
The Randomized Iterate Revisited - Almost Linear Seed Length

PRGs from A Broader Class of One-way Functions

Yu Yu∗ Dawu Gu† Xiangxue Li‡

Abstract

We revisit “the randomized iterate” technique that was originally used by Goldreich, Krawczyk,
and Luby (SICOMP 1993) and refined by Haitner, Harnik and Reingold (CRYPTO 2006) in con-
structing pseudorandom generators (PRGs) from regular one-way functions (OWFs). We abstract out
a technical lemma with connections to several recent work on cryptography with imperfect random-
ness, which provides an arguably simpler and more modular proof for the Haitner-Harnik-Reingold
PRGs from regular OWFs.

We extend the approach to a more general construction of PRGs with seed length O(nlogn) from
a broader class of OWFs. More specifically, consider an arbitrary one-way function f whose range

is divided into sets Y1, Y2, . . ., Yn where each Yi
def
= {y : 2i−1 ≤ |f−1(y)| < 2i}. We say that the

maximal preimage size of f is 2max if Ymax has some noticeable portion (say n−c for constant c), and
Ymax+1, . . ., Yn only sum to a negligible fraction ε. We construct a PRG by making Õ(n2c+1) calls to
the underlying OWF and achieve seed length O(nlogn) using bounded space generators, where the
only parameter required to know is c (which is constant for a specific f but may vary for different
functions) and no knowledge is required for max and ε. We use a proof technique that is similar to
and extended from the method by Haitner, Harnik and Reingold for hardness amplification of regular
weakly one-way functions.

Our construction achieves almost linear seed length for a broader class of one-way functions than
previously known, where the case of regular OWFs follows as a simple corollary for c = 0. We show
that although an arbitrary one-way function may not fall into the class of OWFs as we defined,
the counterexamples must satisfy a very strong condition and thus should be somewhat artificial.
Our approach takes a different route from the generic HILL-style generators (which is characterized
by flattening Shannon entropy sources) where the best known construction by Vadhan and Zheng
(STOC 2012) requires seed length O(n3).

Keywords: Foundations, Pseudorandom Generators, One-way Functions, the Randomized Iterate.

∗Shanghai Jiaotong University. Email: yuyuathk@gmail.com.
†Shanghai Jiaotong University.
‡East China Normal University.

1 Introduction

That one-way functions (OWFs) imply pseudorandom generators (PRGs) [10] is one of the central
results upon which modern cryptography is successfully founded. The problem dates back to the early
80’s when Blum, Micali [2] and Yao [15] independently observed that a PRG (often referred to as the
BMY generator) can be efficiently constructed from one-way permutations (OWPs). That is, given
a OWP f on n-bit input x and its hardcore predicate hc (e.g., by Goldreich and Levin [6]), a single
invocation of f already implies a PRG g : x 7→ (f(x), hc(x)) with a stretch1 of Ω(log n) bits and it
extends to arbitrary stretch by repeated iterations (seen by a hybrid argument). Unfortunately, the
BMY generator does not immediately apply to an arbitrary OWF since the output of f might be of too
small amount of entropy to be secure for subsequent iterations.

The sequential approach - the Randomized Iterate. Goldreich, Krawczyk, and Luby [5]
extended the BMY generator by inserting a randomized operation (using k-wise independent hash
functions) into every two applications of f , from which they built a PRG of seed length O(n3) assuming
that the underlying OWF is known-regular2. Haitner, Harnik and Reingold [8] further refined the
approach (for which they coined the name “the randomized iterate”) as below:

x1
f

y1
h1 x2

f
y2

h2 · · · xk
f

yk
hk+1

where in between every ith and (i + 1)th iterations a random pairwise-independent hash function hi is
applied. Haitner et al. [8] showed that, when f is instantiated with any (possibly unknown) regular
one-way function, it is hard to invert any kth iterate (i.e., recovering any xk s.t. f(xk) = yk) given yk
and the description of the hash functions. This gives a PRG of seed length O(n2) by running the iterate
n+1 times and outputting a hardcore bit at every iteration. The authors of [7] further derandomize the
PRG by generating all the hash functions from bounded space generators (e.g., Nisan’s generator [13])
using a seed of length O(n log n). Although the randomized iterate is mostly known for construction of
PRGs from regular OWFs, the authors of [7] also introduced many other interesting applications such
as linear seed length PRGs from any exponentially hard regular OWFs, O(n2) seed length PRGs from
any exponentially hard OWFs, O(n7) seed length PRGs from any OWFs, and hardness amplification
of regular weakly OWFs. Recently, Yu et al. [16] further reduced the seed length of the PRG (based
on any regular OWFs) to O(ω(1)·n) for any efficiently computable ω(1).

The parallel approach - PRGs from any OWFs. H̊astad, Impagliazzo, Levin and Luby (HILL)
[10] presented the seminal result that pseudorandom generators can be constructed from any one-way
functions. Nevertheless, they only gave a complicated (and not practically efficient) construction of PRG
with seed length Õ(n10) and sketched another one with seed length Õ(n8), which was formalized and
proven in [11]. Haitner, Reingold, and Vadhan [9] introduced the notion of next-block pseudoentropy,
and gave a uniform construction of seed length Õ(n4) as well as a non-uniform3 construction of seed
length Õ(n3). Vadhan and Zheng [14] further reduced the seed length of the uniform construction
to Õ(n3), matching the non-uniform one of [9]. In summary, it remains open how to construct the
PRGs with seed length below Õ(n3) even given polynomial-size non-uniform advice about an arbitrary
one-way function or by making adaptive calls to the function.

A technical lemma. In this paper, we revisit the randomized iterate. We abstract out a technical
lemma that, informally speaking, “if any algorithm wins a one-sided game (e.g., inverting a OWF) on
uniformly sampled challenges only with some negligible probability, then it cannot do much better (be-
yond a negligible advantage) in case that the challenges are sampled from any distribution of logarithmic

1The stretch of a PRG refers to the difference between output and input lengths (see Definition 2.3).
2A function f(x) is regular if every image has the same number (say α) of preimages, and it is known- (resp., unknown-)

regular if α is efficiently computable (resp., inefficient to approximate) from the security parameter.
3A “non-uniform” PRG may assume arbitrary polynomial-size advice about the underlying OWF.

1

collision entropy deficiency”. Analogous observations were made in related settings[1, 4, 3], where either
the game is two-sided (e.g., indistinguishability applications) or the randomness is sampled from slightly
defected min-entropy source. Plugging this lemma into [7] immediately yields a simpler proof for the
key lemma of [7], namely, “any kth iterate (instantiated with a regular OWF) is hard-to-invert”. The
rationale is that yk has sufficiently high collision entropy (even conditioned on the hash functions) that
is only logarithmically less than the ideal case where yk is uniform (over the range of f) and independent
of the hash functions, which is hard to invert by the one-wayness assumption.

The main results. We consider an arbitrary OWF f with range divided into sets Y1, . . ., Yn, where

each Yi
def
= {y : 2i−1 ≤ |f−1(y)| < 2i}. We say that the maximal preimage size of f is 2max if Ymax

has some noticeable portion (n−c for constant c), and Ymax+1, . . ., Yn only sum to a negligible fraction
negl(n). It is easy to see that regular one-way functions are a special case for c = 0. We further show
that in order to be a counterexample to the class of one-way functions defined above, the candidate
function must satisfy an infinite set of conditions and should be somewhat artificial. This gives some
non-trivial evidence that a natural one-way function should fall into the class of one-way functions.
We give a construction that only requires the knowledge about c (i.e., oblivious of max and negl).
Loosely speaking, the main idea is that conditioned on yk ∈ Ymax the collision entropy of yk given
the hash functions is close to the ideal case where f(Un) hits Ymax with noticeable probability (and
is independent of the hash functions), which is hard to invert. We have by the pairwise independence
(in fact, universality already suffices) of the hash functions that every yk ∈ Ymax is an independent
event of probability n−c. By a Chernoff bound, running the iterate ∆ = n2c · ω(log n) times yields that
with overwhelming probability there is at least one occurrence of yk ∈ Ymax, which implies every ∆
iterations are hard-to-invert, i.e., for any j = poly(n) it is hard to predict x1+(j−1)∆ given yj∆ and the
hash functions. A PRG follows by outputting log n hardcore bits for every ∆ iterations and in total
making Õ(n2c+1) calls to f . This requires seed length Õ(n2c+2), and can be pushed to O(n · log n)
bits using bounded space generators [13, 12], ideas borrowed from [7] with more significant reductions
in seed length (we reduce by factor Õ(n2c+1) whereas [7] saves factor Õ(n)). Overall, our technique
is similar in spirit to the hardness amplification of weakly one-way functions introduced by Haitner et
al. in the same paper [7] (see full proof in its full version [8]). Roughly speaking, the idea was that
for any inverting algorithm A, a weakly one-way function has a set that A fails upon (the failing-set
of A), and thus sufficiently many iterations are bound to hit every such failing-set (for every inverting
algorithm) to make a strongly one-way function. However, in our case the lack of a regular structure of
the underlying function and the negligible fraction of Ymax +1, . . ., Yn further complicate the analysis
(see Remark B.1 for some discussions), and we use our technical lemma to provide a neat and modular
proof.

2 Preliminaries

Notations and definitions. We use [n] to denote set {1, . . . , n}. We use capital letters (e.g.,
X, Y) for random variables, standard letters (e.g., x, y) for values, and calligraphic letters (e.g., Y,

S) for sets. |S| denotes the cardinality of set S. We use shorthand Y[n]
def
=
⋃n
t=1 Yt. For function

f : {0, 1}n → {0, 1}l(n), we use shorthand f({0, 1}n)
def
= {f(x) : x ∈ {0, 1}n}, and denote by f−1(y) the

set of y’s preimages under f , i.e. f−1(y)
def
= {x : f(x) = y}. We use s ← S to denote sampling an

element s according to distribution S, and let s
$←− S denote sampling s uniformly from set S, and let

y := f(x) denote value assignment. We use Un and UX to denote uniform distributions over {0, 1}n
and X respectively, and let f(Un) be the distribution induced by applying function f to Un. We use

CP(X) to denote the collision probability of X, i.e., CP(X)
def
=
∑

x Pr[X = x]2, and denote by H2(X)
def
= − logCP(X) the collision entropy. We also define conditional collision entropy (and probability) of a

2

random variable X conditioned on another random variable Z by

H2(X|Z)
def
= − log (CP(X|Z))

def
= − log (Ez←Z

[∑
x Pr[X = x| Z = z]2

]
)

A function negl : N → [0, 1] is negligible if for every constant c we have negl(n) < n−c holds for all
sufficiently large n’s, and a function µ : N → [0, 1] is called noticeable if there exists constant c such
that µ(n) ≥ n−c for all sufficiently large n’s.

We define the computational distance between distribution ensembles X
def
= {Xn}n∈N and Y

def
=

{Yn}n∈N, denoted by CDT (n)(X,Y)≤ ε(n), if for every probabilistic distinguisher D of running time up
to T (n) it holds that

| Pr[D(1n, Xn) = 1]− Pr[D(1n, Yn) = 1] | ≤ ε(n) .

The statistical distance between X and Y , denoted by SD(X,Y), is defined by

SD(X,Y)
def
=

1

2

∑
x

|Pr[X = x]− Pr[Y = x]| = CD∞(X,Y)

We use SD(X,Y |Z) (resp. CDt(X,Y |Z)) as shorthand for SD((X,Z), (Y,Z)) (resp. CDt((X,Z), (Y,Z))).

Simplifying Assumptions and Notations. To simplify the presentation, we make the following
assumptions without loss of generality. It is folklore that one-way functions can be assumed to be
length-preserving (see [8] for full proofs). Throughout, most parameters are functions of the security
parameter n (e.g., T (n), ε(n), α(n)) and we often omit n when clear from the context (e.g., T , ε, α).
By notation f : {0, 1}n → {0, 1}l we refer to the ensemble of functions {fn : {0, 1}n → {0, 1}l(n)}n∈N.
As slight abuse of notion, poly might be referring to the set of all polynomials or a certain polynomial,
and h might be either a function or its description, which will be clear from the context.

Definition 2.1 (pairwise independent hashing) A family of hash functions H def
= {h : {0, 1}n →

{0, 1}m} is pairwise independent if for any x1 6= x2 ∈ {0, 1}n and any v ∈ {0, 1}2m it holds that
Pr

h
$←−H[(h(x1), h(x2)) = v] = 2−2m, or equivalently, (H(x1), H(x2)) is i.i.d. to U2m where H is

uniform over H. It is well known that there are efficiently computable families of pairwise independent
hash functions of description length Θ(n+m).

Definition 2.2 (one-way functions) A function f : {0, 1}n → {0, 1}l(n) is (T (n),ε(n))-one-way if f
is polynomial-time computable and for any probabilistic algorithm A of running time T (n)

Pr
y←f(Un)

[A(1n, y)∈f−1(y)] ≤ ε(n).

We say that f is a (strongly) one-way function if T (n) and 1/ε(n) are both super-polynomial in n.

Definition 2.3 (pseudorandom generators [2, 15]) A deterministic function g : {0, 1}n → {0, 1}n+s(n)

(s(n) > 0) is a (T (n),ε(n))-secure PRG with stretch s(n) if g is polynomial-time computable and

CDT (n)(g(1n, Un) , Un+s(n)) ≤ ε(n).

We say that g is a pseudorandom generator if T (n) and 1/ε(n) are both super-polynomial in n.

2.1 Technical Tools

Theorem 2.1 (Goldreich-Levin Theorem [6]) Let (X,Y) be a distribution ensemble over {{0, 1}n×
{0, 1}poly(n)}n∈N. Assume that for any PPT algorithm A of running time T (n) it holds that

Pr[A(1n, Y) = X] ≤ ε(n)

3

Then, for any efficiently computable m(n)∈O(n), there exists an efficient function family Hc
def
= {hc :

{0, 1}n → {0, 1}m(n)} of description size Θ(n), such that

CDT ′(n)(Hc(X) , Um(n) | Y,Hc) ∈ O(2m(n) · (n · ε)
1
3) .

where T ′(n) = T (n) · (ε(n)/n)O(1), and Hc is the uniform distribution over Hc.

Definition 2.4 (bounded-width layered branching program - LBP) An (s, k, v)-LBP M is a
finite directed acyclic graph whose nodes are partitioned into k + 1 layers indexed by {1, . . ., k + 1}.
The first layer has a single node (the source), the last layer has two nodes (sinks) labeled with 0 and 1,
and each of the intermediate layers has up to 2s nodes. Each node in the i ∈ [k] layer has exactly 2v

outgoing labeled edges to the (i+ 1)th layer, one for every possible string hi ∈ {0, 1}v.

An equivalent (and somewhat more intuitive) model to the above is bounded space computation.
That is, we assign labels to graph nodes (instead of associating them with the edges), at each ith layer
the program performs arbitrary computation on the current node (labelled by s-bit string) and the
current v-bit input hi, advances (and assigns value) to a node in the (i + 1)th layer, and repeats until
it reaches the last layer to produce the final output bit.

Theorem 2.2 (bounded-space generator [13, 12]) Let s(n), k(n), v(n) ∈ N and ε(n) ∈ (0, 1) be
polynomial-time computable functions. Then, there exist a polynomial-time computable function q(n) ∈
Θ(v(n) + (s(n) + log(k(n)/ε(n))) log k(n)) and a generator BSG : {0, 1}q(n) → {0, 1}k(n)·v(n) that runs
in time poly(s(n), k(n), v(n), log(1/ε(n))), and ε(n)-fools every (s(n), k(n), v(n))- LBP M , i.e.,

| Pr[M(Uk(n)·v(n)) = 1] − Pr[M(BSG(Un)) = 1] | ≤ ε(n) .

3 Pseudorandom Generators from Regular One-way Functions

3.1 A Technical Lemma

Before we revisit the randomize iterated PRGs from regular one-way functions, we introduce a technical
lemma that simplifies the analysis in [7] and our main results in Section 5, and might be of indepen-
dent interests. Informally, it states that if any one-sided game (one-way functions, MACs, and digital
signatures) is (T ,ε)-secure on uniform secret randomness, then it will be (T ,2

√
2e·ε)-secure when the

randomness is sampled from any distribution with e bits of collision entropy deficiency4.

Lemma 3.1 (one-sided game on imperfect randomness) For any e ≤ m ∈ N, let W ×Z be any
set with |W| = 2m, let Adv : W × Z → [0, 1] be any (deterministic) real-valued function, let (W,Z) be
any joint random variables over set W ×Z satisfying H2(W |Z) ≥ m− e, we have

E[Adv(W,Z)] ≤
√

2e+2 · E[Adv(UW , Z)] (1)

where UW denotes uniform distribution over W (independent of Z and any other distributions).

Proof. For any given δ define Sδ
def
= {(w, z) : Pr[W = w|Z = z] ≥ 2−(m−e)/δ}

2−(m−e) ≥
∑
z

Pr[Z = z]
∑
w

Pr[W = w|Z = z]2

≥
∑
z

Pr[Z = z]
∑

w:(w,z)∈Sδ

Pr[W = w|Z = z]·2−(m−e)/δ

≥ (2−(m−e)/δ) · Pr[(W,Z) ∈ Sδ] ,
4The collision entropy deficiency of a random variable W over set W is defined as the difference between entropies of

UW and W , i.e., log |W| −H2(W).

4

and thus Pr[(W,Z) ∈ Sδ] ≤ δ. It follows that

E[Adv(W,Z)] =
∑

(w,z)∈Sδ

Pr[(W,Z) = (w, z)] · Adv(w, z) +
∑

(w,z)/∈Sδ

Pr[Z = z] · Pr[W = w|Z = z] · Adv(w, z)

≤
∑

(w,z)∈Sδ

Pr[(W,Z) = (w, z)] + (2e/δ) ·
∑

(w,z)/∈Sδ

Pr[Z = z]·2−m · Adv(w, z)

≤ δ + (2e/δ) · E[Adv(UW , Z)] ,

and we complete the proof by setting δ =
√

2e · E[Adv(UW , Z)]. �

3.2 The Randomized Iterate

Definition 3.1 (the randomized iterate [7, 5]) Let n ∈ N, function f : {0, 1}n → {0, 1}n, and
let H be a family of pairwise-independent length-preserving hash functions over {0, 1}n. For k ∈ N,
x1 ∈ {0, 1}n and vector ~hk = (h1, . . . , hk) ∈ Hk, recursively define the kth randomized iterate by:

yk = f(xk), xk+1 = hk(yk)

For k − 1 ≤ t ∈ N, we denote the kth iterate by function fk, i.e., yk = fk(x1,~h
t), where ~ht is possibly

redundant as yk only depends on ~hk−1.

The randomized version refers to the case where x1
$←− {0, 1}n and ~hk−1 $←− Hk−1.

The derandomized version refers to that x1
$←− {0, 1}n, ~hk−1←BSG(Uq), where q ∈ Θ(n·logn),

BSG : {0, 1}q → {0, 1}(k−1)·log |H| is a bounded-space generator5 that 2−2n-fools every (2n+1, k, log |H|)-
LBP, and log |H| is the description length of H (e.g., 2n bits for concreteness).

Theorem 3.1 (PRGs from Regular OWFs [7]) For n ∈ N, k ∈ [n + 1], let f , H, fk and BSG(·)
be as defined in Definition 3.1, and let Hc = {hc : {0, 1}n → {0, 1}} be a family of Goldreich-Levin
predicates, where H and Hc both have description length Θ(n). We define G : {0, 1}n × Hn × Hc →
{0, 1}n+1 ×Hn ×Hc and G′ : {0, 1}n × {0, 1}q(n) ×Hc → {0, 1}n+1 × {0, 1}q(n) ×Hc as below:

G(x1,~h
n, hc) = (hc(x1), hc(x2), . . . , hc(xn+1),~hn, hc).

G′(x1, u, hc) = G(x1, BSG(u), hc).

Assume that f is a regular (length-preserving) one-way function and that BSG(·), H and Hc are effi-
cient. Then, G and G′ are pseudorandom generators.

Proof sketch of Theorem 3.1. It suffices to prove Lemma 3.2. Namely, for any 1≤k ≤ n+ 1,
given yk and the hash functions (either sampled uniformly or from bounded space generators), it is
hard to recover any xk satisfying f(xk) = yk. Then, Goldreich-Levin Theorem yields that each hc(xk) is
computationally unpredictable given yk. Note that yk implies all the subsequent hc(xk+1), . . ., hc(xn+1).
We complete the proof by Yao’s “next (previous) bit unpredictability implies pseudorandomness” ar-
gument [15]. It thus remains to prove Lemma 3.2 below which summarizes the statements of Lemma
3.2, Lemma 3.4, Lemma 3.11 from [8], and we provide a simpler proof.

Lemma 3.2 (the kth iterate is hard-to-invert) For any n ∈ N, k ∈ [n + 1], let f , H, fk be as
defined in Definition 3.1. Assume that f is a (T, ε) regular one-way function, i.e., for every PPT A and
A′ of running time T it holds that

Pr [A(f(Un), ~Hn) ∈ f−1(f(Un))] ≤ ε .

5Such efficient generators exists by Theorem 2.2, setting s(n) = 2n+1, q(n) = poly(n), v(n) = log |H| and ε(n) = 2−2n.

5

Pr [A′(f(Un), Uq) ∈ f−1(f(Un))] ≤ ε .

Then, for every such A and A′ it holds that

Pr [A(Yk, ~Hn) ∈ f−1(Yk)] ≤ 2
√
k · ε , (2)

Pr [A′(Y ′k, Uq) ∈ f−1(Y ′k)] ≤ 2
√

(k + 1) · ε , (3)

where Yk = fk(X1, ~H
n), Y ′k = fk(X1, BSG(Uq)), X1 is uniform over {0, 1}n and ~Hn is uniform over

Hn.

A simpler proof of Lemma 3.2 via Lemma 3.1. To apply Lemma 3.1, let W = f({0, 1}n),
Z = Hn, let (W,Z) = (Yk, ~H

n), UW = f(Un), and define

Adv(y,~hn)
def
=

{
1, if A(y, ~hn) ∈ f−1(y)

0, if A(y, ~hn) /∈ f−1(y)

where A is assumed to be deterministic without loss of generality6. We have by Lemma 3.3 that

H2(Yk | ~Hn) ≥ H2(f(Un) | ~Hn) − log k

and thus Lemma 3.1 yields that

Pr [A(Yk, ~H
n) ∈ f−1(Yk)] ≤ 2

√
k · Pr [A(f(Un), ~Hn) ∈ f−1(f(Un))] ≤ 2

√
k · ε .

The proof for (3) is similar except for setting (W = Y ′k, Z = Uq) and letting Adv(y, u) = 1 iff
A′(y, u) ∈ f−1(y). We have by Lemma 3.3 that

H2(Y ′k | Uq) ≥ H2(f(Un) | Uq) − log (k + 1)

and thus we apply Lemma 3.1 to get

Pr [A′(Y ′k, Uq) ∈ f−1(Yk)] ≤ 2
√

(k + 1) · Pr [A′(f(Un), Uq) ∈ f−1(f(Un))] ≤ 2
√

(k + 1) · ε .

�

The proof of Lemma 3.3 below appeared in [7], and we include it in Appendix A for completeness.

Lemma 3.3 (Collision Entropy [7]) For the same assumptions and notations as in Lemma 3.2, it
holds that

CP(f(Un)) = CP(f(Un) | ~Hn) = CP(f(Un) | BSG(Uq), Uq) =
1

|f({0, 1}n)|
, (4)

CP(Yk | ~Hn) ≤ k

|f({0, 1}n)|
, (5)

CP(Y ′k | BSG(Uq), Uq) ≤ k + 1

|f({0, 1}n)|
. (6)

6If A is probabilistic, let Adv (y,~hn)= Pr[A(y,~hn) ∈ f−1(y)], where probability is taken over the internal coins of A.

6

4 A New Class of OWFs vs. Regular/Arbitrary OWFs

In this section, we introduce the class of OWFs from which almost linear seed length PRGs can be
constructed. We show that (almost-)regular OWFs fall into a special case (for c = 0) along with the
argument that “if a one-way function behaves like a random function, then it is almost regular”. More
generally, the class covers a wider range of one-way functions (for positive c ∈ N) than regular ones.
We also (attempt to) characterize functions that are not captured by our definition. We show that in
order not to fall into our class of one-way functions, the counterexamples must satisfy infinitely many
conditions.

Definition 4.1 (OWFs with n−c-weighted maximal-size preimages) For constant c, we say that
f : {0, 1}n → {0, 1}l(n) has an n−c-fraction of maximal-size preimages if there exist (not necessarily
efficient) function max(n) ∈ N and negligible function ε(n) ∈ [0, 1] such that for every n ∈ N, it holds
that :

Pr[f(Un) ∈ Ymax(n)] ≥ n−c (7)

Pr[f(Un) ∈
n⋃

j=max(n)+1

Yj] ≤ ε(n) , (8)

where Yj
def
= {y : 2j−1 ≤ |f−1(y)| < 2j}.

For example, with c = 0 and efficiently (resp., inefficiently) computable max(·) it is equivalent to assume
that the underlying f is a known- (resp., unknown-) regular function.

Almost-regularity vs. the relaxed version of Definition 4.1. In fact, the construction by
Haitner et al. [7] does not need strictly regular OWFs but only requires (implicit in its proof) that the
logarithm of the pre-image size log |f−1(y)| lies between some interval [a, a+d] for some d∈O(log(1/ε)),
where ε is the hardness parameter (as in Definition 2.2). Likewise, our proposed PRG only assumes
a relaxed version of (7). That is, for some d∈O(log(1/ε)) it holds that Ymax−d, Ymax−d+1, . . ., Ymax

(instead of Ymax alone) sum to an n−c-fraction (see (27)). Therefore, almost regular functions fall into
the (extended) class of our OWFs for c = 0. We give the proof under the assumption of Definition 4.1
for brevity, and sketch how to adapt the proof to a weaker assumption than (7) in Remark B.2 (see
Appendix B).

Now, we use probabilistic methods to argue that almost-regularity is a good assumption in the
average-case sense. That is, if the one-way function is considered as randomly drawn from the set of
all (not just one-way) functions, then it is very likely to be almost-regular and thus a PRG can be
efficiently constructed. The proof of Lemma 4.1 is deferred to Appendix A.

Lemma 4.1 (A random function is almost-regular) Let F = {f : {0, 1}n → {0, 1}m } be the set
of all functions mapping n-bit to m-bit strings. For any 0 < d < n, we have

• If m ≤ n− d, then it holds that

Pr
f

$←−F
[SD(f(Un), Um) ≤ 2−d/4] ≥ 1− 2−d/4 .

• If m > n− d, then we have

Pr
f

$←−F , x $←−{0,1}n
[1 ≤ |f−1(f(x))| ≤ 22d+1] ≥ 1− 2−d .

Typically, we can set d ∈ ω(log n) so that f will be almost regular except for a negligible fraction. Note
that the first bullet gives even stronger guarantee than the second one does.

7

Beyond regular functions. We cannot rule out the possibility that the one-way function in
consideration is far from regular, namely (using the language of Definition 4.1), an arbitrary one-
way function can have non-empty sets Yi, . . ., Yi+O(n). Previously the best known construction [14]

requires seed length Õ(n3), and our PRG achieves seed length O(n · log n) provided that Definition 4.1
is respected. Below we argue that Definition 4.1 is quite generic and any function that fails to satisfy
it should be somewhat artificial. As a first attempt, one may argue that if we skip all those Y ′js (in the

descending order of j) that sum to negligible, the first one that is non-negligible7 (i.e., not meeting (8))
will satisfy (7) for at least infinitely many n’s. In other words, it seems that our PRG construction works
for any one-way function (at least for infinitely many n’s). This argument is unfortunately problematic
as (non-)negligible is a property of a sequence of probabilities, rather than a single one. However, we
will follow this intuition and provide a remedied analysis below.

Lemma 4.2 (A necessary condition to be a counterexample) Let f : {0, 1}n → {0, 1}l(n) be

any one-way function and denote Yj
def
= {y : 2j−1 ≤ |f−1(y)| < 2j}, and let κ = κ(n) be the num-

ber of non-empty sets Yj (that comprise the range of f) for any given n, and write them as Yi1, Yi2,
. . ., Yiκ with i1 < i2 < . . . < iκ. For every n0 ∈ N ∪ {0}, it must hold that function µn0(·) defined as

µn0(n)
def
=

{
Pr[f(Un) ∈ Yiκ(n)−n0

], if κ(n) > n0

0 , if κ(n)≤n0
(9)

is negligible. Otherwise (if the above condition is not met), there exists constant c ≥ 0, max(n) ∈ N and
negligible function ε(n) ∈ [0, 1] such that (8) holds (for all n’s) and (7) holds for infinitely many n’s.

(9) is necessary and strong. The above lemma formalizes a necessary condition to constitute
a counterexample to Definition 4.1 (see Appendix A for its proof). It is necessary in the sense that
any one-way function that does not satisfy it must satisfy Definition 4.1 from which our PRG can
be efficiently built (for at least infinitely many n’s). Note that the condition is actually an infinite
set of conditions by requiring every µn0(n) (for n0 ∈ N) being negligible. At the same time, it holds
unconditionally that all these µn0(n) (that correspond to the weights of all non-empty sets) must sum
to unity, i.e., for every n we have

µ0(n) + µ1(n) + . . .+ µκ(n)−1(n) = 1 .

This might look mutually exclusive to (9) as if every µn0(n) is negligible then the above sum should be
upper bounded by κ(n)·negl(n) = negl′(n) instead of being unity. This intuition is not right in general,
as by definition a negligible function only needs to be super-polynomially small for all sufficiently large
(instead of all) n’s. However, it is reasonable to believe that one-way functions satisfying (9) should be
quite artificial.

(9) is not sufficient. Despite seeming strong, (9) is still not sufficient to make a counterexample. To
show this, we give an example function that satisfies both (9) (for every n0 ∈ N∪{0}) and Definition 4.1.
That is, let f be a one-way function where for every n the non-empty sets of f are

Yn/3,Yn/3+1, . . . ,Yn/2 (10)

with Pr[f(Un) ∈ Yn/3] = 1 − n− logn+1/6, Pr[f(Un) ∈ Yn/3+i] = n− logn for all 1≤i≤n/6 and thus
κ(n) = n/6 + 1. It is easy to see that this function satisfies Definition 4.1 with max(n) = n/3 and
ε(n) = n− logn+1/6. In addition, for every n0 ∈ N∪ {0} function µn0(·) is negligible as µn0(n) = n− logn

for all n > 6n0. In summary, although an arbitrary one-way function may not fall into the class of
functions given in Definition 4.1, the counterexamples must be well crafted to satisfy a very strong (yet
still insufficient) condition. We leave it as an open question on finding out such a counterexample and
believe that our construction should be able to deal with most natural one-way functions.

7Although non-negligible and noticeable are not the same, they are quite close: a non-negligible (resp., noticeable)
function µ(·) satisfies that there exists constant c such that µ(n) ≥ n−c for infinitely many (resp., all large enough) n’s.

8

5 A More General Construction of Pseudorandom Generators

5.1 Overview

In this section we construct a pseudorandom generator with seed length O(n log n) from the class of
one-way functions as in Definition 4.1. We first show how to construct the PRG by running the iterate
Õ(n2c+1) times, and thus require large amount of randomness (i.e., Õ(n2c+2) bits) to sample the hash
functions. Then, we show the derandomized version where the amount of the randomness is compressed
into O(n log n) bits using bounded space generators.

5.2 The Randomized Version: A PRG with Seed Length Õ(n2c+2)

Recall that any one-way function f can be assumed to be length-preserving without loss of generality.
Further, we also assume that conditioned on f(Un) ∈ Ymax, f(Un) is flat over Ymax, i.e., ∀y ∈ Ymax

satisfies Pr[y = f(Un)] = 2max−n−1 rather than lying in the small interval of [2max−n−1, 2max−n).

Theorem 5.1 (the randomized version) For n, k ∈ N and constant c, let f , H and fk be as in
Definition 3.1, assume that f is an arbitrary (length-preserving) one-way function with n−c-fraction
of maximal-size preimages, and let Hc = {hc : {0, 1}n → {0, 1}2 logn} be a family of Goldreich-Levin
hardcore functions. Then, for any efficient α(n) ∈ ω(1), ∆(n) = α(n) · log n ·n2c and r(n) = dn/ log ne,
the function g:{0, 1}n ×Hr(n)·∆(n)−1 ×Hc→{0, 1}2n ×Hr(n)·∆(n)−1 ×Hc defined as

g(x1,~h
r·∆−1, hc) = (hc(x1), hc(x1+∆), hc(x1+2∆), . . . , hc(x1+r·∆),~hr·∆−1, hc) (11)

is a pseudorandom generator.
Notice that a desirable property about the technique is that a construction assuming a sufficiently large
c works with any one-way function whose actual parameter is less than or equal to c.

Proof. The proof is similar to Theorem 3.1 based on Yao’s hybrid argument [15]. Namely, the
pseudorandomness of a sequence (with polynomially many blocks) is equivalent to that every block is
pseudorandom conditioned on its suffix (or prefix). By the Goldreich-Levin Theorem and Lemma 5.1
below we know that every hc(x1+j∆) is pseudorandom conditioned on hc, y(j+1)∆ and ~hr∆−1, which
efficiently implies all subsequent blocks hc(x1+(j+1)∆), . . ., hc(x1+r∆). This completes the proof. �

Lemma 5.1 (every ∆(n) iterations are hard-to-invert) For n, k ∈ N and constant c, let f , H,
fk, α = α(n), ∆ = ∆(n) and r = r(n) be as defined in Theorem 5.1. More specifically, assume that f is
a (T (n), ε(n))-one-way function with n−c-fraction of maximal-size preimages. Then, for every j ∈ [r],
and for every PPT A of running time T (n)− nO(1) (for some universal constant O(1)) it holds that

Pr
x1

$←−{0,1}n, ~hr∆−1
$←−Hr∆−1

[A(yj·∆, ~h
r∆−1) = x1+(j−1)∆] ∈ O(nc · r ·∆2 ·

√
ε(n)) . (12)

Proof sketch of Lemma 5.1 . Assume towards a contradiction that

∃j∗ ∈ [r], ∃ PPT A : Pr[A(Yj∗·∆, ~H
r∆−1) = X1+(j∗−1)∆] ≥ εA(n) (13)

for some non-negligible function εA(·). Then, we build an efficient algorithm MA that invokes A (as
in Algorithm 1) and inverts f with probablity Ω(ε2

A/n
2c·r2 ·∆4) (as shown in Lemma 5.3), which is a

contradiction to the (T, ε)-one-wayness of f and thus completes the proof.
The proof presented here is similar to the hardness amplification of regular weakly one-way func-

tion [8], but ours is more involved (even though Lemma 3.1 already simplifies the key ingredients).
We define the events Ek and Sk as in Definition 5.1, where Sk refers to that during the first k iterates
no yt (1≤t ≤ k) hits the negligible fraction region (see Remark B.1 in Appendix B for the underlying
intuitions), and Ek defines the desirable event that yk hits Ymax (which implies the hard-to-invertness).

9

Definition 5.1 (events Sk and Ek) For any n ∈ N, for any k ≤ r∆, define events

Sk
def
=

(
(X1, ~H

r∆−1) ∈
{

(x1,~h
r∆−1) : ∀t ∈ [k] satisfies yt ∈ Y[max], where yt = f t(x1,~h

r∆−1)
})

Ek
def
=

(
(X1, ~H

r∆−1) ∈
{

(x1,~h
r∆−1) : yk ∈ Ymax , where yk = fk(x1,~h

r∆−1)
})

where (X1, ~H
r∆−1) is uniform distribution over {0, 1}n×Hr∆−1. We also naturally extend the definition

of collision probability conditioned on Ek and Sk. For example,

CP(Yk ∧ Ek∧Sk | ~Hr∆−1)
def
= E~hr∆−1← ~Hr∆−1

[∑
y

Pr[fk(X1, ~H
r∆−1) = y ∧ Ek∧Sk | ~Hr∆−1 = ~hr∆−1]2

]

CP(Yk, ~H
r∆−1 | Ek ∧ Sk)

def
=

∑
(y,~hr∆−1)

Pr[(fk(X1, ~H
r∆−1), ~Hr∆−1) = (y,~hr∆−1) | Ek ∧ Sk]2 .

Claim 5.1 For any n ∈ N, and let Sk and Ek be as defined in Definition 5.1, assume that f has an
n−c-fraction of maximal-size preimages (with ε and max defined as in (7) and (8)). Then, it holds that

∀k ∈ [r∆] : Pr[Sk] ≥ (1− ε)k ≈ 1− kε , Pr[Ek] ≥ n−c , Pr[Ek ∧ Sk] ≥ n−c/2 (14)

∀k ∈ N : Pr[Ek+1 ∨ Ek+2 ∨ . . . ∨ Ek+∆] ≥ 1− exp∆/n2c ≥ 1− n−α (15)

∀k ∈ [r∆] : CP(Yk ∧ Ek ∧ Sk | ~Hr∆−1) ≤ r∆·2max−n+1 , where Yk = fk(X1, ~H
r∆−1) . (16)

Proof. We have that x1, x2 = h1(y1), . . ., xr∆ = hr∆−1(yr∆−1) are all i.i.d. to Un due to the universality
of H. This implies that Pr[yi ∈ Y[max]] ≥ 1− ε for every i ∈ [k] independently, and that E1, . . . and Er∆
are i.i.d. events with probability at least n−c. The former further implies Pr[Sk] ≥ (1 − ε)k whose
approximation is given by 1 − k · ε for any k = poly(n) and ε = negl(n). Thus, we complete the proof
for (14) by

Pr[Ek ∧ Sk] ≥ Pr[Ek] − Pr[¬ Sk] ≥ n−c − k · ε ≥ n−c/2 .

For every k ∈ N, i ∈ [∆], define ζk+i = 1 iff Ek+i occurs (and ζk+i = 0 otherwise). It follows by a
Chernoff-Hoeffding bound that

∀k ∈ N : Pr[(¬Ek+1) ∧ . . . ∧ (¬Ek+∆)] = Pr[
∆∑
i=1

ζk+i = 0] ≤ exp−∆/n2c ≤ n−α

which yields (15) by taking a negation. Regarding (16), consider two instances of the random iterate
seeded with independent x1 and x′1 and a common random ~hr∆−1, the collision probability is upper
bounded by the sum of events that the first collision occurs on points y1, y2, . . ., yk ∈ Y[max] respectively,
where for upper bound we omit other constraints such as Ek and that the route after the first collision
should also hit every Y[max] (as required by Sk). We thus have by the pairwise independence of H that

CP(Yk ∧ Ek ∧ Sk | ~Hr∆−1) ≤ CP(Yk ∧ Sk | ~Hr∆−1)

≤ Pr
x1,x′1

$←−{0,1}n
[f(x1) = f(x′1) ∈ Y[max]] +

k∑
t=2

(
Pr

yt−1 6=y′t−1, ht−1
$←−H

[f(xt) = f(x′t) ∈ Y[max]]

)

≤ r∆
∑

y∈Y[max]

Pr[f(Un) = y]2 ≤ r∆
max∑
i=1

∑
y∈Yi

Pr[f(Un) = y]·2i−n = r∆

max∑
i=1

Pr[f(Un) ∈ Yi]·2i−n

≤ r∆·2max−n(1 + 2−1 + . . .+ 21−max) ≤ r∆·2max−n+1 .

�

10

Lemma 5.2 For any n ∈ N, with the same assumptions and notations as in Theorem 5.1, Definition 4.1
and Definition 5.1, and let j∗ ∈ [r], A, εA be as assumed in (13). Then, there exists i∗ ∈ [∆] such that

Pr[A(Yj∗·∆, ~Hr∆−1) = X1+(j∗−1)∆ ∧ E(j∗−1)∆+i∗ ∧ S(j∗−1)∆+i∗] ≥ εA/2∆ . (17)

Proof. For notational convenience use shorthand C for the event A(Yj∗·∆, ~H
r∆−1) = X1+(j∗−1)∆. Then,

∆∑
i=1

Pr[C ∧ E(j∗−1)∆+i ∧ S(j∗−1)∆+i] ≥
∆∑
i=1

Pr[C ∧ E(j∗−1)∆+i ∧ Sr∆] ≥ Pr[C ∧ Sr∆ ∧
(∆∨
i=1

E(j∗−1)∆+i

)
]

≥ Pr[C] − Pr[¬Sr∆] − Pr[¬
(∆∨
i=1

E(j∗−1)∆+i

)
] ≥ εA − r∆ · ε − n−α ≥ εA/2 ,

where we use (14) and (15) in the fourth inequality above, and recall that ε and n−α are both negligible
in n. Thus, such an i∗ (which satisfies (17)) exists by an averaging argument. �

The intuition for MA. We know by Lemma 5.2 that there exist some i∗ and j∗ conditioned on which
A inverts the iterate with non-negligible probability. If we knew which i∗ and j∗, then we simply replace
y(j∗−1)∆+i∗ with f(Un), simulate the iterate for the rest iterations and invoke A to invert f . Although
the distribution after the replacement will not be identical to the original one, we use Lemma 3.1 to
argue that the collision entropy deficiency is small enough and thus the inverting probability will not
blow up by more than a polynomial factor. However, we actually do not know the values of i∗ and j∗,
so we need to randomly sample i and j over [∆], [r] respectively. This yields the algorithm below.

Algorithm 1 MA.

Input: y ∈ {0, 1}n

Sample j
$←− [r], i

$←− [∆], ~hr∆−1 $←− Hr∆−1;
Let ỹ(j−1)∆+i := y ;
FOR k = (j − 1)∆ + i+ 1 TO (j − 1)∆ + ∆

Compute x̃k := hk−1(ỹk−1), ỹk := f(x̃k);
x̃(j−1)∆+1 ← A(ỹj∆,~h

r∆−1);
FOR k = (j − 1)∆ + 1 TO (j − 1)∆ + i− 1

Compute ỹk := f(x̃k), x̃k+1 := hk(ỹk) ;

Output: x̃(j−1)∆+i

Lemma 5.3 (MA inverts f) For any n ∈ N, let A be as assumed in Lemma 5.2 and let MA be as
defined in Algorithm 1. Then, it holds that

Pr
y←f(Un); j

$←−[r]; i
$←−[∆]; ~hr∆−1

$←−Hr∆−1

[MA(y; j, i, ~hr∆−1) ∈ f−1(y)] ≥
ε2
A

28 · n2c·r2 ·∆4
.

Proof. We know by Lemma 5.2 that there exist j∗ ∈ [r] and i∗ ∈ [∆] satisfying (17), which implies

Pr [MA(Y(j−1)∆+i; j, i, ~H
r∆−1) ∈ f−1(Y(j−1)∆+i) | (j, i) = (j∗, i∗) ∧ E(j−1)∆+i ∧ S(j−1)∆+i]

≥ Pr[A(Yj∗·∆, ~H
r∆−1) = X1+(j∗−1)∆ | E(j∗−1)∆+i∗ ∧ S(j∗−1)∆+i∗]

≥ Pr[A(Yj∗·∆, ~H
r∆−1) = X1+(j∗−1)∆ ∧ E(j∗−1)∆+i∗ ∧ S(j∗−1)∆+i∗] ≥ εA/2∆ ,

where the second inequality, in abstract form, is Pr[Ea|Eb] ≥ Pr[Ea|Eb] · Pr[Eb] = Pr[Ea ∧ Eb]. The
above is not exactly what we need as conditioned on E(j∗−1)∆+i∗ ∧ S(j∗−1)∆+i∗ , the random variable

11

(Y(j∗−1)∆+i∗ , ~H
r∆−1) is not uniform over Ymax×Hr∆−1. However, we show below that it has nearly full

collision entropy over Ymax ×Hr∆−1

CP((Y(j∗−1)∆+i∗ , ~H
r∆−1) | E(j∗−1)∆+i∗ ∧ S(j∗−1)∆+i∗)

= CP((Y(j∗−1)∆+i∗ , ~H
r∆−1) ∧ E(j∗−1)∆+i∗ ∧ S(j∗−1)∆+i∗) / Pr[E(j∗−1)∆+i∗ ∧ S(j∗−1)∆+i∗]

2

≤ CP(Y(j∗−1)∆+i∗ ∧ E(j∗−1)∆+i∗ ∧ S(j∗−1)∆+i∗ | ~Hr∆−1)
1

(n−2c/4) · |H|r∆−1

≤ r∆·2max−n+1

(n−2c/4) · |H|r∆−1
=

8r∆ · n2c

2n−max · |H|r∆−1
,

where equalities follow from Fact A.1 in Appendix A and the two inequalities are by (14) and (16)
respectively. Taking a logarithm, we get

H2((Y(j−1)∆+i∗ , ~H
r∆−1) | E(j−1)∆+i∗ ∧ S(j−1)∆+i∗) ≥

(
n−max +(r∆− 1) log |H| − c · logn+ 1

)
− e ,

where entropy deficiency e ≤ c · logn + log r + log ∆ + 4. Note that conditioned on f(Un) ∈ Ymax the
distribution (f(Un), ~Hr∆−1) is uniform over Ymax ×Hr∆−1 with full entropy

H2((f(Un), ~Hr∆−1) | f(Un) ∈ Ymax) = log(
n−c

2−n+max−1
·| ~H|r∆−1) = n−max +(r∆−1) log |H|−c·logn+1 .

To apply Lemma 3.1, let W = Ymax × Hr∆−1, Z = ∅, let W be (Y(j∗−1)∆+i∗ , ~H
r∆−1) conditioned on

E(j∗−1)∆+i∗ and S(j∗−1)∆+i∗ , and define

Adv(y,~hr∆−1)
def
=

{
1, if MA(y; j∗, i∗, ~hr∆−1) ∈ f−1(y)

0, if MA(y; j∗, i∗, ~hr∆−1) /∈ f−1(y)

Let Cj∗i∗max denote the event that (j, i) = (j∗, i∗) ∧ f(Un) ∈ Ymax, and we thus have

Pr[MA(f(Un); j, i, ~Hr∆−1) ∈ f−1(f(Un))]

≥ Pr[Cj∗i∗max]·Pr[MA(f(Un); j, i, ~Hr∆−1) ∈ f−1(f(Un)) | Cj∗i∗max]

≥ (1/r∆nc)·E[Adv(UYmax , ~H
r∆−1)]

≥ (1/r∆nc)·
E[Adv(Y(j∗−1)∆+i∗ , ~H

r∆−1) | E(j∗−1)∆+i∗ ∧ S(j∗−1)∆+i∗]2

2e+2

≥ (1/r∆nc)·
ε2
A/4∆2

26 · ncr ·∆
=

ε2
A

28 · n2c·r2 ·∆4
,

where we apply Lemma 3.1 to complete the proof.
�

5.3 The Derandomized Version: A PRG with Seed Length O(n · log n)

The derandomized version uses a bounded-space generator to expand a Θ(n · log n)-bit u into a long
string over Hr∆−1 (rather than sampling a random element over it).

Theorem 5.2 (the derandomized version) For n, k ∈ N and constant c, let f , H, Hc, fk, α(n),
∆(n) and r(n) be as assumed in Theorem 5.1, let g be as defined in (11), let

BSG : {0, 1}q(n)∈Θ(n·logn) → {0, 1}(α(n)·n2c+1−1)·log |H|

12

be a bounded-space generator that 2−2n-fools every (2n+ 1, (α(n)n2c+1), log |H|)-LBP (see Footnote 5).
Then, the function g′ : {0, 1}n × {0, 1}q(n) ×Hc→{0, 1}2n × {0, 1}q(n) ×Hc defined as

g′(x1, u, hc) = g(x1, BSG(u), hc) (18)

is a pseudorandom generator.

Similar to the randomized version, it suffices to show Lemma 5.4 (the counterpart of Lemma 5.1).

Lemma 5.4 For the same assumptions as stated in Lemma 5.1, we have that for every j ∈ [r], and for
every PPT A′ of running time T (n)− nO(1) (for some universal constant O(1)) it holds that

Pr
x1

$←−{0,1}n, u $←−{0,1}q , ~hr∆−1:=BSG(u)

[A′(yj·∆, u) = x1+(j−1)∆] ∈ O(nc · r ·∆2 ·
√
ε(n)) . (19)

The proof of Lemma 5.4 follows the steps of the proof of Lemma 5.1. We define events S ′k and E ′k
in Definition 5.2 (the analogues of Sk and Ek). Despite that all the events (e.g., E ′1,. . ., E ′k) are not
independent due to short of randomness, we still have (20), (21) and (22) below. We defer their proofs
to Appendix A due to lack of space, where for every inequality we define an LBP and argue that the
advantage of the LBP on ~Hr∆−1 and BSG(Uq) is bounded by 2−2n and thus (20), (21) and (22) follow
from their respective counterparts (14), (15) and (16) by adding an additive term 2−2n.

Definition 5.2 (events S ′k and E ′k) For any n ∈ N, for any k ≤ r∆, define events

S ′k
def
=

((
X1, Uq

)
∈
{

(x1, u) : ∀t ∈ [k] satisfies y′t ∈ Y[max], where y′t = f t(x1, BSG(u))
})

E ′k
def
=

(
(X1, Uq) ∈

{
(x1, u) : y′k ∈ Ymax , where y′k = fk(x1, BSG(u))

})
where (X1, Uq) is uniform distribution over {0, 1}n×{0, 1}q. We refer to Definition B.1 in Appendix B
for the definitions of the collision probabilities in the following proofs.

∀k ∈ [r∆] : Pr[S ′k] ≥ 1− kε− 2−2n , Pr[E ′k] ≥ n−c − 2−2n , Pr[E ′k ∧ S ′k] ≥ n−c/2 (20)

∀k ∈ [(r − 1)∆] : Pr[E ′k+1 ∨ E ′k+2 ∨ . . . ∨ E ′k+∆] ≥ 1− n−α − 2−2n (21)

∀k ∈ [r∆] : CP(Y ′k ∧ E ′k ∧ S ′k | Uq) ≤ (r∆ + 1)·2max−n+1, where Y ′k = fk(X1, BSG(Uq)) (22)

Proof sketch of Lemma 5.4 . Assume towards a contradiction that for some non-negligible εA′(·)
that

∃j∗ ∈ [r],∃ PPT A′ : Pr[A′(Y ′j∗·∆, Uq) = X ′1+(j∗−1)∆] ≥ εA′(n) (23)

where for k ∈ [r∆] we use notations ~H ′r∆−1 = BSG(Uq), Y
′
k = fk(X1, ~H

′r∆−1) and X ′k+1 = H ′k(Y
′
k).

Then, we define MA′ that inverts f with the following probability. Since MA′ is quite similar to its
analogue MA we state it as Algorithm 2 in Appendix B.

Pr
y←f(Un); j

$←−[r]; i
$←−[∆]; u

$←−{0,1}q
[MA′(y; j, i, u) ∈ f−1(y)] ∈ Ω(

ε2
A′

n2c·r2 ·∆4
) , (24)

which is a contradiction to the one-wayness of f and thus concludes Lemma 5.4.

13

Proof sketch of (24). Denote by C′ the event A(Y ′j∗·∆, Uq) = X ′1+(j∗−1)∆. Then,

∆∑
i=1

Pr[C′ ∧ E ′(j∗−1)∆+i ∧ S
′
(j∗−1)∆+i] ≥

∆∑
i=1

Pr[C′ ∧ E ′(j∗−1)∆+i ∧ S
′
r∆] ≥ Pr[C′ ∧ S ′r∆ ∧

(∆∨
i=1

E ′(j∗−1)∆+i

)
]

≥ Pr[C′] − Pr[¬S ′r∆] − Pr[¬
(∆∨
i=1

E ′(j∗−1)∆+i

)
] ≥ εA′ − r∆ · ε − n−α − 2−2n+1 ≥ εA′/2 ,

where we use (20) and (21) in the fourth inequality. Thus, by averaging we have that

∃j∗ ∈ [r],∃i∗ ∈ [∆], ∃ PPT A′ : Pr[A′(Y ′j∗·∆, Uq) = X ′1+(j∗−1)∆] ≥ εA′/2∆ .

The proofs below follow the steps of Lemma 5.3. We have that (proof of (25) given in Appendix A)

H2((Y ′(j−1)∆+i∗ , Uq) | E ′(j−1)∆+i∗ ∧ S
′
(j−1)∆+i∗) ≥ H2(f(Un), Uq | f(Un) ∈ Ymax) − e , (25)

where entropy deficiency e≤c · logn+ log r + log ∆ + 5. Finally, let W = Ymax × {0, 1}q, Z = ∅, let W
be (Y ′(j∗−1)∆+i∗ , Uq) conditioned on E ′(j∗−1)∆+i∗ and S ′(j∗−1)∆+i∗ , and define

Adv(y, u)
def
=

{
1, if MA′(y; j∗, i∗, u) ∈ f−1(y)

0, if MA′(y; j∗, i∗, u) /∈ f−1(y)

Let Cj∗i∗max denote the event that (j, i) = (j∗, i∗) ∧ f(Un) ∈ Ymax, and we thus have

Pr[MA′(f(Un); j, i, Uq) ∈ f−1(f(Un))]

≥ Pr[Cj∗i∗max]·Pr[MA′(f(Un); j, i, Uq) ∈ f−1(f(Un)) | Cj∗i∗max]

≥ (1/r∆nc)·E[Adv(UYmax , Uq)]

≥ (1/r∆nc)·
E[Adv(Y ′(j∗−1)∆+i∗ , Uq) | E

′
(j∗−1)∆+i∗ ∧ S

′
(j∗−1)∆+i∗]2

2e+2

≥ (1/r∆nc)·
ε2
A′/4∆2

27 · ncr ·∆
=

ε2
A′

29 · n2c·r2 ·∆4
.

where we apply Lemma 3.1 to complete the proof for (24).

References

[1] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak, François-Xavier
Standaert, and Yu Yu. Leftover hash lemma, revisited. In Phillip Rogaway, editor, CRYPTO,
LNCS, pages 1–20. Springer, 2011.

[2] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo
random bits. In Proceedings of the 23rd IEEE Symposium on Foundation of Computer Science,
pages 112–117, 1982.

[3] Yevgeniy Dodis, Krzysztof Pietrzak, and Daniel Wichs. Key derivation without entropy waste.
In Proceedings of the 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques (Eurocrypt 2014), 2014. (to appear).

[4] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In Proceedings of the 10th Theory of
Cryptography Conference (TCC 2013), pages 1–22, 2013.

14

[5] Oded Goldreich, Hugo Krawczyk, and Michael Luby. On the existence of pseudorandom generators.
SIAM Journal on Computing, 22(6):1163–1175, 1993.

[6] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In D. S.
Johnson, editor, Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing,
pages 25–32, Seattle, Washington, 15–17 May 1989.

[7] Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the randomized iterate. In
Proceedings of the 26th International Cryptology Conference (CRYPTO 2006), pages 22–40, 2006.

[8] Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the randomized iterate.
SIAM Journal on Computing, 40(6):1486–1528, 2011. draft of full version available at http:

//www.cs.tau.ac.il/~iftachh/papers/RandomizedIteate/RandomIterate.pdf.

[9] Iftach Haitner, Omer Reingold, and Salil P. Vadhan. Efficiency improvements in constructing
pseudorandom generators from one-way functions. In Proceedings of the 42nd ACM Symposium on
the Theory of Computing, pages 437–446, 2010.

[10] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Construction of pseu-
dorandom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396,
1999.

[11] Thomas Holenstein. Pseudorandom generators from one-way functions: A simple construction for
any hardness. In Proceedings of the 3rd Theory of Cryptography Conference (TCC 2006), 2006.

[12] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network algorithms.
In Proceedings of the 26th ACM Symposium on the Theory of Computing, pages 356–364, 1994.

[13] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica, 12(4):449–
461, 1992.

[14] Salil P. Vadhan and Colin Jia Zheng. Characterizing pseudoentropy and simplifying pseudorandom
generator constructions. In Proceedings of the 44th ACM Symposium on the Theory of Computing,
pages 817–836, 2012.

[15] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
Proceedings of the 23rd IEEE Symposium on Foundation of Computer Science, pages 80–91, 1982.

[16] Yu Yu, Xiangxue Li, and Jian Weng. Pseudorandom generators from regular one-way functions:
New constructions with improved parameters. In ASIACRYPT, pages 261–279, 2013.

A Proofs Omitted

Proof of Lemma 3.3. (4) follows from the assumption that f is a regular function, and the fact that
f(Un) is independent of any other distributions. As for (5), consider running two instances of the iterate
seeded with independent x1 and x′1 and a common random ~hk−1, the probability of colliding on yk is
upper bounded by the sum of the events that the first collision occurs on points y1, . . ., yk respectively,
where x1, . . ., xk are all i.i.d. to uniform due to the universality of H. It follows that

CP(Yk | ~Hk−1)≤k · CP(f(Un)) =
k

|f({0, 1}n)|
.

We sketch the proof of (6) as below (see [8, Lemma 3.11] for details): consider the following (2n, n +
1, log |H|)-LBP M for the input (x1,x′1): the source node is labeled by (y1 = f(x1),y′1 = f(x′1)), and

15

http://www.cs.tau.ac.il/~iftachh/papers/RandomizedIteate/RandomIterate.pdf
http://www.cs.tau.ac.il/~iftachh/papers/RandomizedIteate/RandomIterate.pdf

being on node labeled by (yi,y
′
i) at the ith layer, it takes the current layer input hi ∈ H, and computes

yi+1 := f(hi(yi)), y
′
i+1 := f(hi(y

′
i)). Finally, M moves to the 1-labeled node if yn+1 = y′n+1 or the

0-labeled node otherwise. Note that the probability that M outputs 1 is equal to that the two iterates
(with inputs x1 and x′1 respectively, and using the same hash function ~hn) collide on yn+1 = y′n+1. As

BSG 2−2n-fools every (2n, n + 1, log |H|)-LBP (including M), replacing uniform ~Hk−1 with BSG(Uq)
will not increase the collision probability by more than 2−2n, i.e.,

CP(Y ′k | BSG(Uq)) ≤ CP(Yk| ~Hk−1) + 2−2n ≤ k

|f({0, 1}n)|
+ 2−2n ≤ k + 1

|f({0, 1}n)|
.

and it is not hard to see that for any ~hk−1 and any u1, u2∈BSG−1(~hk−1)

CP(Y ′k | Uq = u1) = CP(Y ′k | Uq = u2) = CP(Y ′k | BSG(Uq) = ~hk−1) .

We complete the proof by

CP(Y ′k | Uq) = CP(Y ′k | BSG(Uq)) ≤ k + 1

|f({0, 1}n)|
.

�

Proof of Lemma 4.1. We see F as a family of universal hash functions and let F be a uniform
distribution over F . For m ≤ n− d we have by the leftover hash lemma that

E
f

$←−F [SD(f(Un) , Um)] = SD(F (Un) , Um | F) ≤ 2−
d
2 .

It follows by a Markov inequality that the above statistical distance is bounded by 2−d/2 · 2d/4 except
for a 2−d/4-fraction of f . We proceed to the case for m > n− d to get

CP(F (Un) | F) ≤ CP(Un) + max
x1 6=x2

{ Pr[F (x1) = F (x2)] } = 2−n + 2−m ≤ 2−n+d+1

We define S def
= {(y, f) : |f−1(y)| > 22d+1} to yield

2−n+d+1 ≥ CP(F (Un) | F) =
∑
f

Pr[F = f]
∑
y

Pr[f(Un) = y]2

≥ 2−n+2d+1 ·
∑
f

Pr[F = f]
∑

y:(y,f)∈S

Pr[f(Un) = y]

= 2−n+2d+1 · Pr[(F (Un), F) ∈ S] ,

and thus Pr[(F (Un), F) ∈ S] ≤ 2−d. This completes the proof. Note that |f−1(y)| ≥ 1 for any y = f(x).
�

Proof of Lemma 4.2. If (9) does not hold for every n0 ∈ N ∪ {0}, then there must exist an n0 such
that µ0(·), . . . µn0−1(·) are negligible and µn0(·) is non-negligible. We then define max(·) as

max(n)
def
=

{
iκ(n)−n0

, if κ(n) > n0

⊥ , if κ(n)≤n0

It is easy to see that Yiκ(n)−n0+1
, . . ., Yiκ(n)

sum to a negligible fraction in n (i.e., the sum of a finite
number of negligible functions µ0(·), . . . µn0−1(·) results into another negligible function). Denote by

N⊥
def
= {n ∈ N∪{0} : max(n) = ⊥}. We have by assumption that for some constant c that µn0(n) ≥ n−c

for infinitely many n ∈ N∪ {0}, and thus µn0(n) ≥ n−c holds also for infinitely many n ∈ N∪ {0} \N⊥.
This is due to µn0(n) = 0 for any n ∈ N⊥. Therefore, Pr[f(Un) ∈ Ymax] is non-negligible, which
completes the proof. �

16

Fact A.1 For any k ∈ [r∆], we have

CP((Yk, ~H
r∆−1) | Ek ∧ Sk) =

CP((Yk, ~H
r∆−1) ∧ Ek ∧ Sk)

Pr[Ek ∧ Sk]2
=

CP(Yk ∧ Ek ∧ Sk | ~Hr∆−1)

Pr[Ek ∧ Sk]2 · |H|r∆−1

(26)

Proof of Fact A.1. We first have that

CP((Yk, ~H
r∆−1) | Ek ∧ Sk) · Pr[Ek ∧ Sk]2

= Pr[Ek ∧ Sk]2 ·
∑

(y,~hr∆−1)

Pr[(Yk, ~H
r∆−1) = (y,~hr∆−1) | Ek ∧ Sk]2

=
∑

(y,~hr∆−1)

(
Pr[(Yk, ~H

r∆−1) = (y,~hr∆−1) | Ek ∧ Sk] · Pr[Ek ∧ Sk]
)2

=
∑

(y,~hr∆−1)

Pr[(Yk, ~H
r∆−1) = (y,~hr∆−1) ∧ Ek ∧ Sk]2

= CP((Yk, ~H
r∆−1) ∧ Ek ∧ Sk) ,

and complete the proof by the following

CP(Yk ∧ Ek ∧ Sk | ~Hr∆−1)

|H|r∆−1

=
1

|H|r∆−1
·
∑
~hr∆−1

Pr[Hr∆−1 = ~hr∆−1]
∑
y

Pr[Yk = y ∧ Ek ∧ Sk |Hr∆−1 = ~hr∆−1]2

=
∑

(y,~hr∆−1)

(
Pr[Hr∆−1 = ~hr∆−1] · Pr[Yk = y ∧ Ek ∧ Sk |Hr∆−1 = ~hr∆−1]

)2
=

∑
(y,~hr∆−1)

Pr[(Yk, H
r∆−1) = (y,~hr∆−1) ∧ Ek ∧ Sk]2

= CP((Yk, ~H
r∆−1) ∧ Ek ∧ Sk) .

�

Proof of (20). For any k ≤ r∆, we will define a (n+ 1, r∆, log |H|)-LBP M1 that on input x1 (at the
source node) and ~hr∆−1 (hi ∈ H at each ith layer), outputs 1 iff every t ∈ [k] satisfies yt ∈ Y[max]. The
BSG 2−2n-fools M1, i.e., for any x1 ∈ {0, 1}n

| Pr[M1(x1, ~H
r∆−1) = 1] − Pr[M1(x1, BSG(Uq)) = 1] | = |Pr[Sk |X1 = x1]−Pr[S ′k |X1 = x1]| ≤ 2−2n

and thus
Pr[S ′k] ≥ Pr[Sk]− 2−2n ≥ 1− kε− 2−2n .

The bounded-spaced computation of M1 is as follows: the source node input is (y1 ∈ {0, 1}n, tag1 ∈
{0, 1}), where y1 = f(x1) and tag1 = 1 iff y1 ∈ Y[max] (or 0 otherwise). At each ith layer up to i = k,
it computes xi := hi−1(yi−1), yi := f(xi) and sets tagi := 1 iff tagi−1 = 1 and yi ∈ Y[max] (tagi := 0
otherwise). Finally, M1 produces tagk as the final output.
Similarly, we define another (n + 1, r∆, log |H|)-LBP M2 that on input (x1,~h

r∆−1), outputs 1 iff yk ∈
Ymax, and thus

Pr[E ′k] ≥ Pr[Ek]− 2−2n ≥ n−c − 2−2n .

17

The computation of M2 is simply to compute xi := hi−1(yi−1) and yi := f(xi) at each ith iteration and
to output 1 iff yk ∈ Ymax. It follows that

Pr[E ′k ∧ S ′k] ≥ Pr[E ′k] − Pr[¬S ′k] ≥ n−c − 2−2n − (kε+ 2−2n) ≥ n−c/2 .

�

Proof of (21). For any k ∈ [(r − 1)∆], consider the following (n + 1, r∆, log |H|)-LBP M3: on source
node input y1 = f(x1) and layered input vector ~hr∆−1, it computes xi := hi−1(yi−1), yi := f(xi) at
each ith layer. For iterations numbered by (k + 1)≤i ≤ (k + ∆), it additionally sets tagi = 1 iff either
tagi−1 = 1 or yi ∈ Ymax, where tagk is initialized to 0. Finally, M3 outputs tagk+∆. By the bounded
space generator we have

| Pr[M3(X1, ~H
r∆−1) = 1] − Pr[M3(X1, BSG(Uq) = 1] | = |Pr[

k+∆∨
i=k+1

Ei]− Pr[
k+∆∨
i=k+1

E ′i] | ≤ 2−2n ,

and thus by (15)

Pr[

k+∆∨
i=k+1

E ′i] ≥ Pr[

k+∆∨
i=k+1

Ei] − 2−2n ≥ 1− n−α − 2−2n .

�

Proof of (22). For any k ∈ [r∆], consider the following (2n + 1, r∆, log |H|)-LBP M4: on source
node input (y1 = f(x1),y′1 = f(x′1),tag1 ∈ {0, 1}), where tag1 = 1 iff both y1, y

′
1 ∈ Y[max]. For

1≤i ≤ k, at each ith layer M4 computes yi := f(hi−1(yi−1)), y′i := f(hi−1(y′i−1)) and sets tagi = 1 iff

tagi−1 = 1 ∧ yi ∈ Y[max] ∧ y′i ∈ Y[max]. Finally, at the (k + 1)th layer M4 outputs 1 iff yk = y′k ∈ Ymax (in
respect for event Ek/E ′k) and tagk = 1 (in honor of Sk/S ′k). Imagine running two iterates with random

x1, x′1 and seeded by a common hash function from distribution either ~Hr∆−1 or BSG(Uq), we have

CP(Yk ∧ Ek ∧ Sk | ~Hr∆−1) = Pr
(x1,x′1)←U2n, ~hr∆−1← ~Hr∆−1

[M4(x1, x
′
1,
~hr∆−1) = 1]

CP(Y ′k ∧ E ′k ∧ S ′k | BSG(Uq)) = Pr
(x1,x′1)←U2n, ~hr∆−1←BSG(Uq)

[M4(x1, x
′
1,
~hr∆−1) = 1]

and thus

| CP(Yk ∧ Ek ∧ Sk | ~Hr∆−1) − CP(Y ′k ∧ E ′k ∧ S ′k | BSG(Uq)) |

≤ E(x1,x′1)←U2n

[
| Pr[M4(x1, x

′
1, ~H

r∆−1) = 1] − Pr[M4(x1, x
′
1, BSG(Uq)) = 1]|

]
≤ 2−2n .

It follows by (16) that

CP(Y ′k ∧ E ′k ∧ S ′k | BSG(Uq)) ≤ CP(Yk ∧ Ek ∧ Sk | ~Hr∆−1) + 2−2n ≤ (r∆ + 1)·2max−n+1 .

Note that yk, E ′k and S ′k depend only on x1 and ~hr∆−1, namely, for any ~hk−1 and any u1, u2∈BSG−1(~hk−1),

CP(Y ′k ∧ E ′k∧S ′k | Uq = u1) = CP(Y ′k ∧ E ′k∧S ′k | Uq = u2) = CP(Y ′k ∧ E ′k∧S ′k | BSG(Uq) = ~hk−1) .

Therefore,

CP(Y ′k ∧ E ′k ∧ S ′k | Uq) = CP(Y ′k ∧ E ′k ∧ S ′k | BSG(Uq)) ≤ (r∆ + 1)·2max−n+1 .

18

�

Proof of (25). We have that

CP((Y ′(j∗−1)∆+i∗ , Uq) | E ′(j∗−1)∆+i∗ ∧ S
′
(j∗−1)∆+i∗)

=
CP((Y ′(j∗−1)∆+i∗ , Uq) ∧ E ′(j∗−1)∆+i∗ ∧ S

′
(j∗−1)∆+i∗)

Pr[E ′(j∗−1)∆+i∗ ∧ S
′
(j∗−1)∆+i∗]

2

≤ CP(Y(j∗−1)∆+i∗ ∧ E(j∗−1)∆+i∗ ∧ S(j∗−1)∆+i∗ | Uq)
1

(n−2c/4) · 2q

≤ (r∆ + 1)·2max−n+1

(n−2c/4) · 2q
≤ 16r∆ · n2c

2n−max · 2q
,

where the equalities are similar to that in Fact A.1 (by renaming ~Hr∆−1 to Uq), and the two inequalities
are due to (20) and (22) respecitvely and thus

H2((Y ′(j−1)∆+i∗ , Uq) | E ′(j−1)∆+i∗ ∧ S
′
(j−1)∆+i∗) ≥ n−max +q − 2c · logn− log r − log ∆− 4 .

The uniform distribution over Ymax × {0, 1}q has entropy

H2((f(Un), Uq) | f(Un) ∈ Ymax) = log(
n−c

2−n+max−1
· 2q) = n−max +q − c · logn+ 1 ,

and thus the entropy deficiency (i.e., the difference of two entropies above) e ≤ c log n+log r+log ∆+5.
�

B Definitions, Explanations and Remarks

Remark B.1 (some intuitions for Sk) Throughout the proofs, we consider the (inverting, collision,
etc.) probabilities conditioned on event Sk, which requires that during the first k iterations no yi (1≤i ≤
k) hits the negligible fraction. This might look redundant as Sk occurs with overwhelming probability
(by (14)). However, our proofs crucially rely on the fact that, as stated in (16), the collision probability
of yk conditioned on Sk is almost the same (roughly Õ(2max−n), omitting poly(n) factors) as the ideal
case, i.e., the collision probability of f(Un) conditioned on f(Un) ∈ Ymax . This would not have been
possible if not being conditioned on Sk even though Ymax +1, . . ., Yn only sum to a negligible function
negl(n). To see this, consider the following simplified case for k = 1, the collision probability of y1 is
equal to that of f(Un), and thus we have

1

2
·
n∑
i=1

2i−n · Pr[f(Un) ∈ Yi] ≤
(
CP(f(Un)) =

n∑
i=1

∑
y∈Yi

Pr[f(Un) = y]2
)

<
n∑
i=1

2i−n · Pr[f(Un) ∈ Yi]

Suppose that there is some Yt such that t = max +Ω(n) and Pr[f(Un) ∈ Yt] = negl(n), then the above
collision probability is of the order O(2max−n(n−c + 2Ω(n)negl(n)). By setting negl(n) = n−logn, the
collision probability blows up by nearly a factor of 2Ω(n) than the desired case Õ(2max−n), and thus
unable to apply Lemma 3.1. In contrast, conditioned on S1 the collision probability is Õ(2max−n).

Definition B.1 (Collision probabilities conditioned on S ′k and E ′k) In the derandomized version,
we will use the following conditional collision probabilities, whose definitions (quite naturally extend the
standard collision probabilities) as follows:

CP(Y ′k ∧ E ′k ∧ S ′k | Uq)
def
= Eu←Uq

[∑
y

Pr[fk(X1, ~H ′
r∆−1

) = y ∧ E ′k ∧ S ′k | ~H ′
r∆−1

= BSG(u)]2
]

19

CP(Y ′k ∧ E ′k ∧ S ′k | BSG(Uq))

def
= E~h′

r∆−1←BSG(Uq)

[∑
y Pr[fk(X1, ~H ′

r∆−1
) = y ∧ E ′k ∧ S ′k | ~H ′

r∆−1
= ~h′

r∆−1
]2
]

CP(Y ′k, Uq | E ′k ∧ S ′k)
def
=

∑
(y,u)

Pr[fk(X1, BSG(Uq)) = y ∧ Uq = u | E ′k ∧ S ′k]2 .

Algorithm 2 MA′ .

Input: y ∈ {0, 1}n

Sample j
$←− [r], i

$←− [∆], u
$←− {0, 1}q, ~hr∆−1 := BSG(u);

Let ỹ(j−1)∆+i := y ;
FOR k = (j − 1)∆ + i+ 1 TO (j − 1)∆ + ∆

Compute x̃k := hk−1(ỹk−1), ỹk := f(x̃k);
x̃(j−1)∆+1 ← A′(ỹj∆, u);
FOR k = (j − 1)∆ + 1 TO (j − 1)∆ + i− 1

Compute ỹk := f(x̃k), x̃k+1 := hk(ỹk) ;

Output: x̃(j−1)∆+i

Remark B.2 (On weakening the condition of (7).) It is not hard to see from the proof that our
construction only assumes a weaker condition than (7), i.e., for some constant c ≥ 0 it holds that

Pr[f(Un) ∈
max(n)⋃

j=max(n)−log(1/ε)/10

Yj] ≥ n−c . (27)

Note that there is nothing special about the constant 1/10 in (27), which can be replaced by other small
constants. We sketch the idea of adapting the proof to the relaxed assumption. By averaging there
exists d ∈ [0, log (1/ε) /10] such that Ymax−d has weight at least n−c−1. We thus consider the chance
that Yj hits Ymax−d (instead of Ymax as we did in the original proof), and O(n2c · ω(log n)) iterations
are bound to hit Ymax−d at least once. Now we adapt the proof of Lemma 5.3. Ideally, conditioned on
f(Un) ∈ Ymax−d the distribution (f(Un), ~Hr∆−1) is uniform over Ymax ×Hr∆−1 with full entropy

H2((f(Un), ~Hr∆−1) | f(Un) ∈ Ymax−d) = log(
n−c−1

2−n+max−d−1
·| ~H|r∆−1) = n−max +d+(r∆−1) log |H|−O(logn) .

However, we actually only have that

H2((Y(j−1)∆+i∗ , ~H
r∆−1) | E(j−1)∆+i∗ ∧S(j−1)∆+i∗) ≥

(
n−max +d+ (r∆−1) log |H|−O(log n)

)
−e ,

where entropy deficiency e ≤ d+O(log n). Then, we apply Lemma 3.1 and the hard-to-invertness only
blows up by a factor of roughly 2e = nO(1)(1/ε)1/10 than the ideal ε (and taking a square root afterwards),
which does not kill the iterate. Therefore, the iterate is hard to invert for every O(n2c · ω(log n))
iterations. The proof for the derandomized version can be adapted similarly.

20

	Introduction
	Preliminaries
	Technical Tools

	Pseudorandom Generators from Regular One-way Functions
	A Technical Lemma
	The Randomized Iterate

	A New Class of OWFs vs. Regular/Arbitrary OWFs
	A More General Construction of Pseudorandom Generators
	Overview
	The Randomized Version: A PRG with Seed Length (n2c+2)
	The Derandomized Version: A PRG with Seed Length O(nlog n)

	Proofs Omitted
	Definitions, Explanations and Remarks

