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Abstract

A universal one-way hash function (UOWHF) is a compressing function for which finding a second
preimage is infeasible. The seminal work of Rompel (STOC 1990) that one-way functions (OWFs)
imply UOWHFs is one of the most important founding results of modern cryptography. The cur-
rent best known UOWHF construction from any one-way function (on n-bit input) by Haitner et al.
(Eurocrypt 2010) requires output and key length Õ(n7), which is far from practical.

On the other hand, special structured OWFs typically give rise to much more efficient (and almost
practical) UOWHFs. Naor and Yung (STOC 1989) gave an optimal construction of UOWHFs of
key and output lengths both linear in n by making a single call to any one-way permutation. De
Santis and Yung (Eurocrypt 1990), Barhum and Maurer (Latincrypt 2012), and Ames, Gennaro,
and Venkitasubramaniam (Asiacrypt 2012) further extended the work to more generalized settings,
namely, 1-to-1 and regular one-way functions. However, the best known constructions still require
key length O(n · log n) even for 1-to-1 one-way functions, and need to make O(ω(1)· log n) calls to
any known regular one-way functions, or even Õ(n) adaptive calls if one wants linear output length
at the same time.

In this paper, we first introduce a technical lemma about universal hashing with nice symmetry
to the leftover hash lemma, which might be of independent interest. That is, if one applies universal
hash function h : {0, 1}n → {0, 1}a+d to any flat random variable X of entropy a, then h will be
1-to-1 on X except for a 2−d fraction. We also generalize the construction of Naor and Yung (that
was optimal only for one-way permutations) to 1-to-1 and almost regular one-way functions, and
significantly extend their analysis. The above yields the following results.

• For any 1-to-1 one-way function, we give an optimal construction of UOWHFs with key and
output length Θ(n) by making a single call to the underlying OWF.

• For any known-(almost-)regular one-way function with known hardness, we give another optimal
construction of UOWHFs with key and output length Θ(n) and a single call to the one-way
function.

• For any known-(almost-)regular one-way function, we give a construction of UOWHFs with key
and output length O(ω(1)·n) and by making ω(1) non-adaptive calls to the one-way function.

where the first two constructions enjoy optimal parameters simultaneously and the third one is nearly
optimal up to any (efficiently computable) super-constant factor ω(1), e.g., log log log n or even less.
Furthermore, the constructions enjoy optimal shrinkages by matching the upper bound of Gennaro
et al. (SICOMP 2005).
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Resistance.

∗Shanghai Jiao Tong University. Email: yuyuathk@gmail.com.
†Shanghai Jiaotong University.
‡East China Normal University.
§Jinan University.



1 Introduction

Informally, a family of compressing hash functions (i.e., outputs are shorter than inputs), denoted by
G, is called universal one-way, if given a random function g ∈ G and a random (or equivalently, any
pre-fixed) input x, it is infeasible for any efficient algorithm to find any x′ 6= x satisfying g(x) = g(x′).
The seminal result that one-way functions (OWFs) imply universal one-way hash functions (UOWHFs)
[14] is one of the central pieces upon which modern cryptography is successfully founded. It further
implies that digital signature (as defined in [7]) can be based on any one-way function [13]. We mention
other important applications of UOWHFs such as constructions of Cramer-Shoup encryption scheme
[3] and statistically hiding commitment scheme [9, 10].

UOWHFs from any OWFs. The principle possibility result that UOWHFs can be based on any
OWF was established by Rompel [14] (with some corrections given in [15, 11]). However, Rompel’s
construction was quite complicated and extremely unpractical. In particular, for any one-way function
on n-bit inputs it requires key length Õ(n12) and output length Õ(n8). Haitner et al. [8] improved the
construction via the notion of inaccessible entropy [10], and reduced key and output length to Õ(n8).
We mention also recent development by Gennaro and Venkitasubramaniam [5] that further reduces the
key and output lengths. Despite of all these improvements, the constructions are still too inefficient to
be of any practical use.

UOWHFs from special OWFs. Another line of research focuses on more efficient (and nearly
practical) constructions of UOWHFs from special structured OWFs. Naor and Yung gave an elegant
construction of UOWHFs with key and output length Θ(n) which does a single call to any one-way
permutation. More specifically, let f̃ : {0, 1}n → {0, 1}n be any one-way permutation, let h be a
random permutation (over n bits) from a pairwise-independent hash permutation family H, and let
trunc : {0, 1}n → {0, 1}n−1 be a truncating function that outputs the first n− 1 bits of input, then the
following

Gowp
def
= { (trunc ◦ h ◦ f̃) : {0, 1}n → {0, 1}n−1 | h ∈ H }

is a family of UOWHFs with 1 bit of shrinkage (i.e., compress by 1 bit), where “◦” denotes function
composition. However, for a slightly weaker primitive, namely, 1-to-1 one-way functions, the authors of
[13] only gave a rather complicated construction. De Santis and Yung [16] gave an improved construction
(from any 1-to-1 OWF f : {0, 1}n → {0, 1}l) as below:

G1−to−1
def
= { (hnn−1 ◦ . . . ◦ hl−1

l−2 ◦ h
l
l−1 ◦ f) : {0, 1}n → {0, 1}n−1 | hnn−1 ∈ Hnn−1, . . . , h

l
l−1 ∈ Hll−1 } ,

where each Hii−1 denotes a family of pairwise-independent hash functions that compress i-bit strings
into (i−1) bits. Although G1−to−1 enjoys linear output length and a single function call, it requires1 key
length O(ω(log n)·n) for describing all the hash functions. In addition, the work of [16] also introduced
a construction from any known-regular2 one-way function with key and output length O(ω(log2 n) · n)
and O(ω(1) · log n) adaptive calls. Recently, Barhum and Maurer [2] improved the parameters (based
on any known regular OWFs) to key and output length O(ω(log n) ·n) and O(ω(1) · log n) non-adaptive
calls. Ames et al. [1] presented a construction from any regular one-way function with output length
Θ(n), but it requires key length O(logn · n) and Õ(n) adaptive calls. In summary, as tabulated in
Table 1, the best known construction requires key length O(n · log n) even for a 1-to-1 one-way function,
and needs to make O(ω(1)· log n) calls (or Õ(n) adaptive calls if one wants linear output length at the
same time) to a regular one-way function.

1A back-of-the-envelope calculation suggests that G1−to−1 needs key length O(l·(l − n)), and we know (see Fact 3.1)

that every 1-to-1 one-way function implies another one-way function f ′ : {0, 1}n
′∈Θ(n) → {0, 1}n

′+ω(log n) that is 1-to-1
except on a negligible fraction of inputs, which implies that the key length of [13, 16] can be pushed to O(ω(logn)·n).

2A function f is regular if every image has the same number (say α) of preimages, and it is known- (resp., unknown-)
regular if α is efficiently computable (resp., inefficient to approximate) from the security parameter.
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Table 1: A summary of the parameters from existing constructions [13, 16, 2, 1] and our work, where
KR-OWF and UR-OWF are the shorthands for known-regular and unknown-regular one-way func-
tions respectively, and ε-hard KR-OWF refers to known-regular one-way function with known hardness
parameter ε.

Assumption Output Length Key Length # of Calls Type

[13] OWP Θ(n) Θ(n) 1 non-adaptive

[16, 13] 1-to-1 OWF Θ(n) O(ω(log n)·n) 1 non-adaptive

[16] KR-OWF O(ω(log2 n) · n) O(ω(log2 n) · n) O(ω(log n)) adaptive

[2] KR-OWF O(ω(log n) · n) O(ω(log n) · n) O(ω(log n)) non-adaptive

[1] UR-OWF Θ(n) O(log n · n) Õ(n) adaptive

ours 1-to-1 OWF Θ(n) Θ(n) 1 non-adaptive

ours ε-hard KR-OWF Θ(n) Θ(n) 1 non-adaptive

ours KR-OWF O(ω(1) · n) O(ω(1) · n) O(ω(1)) non-adaptive

Summary of our constructions. In the paper, we give the following constructions from any 1-to-1
and known-regular one-way function. The first two constructions achieve optimal parameters simultane-
ously, and the third is almost optimal up to an arbitrarily small super-constant factor. Our constructions
have optimal shrinkages (per invocation of OWF) by matching the upper bound of Gennaro et al. [4].

1. For any 1-to-1 one-way function, we give an optimal construction of UOWHFs with key and output
length Θ(n) and a single OWF call.

2. For any known-regular one-way function with known hardness, we give another optimal construc-
tion of UOWHFs with key and output length Θ(n) and a single call.

3. For any known-regular one-way function, we give a construction of UOWHFs with key and out-
put length O(ω(1)·n) and ω(1) non-adaptive calls, where all parameters are optimal up to any
efficiently computable super-constant ω(1) (e.g., log log log n or even less).

On the (a)symmetry to PRGs. Our results further improve the understanding about the inherent
“black-box duality” between one-way functions and pseudorandom generators, which was highlighted in
[10, 8]. Firstly, we introduce a technical lemma (see Lemma 3.1) which is dual to the leftover hash lemma
and might be of independent interest. Informally, it says that when applying a universal hash function
h to any “flat” random variable X of entropy (no more than) a to produce an (a + d)-bit output,
h will be injective on X except for a 2−d fraction. In contrast, the leftover hash lemma states that
when hashing any X of collision entropy (no less than) a into (a−d)-bit strings, the resulting output
distribution will be 2−d/2-close (in terms of statistical distance) to uniform, where the symmetry is
highlighted in bold. Secondly, the #2 and #3 constructions above match the best known results about
constructions of PRGs from known-regular OWFs (see [18]), namely, seed length O(ω(1)·n) or even
Θ(n) if the hardness of the underlying OWF is known. Finally (and perhaps more interestingly), our
#1 construction is asymmetric to the case of PRGs, where we do not know how to construct a linear
seed length PRG from an arbitrary 1-to-1 one-way function in general3.

3Given a 1-to-1 one-way function f : {0, 1}n → {0, 1}l, one might think of getting a PRG by hashing f(Un) into n−s bits
concatenated with s+1 hard-core bits of f , where s ∈ ω(logn) is the necessary entropy loss due to the leftover hash lemma.
This is in general not possible without knowing the hardness of the underlying f . See more discussions and the relaxed
solutions to this problem by Goldreich [6, Section 3.5.1.3]. For example, we get a linear seed-length PRG of the following
weaker form, i.e., for every ε = 1/poly(n) there exists a weak PRG whose output distribution is ε-indistinguishable from
uniform to all PPT distinguishers. Alternatively, we use parallel repetition to obtain a standard PRG with seed length
O(ω(1)·n) [18].
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The roadmap. We outline below the steps to build UOWHFs based on any 1-to-1 and regular
function f : {0, 1}n → {0, 1}l. In the latter case, we only assume the one-way function is almost regular
[6], namely, the preimage size |f−1(y)| lies in the interval [α, α·nc] for some constant c, where regular
functions fall into the special case for c = 0. We also assume without loss of generality that l ∈ O(n)
for 1-to-1 one-way functions and even l = n for (almost) regular one-way functions, which seems to be
folklore but we also provide a full proof (see Fact 3.1) for completeness.

• Based on 1-to-1 OWFs. We adapt the classic Naor-Yung construction (for one-way permuta-
tion) to any 1-to-1 one-way function as follows:

G1
def
= { (trunc ◦ h ◦ f) : {0, 1}n → {0, 1}n−s | h ∈ H } ,

where H is a family of universal4 hash permutations on l bits, and trunc : {0, 1}l → {0, 1}n−s is
a truncating function that outputs the first n − s bits of input. We give a proof that if f is a
(t,ε)- 1-to-1 OWF f then the resulting G1 is a (t − nO(1), 2s · ε)-UOWHF family with key and
output length Θ(n) and shrinkage s (see Definition 2.2 and Definition 2.4 for formal definitions).
The construction enjoys optimal parameters and somewhat counter-intuitively the security bound
drops only by factor 2s (which is optimal by [4]) rather than by 2l−n+s (i.e., exponential in the
number of bits truncated). Loosely speaking, this is due to that for l > n the range f({0, 1}n) is
only a proper subsect of {0, 1}l. We refer to the proof of Theorem 3.1 and Remark 3.1 for more
technical details and further discussions.

• Based on almost-regular ε-hard OWFs. Given an almost-regular f (see Definition 2.3)
which is known to be (t,ε)-one-way, i.e., ε is efficiently computable, we define the following function
family

G2
def
= { g : {0, 1}n → {0, 1}n−s | g(x) = (g1(x), h1(x)), g1 = trunc ◦ h ◦ f, h ∈ H , h1 ∈ H1 }

where H is a family of universal hash permutations, and let H1 and trunc be a family of universal
hash functions and the truncating function (both with appropriate output sizes) respectively.
We show that G2 is a UOWHF family with key and output length Θ(n) and shrinkage s. The
rationale is that for any5 x 6= x′ colliding on g ∈ G2 it either satisfies “f(x) = f(x′) ∧ h1(x) =
h1(x′)” or “f(x)6=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′)))”. The former is bounded information-
theoretically by our hashing lemma, and the latter is computationally bounded (and reducible to
the one-wayness of f). We refer to Theorem 4.1 and Lemma 4.1 for the details.

• Based on any known almost-regular OWFs. Finally, we consider any known (almost)
regular OWF f whose hardness parameter is ε unknown (i.e., ε is negligible but may not be
efficiently computable). In this case, we run q independent copies of f , and we get a construction
by making q non-adaptive calls with shrinkage q log n, key and output length O(q · n), where
q ∈ ω(1) can be any efficiently computable super-constant. The parallel repetition technique was
also used in similar contexts (e.g., the construction of PRG from any known regular OWF [18]).
We refer to Theorem 4.2 for the detailed construction and proof.

4Most existing UOWHF constructions use pairwise (or even 3-wise) independent hashing to facilitate the analysis,
but in fact universal hashing suffices here. Concretely, {h : h(x) = h · x, where h, x∈GF (2n)} and {ha,b : ha,b(x) =
a · x+ b, where x, a, b∈GF (2n)} are universal and pairwise-independent hash function families respectively and it is easy
to see that the additional b adds no security to the Naor-Yung UOWHF construction.

5More precisely, x is sampled at random and x′ can be any efficient function of x such that x 6= x′.
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2 Preliminaries

Notations and definitions. We use [n] to denote set {1, . . . , n}. We use capital letters (e.g., X,
Y ) for random variables, standard letters (e.g., x, y) for values, and calligraphic letters (e.g. X , Y) for
sets. The support of a random variable X, denoted by Supp(X), refers to the set of values on which X
takes with non-zero probability, i.e.,

Supp(X)
def
= {x : Pr[X = x] > 0}

For a binary string x = x1 . . . xn, denote by x[t] the first t bits of x, i.e., x1 . . . xt. We denote by
trunc : {0, 1}n → {0, 1}t a truncating function that outputs the first t bits of input, i.e., trunc(x) =
x[t]. |S| denotes the cardinality of set S. For function f : {0, 1}n → {0, 1}l(n), we use shorthand

f({0, 1}n)
def
= {f(x) : x ∈ {0, 1}n}, and denote by f−1(y) the set of y’s preimages under f , i.e.,

f−1(y)
def
= {x : f(x) = y}. We say f is length-preserving (resp., linear-preserving) if l(n) = n (resp.,

l(n) ∈ O(n)). We use s← S to denote sampling an element s according to distribution S, and let s
$←− S

denote sampling s uniformly from set S, and y := f(x) denote value assignment. We use Un and UX to
denote uniform distributions over {0, 1}n and X respectively, and let f(Un) be the distribution induced
by applying function f to Un. We use CP(X) to denote the collision probability of X, and denote
by CP(X|Z) the average collision entropy of X conditioned on another (possibly correlated) random
variable Z by

CP(X|Z)
def
= Ez←Z

[ ∑
x Pr[X = x| Z = z]2

]
.

Simplifying Notations. To simplify the presentation, we use the following simplified notations.
Throughout, most parameters are functions of the security parameter n (e.g., t(n), ε(n), r(n)) and we
often omit n when clear from the context (e.g., t, ε, r). Parameters (e.g., ε, r) are said to be known if
they are polynomial-time computable from n. By notation f : {0, 1}n → {0, 1}l we refer to the ensemble
of functions {fn : {0, 1}n → {0, 1}l(n)}n∈N. As slight abuse of notion, poly might be referring to the set
of all polynomials or a certain polynomial, and h might be either a function or its description which

will be clear from context. For example, in h(y)
def
=h ·y the first h denotes a function, the second h refers

to a string (a finite field element) that describes the function, and ‘·’ denotes multiplication between
elements of a finite field.

Definition 2.1 (ρ-almost universal hashing) A family of functions H = {h : {0, 1}l → {0, 1}t} is
ρ-almost universal if for any distinct x1, x2 ∈ {0, 1}l, it holds that

Pr
h

$←−H
[h(x1) = h(x2)] ≤ ρ .

In the special case ρ = 2−t, we say that H is universal.

It is folklore that almost universal families of hash functions can be efficiently constructed.

Fact 2.1 (efficient constructions of almost universal hashing) For any integers t≤l, there exists
a family of O(l/t)·2−t-almost universal hash functions H = {h : {0, 1}l → {0, 1}t} such that H has
description length O(t) and every h ∈ H is computable in time poly(l).

A concrete example. Assume without loss of generality that t divides l, i.e., l = k·t for some k ∈ N
(otherwise use l′ = d(l/t)e · t instead of l), and parse x as a sequence of t-bit strings (x1, . . . , xk). Then,

we have that H = {ha : ha(x)
def
=
∑k

i=1 a
i·xi, a, xi ∈ GF (2t)} is a family of k·2−t-almost universal

hash functions of description length t. In fact, we could use explicit almost pairwise independent hash
functions [12, 17] to achieve even smaller ρ (e.g., ρ = O(2−t) for any l ∈ poly(t)), but the above
construction already suffices for our applications.
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Definition 2.2 (one-way functions) A function f : {0, 1}n → {0, 1}l(n) is (t(n),ε(n))-one-way if f
is polynomial-time computable and for any probabilistic algorithm A of running time t(n)

Pr
y←f(Un)

[A(1n, y)∈f−1(y)] ≤ ε(n).

f is a one-way function if t(·) and 1/ε(·) are super-polynomial.

Definition 2.3 ((almost) regular functions) A function f is α(n)-regular if there exists an integer
function α(n), called the regularity function, such that for every n ∈ N and x ∈ {0, 1}n we have

|f−1(f(x))| = α(n).

For any constant c, f is (α(n), α(n)·nc)-almost regular if for every n ∈ N and x ∈ {0, 1}n we have

α(n) ≤ |f−1(f(x))| ≤ α(n) · nc.

In particular, f is known-(almost)-regular if α is polynomial-time computable, or otherwise it is called
unknown-(almost)-regular.

Definition 2.4 (UOWHFs [13]) An ensemble of families of functions {Gn}n∈N, where Gn = {g :
{0, 1}`(n) → {0, 1}`(n)−s(n)}, is a (t(n),ε(n))-universal one-way hash function (UOWHF) family if:

• Efficient: Function `(·) is a polynomial (i.e., ` ∈ poly). Further, for any n ∈ N, g ∈ G and
x ∈ {0, 1}`(n), the value g(x) can be computed in time poly(n).

• Shrinking: The difference between input and output lengths (i.e. s(n)) is called shrinkage.

• Target Collision Resistant: For any probabilistic algorithm A of running time t(n), we have that

Pr[x
$←− {0, 1}`(n); g

$←− Gn; x′←A(1n, x, g) : x 6= x′ ∧ g(x) = g(x′) ] ≤ ε(n) .

Standard asymptotic security requires t(·) and 1/ε(·) to be super-polynomial. For succinctness, hereafter
we will use shorthand G = {g : {0, 1}`(n) → {0, 1}`(n)−s(n)} for {Gn}n∈N defined above.

3 UOWHFs from 1-to-1 One-way Functions

3.1 A Technical Lemma

We introduce Lemma 3.1 below with nice duality to the leftover hash lemma which will be useful in our
constructions and might be of independent interest. We mention that the lemma actually generalizes
to almost flat sources, which is stated as Lemma A.1 in Appendix A.

Lemma 3.1 (The injective hash lemma) For any integers a, d, k and l satisfying a≤l, let Y be

any uniform distribution over some set Y ⊆ {0, 1}l of size 2a, and let H def
= {h : {0, 1}l → {0, 1}a+d}

be a family of (k·2−(a+d))-almost universal functions. Then, we have that

Pr
y←Y, h

$←−H
[ ∃ỹ ∈ Y : ỹ 6= y ∧ h(ỹ) = h(y) ] ≤ k·2−d .

Recall that k = 1 corresponds to the special case that H is universal.
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Proof. The (almost) universality of H implies an upper bound on CP(H(Y )|H), i.e.,

CP( H(Y ) | H ) ≤ CP(Y ) + max
y1 6=y2

{ Pr
h

$←−H
[ h(y1) = h(y2) ] } = 2−a(1 + k·2−d) .

where we consider the random experiment of sampling y1 and y2 i.i.d. to Y and thus the collision
probability of H(Y ) given H is bounded by the sum of Pr[Y1 = Y2] and Pr[H(y1) = H(y2)] for any
y1 6= y2.

Further, denote S1
def
= {(z, h) : |{ỹ ∈ Y : h(ỹ) = z}| = 1} and S2

def
= {(z, h) : |{ỹ ∈ Y : h(ỹ) = z}| ≥

2}. We then have the following lower bound

CP ( H(Y ) | H )

=
∑
h

Pr[H = h]

 ∑
z:(z,h)∈S1

Pr[H(Y ) = z|H = h]2 +
∑

z:(z,h)∈S2

Pr[H(Y ) = z|H = h]2


≥ 2−a ·

∑
(z,h)∈S1

Pr[H = h,H(Y ) = z] + min
(z,h)∈S2

{ Pr[h(Y ) = z] } ·
∑

(z,h)∈S2

Pr[H = h,H(Y ) = z]

= 2−a · Pr[ (H(Y ), H) ∈ S1 ] + 2−a+1 · Pr[ (H(Y ), H) ∈ S2 ]

= 2−a(1 + Pr[ (H(Y ), H) ∈ S2]) ,

where the inequality is due to that any (z, h) ∈ S1 satisfies Pr[h(Y ) = z] = 2−a, and for any (z, h) ∈ S2

we have Pr[h(Y ) = z]≥2−a+1 (recall that Y is uniform over Y by assumption). Taking into account
both the lower and upper bounds on CP(H(Y )|H), we get Pr[ (H(Y ), H) ∈ S2 ] ≤ k·2−d and thus
complete the proof. �

3.2 Simplifying Assumption about Output Length

We argue that the input and output lengths of a 1-to-1 one-way function f : {0, 1}n → {0, 1}l(n) can be
assumed to be linearly related (i.e., l(n) ∈ O(n)) without loss of generality. In case of almost-regular
one-way functions, we can even assume that they are length-preserving (i.e., l(n) = n). We state it as
Fact 3.1 below, which in turns refers to Lemma 3.2 whose proof is deferred to Appendix A.

Fact 3.1 (two folklore facts) For any constant c and any efficiently computable κ = κ(n) ∈ O(n),
we have

1. Any 1-to-1 (t,ε)-one-way function f : {0, 1}n → {0, 1}l implies a (t − nO(1),ε + poly(n) · 2−κ)-
one-way function f ′ : {0, 1}n′∈Θ(n) → {0, 1}(n′+κ)∈Θ(n) which is 1-to-1 except on a (poly(n) · 2−κ)-
fraction of inputs, i.e.,

Pr
x

$←−{0,1}n′
[ ∃x′ ∈ {0, 1}n′ : x′ 6= x ∧ f ′(x) = f ′(x′) ] ≤ poly(n) · 2−κ

2. Any (2r, 2r·nc)-almost regular (t,ε)-one-way function f : {0, 1}n → {0, 1}l implies a length-
preserving (t − nO(1),ε + poly(n) · 2−κ−r)-one-way function f̄ : {0, 1}n′∈Θ(n) → {0, 1}n′ which
is (2r+κ, 2r+κ · nc)-almost regular except on a (poly(n) · 2−κ−r)-fraction of inputs, i.e.,

Pr
x

$←−{0,1}n′
[ 2r+κ ≤ |f̄−1(f̄(x))| ≤ 2r+κ · nc ] ≥ 1− poly(n) · 2−κ−r .

Note that it suffices to set κ = ω(log n) to have a negligible error bound, and in case κ = Θ(n) the bound
will be exponentially small.
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Proof. The first statement immediately follows from Lemma 3.2 by setting regularity c = r = 0. As for
the second statement, let f ′ be as defined in (1) from Lemma 3.2, we further define a padded function
f̄ : {0, 1}n+κ ×H → {0, 1}n+κ ×H as

f̄(x, dummy, h)
def
=f ′(x, h) ,

where x ∈ {0, 1}n, dummy ∈ {0, 1}κ, and h ∈ H (which is of size O(n)). Note that the preimage-size of
f̄ is multiplied by a factor of 2κ than that of f ′ due to the κ-bit padding dummy, which concludes the
statement. �

Lemma 3.2 (regularity-preserving OWF) For any constant c and any efficiently computable κ =
κ(n) ∈ O(n), let f : {0, 1}n → {0, 1}l be any (2r, 2r·nc)-almost regular (t,ε)-one-way function, let
H = {h : {0, 1}l → {0, 1}n+κ} be a family of (poly(n)·2−(n+κ))-almost universal hash functions with
description length6 O(n), define function f ′ : {0, 1}n ×H → {0, 1}n+κ ×H as

f ′(x, h) = (h(f(x)), h) . (1)

Then, we have

1. Regularity-preserving. f ′ is (2r, 2r·nc)-regular except on a poly′(n)·2−κ−r-fraction of inputs,
i.e.,

Pr
x

$←−{0,1}n, h $←−H
[ 2r ≤ |f ′−1(f ′(x, h))| ≤ 2r·nc ] ≥ 1− poly′(n)·2−κ−r .

2. Hardness-preserving. f ′ is a (t− nO(1), ε+ poly′(n)·2−(κ+r))-one-way function.

3.3 UOWHFs from 1-to-1 OWFs

We will assume in the remainder of the paper that the underlying 1-to-1 one-way function has linear
output length (i.e., l(n)∈O(n)) and that the almost-regular one-way function in consideration is length-
preserving (i.e., l(n) = n). Our first result below adapts the Naor-Yung construction to any 1-to-1
one-way functions.

Theorem 3.1 (UOWHFs from 1-to-1 OWFs) Let f : {0, 1}n → {0, 1}l(n)∈O(n) be any 1-to-1 (t(n),
ε(n))-one-way function, let H be a family of universal hash permutations over {0, 1}l(n), i.e.,

H = {h : {0, 1}l(n) → {0, 1}l(n) | h(y)
def
=h · y, where y ∈ GF (2l(n)), ~0 6=h ∈ GF (2l(n)) } ,

let trunc : {0, 1}l(n) → {0, 1}n−s(n) be a truncating function, where s(n) is efficiently computable. Then,
we have that

G1
def
= { (trunc ◦ h ◦ f ) : {0, 1}n → {0, 1}n−s(n) | h ∈ H }

is a family of (t − nO(1), 2s · ε)-universal one-way hash functions with shrinkage s(n), key and output
length Θ(n).

Proof. Suppose for contradiction that there exists a G1-collision finder A of running time t′ that on
input (x, h), breaks the target collision resistance with some non-negligible probability ε′, i.e.,

Pr
x

$←−{0,1}n,h $←−H
[ x′←A(x, h) : x 6= x′ ∧ h(f(x))[n−s] = h(f(x′))[n−s] ] ≥ ε′
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Algorithm 1 InvA that inverts f on input y∗ using random coins (x, v).

Input: y∗
$←− {0, 1}l

Sample x
$←− {0, 1}n

if f(x) = y∗ then
Output x and terminate.

end if

sample h := (f(x)− y∗)−1 · v, where v
$←− V = {v ∈ {0, 1}l \ {~0} : v[n−s] =

n−s︷ ︸︸ ︷
0 . . . 0}

{note: The above implies h
$←− {h ∈ H : h(f(x))[n−s] = h(y∗)[n−s]} by the GF (2l) arithmetics. }

x′ ← A(x, h)
if f(x′)=y∗ then

Output x′

else
Output ⊥

end if
Terminate

We define algorithm InvA (that inverts f on input7 y∗ ∈ {0, 1}l by invoking A) as in Algorithm 1.
By Claim 3.1, conditioned on f(x) 6=y∗ it is equivalent to consider that InvA samples (x,h,v) from
{0, 1}n×H×V uniformly and independently, and then determines the value of y∗. We argue that InvA

inverts f with the following probability (see the rationale below)

Pr
y∗

$←−{0,1}l, x $←−{0,1}n, v $←−V
[ f(InvA(y∗)) = y∗ ]

≥ Pr
x

$←−{0,1}n,y∗ $←−{0,1}l
[ f(x) = y∗ ] + Pr

x
$←−{0,1}n,y∗ $←−{0,1}l

[ f(x)6=y∗ ]

× Pr
x

$←−{0,1}n,h $←−H,x 6=(x′←A(x,h)),v
$←−V

[ h(f(x))[n−s] = h(f(x′))[n−s] ∧ y∗ = f(x′) | f(x) 6=y∗ ]

≥ 2−l + (1− 2−l) · ε · Pr
v

$←−V
[y∗ = f(x′) | f(x)6=y∗ ∧ f(x) 6= f(x′) ∧ h(f(x))[n−s] = h(f(x′))[n−s] ]

= 2−l + (1− 2−l) · ε′ · 1

|V|
= 2−l + (1− 2−l) · ε′ · 1

2l−n+s − 1
,

where A takes only x and h as input (i.e., independent of v), and thus conditioned on that A produces
a valid x′ 6= x satisfying h(f(x′))[n−s] = h(f(x))[n−s], we have by Claim 3.1 that string y∗ is uniformly

distributed over set Y∗def={y∗ : y∗ = f(x) − v·h−1, v ∈ V}. Note that the already fixed f(x′) is also
an element of Y∗ and thus y∗ hits f(x′) with probability 1/|Y∗|=1/|V|= 1/(2l−n+s − 1). On the other
hand, we have that inverting f on random y∗ is upper bounded by:

Pr
y∗

$←−{0,1}l
[ f(InvA(y∗)) = y∗ ]

≤ Pr
y∗

$←−{0,1}l
[y∗ ∈ f({0, 1}n)] · Pr

y∗
$←−f({0,1}n)

[ f(InvA(y∗)) = y∗ ]

≤ 2−(l−n) · ε .

6 Such efficient H exists for any efficiently computable l = l(n) ∈ poly(n) and κ = κ(n) ∈ O(n) by Fact 2.1.
7Notice that y∗ is uniformly sampled from {0, 1}l rather than from f(Un), which is a crucial step of our reduction.
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Therefore, it must hold that 2−l + (1− 2−l)ε′ · 1
2l−n+s−1

≤ 2−(l−n) · ε, i.e.,

ε′ ≤ (2−(l−n) · ε− 2−l) · (2l−n+s − 1)/(1− 2−l) ≤ 2−(l−n) · ε·2l−n+s = ε·2s

as otherwise it leads to a contradiction to the upper and lower bounds we show above. �

Claim 3.1 (equivalent sampling) Let the values h, v, x, y∗ be sampled as in Algorithm 1 (or as

in Algorithm 3), and conditioned on the event y∗ 6= f(x), it is equivalent to sample (x, h, v)
$←−

{0, 1}n ×H× V uniformly and independently and then determine y∗ := f(x)− v · h−1.

Proof of Claim 3.1. We known that (x, v) is uniformly sampled from {0, 1}n×V by definition, and thus
it suffices to show that “fix any (x, v), and conditioned on y∗ 6= f(x) (i.e., Y ∗ is uniform distributed over
{0, 1}l \ {f(x)}), it holds that h is uniform over H”. As v 6= ~0 (V excludes ~0 by definition), it follows
that h = (f(x)− Y ∗)−1 · v is uniform over {0, 1}l \ {~0}. Finally, for any given (x, h, v), one efficiently
determines the value y∗ = f(x)− v · h−1 due to the arithmetics over the finite field. �

Remark 3.1 (On the optimal security bounds.) Theorem 3.1 enjoys optimal security degradations,
in particular, the collision resistance deteriorates exponentially only with respect to shrinkage s (which
is optimal by [4]), i.e., not to the number of bits truncated (i.e. l−n+s). This is due to the fact that we
reduce the collision-finding problem to that of inverting a random y∗ over {0, 1}l, where the probability
that y∗ is valid image (i.e., over f({0, 1}n)) is 2−(l−n) and thus cancels the factor (l − n).

4 UOWHFs from Known Regular OWFs

We proceed to the more general case that f is a known almost-regular function. Recall that by Fact 3.1
we can assume that the underlying almost regular one-way function is length-preserving without loss of
generality.

4.1 Compressing the Output is Necessary but Not Sufficient

We may generalize the Naor-Yung approach for one-way permutations (and 1-to-1 one-way functions) to
almost regular one-way functions by compressing (using trunc◦h) the output Y = f(X) into H∞(Y )−s
bits, where H∞(Y ) denotes the min-entropy of Y and s ∈ O(log (1/ε)). However, this only gives a weak
form of guarantee, as stated in Lemma 4.1 below, that given a random x it is infeasible for efficient
algorithms to find any f(x′) 6= f(x) such that trunc(h(f(x′))) = trunc(h(f(x))). Otherwise said, it does
not rule out the possibility that one may easily find x′ 6= x satisfying f(x′) = f(x). Hence, compressing
the output is only a useful intermediate step to obtain UOWHFs. Lemma 4.1 below further generalizes
Theorem 3.1 to regular functions, whose proof is similar to that of Theorem 3.1 and thus we defer it to
Appendix A to avoid redundancy.

Lemma 4.1 For any constant c, and any efficiently computable r = r(n) and s′ = s′(n), let f :
{0, 1}n → {0, 1}n be any (2r, 2rnc)-almost regular (length-preserving) (t, ε)-one-way function, let H be
a family of universal hash permutations over {0, 1}n, i.e.,

H = {h : {0, 1}n → {0, 1}n | h(y)
def
=h · y, where y ∈ GF (2n), ~0 6=h ∈ GF (2n) } ,

let trunc : {0, 1}n → {0, 1}n−r−c· logn−s′ be a truncating function. Then, for any Ã of running time
t− nO(1) (for some universal constant O(1)) we have that

Pr
x

$←−{0,1}n, h $←−H
[ x′ ← Ã(x, h) ∧ f(x)6=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′))) ] ≤ nc·2s′ · ε .
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4.2 UOWHFs from Known (Almost-)Regular OWFs with Known Hardness

We first give an optimal construction assuming that the inversion probability upper bound ε is known.

Theorem 4.1 (UOWHFs from known almost-regular OWFs with known ε) Let f : {0, 1}n →
{0, 1}n be any (2r, 2rnc)-almost regular (length-preserving) (t,ε)-one-way function, where c is any con-
stant, and r = r(n) and ε = ε(n) are any efficiently computable functions. Let shrinkage s = s(n)
be any efficiently computable function, and let H and trunc be as defined in Lemma 4.1 with s′ =
(s+ log(1/ε)− c log n)/2, and let H1 = {h1 : {0, 1}n → {0, 1}r+c logn+s′−s} be a family of universal hash
functions. Then, we have that

G2
def
= { g : {0, 1}n → {0, 1}n−s | g(x)

def
= (g1(x), h1(x)), g1

def
= (trunc ◦ h ◦ f), h ∈ H , h1 ∈ H1 }

is a (t−nO(1), O(
√

2s · nc · ε))-universal one-way hash function family with key and output length Θ(n).

Proof. Denote events E1
def
=
(
f(x) = f(x′) ∧ h1(x) = h1(x′)

)
and E2

def
=
(
f(x) 6= f(x′) ∧ g1(x) = g1(x′)

)
.

For any G2-collision finder A, we have (with explanations below)

Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x 6=(x′←A(x,h,h1))

[ g(x) = g(x′) ]

≤ Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x 6=(x′←A(x,h,h1))

[ E1 ∨ E2 ]

≤ Pr
x

$←−{0,1}n, h1
$←−H1

[ ∃ x′ 6= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]

+ Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x 6=(x′←A(x,h,h1))

[ f(x)6=f(x′) ∧ g1(x) = g1(x′) ]

≤ 2−(s′−s) + nc·2s′ · ε =
√

2s · nc · ε +
√

2s · nc · ε = 2
√

2s · nc · ε ,

where the second inequality follows by a union bound, namely, for a random x, if there is some x′ 6= x
colliding on g ∈ G2 then it must either satisfy E1 or E2. We already know by Lemma 4.1 that the second
term is bounded by nc·2s′ε, and thus it remains to show that the first term is bounded by 2−(s′−s).
Conditioned on any y = f(X) random variable X is uniform on a set of size at most 2r·nc, so we apply
Lemma 3.1 (setting a≤r + c · logn, d≥s′ − s and k = 1) to get

Pr
x

$←−{0,1}n, h1
$←−H1

[ ∃ x′ 6= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]

= Ey←f(Un)[ Pr
x

$←−f−1(y), h1
$←−H1

[ ∃ x′ 6= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ] ]

≤ Ey←f(Un)[ 2−(s′−s) ] = 2−(s′−s) .

which completes the proof. �

4.3 UOWHFs from any Known (Almost-)Regular OWFs

Generalizing to any known regular function. Unfortunately, Theorem 4.1 doesn’t immediately
apply to an arbitrary regular function because in general we cannot assume that the hardness parameter
ε is known or efficiently computable. To see the difficulty, consider the parameters in Theorem 4.1, where
we need to decide the values of s and s′. That is, to get a shrinkage of s bits, the hash function h1

first expands s′ − s bits (than the actual entropy of X conditioned on f(X)) to get an error bound
2−(s′−s) (by Lemma 3.1), and then trunc discards s′ bits of entropy (of f(X)) to get another bound
nc·2s′ · ε. Without the knowledge about ε, one may end up setting some super-polynomial 2s

′
(to make
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the first term negligible) which kills the second term nc·2s′ · ε. Same problems arise in similar situations
(e.g., construction of PRGs from regular OWFs [18]). A remedy for this is parallel repetition: for any
efficiently computable q ∈ ω(1), run q copies of f , apply hashing and truncating functions (setting
s′ = 2 log n) to every copy (to get a bound O(ε·nc+2)), which shrinks the entropies by 2q log n bits, and
finally apply a single hashing (to the q inputs of f) that expands q· log n bits (to yield another negligible
bound n−q). This gives a family of UOWHFs with shrinkage 2q log n − q log n = q log n, and key and
output length O(q · n) for any (efficiently computable) super-constant q.

Definition 4.1 (parallel repetition) For any function g : X → Y, we define its q-fold parallel repe-
tition gq : X q → Yq as

gq(x1, ..., xq) = ( g(x1) , ..., g(xq) ) .

For simplicity, we will use shorthand ~x
def
= (x1, . . . , xq) and thus gq(~x)=gq(x1, . . . , xq).

Theorem 4.2 (UOWHFs from any known almost-regular OWFs) Let f : {0, 1}n → {0, 1}n be
any (2r, 2rnc)-almost regular (length-preserving) (t,ε)-one-way function, where c is any constant, and
r = r(n) is any efficiently computable function. Then, for any efficiently computable q = q(n) ∈
ω(1), let H and trunc be as defined in Lemma 4.1 with s′ = 2 log n, and let H1 = {h1 : {0, 1}q·n →
{0, 1}q(r+(c+1) logn)} be a family of universal hash functions, we have that

G3
def
= { g : {0, 1}qn → {0, 1}qn−q logn | g(~x)

def
= (g1(~x), h1(~x)), g1

def
= (trunc ◦ h ◦ f)q, h ∈ H , h1 ∈ H1 }

is a (t−nO(1),n−q+q·nc+2 ·ε)-universal one-way hash function family with key and output length O(q ·n),
and shrinkage q· log n.

Proof. Similar to the proof of Theorem 4.1, define E1
def
=
(
f q(~x) = f q(~x′) ∧ h1(~x) = h1(~x′)

)
and

E2
def
=
(
f q(~x) 6= f q(~x′) ∧ g1(~x) = g1(~x′)

)
, we have

Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1), ~x 6=(~x′←A(~x,h,h1))

[ g(~x) = g(~x′)]

≤ Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1), ~x6=(~x′←A(~x,h,h1))

[ E1 ∨ E2 ]

≤ Pr
~x

$←−{0,1}qn, h1
$←−H1

[ ∃ ~x′ 6= ~x ∧ f q(~x) = f q(~x′) ∧ h1(~x) = h1(~x′) ]

+ Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1)

[ ~x′ ← A(~x, h, h1) ∧ f q(~x) 6=f q(~x′) ∧ g1(~x) = g1(~x′) ]

≤ 2−q logn + q·nc+2 · ε = n−q + q·nc+2 · ε ,

where the second inequality follows by a union bound, and the first term of the third inequality is due
to that conditioned on any ~y = f q( ~X) random variable ~X is uniform over some set of size at most
(2r·nc)q, so we apply Lemma 3.1 (setting a≤q(r + c · logn), d≥qlogn and k = 1) to get

Pr
~x

$←−{0,1}qn, h1
$←−H1

[ ∃ ~x′ 6= ~x ∧ f q(~x) = f q(~x′) ∧ h1(~x) = h1(~x′) ]

= E~y←fq(Uqn)[ Pr
~x

$←−(fq)−1(~y), h1
$←−H1

[ ∃ ~x′ 6= ~x ∧ f q(~x) = f q(~x′) ∧ h1(~x) = h1(~x′) ] ]

≤ E~y←fq(Uqn)[ 2−q logn ] = n−q .

We proceed to the proof of bounding the second term. Suppose for contradiction that there exists Ag1

of running time t− nO(1) such that

Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1)

[ ~x′ ← Ag1(~x, h, h1) ∧ f q(~x)6=f q(~x′) ∧ g1(~x) = g1(~x′) ] > q·nc+2 · ε
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Then, define Ã as in Algorithm 2. Conditioned on Ag1 finds a collision, i.e., f q(~x)6=f q(~x′) and g1(~x) =

g1(~x′), there exists at least one i∗ ∈ [q] satisfying f(xi∗)6=f(x′i∗) and trunc(h(f(xi∗))) = trunc(h(f(x′i∗))).
We have

Algorithm 2 (trunc ◦ h)-collision finder Ã on input (x, h).

Input: (x, h)
$←− {0, 1}n ×H

Sample ~x = (x1, . . . , xq)
$←− {0, 1}qn,h1

$←− H1, i
$←− [q]

~x′ = (x′1, . . . , x
′
q)← Ag1( (x1, . . . , xi−1, x, xi+1, . . . , xq) , h, h1) {i.e., replace xi with x }

return x′i

Pr
x

$←−{0,1}n, h $←−H
[ x′ ← Ã(x, h) ∧ f(x) 6=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′))) ]

≥ Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1)

[ ~x′ ← Ag1(~x, h, h1) ∧ f q(~x) 6=f q(~x′) ∧ g1(~x) = g1(~x′) ∧ i = i∗ ]

> q·nc+2ε · (1/q) = nc+2ε ,

which is a contradiction to Lemma 4.1 (recall that s′ = 2logn) and thus completes the proof. �
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A Lemmata and Proofs Omitted

Lemma A.1 (The injective hash lemma for almost flat sources) For any integers a, d, k and l
satisfying a≤l and any real value β ≥ 1, let Y be any distribution over a support set Y ⊆ {0, 1}l such

that every y ∈ Y satisfies 2−a ≤ Pr[Y = y] ≤ 2−aβ, and let H def
= {h : {0, 1}l → {0, 1}a+d} be a family

of (k·2−(a+d))-almost universal functions. Then, we have that

Pr
y←Y, h

$←−H
[ ∃ỹ ∈ Y : ỹ 6= y ∧ h(ỹ) = h(y) ] ≤ β·k·2−d .

Proof. It follows from |Y|·2−a≤
∑

y∈Y Pr[Y = y] = 1 that |Y| ≤ 2a. We denote by UY the uniform
distribution over Y. Note that UY and Y are of the same support set. We define

S∗ def
= {(y, h) ∈ (Y,H) : ∃ỹ ∈ Y ∧ ỹ 6= y ∧ h(ỹ) = h(y)}

and thus by the standard injective hash lemma (i.e., Lemma 3.1) it holds that

Pr[(UY , H) ∈ S∗] ≤ k·2−(a+d−log |Y|) ≤ k·2−d .
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On the other hand, we have

Pr[(UY , H) ∈ S∗] =
∑
h

Pr[H = h]
∑

y:(y,h)∈S∗

1

|Y|

≥
∑
h

Pr[H = h]
∑

y:(y,h)∈S∗
2−a

≥
∑
h

Pr[H = h]
∑

y:(y,h)∈S∗
Pr[Y = y]/β = Pr[(Y,H) ∈ S∗]/β .

It immediately follows that Pr[(Y,H) ∈ S∗] ≤ β·k·2−d. �

Proof of Lemma 3.2. As f is (2r, 2r·nc)-almost regular it suffices to consider the injectiveness during
the composition of f and h, i.e.,

Pr
x

$←−{0,1}n, h $←−H
[ 2r ≤ |f ′−1(f ′(x, h))| ≤ 2r·nc ]

≥ Pr
y←f(Un), h

$←−H
[ |{ ỹ∈f({0, 1}n) : h(ỹ) = h(y) }| = 1 ]

= 1 − Pr
y←f(Un), h

$←−H
[ ∃ỹ∈f({0, 1}n) : h(ỹ) = h(y) ∧ y 6= ỹ ]

≥ 1− nc · poly(n)·2−(κ+r) = 1− poly′(n)·2−(κ+r) ,

where the second inequality is by Lemma A.1 (setting Y = f(Un), a = n − r, β = nc and d = κ + r).
Further, it is not hard to see that any f ′-inverting algorithm Af ′ implies an f -inverting algorithm Af .
That is, on input f(x), Af applies random h to f(x), and then invokes Af ′ on (h(f(x)), h) to recover x.
The inversion probability of Af is

Pr
y←f(Un)

[Af (y) ∈ f−1(y)]

≥ Pr
y←f(Un),h

$←−H
[Af ′(h(y), h) ∈ f ′−1(h(y), h) ∧ ¬

(
∃ỹ∈f({0, 1}n) : h(ỹ) = h(y) ∧ y 6= ỹ

)
]

= 1 − Pr
y←f(Un),h

$←−H
[Af ′(h(y), h) /∈ f ′−1(h(y), h) ∨

(
∃ỹ∈f({0, 1}n) : h(ỹ) = h(y) ∧ y 6= ỹ

)
]

≥ 1 − Pr
y←f(Un),h

$←−H
[Af ′(h(y), h) /∈ f ′−1(h(y), h)] − Pr

y←f(Un),h
$←−H

[∃ỹ∈f({0, 1}n) : h(ỹ) = h(y) ∧ y 6= ỹ ]

≥ Pr
y←f(Un),h

$←−H
[Af ′(h(y), h) ∈ f ′−1(h(y), h)] − poly′(n)·2−(κ+r) ,

where the first inequality refers to that Af inverts f if Af ′ inverts f ′ on those (h(y), h) for which there
exists no distinct ỹ satisfying h(ỹ) = h(y), the second inequality is the union bound, and the third is
due to the probability that h is not injective on Y as given above. This completes the proof. �

Proof of Lemma 4.1. Suppose for contradiction that there exists an efficient Ã of running time t′ such
that

Pr
x

$←−{0,1}n,h $←−H
[ x′←Ã(x, h) : f(x) 6= f(x′) ∧ h(f(x))[u] = h(f(x′))[u] ] ≥ ε′

where u = n−r−c log n−s′. We proceed to the definition of algorithm InvÃ (that inverts f by invoking

Ã) as in Algorithm 3. By Claim 3.1, conditioned on f(x)6=y∗ it is equivalent to consider that InvÃ
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Algorithm 3 InvÃ that inverts f on input y∗ using random coins (x, v).

Input: y∗
$←− {0, 1}n

Sample x
$←− {0, 1}n

if f(x) = y∗ then
Output x and terminate.

end if

sample h := (f(x)− y∗)−1 · v, where v
$←− V = {v ∈ {0, 1}n \ {~0} : v[u] =

u︷ ︸︸ ︷
0 . . . 0}

{note: The above implies h
$←− {h ∈ H : h(f(x))[u] = h(y∗)[u]} by the algebraic structure of h. }

x′ ← Ã(x, h)
if f(x′)=y∗ then

Output x′

else
Output ⊥

end if
Terminate

samples (x,h,v) from {0, 1}n ×H× V uniformly and independently, from which y∗ can be determined.

Then, we argue that InvÃ inverts f with the following probability (see the rationale below)

Pr
y∗

$←−{0,1}n, x $←−{0,1}n, v $←−V
[ f(InvÃ(y∗)) = y∗ ]

≥ Pr
x

$←−{0,1}n,y∗ $←−{0,1}n
[ f(x) = y∗ ] + Pr

x
$←−{0,1}n,y∗ $←−{0,1}n

[ f(x)6=y∗ ]

× Pr
x

$←−{0,1}n,h $←−H,x 6=(x′←Ã(x,h)),v
$←−V

[ h(f(x))[u] = h(f(x′))[u] ∧ y∗ = f(x′) | f(x)6=y∗ ]

≥ 2−n + (1− 2−n) · ε′ · Pr
v

$←−V
[ y∗ = f(x′) | f(x) 6=y∗ ∧ f(x) 6= f(x′) ∧ h(f(x))[u] = h(f(x′))[u] ]

= 2−n + (1− 2−n) · ε′ · 1

|V|
= 2−n + (1− 2−n) · ε′ · 1

2r+c logn+s′ − 1
,

where Ã takes only x and h as input (i.e., independent of v), and thus conditioned on that Ã produces a
valid f(x′) 6= f(x) satisfying h(f(x′))[u] = h(f(x))[u], we have by Claim 3.1 that string y∗ is uniformly

distributed over set Y∗def={y∗ : y∗ = f(x) − v·h−1, v ∈ V}. Note that the already fixed f(x′) is also an
element of Y∗ and thus y∗ hits f(x′) with probability 1/|Y∗|=1/|V|= 1/(2n−u− 1). On the other hand,
we have that inverting f on input y∗ is upper bounded by:

Pr
y∗

$←−{0,1}n
[ f(InvÃ(y∗)) = y∗ ]

=
∑

y∈f({0,1}n)

Pr
y∗

$←−{0,1}n
[y = y∗]·Pr[f(InvÃ(y)) = y]

≤ 2−r ·
∑

y∈f({0,1}n)

Pr[f(Un) = y]·Pr[f(InvÃ(y)) = y]

≤ 2−r · ε
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where the first inequality is due to Pr[f(Un) = y] ≥ 2r−n and the second is due to the one-wayness of
f . Therefore, it must hold that 2−n + (1− 2−n) · ε′ · 1

2r+c log n+s′−1
≤ 2−r · ε

ε′ ≤ (2−rε− 2−n) · (2r+c logn+s′ − 1)/(1− 2−n) ≤ 2−rε · 2r+c logn+s′ = nc · 2s′ε

which completes the proof. �
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