Accelerating NTRU based Homomorphic Encryption
using GPUs

Wei Dai
Dept. of Electrical and
Computer Engineering
Worcester Polytechnic Institute
Worcester, MA 01609
Email: wdai@wpi.edu

Abstract—

In this work we introduce a large polynomial arithmetic
library optimized for Nvidia GPUs to support fully homomorphic
encryption schemes. To realize the large polynomial arithmetic
library we convert the polynomial with large coefficients using
the Chinese Remainder Theorem into many polynomials with
small coefficients, and then carry out modular multiplications
in the residue space using a custom developed discrete Fourier
transform library. We further extend the library to support the
homomorphic evaluation operations, i.e. addition, multiplication,
and relinearization, in an NTRU based somewhat homomorphic
encryption library. Finally, we put the library to use to evaluate
homomorphic evaluation of two block ciphers: Prince and AES,
which show 2.57 times and 7.6 times speedup, respectively, over
an Intel Xeon software implementation.

I. INTRODUCTION

Since the first plausible construction was presented 5 years
ago by Gentry [1] fully homomorphic encryption (FHE) has
captured significant attention from academia, media and even
industry. A FHE scheme is an encryption scheme which allows
the efficient evaluation of an arbitrary depth circuit on data
in encrypted form. Therefore, FHE research could ultimately
lead to very exciting developments in a wide variety of areas
enabling secure storage and more broadly private computations
on the cloud [2]. Since its inception, three main branches
of homomorphic encryption schemes emerged: lattice-based,
integer-based [3]-[5] and learning-with-errors (LWE) or (ring)
learning with errors ((R)LWE) based encryption [6]—[8].

Despite the rapid advances we have witnessed over the
last 5 years, FHE still has not sufficiently matured to be
used in real life applications. For example, an implementation
by Gentry et al. [9] requires 36 hours for a homomorphic
evaluation of AES using FHE. Another NTRU based proposal
by Doréz [10] manages to evaluate AES nearly an order of
magnitude faster than [9]. However, even this result is far from
being used in practice. Another significant bottleneck of FHE
schemes is memory use. In general, to support the evaluation
of reasonably deep circuits while providing sufficient margin to
counter lattice attacks, large ciphertext and public key sizes are
required, e.g. see [9], [11]. Motivated by these two bottlenecks
a significant number of works focused on improving the
efficiency of the FHE schemes. For instance, techniques for
eliminating the need for expensive bootstrapping evaluations
[12] and techniques for batching multiple bits together for

Yarkin Dor6z
Dept. of Electrical and
Computer Engineering
Worcester Polytechnic Institute
Worcester, MA 01609
Email: ydoroz@wpi.edu

Berk Sunar
Dept. of Electrical and
Computer Engineering
Worcester Polytechnic Institute
Worcester, MA 01609
Email: sunar@wpi.edu

more effective parallel processing [13]-[15] have been de-
veloped. To tackle the efficiency bottleneck use of alternative
platforms, such as GPUs [16], reconfigurable logic [17]-[21]
and custom ASIC [22], [23] has been proposed.

Initial research on FHE concentrated on lattice based
schemes [11], [24], [25], involving relatively large public key
sizes and ciphertext sizes. Lattice based FHE schemes, and
indeed the other FHE schemes, base their security on hard
problems associated with lattices, such as the sparse subset
sum problem (SSSP) or the shortest vector problem (SVP).
SIMD techniques were proposed by Smart and Vercauteren
[13] for these schemes to perform tasks in parallel and thus
improve efficiency.

Our Contribution. In this work, we build a discrete Fourier
transform based library for Nvidia GTX GPUs from the ground
up to support somewhat and fully homomorphic encryption
schemes based on large polynomial multiplications. We extend
the library with homomorphic evaluation primitives including
addition, multiplication and relinearization to handle NTRU
based evaluation directly on the GPU. To demonstrate the effi-
ciency of the library we implemented homomorphic evaluation
of two block ciphers, i.e. AES and Prince, recently considered
for homomorphic evaluation. We obtain significant speedups
over the previously reported results. More importantly we
determined that the efficiency is limited by the memory of the
target GPU. Hence, even greater speedups may be achieved
simply by moving to GPUs with more memory.

II. RELATED WORK

Here we briefly summarize previous FHE/SWHE work
which utilized GPUs to improve the performance. The first
GPU implementation of a FHE scheme was presented by Wang
et al. [16]. The authors implemented Gentry and Halevi’s
lattice-based FHE scheme [11] on an NVIDIA C2050 GPU
using the Number Theoretical Transform (NTT) algorithm,
achieving speed up factors of 7.68, 7.4 and 6.59 for encryption,
decryption and the recryption operations, respectively, in the
small parameter setting. The NTT algorithm was used to opti-
mize the critical operation, i.e. modular multiplication of very
large integers using the Schonhage Strassen algorithm folioed
by Barrett’s reduction technique. For further performance gains
the critical operations were parallelized, along with a number
of precomputation optimizations implemented on a GPU. An

extension of the authors’ work [26] involves the modification
of arithmetic operations to decrease costly back and forth
NTT conversions. This modified method, implemented on an
NVIDIA GTX 690, achieves speed up factors of 174, 7.6 and
13.5 for encryption, decryption and the recryption operations,
respectively, when compared to results of the implementation
of Gentry and Halevi’s FHE scheme [11] which runs on an
Intel Core i7 3770K machine. Wang et al. [21] propose an
architecture for a 768K-bit FFT multiplier using a 64K-point
finite field FFT as the key component. This component was
implemented on both a Stratix V FPGA and a NVIDA Tesla
C2050 GPU and the implementation was around twice as fast
on the FPGA as on the GPU [16].

A. Background

In 2012 Alt-Lépez, Tromer and Vaikuntanathan proposed
a leveled multi-key FHE scheme (ATV) [2]. The scheme was
based on a variant of NTRU encryption scheme proposed
by Stehlé and Steinfeld [27]. In the single key case of
the scheme, operations for polynomial degree n and prime
modulus ¢ are performed in R, = Z,[z]/(z™ 4 1). The schme
contains an error distribution function) to sample random
small B-bounded polynomials. The error distribution x is a
truncated discrete Gaussian distribution. The scheme consist
of four primitive functions KeyGen, Encrypt, Decrypt and
Eval of which details are as follows:

KeyGen. We

select decreasing sequence of primes

go > q1 > --- > qq for each level. We sample ¢(*) and u("
from , compute secret keys f() = 2u(") +1 and public keys
R = 2@ (f(0)=1 for each level. Later we create evaluation
keys for each level: ¢{”(z) = h®s{) 4 26 4 o7 (f(i-1)2
where {s(Ti), e(f)} € x and 7 = [0, [log ¢; |].

_Encrypt. To encrypt a bit b for the it" level we compute:
¢ = hs 4 2e + b where {s,e} € y.

Decrypt. In order to compute the decryption of a value for
specific level i we compute: m = ¢ () (mod 2).

Eval. The multiplication and addition of ciphertexts cor-
responds to XOR and AND operations respectively. The
multiplication operation creates a significant noise which
is coped by using relinearization and modulus switching.
The relinearization computes &9 (z) = 3¢\ ()& (x)

~(i—1)

where ¢ ’(z) are 1-bounded polynomials that is equal to
D) = ¥, 2768V (z). In case of modulus switch
we compute the following: &) (z) = |[-2-¢()(2)]y to cut

qi—1
the noise level by log(g;/gi—1) bits. The operation |-]3 is
matching the parity bits.

We use a customized version of the ATV-FHE Scheme that
is proposed in [10] by Dordz, Hu and Sunar (DHS). The code
is written in C++ using NTL package that is compiled with
GMP library. The library has the following costimizations:

e The operations are performed in R, =
Zq, 7]/ (Y, (7)), where U, () is the m'" cyclotomic

polynomial with degree n = (m)!. The decreasing

'The operation ((m) is the euler totient function.

moduli sequence ¢; is selected as p?~? where p is a

prime that can handle log g bits of noise.

e The special form of ¢; = p?~* is used to reduce the

memory requirement significantly. We can recycle the
evaluation key Cﬁo) (x) of the first level for all levels
by evaluating ¢!” () = ¢\ () (mod g,).

e The special selected cyclotomic polynomial W, (x)
is used to batch multiple message bits into the same
polynomial for parallel evaluations as proposed by
Smart and Vercauteren [8], [13] (see also [9]). The
polynomial V,,(x) is factorized over Fy into equal
degree polynomials F;(x) which define the message
slots in which message bits are embedded using the
Chinese Remainder Theorem. We can batch ¢ = n/t
number of messages where ¢ is the smallest integer
that satisfies m/|(2! — 1).

B. GPU NTRU Library

In this section we present an overview of our Nvidia GPU
library. The library supports three primitive operations: large
polynomial addition and multiplication, and relinearization.
The operands are elements of R, = Z,[z]/(¥,,(z)). We
instantiate the NTRU scheme with two parameter choices
to satisfy our homomorphic evaluation needs: (n,log(q)) =
(214,575) or (n,log(q)) = (215,1271). That is, in the largest
parameter selection (or keys in the topmost circuit level in
homomorphic evaluation), we need to perform in the order
of 1,271 modular multiplications of polynomials of degree
215 with 1,271-bit coefficients. Thus, we are computing with
exceptionally large data objects. Furthermore, during homo-
morphic circuit evaluation, due to modulus reduction [6],
the modulus ¢ (which determines the size of the polynomial
coefficients) gradually shrinks. Therefore, we need to design a
flexible GPU library to optimally support the critical operations
needed for homomorphic evaluation for the given architecture
(number of cores and memory). We achieve this goal by care-
fully combining a number of common techniques as follows.

1) CRT Conversion: As an initial optimization we convert
all operand polynomials with large coefficients into many
polynomials with small coefficients by a direct application of
the Chinese Remainder Theorem (CRT).

CRT : 2z — {z mod pg,z mod py,--- ,z mod p;_1}

Through CRT conversion we obtain two sets of polyno-
mials {Ag, A1, -+ ,A;—1} and {By, B, -+ ,B;_1} where
A;,B; € Ry, = Zyp,[x]/{¥n(x)). Complex operations such
as polynomial multiplication may now be computed using
the CRT representation with much smaller coefficients. Also
large integer arithmetic operations are only needed in CRT
and Inverse CRT (ICRT) computations. The CRT conversion
creates parallel execution paths where we can explore trade-
offs. For instance, if we choose larger primes, then the number
of prime numbers [will be smaller and vice versa. In our
implementation, the size and number of prime numbers p;’s
are decided automatically, mostly according to the degree and
coefficient size of polynomial. The product of those prime
numbers should be larger than the potentially largest coefficient
of polynomial c that we will obtain as a result of a computation
for accurate recovery through ICRT. We will briefly summarize

the constrains on the primes later under ring multiplication
and relinearization sections. A side benefit of using CRT is
that it allows us to accommodate the change in the coefficient
size during the levels of evaluation thereby yielding more
flexibility. When the circuit evaluation level increases, since gq
gets smaller, we can simply decrease the number of primes .
The code automatically changes the size and number of prime
numbers during the evaluation. Therefore, both multiplication
and relinearization become faster as we proceed through the
levels of evaluation.

At the end of the computations we compute the Inverse
CRT. We modify the original ICRT routine slightly to obtain
improved

ot 52 (). ((2) ")

2)

We pre-compute M (the product of prime numbers), % and

% mod p;, and move it to the GPU constant memory. In
each iteration of the summation the term contributed is only
as large as M. Therefore, we can perform the reduction with
only a single conditional subtraction, x =« — M if x > M

after each iteration.

2) Polynomial Multiplication: The key primitive for
achieving decent performance in the NTRU GPU library is
polynomial multiplication. Besides supporting the homomor-
phic evaluation of AND operations, polynomial modular mul-
tiplication is also the dominant operation in Relinearization.
Since we are multiplying polynomials with very high degree,
an NTT based polynomial multiplication algorithm similar
to the Strassen’s NTT based integer multiplication algorithm
[28] is crucial to achieve reasonable performance. Emmart
and Weems [29] present a NTT based very large integer
multiplication algorithm that yields high performance on a
GPU platform. The algorithm uses four-step Cooley-Tukey
NTT iterations [30] and makes use of a prime modulus of
special form P = Oxfff£fff££00000001 to construct the NTT
operation over the finite field Z/PZ. Since it supports the NTT
lengths we desire we use the same prime to construct the NTT.
However, in contrast to [29] we achieve polynomial multipli-
cation instead of integer multiplication. In the implementation
we follow these steps:

e We first double the degree of the polynomials a,b to
2n by padding with O coefficients.

e Then we treat the coefficients of the polynomials as n-
point sequences, and perform 2n-point NTT on them
to obtain A, B.

e We compute the component-wise product: C = A- B.

e Finally, we compute the Inverse NTT: ¢ = INTT(C)),
to recover the desired polynomial product ¢ = a - b.

The resulting large polynomial multiplication algorithm is
summarized in Algorithm 1. The NTT conversion significantly
improves the parallelism of the algorithm.

Recall that we have split the polynomial operands with
large coefficients a,b € R, into [polynomials with small
coefficients A;, B; € Z,, using CRT. To make multiplication

Algorithm 1 Polynomial Multiplication

Input: Polynomials a, b with (n,log(q))
Output: Polynomial ¢ with (2n,log(ng?))
1: {a;} = CRT(a),{b;} = NTT(b)

2 {Ai} = NTT({a;}),{Bi} = NTT({b:})
3 {C;} ={A;} - {Bi}
5: ¢c=ICRT({¢;})

algorithm work with the CRT conversion and the NTT oper-
ation w.r.t. the prime P, the following constraints need to be
satisfied to prevent overflow:

e P needs to be larger than any largest possible coeffi-
cient in a polynomial product P > n - p?, and

e The range of the CRT should cover the largest possible
. -1 2
product value, i.e. [[,_qpi > n-¢°.

This shows that, in the polynomial multiplication the size of the
prime numbers is limited by the constant P and the polynomial
degree n. The number of primes [is limited by both n and
the coefficient size ¢. Thus, during homomorphic evaluation
when we move to a new multiplicative level, since ¢ is getting
smaller, all we need to do is to decrease [to further speedup
the multiplication to take advantage of the shrinking gq.

We have implemented all of the required arithmetic op-
erations over 64-bit or 32-bit integers implemented on an
Nvidia GPU in Assembly code. All addition and multiplication
operations are carried out in Z/PZ. Thanks to the special form
of the prime number P, modular reduction can be realized
using only shifts, additions and subtractions. Note that, the
polynomial operands are too large for the constant memory to
hold. Therefore, we have to store them in the slower global
memory. The access speeds of GPU data from fastest (small)
to slowest (large) is as follows register, shared memory, and
global memory. We design the CUDA kernels as follows: Each
thread loads data from global memory to registers. For NTT
we actually only load half of data, since half of coefficients are
zeros. A buffer using shared memory is created for blocks to
store their data. We primarily use registers for computations.
Therefore, we only access the global memory when we load
data at the beginning of the computation and when we write
back data once the computation is completed. Data addressing
is arranged carefully in the way that the program always
have coalesced global memory access. Using Bailey’s NTT
technique [31], for 2n > 4096, which is a normal case, the first
two CUDA kernels deal with (2n/4096) 4096-point NTT’s.
The third kernel computes a 4096 2n,/4096-point NTT’s and
transpose when writing back the data. Furthermore, since the
value of n varies from scheme to scheme (e.g. 215 in AES, 214
in Prince), we change the memory mapping code in all kernels
and the entire third kernel according to the parameters. If we
add coefficient permutation to the first kernel and multiply
each coefficient with (2n)~* mod P, we just have the INNT
functions.

3) Relinearization: The relinearization primitive has two
inputs: the ciphertext (a polynomial) and a set of evaluation
keys which consist of [log(g)] polynomials. Each of these
polynomials has a high degree n and a large coefficient size

Input: ¢
1-bit

I l 1

Co ¢ .- ¢,

s

[¢ & - &
I_____(/_I_____J/____ I__x' _____
: EKo,0 i ! EKo1 i ! EKo1 i
I b I r I
icoﬂ%\{::co ! :Coﬂé\(:

| |
| EKe®i EKu | EKg
r P I b I
iclﬂ%\g::cl ! iclﬂ%z\é:
. 1! I . I
PR (PR (R P 1
| OEKee T EKe T EKen Y
| | S
b S I r T
icrﬂ%\g::cr ! icrﬂé\g:
! | |
i D | i D | i b 1
| | |
I Doj i . D] Di|
INTT1 1 l
(Ijo dl c?Il

ICRTl
Output: d

Fig. 1. Flowchart showing processing steps during relinearization

q. The implemented the relinearization operation as shown in
Algorithm 2.

Algorithm 2 Relinearization

Input: Polynomial ¢ with (n,log(g))
Output: Polynomial d with (2n,log(nglog(q)))

1. {C;} =NTT({¢,})

2:fort=0...,1—1 do

3: load EKi,O7 EKi,h s 7EKi,[log(q)]—l
4 {D}={XWC, ER L)

5: end for

6: {d;} =INTT({D;})

7. d = ICRT({d;})

As in polynomial multiplication, the relinearization oper-
ation imposes restrictions on the CRT parameter selection as
follows:

e The range of CRT should cover the largest possible
result of relinearization: Hi;é p; > [log(q)]-n-q and

e P>[log(q)] -n-pi

Relinearization involves [log(q)| polynomial multiplica-
tions and additions. Additions are coefficient wise, which
means 2n parallel threads can solve it efficiently. In a level of

homomorphic evaluation since we will be using the evaluation
keys multiple times, we perform a CRT conversion on each
obtaining ([log(q)] - 1) polynomials with small coefficients.
Then we perform NTT on each and store the result in memory.
In each level, we have a new set of keys. If we were to
convert the evaluation keys for each relinearization, it would
slow down the computation. Usually we do not increase the
level until we finish all relinearizations in the current level.
Therefore, it is better to generate evaluation keys in CRT
and NTT domain when we move to a new level and store
them for later use. Even if we do switch among a few
levels, we can try to store the converted evaluation keys
of all those levels when we have enough space (as in our
implementation of PRINCE), or we can use the setup from
the topmost level (as in our implementation of AES). The
converted keys take a huge amount of space. In first level of
AES evaluation, with (n,log(q)) = (32768,1271), converted
keys consume approximately 23 GBytes memory. Since we
are switching among four levels, we use the converted keys of
the lowest level. While in first level of Prince evaluation, with
(n,log(q)) = (16384,575), converted keys consume only 2
GBytes of memory. We can keep converted keys for several
levels in memory, and switch between them when needed. As
for the ciphertext representation, since we are converting it into
a set of [log(q)] polynomials with 1-bit coefficients, CRT is
not needed. This saves time and space. We perform NTT on
the set of polynomials and keep them in GPU global memory.
The first kernel of the NTT operation is modified to take out
one bit and compute. C is generated in parallel on the GPU.

Next the component-wise product is computed. Since
evaluation keys are too large to fit into GPU memory, we
copy a part of them from host memory to GPU memory
and compute the sum of their coefficient-wise product with
the ciphertext. Except for the last levels that use small keys,
in relinearization most of the time is spent in copying the
converted evaluation keys to GPU memory. We allocate page-
locked host memory, which has the fastest transfer speed as
we test, to store converted evaluation keys. INTT is performed
on the computation result of each CRT prime residue. We
also test an alternative method: performing INTT after every
component-wise multiplication and then add them up. The
latter method supports larger size and requires fewer primes
than the former one. In this way the key size and loops in
the code are reduced, but in a quite limited scale. However,
it needs [log(q)] - { INTT’s while the former one needs only
{ INTT’s. As a result of test, the former method has better
performance. Then after ICRT we obtain the relinearization
result with polynomial degree and coefficient size (2n,log(q)).

4) CUDA Library and NTL Library: Polynomials were
created with the NTL Library. When we pass them to GPU,
we use a 1-D array with n - [log(a)] unsigned integers.
CUDA handles array efficiently, and with regular indexing
memory copy operations and accesses are very fast. Data type
conversion between the NTL Library and unsigned integer
takes time but does not slow the program much. Also the
output of polynomial multiplication or relinearization is not in
Ry = Zy[x]/(¥.,(x)). While in relinearization, even though
we are multiplying polynomials, one of the multipliers has 1-
bit coefficients and therefore the products involve only simple
conditional additions.

III. HOMOMORPHIC EVALUATION

Here we put our GPU library to use to homomorphically
evaluate two example block ciphers: Prince and AES using the
NTRU based FHE cipher [2], [10], [32].

A. Evaluation of the Prince Block Cipher

The Prince is a lightweight block cipher that has been
optimized for small hardware footprint [33]. The homomorphic
encryption is done by using a 128-bit key on a 64-bit message
that are encrypted in homomorphic domain. The message is
transformed into a 4 x 4 matrix where each element is a nibble.
The Prince has 12 rounds of substitution-permutation network
with 4-bit S—Boxes, shift rows and mix columns operations.
Each round uses the same key with a different 64-bit round
constant to create variations among themselves. The Prince has
following four operations:

1) Key Schedule: The key is split into two halves {ko, k1 }.
The first half of the key ky is XORed only one time right
before starting the round operations. At each round operation,
second half of the key k; is XORed at the end. After the round
operations are complete, ko is transformed into k{ = (ko >
1) ® (ko > 63) and XORed.

2) Round Constant Addition: The round constants RC; are
XORed at each round, where 7 is the round number, holds the
following property RC; & RC11_; = 0xc0ac29b7c97c50dd.

3) S—Box: The S—Box is the only operation with nonlin-
earity in Prince. It does a 4-bit to 4-bit mapping. We use the
original S—Box parameters as in [33] and implement a 2-depth
logic circuit to do the mapping.

4) Linear Layer: The linear layer consists of two steps:
shift rows and mix column. The shift row operation reorders
the rows of the input message matrix by swapping. In mix
column, each output bit is computed XORing three input bits.

We use all the operations explained above in all rounds
except the S—Box and Linear Layer. They have their own
inverse versions that are used in the last six rounds instead of
S—Box and Linear Layer. However this does not effect the
circuit depth in each round, so we can evaluate the Prince in
24 levels.

B. Evaluating AES

In homomorphic evaluation of AES, we take the AES keys
and the encrypted message, which are encrypted individually,
and evaluate the AES encryption of the message homomorphi-
cally. Like a standard AES evaluation; homomorphic AES has
10 rounds, message is transformed into a 4 x 4 matrix and the
operations are divided into four steps:

1) AddRoundKey: The round keys are precomputed, en-
crypted and given alongside the encrypted AES keys and
message. Since a round operation has depth 4 circuit, the round
key for level 7 is computed in R,,, for 0 <4 < 10. The first
round key is XORed as the computation starts and the rest are
XORed at the end of each round operation.

2) ShiftRows: The shifting of rows is a simple operation
that only requires swapping of indices trivially handled in the
code. This operation has no effect on the noise.

3) MixColumns: In Mix Column operation a byte in the
message matrix is multiplied with one of the constant terms
of {x +1,z,1} in modulo (2% 4+ 2* + 2® + 2 + 1). These
products are evaluated by simple XORs and shifts. Once the
products of the rows are finished, 4 values are added to each
other. The addition operations add a few bits of noise.

4) SubBytes: The SubBytes step (S-Box) is the only
place where homomorphic multiplications and Relineariza-
tion takes place. The S—Box conversion is evaluated for each
byte b of the e X 4 matrix as s = Mb—! @ B. In [34],
the authors introduce an efficient inversion implementation
by converting the input from GF(2%) into a tower field
representation GF(((22)?)?) using isomorphism. This is the
S-box circuit we implement in this work. The full 10 round 128
bit-AES block homomorphic evaluation requires the evaluation
of a depth 40 circuit.

IV. IMPLEMENTATION RESULTS

In our experiments, we use a server equipped with Intel
Xeon ES5-2609 running @2.5 Ghz, 64 GBytes of memory,
and a NVIDIA GeForce GTX 690 running @915 Mhz with
3072 stream processors and 4 GBytes of memory?. We run the
experiments using a single thread of the Intel Xeon processor
and a single GTX 680 graphics processor. In terms of software
setup, we used Ubuntu 12.04, Cuda platform 6.0 and compiled
our code using Shoup’s NTL 6.1 [35] library linked with GMP
6.0 .

In Table I we give the timing results for relinearization
and multiplication operations for each block cipher settings.
The timings are given for the functions and do not contain
the data type conversion from NTL. In multiplication we have
two CRT and NTT conversions, so they are given in x2 form.
In terms of relinearization we only use one input and in CRT
step the inputs are in binary polynomial form which takes
almost instant time to compute. In comparison of the timings;
in Prince, where n and log g are half of AES, the multiplication
is 7.2x and the relinearization is 9.6 x faster compared to AES.

TABLE 1. PERFORMANCE OF MULTIPLICATION AND
RELINEARIZATION IN PRINCE AND AES IMPLEMENTATIONS.

Multiplication Relinearization

PRINCE AES PRINCE AES

CRT x2 (msec) 5.70 49.6 CRT x1 (msec) n/a n/a
NTT X2 (msec) 9.00 39.8 NTT X1 (msec) 53 256
MULT (msec) 0.31 1.2 MULT (msec) 833 8300
I-NTT (msec) 5.20 224 I-NTT (msec) 1.5 7.2
I-CRT (msec) 12.2 121 I-CRT (msec) 3.5 40.7
Total (sec) 0.0325 0.2340 Total (sec) 0.89 8.60

We compare our GPU performance with the CPU perfor-
mance of our server in Table II. The results clearly shows that
in a simpler arithmetic operation such as multiplication, the
gain of GPU is only a factor of 2.8. However for relineariza-
tion, which we require more arithmetic operations, gain is in
range of order of an magnitude, i.e. ~ 12.

Finally, we compare our results with Prince in [32] and
AES in [9], [10] in Table III. In AES, we reach a run time
of 4.15 hours which gives us 7.3 seconds per block AES

2The NVIDIA GeForce GTX 690 is formed of dual GTX 680’s, so the
given resources are split into two equal halves for each GTX 680.

TABLE II

TIMING COMPARISON BETWEEN THE CPU AND GPU
IMPLEMENTATIONS FOR THE OPERATIONS.

Prince AES
GPU CPU SPEEDUP GPU CPU SPEEDUP
MULTIPLICATION 0.063 0.18 X 2.8 0.34 0.97 xX2.8
RELINEARIZATION 0.89 10.9 x12.2 8.97 103.37 x11.5

evaluation by batching technique. Compared to the Byte and
SIMD techniques of [9] we achieve a speedup factors of
328x and 41x, respectively. When we compare our result
with [10], where the authors use the same scheme and AES
circuit as ours, we are 7.6 x faster. Unfortunately for Prince the
speedup is only 2.57x since Prince has a higher ratio of other
arithmetic operations that Multiplication and Relinearization.
Thus, it does not benefit the GPU acceleration as much as AES

implementation.
TABLE III. PERFORMANCE COMPARISON OF PRINCE AND AES
IMPLEMENTATIONS.
TOTAL #BLOCKS PER BLOCK Speedup
TIME
SIMD Xeon [9] 36 h 54 2400 sec x1
AES Byte Xeon [9] 65 h 720 300 sec x8
NTRU Xeon [10] 31h 2048 55 sec x43
Ours (GPU) 415 h 2048 7.3 sec X328
Prince Prince [32] 57 min 1024 3.3 sec x1
b Ours (GPU) 22 min 1024 1.28 sec x2.57
REFERENCES

[1]

[7]

[8]

[10]

(11]

(12]

[13]

C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009.

A. Lopez-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,”
in STOC, 2012.

M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in EUROCRYPT, 2010,
pp. 24-43.

J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully ho-
momorphic encryption over the integers with shorter public keys,” in
CRYPTO, 2011, pp. 487-504.

J.-S. Coron, D. Naccache, and M. Tibouchi, “Public key compression
and modulus switching for fully homomorphic encryption over the
integers,” in EUROCRYPT, 2012, pp. 446-464.

Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” in FOCS, 2011, pp. 97-106.

C. Gentry, S. Halevi, and N. P. Smart, “Better bootstrapping in fully
homomorphic encryption,” JACR Cryptology ePrint Archive 2011/680,
vol. 2011, 2011.

——, “Fully homomorphic encryption with polylog overhead,” JACR
Cryptology ePrint Archive Report 2011/566, 2011, http://eprint.iacr.org/.
——, “Homomorphic evaluation of the AES circuit,” JACR Cryptology
ePrint Archive, vol. 2012, 2012.

Y. Dor6z, Y. Hu, and B. Sunar, “Homomorphic AES evaluation
using NTRU,” Cryptology ePrint Archive, Report 2014/039, 2014,
http://eprint.iacr.org/.

C. Gentry and S. Halevi, “Implementing Gentry’s fully-homomorphic
encryption scheme,” in EUROCRYPT, 2011, pp. 129-148.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic
encryption without bootstrapping,” Electronic Colloquium on Compu-
tational Complexity (ECCC), vol. 18, p. 111, 2011.

N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,”
IACR Cryptology ePrint Archive, vol. 2011, p. 133, 2011.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[34]

[35]

Z. Brakerski, C. Gentry, and S. Halevi, “Packed ciphertexts in LWE-
based homomorphic encryption,” JACR Cryptology ePrint Archive, vol.
2012, p. 565, 2012.

J.-S. Coron, T. Lepoint, and M. Tibouchi, “Batch fully homomorphic
encryption over the integers,” IACR Cryptology ePrint Archive, vol.
2013, p. 36, 2013.

W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Accelerating fully
homomorphic encryption using GPU,” in HPEC, 2012, pp. 1-5.

D. Cousins, K. Rohloff, R. Schantz, and C. Peikert, “SIPHER: Scalable
implementation of primitives for homomorphic encrytion,” Internet
Source, September 2011.

D. Cousins, K. Rohloff, C. Peikert, and R. E. Schantz, “An update
on SIPHER (scalable implementation of primitives for homomorphic
encRyption) - FPGA implementation using simulink,” in HPEC, 2012,
pp. 1-5.

C. Moore, N. Hanley, J. McAllister, M. O’Neill, E. O’Sullivan, and
X. Cao, “Targeting FPGA DSP slices for a large integer multiplier for
integer based FHE,” Workshop on Applied Homomorphic Cryptography,
vol. 7862, 2013.

X. Cao, C. Moore, M. O’Neill, N. Hanley, and E. O’Sullivan, “Accel-
erating fully homomorphic encryption over the integers with super-size
hardware multiplier and modular reduction,” Under Review, 2013.

W. Wang and X. Huang, “FPGA implementation of a large-number
multiplier for fully homomorphic encryption,” in ISCAS, 2013, pp.
2589-2592.

Y. Dordz, E. Oztiirk, and B. Sunar, “Evaluating the hardware perfor-
mance of a million-bit multiplier,” in Digital System Design (DSD),
2013 16th Euromicro Conference on, 2013.

—_— “Accelerating fully homomorphic encryption in
hardware,” 2013, draft, Under Review. [Online]. Avail-
able: \url{http://ecewp.ece.wpi.edu/wordpress/vernam/files/2013/09/
Accelerating-Fully-Homomorphic-Encryption-in-Hardware.pdf}

C. Gentry and S. Halevi, “Fully homomorphic encryption without
squashing using depth-3 arithmetic circuits,” IJACR Cryptology ePrint
Archive, vol. 2011, p. 279, 2011.

N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with
relatively small key and ciphertext sizes,” in Public Key Cryptography,
2010, pp. 420-443.

W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Exploring the
feasibility of fully homomorphic encryption,” IEEE Transactions on
Computers, vol. 99, no. PrePrints, p. 1, 2013.

D. Stehlé and R. Steinfeld, “Making ntru as secure as worst-case
problems over ideal lattices,” Advances in Cryptology — EUROCRYPT
’11, pp. 274, 2011.

D. D. A. Schonhage and V. Strassen, “Schnelle multiplikation grosser
zahlen,” Computing, vol. 7, no. 3-4, pp. 281-292, 1971.

N. Emmart and C. C. Weems, “High precision integer multiplication
with a gpu using strassen’s algorithm with multiple fft sizes,” Parallel
Processing Letters, vol. 21, no. 03, pp. 359-375, 2011.

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Math. comput, vol. 19, no. 90, pp. 297-301,
1965.

D. H. Bailey, “Ffts in external of hierarchical memory,” in Proceedings
of the 1989 ACM/IEEE conference on Supercomputing. ACM, 1989,
pp. 234-242.

Y. Dor6z, A. Shahverdi, T. Eisenbarth, and B. Sunar, “Toward practical
homomorphic evaluation of block ciphers using prince,” Cryptology
ePrint Archive, Report 2014/233, 2014, http://eprint.iacr.org/.

J. Borghoff and et al., “PRINCE, a low-latency block cipher for
pervasive computing applications,” in ASIACRYPT 2012, ser. LNCS,
X. Wang and K. Sako, Eds. Springer Berlin Heidelberg, 2012, vol.
7658.

D. Canright, “A very compact S-Box for AES,” in Cryptographic
Hardware and Embedded Systems CHES 2005, ser. Lecture Notes in
Computer Science, J. R. Rao and B. Sunar, Eds. Springer Berlin
Heidelberg, 2005, vol. 3659, pp. 441-455.

V. Shoup, NTL: A Library for doing Number Theory. [Online].
Available: http://www.shoup.net/ntl/

