→ t17[15]

5−→ t18[20]
5−→ t22[25]

5−→ t26[30]
5−→ t30[3]

and

t5[6]
3−→ t9[−9]

11−→ t11[−20]
11−→ t15[−31]

9−→ t19[−8]
9−→ t23[17,−18]

9−→ t27[−26]
9−→ t31[−3]

This differential path and corresponding 62 sufficient conditions for message
M are shown in Table 3.

The difference t19[−8] cancels the difference t19[8] caused by the influence
of ∆M4 in the second round. The difference t23[−18] cancels difference that
occurs as a continuation of the changes t17[15] in the first round. Similarly,
if sufficient conditions are satisfied in steps:

t32 ← ((t28 +G(t31, t30, t29) +M15 + 5A827999)� 13)

t33 ← ((t29 +H(t32, t31, t30) +M0 + 6ED9EBA1)� 3)

t34 ← ((t30 +H(t33, t32, t31) +M8 + 6ED9EBA1)� 9)

t35 ← ((t31 +H(t34, t33, t32) +M4 + 6ED9EBA1)� 11)

4

then the differences t30[3] and t31[−3] cancel each other out in terms t32,t33
and t34, while difference t31[−3] cancels the last changed word M4, and the
pair (M,M + ∆M) is collision. Second message difference corresponds to
the second set of 123 (in the original paper [4] the conditions listed 122, and
the work [7] shows that the two conditions are omitted; it turns out that
one of the conditions expressed by the other two, so the number of sufficient
conditions is 123), e.g. 146 sufficient conditions [9].

4 Algorithm for finding collisions

To search for collisions by evolutionary algorithm, or by hill climbing, it
is necessary to choose a fitness function, whose optimization leads to the
message M for which (M,M + ∆M) is collision. For this purpose, fitness
function c(M) is defined as maximal k such that the first k sufficient condi-
tions are satisfied for the sequence in (1). The rest of this section presents
an evolutionary algorithm, hill climbing algorithm and a hybrid algorithm,
which is actually their composition.

4.1 Evolutionary algorithm

A population which is input to the evolutionary algorithm is made of N
randomly selected messages p[1], p[2], ..., p[N]. Individuals are considered to
be messages that need to be changed to meet the sufficient conditions for the
collision. Individual fitness function is defined in terms of set of sufficient
conditions that an individual meets. Individual crossover is defined as a
replacement of the parts of messages, and the individual mutation means
changing a few of their bits. Since the main purpose of the evolutionary
algorithm is successive message modification in a way that the conditions
for a collision are successively fulfilled, this paper uses its modified version
where the process of selection involves comparing the existing individuals
with new ones and the survival of the fittest. This approach is the result of
experiments in which a standard genetic algorithm that allows the possibility
that two weak individuals can produce a good one, gave worse results. This
can be explained by a choice of fitness function for which all conditions must
be successively met, making it unlikely that the two low fitness individuals
may produce a good one. To the lack of possibility for inapt individuals to
survive, leads to uniformity of the population. As the individuals become
very similar, enhanced mutation is applied in each iteration. In this way,
the evolutionary algorithm actually simulates message modification, which
tends to incline towards the message that meets all relevant conditions. This

5

process can be optionally continued using hill climbing algorithm. A general
evolutionary algorithm can be described by the following code:

Algorithm EA(p,N,M)
Input:
p - initial population, a series of N messages
M- number of generations in the genetic algorithm

Output:
p - the final population after generation M

begin
for i← 1 to M do

for j ← 1 to N/4 do
if p[2j − 1] = p[2j] then mutation(p[2j])
crossover p[2j − 1], p[2j] creates p[N + 2j − 1], p[N + 2j]
mutation (p[N + 2j − 1], p[N + 2j])

sort p by values c(p[j])) and keep the first N messages
for j ← 2 to N do

while (p[j] is equal p[k] for some k = 1, 2, ..., j − 1) do
mutation (p[j])

return p
end

EA uses elimination selection without duplicates. In each iteration, we
crossover messages [2i−1] and p[2i] with random crossing point resulting in
their children, the messages p[N + 2i− 1] i p[N + 2i], i = 1, 2, ..., N/4. The
crossover is done in a standard way:

(α, β), (γ, δ)→ (α, δ), (γ, β), 0 ≤ |α| = |γ| ≤ 512

After each iteration, individuals are sorted according to fitness function
value. The individuals with lower fitness are rejected in a way the population
size remains unchanged. The fittest messages do not fall out of the popu-
lation. Mutation of individuals is carried out in three cases: to avoid the
crossover of the same message, in order to further distinguish parents from
the children and after changing population to throw out possible duplicate
messages. Mutation is performed in the following way: choose a random
number 0 ≤ n ≤ 127 and xor message bits in positions 4n, 4n + 1, 4n + 2,
4n+ 3 with random 4-bit block. In that way at least one of the bits in the
specified positions will be inverted with probability 15/16.

6

4.2 Correction algorithm

Let d(x, y) denote the Hamming distance between vectors x and y. For arbi-
trary y ∈ B512 let St(y) = {x|d(x, y) ≤ t} denote the Hamming ball of radius
t with center y. If the fittest message from EA does not satisfy all sufficient
conditions, we continue with correction algorithm (CA) — modification of
the ”Steepest-ascent hill climbing” algorithm [10]. The fittest messages ob-
tained from the evolutionary algorithm are inserted into the priority queue
Q. Correction algorithm in each iteration removes from Q the message y of
highest priority, computes c(z) for all z ∈ St(y) and inserts into Q all z for
which c(z) ≥ c(y). The algorithm is described by the following code:

Algorithm CA(Q,MAX,OP)
Input:
Q - array of messages
MAX - maximal possible message fitness
OP - limit for the number of tested messages achieving maximum fitness

Output:
collisions - array of weak messages

begin
collisions← ∅
counter ← 0
y ← pullHighestPriorityElement(Q)
achievedF itness← y.fitness
while(y.fitness < MAX and counter < OP)

for all p ∈ S3(y) do
if p is new and p.fitness ≥ achievedF itness then

achievedF itness← p.fitness
Q← p

if achievedF itness = y.fitness then
increment counter

else
counter ← 0

y ← pullHighestPriorityElement(Q)
collisions← {p|p ∈ Q, p.fitness = MAX}
return collisions

end

If the number of subsequent messages y with the same fitness less than
MAX exceeds OP , the execution stops.

7

4.3 Hybrid algorithm

Hybrid algorithm is the composition of EA and CA.

Algorithm HA(N,M,MAX,OP, V)
Input: N - initial size of the population in EA

M - number of generations in EA
MAX - maximal possible message fitness
OP - limit for the number of tested messages which achieve maximum fitness
V - initial size of the queue for CA

Output: collisions - array of weak messages
begin
collisions← ∅
p← set of N random messages
newPopulation← EA(p,N,M)
collisions← all weak messages from newPopulation
if collisions 6= ∅ then

return collisions
else

Q← first V messages from newPopulation
return CA(Q,MAX,OP)

end

5 Results

The population size N = 800 and the number of generations M = 1000
were chosen for the evolutionary algorithm. For the OP parameter used in
correction algorithm value OP = 7 was selected. The results of 10 tests of
the first, second and the third set of sufficient conditions (with successively
62, 123 and 144 conditions) are shown in Table 1.

In the table, the number written in italic font indicates the case when
all the conditions are met, but the collision was not found. Since EA cannot
always find a collision when second set of 123 conditions is met, it can be
concluded that this set of sufficient conditions derived from the differential
path [4] is not complete. In the case of the third set of 146 conditions, the
paper [9] gives an incomplete list of 144 of them, and their fulfillment by EA
does not always produce the expected collision, since the omitted conditions
are randomly met. Generally, if m conditions are omitted from a set of
sufficient conditions, then to obtain a collision, EA needs to create 2m weak

8

Table 1: Test results
test 62 conditions 123 conditions 144 conditions

number EA HA EA HA EA HA

1 56 62 123 0 144 0

2 54 62 123 0 138 144

3 52 62 123 0 130 144

4 55 62 116 123 144 0

5 54 62 104 123 144 0

6 51 62 115 115 143 144

7 54 62 105 105 140 144

8 52 62 116 116 144 0

9 51 56 99 99 144 0

10 59 59 115 115 133 144

messages on average. Specifically, for a population of 800 messages, after
1000 iterations, in the best case, the whole newly obtained population (of the
last generation) satisfies all the conditions; then for m ≤ 9 EA continues to
produce collisions. The results show that EA successfully produced collision
with an incomplete set of sufficient conditions, which means that EA can
also be used as a criterion to check the completeness of a set of sufficient
conditions. The result of the experiment is quite satisfactory.

Tests were carried out on a computer with a processor AMD Phenom
II X4 945 3.01 GHz and 4 GB of working memory. Evolutionary algorithm
runs about ten minutes for all sets of conditions, while CA examines one
message about 20 minutes. Although CA is designed to serve as a possible
continuation of the EA, it is also independent of EA and can independently
produce collisions. However, on average, it takes more time and produces
fewer collisions than EA. From an initial population of randomly generated
800 messages, the fittest of them on average meets the first 9 conditions
(probability of satisfying these conditions is 1/29), after which a message
that satisfies all sufficient collisions is created by successive corrections.

As an illustration of the results obtained, the examples of collisions de-
tected for each of the three used sets of sufficient conditions are given. Mes-
sages M and M ′ are different in the third bit of the fourth word in the case
of 62 conditions, or in bits of the first, second and twelfth word in the case
of 123 and 146 conditions (Table 2). The above collisions were obtained in
experiments numbered by 6, 3, 4 in Table 1.

Experiments with a fitness function equal to the total number of satisfied

9

conditions did not give good results, except for the first, the smallest set of
sufficient conditions.

6 Comparison with the other approaches

Message modification problem, which has been solved using SAT solvers [6]
and which also gives collision in less than 10 minutes, is a somewhat faster
solution as it has been obtained in a computer with a low performance.
However, the heuristic approach discussed in this paper produces not one but
multiple collisions. In the best case, if the evolutionary algorithm succeeds in
producing collisions on its own, each message in the population may produce
a collision.

7 Conclusion

After obtaining sufficient conditions for MD4 collision, message modification
can be very demanding. This work explains a new method for replacing
standard message modification phase in MD4 algorithm using evolutionary
algorithm and hill climbing. Further research involves the application on
this procedure to other hash algorithms belonging to the MD4 family.

References

[1] H.B. Yu, G.L. Wang, G.Y. Zhang, X.Y. Wang: The Second-Preimage
Attack on MD4. CANS 2005, LNCS 3810, pp. 1-12.

[2] X.Y. Wang, H.B. Yu: How to Break MD5 and Other Hash Functions.
Eurocrypt’05, LNCS 3494, pp. 19-35.

[3] Y. Sasaki, L. Wang, K. Ohta, N. Kunihiro: New Message Difference
for MD4. In A. Biryukov, ed. FSE 2007, Proceedings, volume 4593 of
LNCS, pp. 329-348. Springer, 2007.

[4] X.Y. Wang, X.J. Lai, D.G. Feng, H. Chen, X.Y. Yu: Cryptanalysis for
Hash Functions MD4 and RIPEMD. Eurocrypt’05, May 2005.

[5] R.L. Rivest: The MD4 Message Digest Algorithm. Advances in Cryp-
tology, Crypto’90, Springer 1991, pp. 303-311.

[6] I. Mironov, L. Zhang: Applications of SAT Solvers to Cryptanalysis of
Hash Functions. SAT 2006, pp. 102-115.

10

[7] Y. Naito, Y. Sasaki, N. Kunihiro, K. Ohta: Improved Collision Attack
on MD4 with Probability Almost 1. In D. Won and S. Kim, eds. ICISC,
volume 3935 LNCS, pp. 129-145. Springer, 2005.

[8] P.A. Fouque, G. Leurent, P. Nguyen: Automatic Search of Differential
Path in MD4. ECRYPT Hash Worshop - Cryptology ePrint Archive,
Report 2007/206 (2007) http://eprint.iacr.org/.

[9] M. Schläffer, E. Oswald: Searching for Differential Paths in MD4. Rob-
shaw, FSE 2006, pp. 242-261.

[10] M. Mitchell: An introduction to genetic algorithms. MIT Press, Cam-
bridge, Massachusetts (1999).

[11] M. Carić: Finding collisions in cryptographic hash functions, Master
Thesis, Faculty of Mathematics, Belgrade, 2010 (in Serbian).

[12] M. Carić, M. Živković: Finding collisions for MD4 hash algorithm using
metaheuristics algorithms, YUINFO 2013, Kopaonik, pp. 628-632 (in
Serbian).

11

Table 2: Examples of collisions for the first, second or third set of sufficient
conditions
M 53fdda09 dbd460d2 6b0d1c7e d41233e2

0e973a63 ee35f949 3d28ca69 6d101738
1f760241 173b3175 07531617 4c867a98
797525e2 dd0b1b98 cec0df99 4f45d906

M ′ 53fdda09 dbd460d2 6b0d1c7e d41233e2
0e973a67 ee35f949 3d28ca69 6d101738
1f760241 173b3175 07531617 4c867a98
797525e2 dd0b1b98 cec0df99 4f45d906

Hash cd9369f2 5c77a88c 349b7fd3 b820249c

M e85075c4 6e37e13b 729fb981 ffefea77
8ae24c2b cec4f21e 62a4c566 b681a50a
89e04800 e9bfdf35 5d38b88a 9a847d14
9afd08ad bfdc2bf2 e6b416e2 d7edc8b5

M ′ e85075c4 ee37e13b e29fb981 ffefea77
8ae24c2b cec4f21e 62a4c566 b681a50a
89e04800 e9bfdf35 5d38b88a 9a847d14
9afc08ad bfdc2bf2 e6b416e2 d7edc8b5

Hash 85a9276a 331f0b93 7661e284 92531baa

M 7d4182c2 364f032b f369358a 32568a9e
1417ea70 357ba164 770ab75f bb95772e
f78c5797 b651d1fa 234a288d 3660f5c0
0040cb07 a9ded82a 458d2286 29378008

M ′ 7d4182c2 b64f032b 6369358a 32568a9e
1417ea70 357ba164 770ab75f bb95772e
f78c5797 b651d1fa 234a288d 3660f5c0
004fcb07 a9ded82a 458d2286 29378008

Hash eb8fa12e cf298b09 bcec958d 4cefae4b

12

Table 3: Differential path that corresponds to the message difference ∆m4 =
22,∆mi = 0, i 6= 4.
i ti Mp(i) si ∆Mi t′i − ti t′i Sufficient conditions

1 t1 M0 3 t1
2 t2 M1 7 t2
3 t3 M2 11 t3
4 t4 M3 19 t4
5 t5 M4 3 22 25 t5[6] t5,6 = 0

6 t6 M5 7 t6 t4,6 = t3,6
7 t7 M6 11 t7 t6,6 = 0

8 t8 M7 19 t8 t7,6 = 1

9 t9 M8 3 28 t9[−9, 10] t9,9 = 1, t9,10 = 0

10 t10 M9 7 t10 t8,9 = t7,9, t8,10 = t7,10
11 t11 M10 11 −219 t11[−20] t11,20 = 1, t10,9 = 1, t10,10 = 0

12 t12 M11 19 t12 t11,9 = 1, t11,10 = 1,
t10,20 = t9,20

13 t13 M12 3 211 t13[12] t13,12 = 0, t12,20 = 0

14 t14 M13 7 t14 t12,12 = t11,12, t13,20 = 1

15 t15 M14 11 −230 t15[−31] t15,31 = 1, t14,12 = 0

16 t16 M15 19 t16 t14,31 = t13,31, t15,12 = 1

17 t17 M0 3 214 t17[15] t17,15 = 0, t16,31 = t14,31

13

Table 3: (Continued.)
i ti Mp(i) si ∆Mi t′i − ti t′i Sufficient conditions

18 t18 M4 5 22 27 + 219 t18[8, 20] t18,8 = 0, t16,15 = t15,15 + 1,
t18,20 = 0, t17,31 = t16,31

19 t19 M8 9 −27 t19[−8] t19,8 = 1, t17,8 = t16,8,
t18,15 = t16,15, t17,20 = t16,20

20 t20 M12 13 t20 t19,15 = t18,15, t19,20 = t17,20
21 t21 M1 3 217 t21[18] t21,18 = 0, t20,20 = t19,20
22 t22 M5 5 224 t22[25] t22,25 = 0, t20,18 = t19,18,

t21,8 = t20,8 + 1

23 t23 M9 9 −216 t23[17,−18] t23,17 = 0, t23,18 = 1,
t22,18 = t20,18, t21,25 = t20,25

24 t24 M13 13 t24 t22,17 = t21,17, t23,25 = t21,25
25 t25 M2 3 t25 t24,17 = t22,17, t24,25 = t23,25,

t24,18 = t22,18 + 1

26 t26 M6 5 229 t26[30] t25,17 = t24,17, t25,18 = t24,18,
t26,30 = 0

27 t27 M10 9 −225 t27[−26] t27,26 = 1, t25,30 = t24,30
28 t28 M14 13 t28 t26,26 = t25,26, t27,30 = t25,30
29 t29 M3 3 t29 t28,26 = t26,26, t28,30 = t27,30
30 t30 M7 5 22 t30[3] t30,3 = 0, t29,26 = t28,26
31 t31 M11 9 −22 t31[−3] t31,3 = 1, t29,3 = t28,3
32 t32 M15 13 t32
33 t33 M0 3 t33
34 t34 M8 9 t34 t33,3 = t32,3
35 t35 M4 11 22 t35

14

