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1-to-1, Regular One-way Functions and Beyond

Abstract

We revisit the problem of black-box constructions of universal one-way hash functions (UOWHFs)
from several (from specific to more general) classes of one-way functions (OWFs), and give construc-
tions accordingly that either improve the best previously known or generalize to a broader class of
one-way functions. In addition, the parameters we achieve are either optimal or almost optimal
simultaneously up to small factors, e.g., O(log n) or arbitrarily small ω(1).

• For any 1-to-1 one-way function (and not necessarily a one-way permutation), we give an
optimal construction of UOWHFs with key and output length Θ(n) by making a single call to
the underlying OWF. This improves the constructions of Naor and Yung (STOC 1989) and De
Santis and Yung (Eurocrypt 1990) that need key length O(n · ω(log n)).

• For any known-(almost-)regular one-way function with known hardness, we give another optimal
construction of UOWHFs with key and output length Θ(n) and a single call to the one-way
function.

• For any known-(almost-)regular one-way function, we give a construction of UOWHFs with key
and output length O(n·ω(1)) and by making ω(1) non-adaptive calls to the one-way function.
This improves the construction of Barhum and Maurer (Latincrypt 2012) that requires key and
output length O(n·ω(log n)) and ω(log n) calls.

• For any one-way function f that is weakly unknown-regular (i.e., the set of x’s with maximal
number of siblings is of an n−c-fraction for some constant c), we give a construction of UOWHFs
with key length O(n·logn) and output length Θ(n). This generalizes the construction of Ames
et al. (Asiacrypt 2012) which requires an unknown-regular one-way function (i.e., c = 0).

Along the way, we introduce several technical tools and techniques that might be of independent
interest. The first tool is a technical lemma about universal hashing with nice symmetry to the
leftover hash lemma. Secondly, we show that almost 1-to-1 (except for a negligible fraction) one-way
functions and known (almost-)regular one-way functions are equivalent in the known-hardness (or
non-uniform) setting, by giving an optimal construction of the former from the latter. Thirdly, we
show how to transform any one-way function that is far from regular (but only weakly regular on a
noticeable fraction of domain) into an unknown-almost-regular one-way function.

Keywords: Foundations, One-way Functions, Universal One-way Hash Functions, Target Collision
Resistance.



1 Introduction

Informally, a family of compressing hash functions, denoted by G, is called universal one-way, if given
a random function g ∈ G and a random (or equivalently, any pre-fixed) input x, it is infeasible for
any efficient algorithm to find any x′ 6= x satisfying g(x) = g(x′). The seminal result that one-way
functions (OWFs) imply universal one-way hash functions (UOWHFs) [21] is one of the central results
upon which modern cryptography is successfully founded. It further implies that digital signature (as
defined in [10]) can be based on any one-way function [19]. Other important applications of UOWHFs
include constructions of Cramer-Shoup encryption scheme [4], statistically hiding commitment scheme
[13, 14], etc.

UOWHFs from any OWFs. The principle possibility result that UOWHFs can be based on any
OWF was established by Rompel [21] (with some corrections given in [22, 17]). However, Rompel’s
construction was quite complicated and extremely unpractical. In particular, for any one-way function
on n-bit inputs it requires key length Õ(n12) and output length Õ(n8). Haitner et al. [12] improved the
construction via the notion of inaccessible entropy [14], and reduced key and output length to Õ(n7).
We mention also recent development by Gennaro and Venkitasubramaniam [6] that further reduces the
key and output lengths. Despite of all these improvements, the constructions are mainly of theoretical
interest and are too inefficient to be of any practical use.

UOWHFs from special OWFs. Another line of research focuses on more efficient (and nearly
practical) constructions of UOWHFs from special structured OWFs. Naor and Yung gave an elegant
construction of UOWHFs with key and output length Θ(n) which does a single call to any one-way
permutation. More specifically, let f : {0, 1}n → {0, 1}n be any one-way permutation, let h be a
random permutation (over n bits) from a pairwise-independent hash permutation family H, and let
trunc : {0, 1}n → {0, 1}n−1 be a truncating function that outputs the first n− 1 bits of input, then the
following

Gowp
def
= { (trunc ◦ h ◦ f) : {0, 1}n → {0, 1}n−1 , h ∈ H }

is a family of UOWHFs with 1 bit of shrinkage (i.e., compress by 1 bit), where “◦” denotes function
composition. However, for a slightly weaker primitive, namely, 1-to-1 one-way functions, the authors of
[19] only gave a rather complicated construction. De Santis and Yung [23] gave an improved construction
(from any 1-to-1 OWF f : {0, 1}n → {0, 1}l) as below:

G1−to−1
def
= { (hnn−1 ◦ . . . ◦ hl−1

l−2 ◦ h
l
l−1 ◦ f) : {0, 1}n → {0, 1}n−1 , hnn−1 ∈ Hnn−1, . . . , h

l
l−1 ∈ Hll−1 } ,

where each Hii−1 denotes a family of pairwise-independent hash functions that compress i-bit strings
into (i−1) bits. Although G1−to−1 enjoys linear output length and a single function call, it requires1 key
length O(ω(log n)·n) for describing all the hash functions. In addition, the work of [23] also introduced
a construction from any known-regular2 one-way function with key and output length O(ω(log2 n) · n)
and O(ω(1) · log n) adaptive calls, which was recently improved by Barhum and Maurer [3] to key and
output length O(ω(log n) ·n) and O(ω(1) · log n) non-adaptive calls. Based on unknown-regular one-way
functions, Ames et al. [1] presented a more general construction with output length Θ(n), key length
O(logn · n) and Õ(n) adaptive calls. In summary, as tabulated in Table 1, the best known construction

1A back-of-the-envelope calculation suggests that G1−to−1 needs key length O(l·(l − n)), and we know (see Fact 3.1)

that every 1-to-1 one-way function implies another one-way function f ′ : {0, 1}n
′∈Θ(n) → {0, 1}n

′+ω(logn) that is 1-to-1
except on a negligible fraction of inputs, which implies that the key length of [19, 23] can be pushed to O(ω(logn)·n).

2A function f is regular if every image has the same number (say α) of preimages, and it is known- (resp., unknown-)
regular if α is efficiently computable (resp., inefficient to approximate) from the security parameter. More generally (as
introduced in [27]), f is weakly unknown-regular if the fraction of x’s with maximal |f−1(f(x))| (which is not necessarily
efficiently computable) is noticeable. We stress that here “weakly” is used to describe “regularity” (rather than “one-way-
ness” as in “weakly one-way functions”).
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Table 1: A summary of the parameters from existing constructions [19, 23, 3, 1] and our work, where
KR-OWF and UR-OWF are the shorthands for known-regular and unknown-regular one-way functions
respectively, ε-hard KR-OWF additionally assumes that the hardness parameter ε of KR-OWF is known,
and n−c-WUR-OWF is the shorthand for weakly unknown-regular one-way functions (see Footnote 2
and formally Definition 2.6).

Assumption Output Length Key Length # of Calls Type

[19] OWP Θ(n) Θ(n) 1 non-adaptive

[23, 19] 1-to-1 OWF Θ(n) O(ω(log n)·n) 1 non-adaptive

[23] KR-OWF O(ω(log2 n) · n) O(ω(log2 n) · n) O(ω(log n)) adaptive

[3] KR-OWF O(ω(log n) · n) O(ω(log n) · n) O(ω(log n)) non-adaptive

[1] UR-OWF Θ(n) O(log n · n) Õ(n) adaptive

ours 1-to-1 OWF Θ(n) Θ(n) 1 non-adaptive

ours ε-hard KR-OWF Θ(n) Θ(n) 1 non-adaptive

ours KR-OWF O(ω(1) · n) O(ω(1) · n) O(ω(1)) non-adaptive

ours n−c-WUR-OWF Θ(n) O(log n · n) Õ(n2c+1) adaptive

requires key length O(n · log n) even for a 1-to-1 one-way function, and needs to make O(ω(1)· log n)
calls (or Õ(n) adaptive calls if one wants linear output length at the same time) to a regular one-way
function.

Summary of our constructions. In the paper, we give the following constructions from the
respective aforementioned one-way functions. The first two constructions achieve optimal parameters
simultaneously, the third is almost optimal up to an arbitrarily small super-constant factor ω(1) (e.g.,
log log log n or even less), and the fourth has optimal output length Θ(n) and key length O(n · log n). We
remark that further improvement on key length O(n · log n) (of the fourth construction) requires more
key-length efficient domain extender (for Merkle-Damg̊ard construction of UOWHFs) than Shoup’s [24],
which seems far beyond reach of conventional techniques3. Finally, the first three constructions have
optimal shrinkages (per invocation of OWF) by matching the upper bound of Gennaro et al. [5].

1. For any 1-to-1 one-way function, we give an optimal construction of UOWHFs with key and output
length Θ(n) and a single OWF call. This improves the constructions of Naor and Yung [19] and
De Santis and Yung [23] that require key length O(n · ω(log n)).

2. For any known-regular one-way function with known hardness, we give another optimal construc-
tion of UOWHFs with key and output length Θ(n) and a single call.

3. For any known-regular one-way function, we give a construction of UOWHFs with key and output
length O(ω(1)·n) and ω(1) non-adaptive calls. This improves the construction of Barhum and
Maurer [3] that requires key and output length O(n·ω(log n)) and ω(log n) calls.

4. For any one-way function f that is weakly unknown-regular on a noticeable fraction (e.g., n−c for
constant c) of domain, we give a construction of UOWHFs with key length O(n·logn) and output
length Θ(n). This generalizes the construction of Ames et al. [1], where an unknown-regular
one-way function (i.e., c = 0) is required.

On the (a)symmetry to PRGs. Our results further improve the understanding about the inherent
“black-box duality” [5, 14, 12] between one-way functions and pseudorandom generators. Firstly, we

3Asymmetrically, the case of range extension for a PRG g is much easier by just composing g with itself iteratively.
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introduce a technical lemma (see Lemma 3.1) which is dual to the leftover hash lemma and might be of
independent interest. Informally, it says that when applying a universal hash function h to any “flat”
random variable X of entropy (no more than) a to produce an (a + d)-bit output, h will be injective
on X except for a 2−d fraction. In contrast, the leftover hash lemma states that when hashing any
X of Rényi entropy (no less than) a into (a−d)-bit strings, the resulting output distribution will be
2−d/2-close (in terms of statistical distance) to uniform, where the symmetry is highlighted in bold.
Secondly, constructions #2 and #3 above match the best known results about constructions of PRGs
from known-regular OWFs (see [28]), namely, seed length O(ω(1)·n) or even Θ(n) if the hardness of
the underlying OWF is known. Thirdly, construction #4 is symmetric to the PRG construction [27]
based on the same class of one-way functions, where succinct key/seed length O(n · log n) is achieved via
bounded space generators. Finally (and perhaps more interestingly), construction #1 is asymmetric to
the case of PRGs, where we do not know how to construct a linear seed length PRG from an arbitrary
1-to-1 one-way function in general4.

On the efficiency, feasibility and limits. Constructions #1, #2 and #3 are practically relevant
as most one-way function candidates turn out to be known-almost-regular or even 1-to-1. Goldreich,
Levin and Nisan [9] showed how to base 1-to-1 one-way functions on concrete intractable problems such
as RSA and DLP. We further prove (as a byproduct of construction #2) the equivalence of almost
1-to-1 (i.e., 1-to-1 except for a negligible fraction) one-way functions and known-(almost-)regular one-
way functions in the known-hardness setting, by giving an optimal construction of the former from the
latter. Moreover, unknown regular one-way functions further reduce the knowledge required about the
underlying one-way functions, and the problem of basing cryptographic primitives (PRGs, UOWHFs,
etc.) on weaker assumptions is of theoretic interests. It improves our understanding about the feasibility
and limits of black-box reductions. In particular, Holenstein and Sinha [15], Barhum and Holenstein [2]
showed that Ω(n/ log n) black-box calls to an arbitrary (including unknown-regular) one-way function is
necessary to construct PRGs and UOWHFs, and the lower bound is matched by explicit constructions
of PRGs [11] and UOWHFs [1] respectively. We carry on this study even further by considering a more
general class of one-way functions called weakly unknown-regular one-way functions (as introduced in
[27]), namely, the underlying one-way function can have an arbitrary structure as long as the set of x’s
with maximal number of siblings (i.e., x and x′ are siblings of each other if f(x) = f(x′)) is of noticeable
fraction. The authors of [27] gave a construction of PRG with seed length O(n · log n) from weakly
unknown-regular OWFs. However, their analysis is quite ad-hoc (see Remark 5.1), and doesn’t seem to
generalize to the case of UOWHFs. As an intermediate step of construction #4, we prove a statement
that “iterating such a one-way function (that is weakly regular on only a noticeable fraction) sufficiently
many times yields a one-way function that is regular on an overwhelming fraction” and thus unifies the
approach to the two closely related objects (i.e., PRGs and UOWHFs). We mention an (arguable)
analogue to this problem, namely, hardness amplification of one-way functions [26], where a function
that is weakly one-way (for which every efficient algorithm has a noticeable fraction to fail upon) can
be turned into strongly one-way (hard to invert on an overwhelming portion) by parallel repetition [26]
or even sequential composition (assuming additionally that the underlying function is regular) [11].

The roadmap. We outline below the steps to build UOWHFs from the respective one-way function
f : {0, 1}n → {0, 1}l introduced above. To simplify the presentation, we assume without loss of
generality that l ∈ O(n) for 1-to-1 one-way functions and even length-preserving (i.e., l = n) for

4Given a 1-to-1 one-way function f , one might think of getting a PRG by hashing f(Un) into n− s bits concatenated
with s+ 1 hard-core bits of f , where s ∈ ω(logn) is the necessary entropy loss due to the leftover hash lemma. This is in
general not possible without knowing the hardness of the underlying f . See more discussions and the relaxed solutions to
this problem by Goldreich [7, Section 3.5.1.3]. For example, we get a linear seed-length PRG of the following weaker form,
i.e., for every ε = 1/poly(n) there exists a weak PRG of seed length Θ(n) whose output distribution is ε-indistinguishable
from uniform to all PPT distinguishers. Alternatively, we use parallel repetition to obtain a standard PRG with seed
length O(ω(1)·n) [28].
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arbitrary one-way functions. We state this as Fact 3.1 with a full proof given in Appendix A. In fact,
Haitner et al. [11] showed that any one-way function implies a length-preserving one-way function, and
our Fact 3.1 proves an even stronger version that (1) any 1-to-1 one-way function f : {0, 1}n → {0, 1}l
implies a one-way function f ′ : {0, 1}n′∈Θ(n) → {0, 1}l′∈Θ(n) that is 1-to-1 except for a negligible fraction;
(2) any one-way function f with α ≤ |f−1(y)| ≤ α·β implies another length-preserving one-way function
f ′ : {0, 1}n′∈Θ(n) → {0, 1}n′ with α′ ≤ |f ′−1(y)| ≤ α′·β except for a negligible fraction, where the size of
range β is preserved, and α′ is efficiently computable if α is.

• Based on 1-to-1 OWFs. We adapt the classic Naor-Yung construction (for one-way permuta-
tion) to any 1-to-1 one-way function as follows:

G1
def
= { (trunc ◦ h ◦ f) : {0, 1}n → {0, 1}n−s , h ∈ H } ,

where H is a family of universal5 hash permutations on l bits, and trunc : {0, 1}l → {0, 1}n−s is
a truncating function that outputs the first n − s bits of input. We give a proof that if f is a
(t,ε)- 1-to-1 OWF f then the resulting G1 is a (t − nO(1), 2s · ε)-UOWHF family with key and
output length Θ(n) and shrinkage s (see Definition 2.2 and Definition 2.7 for formal definitions).
The construction enjoys optimal parameters and somewhat counter-intuitively the security bound
drops only by factor 2s (which is optimal by [5]) rather than by 2l−n+s (i.e., exponential in the
number of bits truncated). We refer to the proof of Theorem 3.1 and Remark 3.1 for more technical
details and further discussions.

• Based on known-(almost-)regular ε-hard OWFs. Given an almost-regular f (see Def-
inition 2.5) which is known to be (t,ε)-one-way, i.e., ε is efficiently computable, we define the
following function family

G2
def
= { g : {0, 1}n → {0, 1}n−s , g(x) = (g1(x), h1(x)), g1 = trunc ◦ h ◦ f, h ∈ H , h1 ∈ H1 }

where H is a family of universal hash permutations, and let H1 and trunc be a family of universal
hash functions and the truncating function (both with appropriate output sizes) respectively.
We show that G2 is a UOWHF family with key and output length Θ(n) and shrinkage s. The
rationale is that for any6 x 6= x′ colliding on g ∈ G2 it either satisfies “f(x) = f(x′) ∧ h1(x) =
h1(x′)” or “f(x)6=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′)))”. The former is bounded information-
theoretically by our hashing lemma, and the latter is computationally bounded (and reducible

to the one-way-ness of f). Interestingly, by abstracting out function f ′(x, h1)
def
= (f(x), h1(x), h1)

from the above construction, we further show that f ′ is a one-way function that is 1-to-1 except
for a negligible fraction. We refer to Theorem 4.1, Lemma 4.1 and Theorem 4.2 for the details.

• Based on known-(almost-)regular OWFs. Next, we consider any known-(almost)-regular
OWF f whose hardness parameter is ε unknown (i.e., ε is negligible but may not be efficiently
computable). In this case, we run q independent copies of f , and we get a construction by making
q non-adaptive calls with shrinkage q log n, key and output length O(q · n), where q ∈ ω(1) can
be any efficiently computable super-constant. The parallel repetition technique was also used in
similar contexts (e.g., the construction of PRG from any known regular OWF [28]). We refer to
Theorem 4.3 for the detailed construction and proof.

5Many existing UOWHF constructions use pairwise (or even 3-wise) independent hashing to facilitate the analysis, but
in fact universal hashing suffices here.

6More precisely, x is sampled at random and x′ can be any efficient function of x such that x 6= x′.
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• Based on weakly unknown-regular OWFs. Finally, we proceed to the more general
assumption that the one-way function is only weakly unknown-regular on a noticeable fraction of
the domain. We show iterating this f sufficiently many times yields a one-way function f ′ that is
unknown-almost-regular, and thus plugging this f ′ into the construction of Ames et al.[1] yields
a construction of UOWHFs with output length Θ(n) and key length O(n · log n).

2 Preliminaries

Notations and definitions. We use [n] to denote set {1, . . . , n}. We use capital letters (e.g.,
X, Y ) for random variables, standard letters (e.g., x, y) for values, and calligraphic letters (e.g. X ,
Y) for sets. The support of a random variable X, denoted by Supp(X), refers to the set of values
on which X takes with non-zero probability, i.e., {x : Pr[X = x] > 0}. For a binary string x =
x1 . . . xn, denote by x[t] the first t bits of x, i.e., x1 . . . xt. x‖y refers the concatenation of x and y.
We denote by trunc : {0, 1}n → {0, 1}t a truncating function that outputs the first t bits of input,
i.e., trunc(x) = x[t]. |S| denotes the cardinality of set S. For function f : {0, 1}n → {0, 1}l(n), we use

shorthand f({0, 1}n)
def
= {f(x) : x ∈ {0, 1}n}, and denote by f−1(y) the set of y’s preimages under f ,

i.e., f−1(y)
def
= {x : f(x) = y}. We say f is length-preserving if l(n) = n. We use s ← S to denote

sampling an element s according to distribution S, and let s
$←− S denote sampling s uniformly from

set S, and y := f(x) denote value assignment. We use Un and UX to denote uniform distributions over
{0, 1}n and X respectively, and let f(Un) be the distribution induced by applying function f to Un. For
probabilistic algorithm A, we use A(x; r) to denote the output of A on input x and internal coin r.

Collision probability. We use CP(X) to denote the collision probability of X, i.e., CP(X)
def
=∑

x Pr[X = x]2, and denote by CP(X|Z) the average collision probability of X conditioned on another
(possibly correlated) random variable Z by

CP(X|Z)
def
= Ez←Z

[ ∑
x Pr[X = x| Z = z]2

]
.

Simplifying Notations. To simplify the presentation, we use the following simplified notations.
Throughout, most parameters are functions of the security parameter n (e.g., t(n), ε(n), r(n)) and we
often omit n when clear from the context (e.g., t, ε, r). Parameters (e.g., ε, r) are said to be known if
they are polynomial-time computable from n. By notation f : {0, 1}n → {0, 1}l we refer to the ensemble
of functions {f : {0, 1}n → {0, 1}l(n)}n∈N. As slight abuse of notion, poly might be referring to the set
of all polynomials or a certain polynomial, and h might be either a function or its description which will

be clear from context. For example, in h(y)
def
=h · y the first h denotes a function, the second h refers to

a string (a finite field element) that describes the function, and ‘·’ denotes multiplication between field
elements.

Definition 2.1 (ρ-almost universal hashing) A family of functions H = {h : {0, 1}l → {0, 1}t} is
ρ-almost universal if for any distinct x1, x2 ∈ {0, 1}l, it holds that

Pr
h

$←−H
[h(x1) = h(x2)] ≤ ρ .

In the special case ρ = 2−t, we say that H is universal.

It is folklore that almost universal families of hash functions can be efficiently constructed.

Fact 2.1 (efficient constructions of almost universal hashing) For any integers t≤l, there exists
a family of O(l/t)·2−t-almost universal hash functions H = {h : {0, 1}l → {0, 1}t} such that H has
description length O(t) and every h ∈ H is computable in time poly(l).
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A concrete example. Assume without loss of generality that t divides l , i.e., l = k·t for some k ∈ N
(otherwise use l′ = d(l/t)e · t instead of l), and parse x as a sequence of t-bit strings (x1, . . . , xk). Then,

we have that H = {ha : ha(x)
def
=
∑k

i=1 a
i·xi, a, xi ∈ GF (2t)} is a family of k·2−t-almost universal hash

functions of description length t. In fact, we might be able to use explicit almost pairwise independent
hash functions [18, 25] to achieve even smaller ρ (e.g., ρ = O(2−t) for any l ∈ poly(t)), but the above
construction already suffices for our applications.

Definition 2.2 (one-way functions) A sequence of functions {f : {0, 1}n → {0, 1}l(n)}n∈N is (t(n),ε(n))-
one-way if f is polynomial-time computable and for any probabilistic algorithm A of running time t(n)

Pr
x

$←−{0,1}n
[A(1n, f(x))∈f−1(f(x))] ≤ ε(n).

Hereafter we use simplified notation f : {0, 1}n → {0, 1}l(n) for the above one-way function, where t(·)
and 1/ε(·) are super-polynomial.

Definition 2.3 (a family of one-way functions) A sequence of function family F = {Fn}n∈N, where
Fn = {fu : {0, 1}n → {0, 1}l(n), u ∈ {0, 1}q(n)}, is (t(n),ε(n))-one-way if for any n ∈ N, u ∈ {0, 1}q(n)

and x ∈ {0, 1}n, the value fu(x) can be computed in polynomial time, and for any probabilistic algorithm
A of running time t(n), we have that

Pr
x

$←−{0,1}n; u
$←−{0,1}q(n)

[ A(1n, u, fu(x))∈f−1
u (fu(x)) ] ≤ ε(n) .

Likewise, we use simplified notation F = {fu : {0, 1}n → {0, 1}l(n), u ∈ {0, 1}q(n)} for {Fn}n∈N.

Definition 2.4 (almost 1-to-1 functions) A function f : {0, 1}n → {0, 1}l(n) is ε(n)-almost 1-to-1
if there exists a negligible function ε(n), such that for every n ∈ N we have

Pr
x

$←−{0,1}n
[ ∃x′ : x′ 6= x ∧ f(x) = f(x′) ] ≤ ε(n).

In particular, f is 1-to-1 for ε(n) ≡ 0.

Definition 2.5 (almost regular functions) A function f : {0, 1}n → {0, 1}l(n) is α(n)-regular if
there exists an integer function α(n), called the regularity function, such that for every n ∈ N and
x ∈ {0, 1}n we have

|f−1(f(x))| = α(n).

For integer functions α(n) and β(n), f is (α(n), α(n)·β(n))-almost regular if for every n ∈ N and
x ∈ {0, 1}n we have

α(n) ≤ |f−1(f(x))| ≤ α(n) · β(n).

In particular, f is known-(almost)-regular if α is polynomial-time computable, or otherwise it is called
unknown-(almost)-regular. In case that f is also (t(n), ε(t))-one-way, standard “almost-regularity”
refers to that f is (α(n), α(n)·β(n))-almost-regular for β(n) ≤ poly(n) or at most β(n) ∈ (1/ε(n))O(1)

for certain small constant O(1).

Definition 2.6 (weakly unknown-regular OWFs [27]) Let f : {0, 1}n → {0, 1}l(n) be a one-way
function, and for every n ∈ N, divide domain {0, 1}n into sets X1, . . . ,Xn (i.e., X1 ∪ . . .∪Xn = {0, 1}n)

such that Xj
def
= {x : 2j−1 ≤ |f−1(f(x))| < 2j}, and define function max(n)

def
= max{j : |Xj | > 0}, i.e.,
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|Xmax(n)| > 0 and |Xmax(n)+1∪ . . .∪Xn| = 0. We say that f is weakly unknown-regular if there exists
a constant c such that for all sufficiently large n’s :

Pr[Un ∈ Xmax(n)] ≥ n−c . (1)

Note that max(·) can be arbitrary (not necessarily efficient) functions and thus unknown-regular one-way
functions fall into a special case7 for c = 0.

Definition 2.7 (UOWHFs [19]) A sequence of function family G = {Gn}n∈N, where Gn = {gu :
{0, 1}`(n) → {0, 1}`(n)−s(n), u ∈ {0, 1}q(n), ` ∈ poly}, is a family of (t(n),ε(n))-universal one-way hash
functions if for every n ∈ N, u ∈ {0, 1}q(n) and x ∈ {0, 1}`(n), the value gu(x) can be computed in
polynomial time, and for every probabilistic algorithm A of running time t(n), it holds that

Pr
x

$←−{0,1}`(n); u
$←−{0,1}q(n); x′←A(1n,x,u)

[ x 6= x′ ∧ gu(x) = gu(x′) ] ≤ ε(n) .

The difference between input and output lengths (i.e., s(n)) is called shrinkage. Standard asymptotic
security requires t(·) and 1/ε(·) to be super-polynomial. For succinctness, hereafter we will use shorthand
G = {gu : {0, 1}`(n) → {0, 1}`(n)−s(n), u ∈ {0, 1}q(n)} for {Gn}n∈N defined above.

3 UOWHFs from 1-to-1 One-way Functions

3.1 A Technical Lemma

We introduce Lemma 3.1 below with nice duality to the leftover hash lemma which will be useful in our
constructions and might be of independent interest. We mention that the lemma actually generalizes
to almost flat sources (stated as Lemma A.1 in Appendix A), which is used in the proof of Fact 3.1.

Lemma 3.1 (The injective hash lemma) For any integers a, d, k and l satisfying a≤l, let Y be

any uniform distribution over some set Y ⊆ {0, 1}l of size 2a, and let H def
= {h : {0, 1}l → {0, 1}a+d}

be a family of (k·2−(a+d))-almost universal hash functions. Then, we have that

Pr
y←Y, h

$←−H
[ ∃ỹ ∈ Y : ỹ 6= y ∧ h(ỹ) = h(y) ] ≤ k·2−d .

Recall that k = 1 corresponds to the special case that H is universal.

Proof. The (almost) universality of H implies an upper bound on CP(H(Y )|H), i.e.,

CP( H(Y ) | H ) ≤ CP(Y ) + max
y1 6=y2

{ Pr
h

$←−H
[ h(y1) = h(y2) ] } = 2−a(1 + k·2−d) .

where we consider the random experiment of sampling y1 and y2 i.i.d. to Y and thus the collision
probability of H(Y ) given H is bounded by the sum of Pr[Y1 = Y2] and Pr[H(y1) = H(y2)] for any
y1 6= y2.

7In fact, our construction #4 only requires that f is weakly unknown almost-regular, i.e., Pr[Un ∈ Xmax(n)−O(logn)∪
. . . ∪ Xmax(n)] ≥ n−c instead of (1), where unknown-almost-regular one-way functions become a special case for c = 0.
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Further, denote S1
def
= {(z, h) : |{ỹ ∈ Y : h(ỹ) = z}| = 1} and S2

def
= {(z, h) : |{ỹ ∈ Y : h(ỹ) = z}| ≥

2}, and we have the following lower bound

CP ( H(Y ) | H )

=
∑
h

Pr[H = h]

 ∑
z:(z,h)∈S1

Pr[H(Y ) = z|H = h]2 +
∑

z:(z,h)∈S2

Pr[H(Y ) = z|H = h]2


≥ 2−a ·

∑
(z,h)∈S1

Pr[H = h,H(Y ) = z] + min
(z,h)∈S2

{ Pr[h(Y ) = z] } ·
∑

(z,h)∈S2

Pr[H = h,H(Y ) = z]

= 2−a · Pr[ (H(Y ), H) ∈ S1 ] + 2−a+1 · Pr[ (H(Y ), H) ∈ S2 ]

= 2−a(1 + Pr[ (H(Y ), H) ∈ S2]) ,

where the inequality is due to that any (z, h) ∈ S1 satisfies Pr[h(Y ) = z] = 2−a, and for any (z, h) ∈ S2

we have Pr[h(Y ) = z]≥2−a+1 (recall that Y is uniform over Y by assumption). Taking into account
both the lower and upper bounds on CP(H(Y )|H), we get Pr[ (H(Y ), H) ∈ S2 ] ≤ k·2−d and thus
complete the proof. �

3.2 Simplifying Assumption about Output Length

We argue that the input and output lengths of a 1-to-1 one-way function f : {0, 1}n → {0, 1}l(n) can be
assumed to be linearly related (i.e., l(n) ∈ O(n)) without loss of generality. For almost regular one-way
functions, we can even assume that they are length-preserving (i.e., l(n) = n). We state it as Fact 3.1
with proof given in Appendix A.

Fact 3.1 (two folklore facts) For any r1 = r1(n) ≤ r2 = r2(n) and any efficiently computable
κ = κ(n) ∈ O(n), we have

1. Any 1-to-1 (t,ε)-one-way function f : {0, 1}n → {0, 1}l implies a (t − nO(1), ε + poly(n) · 2−κ)-
one-way function f ′ : {0, 1}n′∈Θ(n) → {0, 1}(n′+κ)∈Θ(n) which is 1-to-1 except on a (poly(n) · 2−κ)-
fraction of inputs, i.e.,

Pr
x

$←−{0,1}n′
[ ∃x′ ∈ {0, 1}n′ : x′ 6= x ∧ f ′(x) = f ′(x′) ] ≤ poly(n) · 2−κ

2. Any (2r1 , 2r2)-almost regular (t,ε)-one-way function f : {0, 1}n → {0, 1}l implies a length-preserving
(t−nO(1),ε+poly(n)·2−(2r1+κ))-one-way function f̄ : {0, 1}n′∈Θ(n) → {0, 1}n′ which is (2n+κ+r1 , 2n+κ+r2)-
almost regular except on a (poly(n) · 2−(2r1+κ))-fraction of inputs, i.e.,

Pr
x

$←−{0,1}n′
[ 2n+κ+r1 ≤ |f̄−1(f̄(x))| ≤ 2n+κ+r2 ] ≥ 1− poly(n) · 2−(2r1+κ) .

Note that 2r2−r1 can be arbitrarily large (i.e., not necessarily bounded by poly(n)), and thus the second
statement above applies to any one-way function f . It suffices to set κ = ω(log n) to have a negligible
error bound, and in case κ = Θ(n) the bound will be exponentially small.

3.3 UOWHFs from 1-to-1 OWFs

We will assume in the remainder of the paper that the underlying 1-to-1 one-way function has linear out-
put length (i.e., l(n)∈O(n)) and that the almost-regular and weakly unknown-regular one-way functions
in consideration are length-preserving (i.e., l(n) = n). We first state a fact about the hard-to-invertness
of f , and then adapts the Naor-Yung construction to any 1-to-1 one-way functions.
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Fact 3.2 For any 1-to-1 (t, ε)-one-way function f : {0, 1}n → {0, 1}l and any probabilistic algorithm
Inv of running time t, it holds that

Pr
y∗

$←−{0,1}l
[ f(Inv(y∗)) = y∗ ] ≤ 2−(l−n) · ε .

Proof.

Pr
y∗

$←−{0,1}l
[ f(Inv(y∗)) = y∗ ] ≤ Pr

y∗
$←−{0,1}l

[y∗ ∈ f({0, 1}n)] · Pr
y∗

$←−f({0,1}n)

[ f(Inv(y∗)) = y∗ ] ≤ 2−(l−n) · ε .

�

Theorem 3.1 (UOWHFs from 1-to-1 OWFs) Let f : {0, 1}n → {0, 1}l∈O(n) be any 1-to-1 (t, ε)-
one-way function, let H be a family of permutations8 over {0, 1}l as follows:

H = {h : {0, 1}l → {0, 1}l , h(y)
def
=h · y, where y ∈ GF (2l), ~0 6=h ∈ GF (2l) } ,

let trunc : {0, 1}l → {0, 1}n−s be a truncating function, where s = s(n) is efficiently computable. Then,
we have that

G1
def
= { (trunc ◦ h ◦ f ) : {0, 1}n → {0, 1}n−s(n) , h ∈ H }

is a family of (t− nO(1), 2s · ε)-UOWHFs with shrinkage s, key and output length Θ(n).

Proof. Suppose for contradiction that there exists a G1-collision finder A of running time t′ that on
input (x, h), breaks the target collision resistance with some non-negligible probability ε′, i.e.,

Pr
x

$←−{0,1}n,h $←−H
[ x′←A(x, h) : x 6= x′ ∧ h(f(x))[n−s] = h(f(x′))[n−s] ] = ε′ > 2s · ε

We define algorithm InvA (that inverts f on input y∗
$←− {0, 1}l by invoking A) as in Algorithm 1.

By Claim 3.1, conditioned on f(x) 6=y∗ it is equivalent to consider that InvA samples (x,h,v) from
{0, 1}n×H×V uniformly and independently, and then determines the value of y∗. We argue that InvA

inverts f with the following probability (see the rationale below)

Pr
y∗

$←−{0,1}l, x $←−{0,1}n, v $←−V
[ f(InvA(y∗)) = y∗ ]

≥ Pr
x

$←−{0,1}n,y∗ $←−{0,1}l
[ f(x) = y∗ ] + Pr

x
$←−{0,1}n,y∗ $←−{0,1}l

[ f(x)6=y∗ ]

× Pr
x

$←−{0,1}n,h $←−H,x 6=(x′←A(x,h)),v
$←−V

[ h(f(x))[n−s] = h(f(x′))[n−s] ∧ y∗ = f(x′) | f(x) 6=y∗ ]

≥ 2−l + (1− 2−l) · ε′ · Pr
v

$←−V
[y∗ = f(x′) | f(x)6=y∗ ∧ f(x) 6= f(x′) ∧ h(f(x))[n−s] = h(f(x′))[n−s] ]

= 2−l + (1− 2−l) · ε′ · 1

|V|
= 2−l + (1− 2−l) · ε′ · 1

2l−n+s − 1
> ε′·2−(l−n+s) > ε·2−(l−n) ,

where A takes only x and h as input (i.e., independent of v), and thus conditioned on that A produces
a valid x′ 6= x satisfying h(f(x′))[n−s] = h(f(x))[n−s], we have by Claim 3.1 that string y∗ is uniformly

distributed over set Y∗def={y∗ : y∗ = f(x) − v·h−1, v ∈ V}. Note that the already fixed f(x′) is also an
element of Y∗ and thus y∗ hits f(x′) with probability 1/|Y∗|=1/|V|= 1/(2l−n+s− 1). We thus complete
the proof by reaching a contradiction to Fact 3.2. �

8In fact, H constitutes a family of universal hash permutations. However, our proofs will only use the concrete
construction of H and benefit from its algebraic property over finite fields, rather than assuming a general universal H
plus a constructible property [14] (i.e., given any x and y there exists a PPT that outputs h

$←− {h ∈ H : h(x) = y}) .
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Algorithm 1 InvA that inverts f on input y∗ using random coins (x, v).

Input: y∗
$←− {0, 1}l

Sample x
$←− {0, 1}n

if f(x) = y∗ then
Output x and terminate.

end if

sample h := (f(x)− y∗)−1 · v, where v
$←− V = {v ∈ {0, 1}l \ {~0} : v[n−s] =

n−s︷ ︸︸ ︷
0 . . . 0}

{note: The above implies h
$←− {h ∈ H : h(f(x))[n−s] = h(y∗)[n−s]} by the GF (2l) arithmetics. }

x′ ← A(x, h)
if f(x′)=y∗ then

Output x′

else
Output ⊥

end if
Terminate

Claim 3.1 (equivalent sampling) Let the values h, v, x, y∗ be sampled as in Algorithm 1 (or as

in Algorithm 3), and conditioned on the event y∗ 6= f(x), it is equivalent to sample (x, h, v)
$←−

{0, 1}n ×H× V uniformly and independently and then determine y∗ := f(x)− v · h−1.

Proof of Claim 3.1. We known that (x, v) is uniformly sampled from {0, 1}n×V by definition, and thus
it suffices to show that “fix any (x, v), and conditioned on y∗ 6= f(x) (i.e., Y ∗ is uniform distributed over
{0, 1}l \ {f(x)}), it holds that h is uniform over H”. As v 6= ~0 (V excludes ~0 by definition), it follows
that h = (f(x)− Y ∗)−1 · v is uniform over {0, 1}l \ {~0}. Finally, for any given (x, h, v), one efficiently
determines the value y∗ = f(x)− v · h−1 due to the arithmetics over the finite field. �

Remark 3.1 (on the optimal security bounds.) Theorem 3.1 enjoys optimal security degradations,
in particular, the collision resistance deteriorates exponentially only with respect to shrinkage s (which
is optimal by [5]), i.e., not to the number of bits truncated (i.e., l−n+s). This is due to the fact that we
reduce the collision-finding problem to that of inverting a random y∗ over {0, 1}l, where the probability
that y∗ is valid image (i.e., over f({0, 1}n)) is 2−(l−n) and thus cancels the factor (l − n).

We also state a simple corollary of Theorem 3.1 below where the underlying one-way function f is
1-to-1 except for a negligible fraction. See its proof in Appendix A.

Corollary 3.1 (UOWHFs from almost 1-to-1 OWFs) Let f , H, trunc and G be the same as as-
sumed (or defined) in Theorem 3.1 except that f is δ(n)-almost 1-to-1 (instead of perfectly 1-to-1),
where δ(n) ≤ 1/2. Then, G1 is a family of (t − nO(1), 2s+1 · ε + δ)-universal one-way hash functions
with shrinkage s(n), key and output length Θ(n).

4 UOWHFs from Known Regular OWFs

We proceed to the more general case that f is a known almost-regular function. Recall that by Fact 3.1
we can assume WLOG that the underlying almost regular one-way function is length-preserving. We
first show an optimal construction where the hardness parameter ε is known.
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4.1 Compressing the Output is Necessary but Not Sufficient

We attempt to generalize the Naor-Yung approach for one-way permutations (and 1-to-1 one-way func-
tions) to almost regular one-way functions by compressing (using trunc ◦ h) the output Y = f(X) into
H∞(Y )−s′ bits, where H∞(Y ) denotes the min-entropy of Y and s′ ∈ O(log (1/ε)). However, this only
gives a weak form of guarantee, as stated in Lemma 4.1 below, that given a random x it is infeasible
for efficient algorithms to find any f(x′) 6= f(x) such that trunc(h(f(x′))) = trunc(h(f(x))). Other-
wise said, it does not rule out the possibility that one may easily find x′ 6= x satisfying f(x′) = f(x).
Hence, compressing the output is only a useful intermediate step to obtain UOWHFs. Lemma 4.1 below
further generalizes Theorem 3.1 to known-(almost-)regular functions, whose proof is similar to that of
Theorem 3.1 and thus we defer it to Appendix A to avoid redundancy.

Lemma 4.1 For any constant c, and any efficiently computable r = r(n) and s′ = s′(n), let f :
{0, 1}n → {0, 1}n be any (2r, 2rnc)-almost regular (length-preserving) (t, ε)-one-way function, let H be
a family of universal hash permutations over {0, 1}n, i.e.,

H = {h : {0, 1}n → {0, 1}n , h(y)
def
=h · y, where y ∈ GF (2n), ~0 6=h ∈ GF (2n) } ,

let trunc : {0, 1}n → {0, 1}n−r−c· logn−s′ be a truncating function. Then, for any Ã of running time
t− nO(1) (for some universal constant O(1)) we have that

Pr
x

$←−{0,1}n, h $←−H
[ x′ ← Ã(x, h) ∧ f(x)6=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′))) ] ≤ nc·2s′ · ε .

4.2 UOWHFs from Known (Almost-)Regular OWFs with Known Hardness

We first give an optimal construction assuming that the inversion probability upper bound ε is known.
Note that in addition to hashing the output f(x) (as we did in Lemma 4.1), we also hash the input x
to ensure that no distinct x′ collides with x with respect to the resulting function.

Theorem 4.1 (UOWHFs from known almost-regular OWFs with known ε) For constant c,
let f : {0, 1}n → {0, 1}n be any (2r, 2rnc)-almost regular (length-preserving) (t,ε)-one-way function,
where r = r(n) and ε = ε(n) are any efficiently computable functions. Let shrinkage s = s(n) be any
efficiently computable function, and let H and trunc be as defined in Lemma 4.1 with s′ = (s+log(1/ε)−
c log n)/2, and let H1 = {h1 : {0, 1}n → {0, 1}r+c logn+s′−s} be a family of universal hash functions.
Then, we have that

G2
def
= { g : {0, 1}n → {0, 1}n−s , g(x)

def
= (g1(x), h1(x)), g1

def
= (trunc ◦ h ◦ f), h ∈ H , h1 ∈ H1 }

is a (t−nO(1), O(
√

2s · nc · ε))-universal one-way hash function family with key and output length Θ(n).

Proof. Define shorthands E1
def
=
(
x 6= x′ ∧ f(x) = f(x′) ∧ h1(x) = h1(x′)

)
and E2

def
=
(
f(x) 6= f(x′) ∧

g1(x) = g1(x′)
)
. For any G2-collision finder A, we have (with explanations below)

Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x′←A(x,h,h1)

[ x 6=x′ ∧ g(x) = g(x′) ]

≤ Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x′←A(x,h,h1)

[ E1 ∨ E2 ]

≤ Pr
x

$←−{0,1}n, h1
$←−H1

[ ∃ x′ 6= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]

+ Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x 6=(x′←A(x,h,h1))

[ f(x) 6=f(x′) ∧ g1(x) = g1(x′) ]

≤ 2−(s′−s) + nc·2s′ · ε =
√

2s · nc · ε +
√

2s · nc · ε = 2
√

2s · nc · ε ,
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where the second inequality follows by a union bound, namely, for a random x, if there is some x′ 6= x
colliding on g ∈ G2 then it must satisfy either E1 or E2. We already know by Lemma 4.1 that the second
term is bounded by nc·2s′ε, and thus it remains to show that the first term is bounded by 2−(s′−s).
Conditioned on any y = f(X) random variable X is a flat distribution on a set of size at most 2r·nc, so
we apply Lemma 3.1 (setting a≤r + c · logn, d≥s′ − s and k = 1) to get

Pr
x

$←−{0,1}n, h1
$←−H1

[ ∃ x′ 6= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]

= Ey←f(Un)[ Pr
x

$←−f−1(y), h1
$←−H1

[ ∃ x′ 6= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ] ]

≤ Ey←f(Un)[ 2−(s′−s) ] = 2−(s′−s) .

which completes the proof. �

4.3 An Alternative Approach to Section 4.2

A neater (and perhaps more intuitive) approach is to construct an almost 1-to-1 one-way function
f ′ (with input and output lengths Θ(n)) based on f (stated as Theorem 4.2) and then plug f ′ into
Corollary 3.1 (using f ′ in place of f). This statement is interesting in its own right as it implies that
almost 1-to-1 one-way functions and known-(almost-)regular one-way functions (with known hardness)
are equivalent. Taking a closer look at Theorem 4.2 we find that this almost 1-to-1 f ′ is also present
(as an intermediate function) in construction G2 of Theorem 4.1 (except with slightly different length
parameters). Lemma 4.2 and Lemma 4.3 state the almost injectiveness and one-way-ness of f ′ respec-
tively, for which we determine a judicious value for d (based on ε) in Theorem 4.2 to achieve injectiveness
and one-way-ness simultaneously. However, we could not adapt this approach to the case when ε is
unknown, and thus we mainly focus on the former construction (as in Theorem 4.1) and extend it to
any known(-almost)-regular one-way functions in Section 4.4.

Theorem 4.2 (almost 1-to-1 OWF f ′ from almost regular OWF f with known ε) For any con-
stant c, and any efficiently computable r = r(n) and d = d(n) ∈ O(n), let f : {0, 1}n → {0, 1}n be any
(2r, 2rnc)-almost regular (length-preserving) (t, ε)-one-way function, define

f ′ : {0, 1}n ×H1 → {0, 1}n × {0, 1}r+c·logn+d ×H1

f ′(x, h1)
def
= (f(x), h1(x), h1)

where H1 is a family of universal hash functions from n bits to r + c·log n + d bits. Then, for d =
log(1/ε)−c·logn−3

3 we have that f ′ is 2 3
√
ε · nc-almost 1-to-1 and (t− O(n), 2 3

√
ε · nc)-one-way with input

and output lengths Θ(n).

Proof. The almost 1-to-1-ness and one-way-ness of f ′ follow from Lemma 4.2 and Lemma 4.3 respec-
tively by setting parameter d = log(1/ε)−c·logn−3

3 . �

The proofs of Lemma 4.2 and Lemma 4.3 are given in Appendix A due to lack of space.

Lemma 4.2 (f ′ is almost 1-to-1) f ′ defined in Theorem 4.2 is 2−d-almost 1-to-1.

Lemma 4.3 (f ′ is one-way) f ′ defined in Theorem 4.2 is a (t− O(n),
√

2d+3 · nc · ε)-one-way func-
tion.
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4.4 UOWHFs from any Known (Almost-)Regular OWFs

Removing the dependency on ε. Unfortunately, Theorem 4.1 doesn’t immediately apply to an
arbitrary regular function as in general we assume no knowledge about the hardness parameter ε (other
than that ε is negligible). To see the difficulty, consider the proof of Theorem 4.1 where the security of
the resulting UOWHF is bounded by the sum of two terms, i.e., 2−(s′−s) + nc·2s′ · ε. Without knowing
ε, one may end up setting some super-polynomial 2s

′
(to make the first term negligible) which kills

the second term nc·2s′ · ε. Same problems arise in similar situations (e.g., construction of PRGs from
regular OWFs [28]). A remedy for this is parallel repetition: for any efficiently computable q ∈ ω(1),
run q copies of f , apply hashing and truncating functions (setting s′ = 2 log n) to every f(x) (to get a
bound O(ε·nc+2)), which shrinks the entropies by 2q log n bits, and finally apply a single hashing (to
the q inputs of f jointly) that expands q· log n bits (to yield another negligible term n−q). This gives a
family of UOWHFs with shrinkage 2q log n − q log n = q log n, and key and output length O(q · n) for
any (efficiently computable) super-constant q.

Definition 4.1 (parallel repetition) For any function g : X → Y, we define its q-fold parallel repe-
tition gq : X q → Yq as

gq(x1, ..., xq) = ( g(x1) , ..., g(xq) ) .

For simplicity, we will use shorthand ~x
def
= (x1, . . . , xq) and thus gq(~x)=gq(x1, . . . , xq).

Theorem 4.3 (UOWHFs from any known almost-regular OWFs) Let f : {0, 1}n → {0, 1}n be
any (2r, 2rnc)-almost regular (length-preserving) (t,ε)-one-way function, where c is any constant, and
r = r(n) is any efficiently computable function. Then, for any efficiently computable q = q(n) ∈
ω(1), let H and trunc be as defined in Lemma 4.1 with s′ = 2 log n, and let H1 = {h1 : {0, 1}q·n →
{0, 1}q(r+(c+1) logn)} be a family of universal hash functions, we have that

G3
def
= { g : {0, 1}qn → {0, 1}qn−q logn , g(~x)

def
= (g1(~x), h1(~x)), g1

def
= (trunc ◦ h ◦ f)q, h ∈ H , h1 ∈ H1 }

is a (t−nO(1),n−q+q·nc+2 ·ε)-universal one-way hash function family with key and output length O(q ·n),
and shrinkage q· log n.

Proof. Similar to the proof of Theorem 4.1, define E1
def
=
(
~x 6= ~x′ ∧ f q(~x) = f q(~x′) ∧ h1(~x) = h1(~x′)

)
and E2

def
=
(
f q(~x) 6= f q(~x′) ∧ g1(~x) = g1(~x′)

)
, we have

Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1), ~x′←A(~x,h,h1)

[ ~x 6= ~x′ ∧ g(~x) = g(~x′)]

≤ Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1), ~x′←A(~x,h,h1)

[ E1 ∨ E2 ]

≤ Pr
~x

$←−{0,1}qn, h1
$←−H1

[ ∃ ~x′ 6= ~x ∧ f q(~x) = f q(~x′) ∧ h1(~x) = h1(~x′) ]

+ Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1)

[ ~x′ ← A(~x, h, h1) ∧ f q(~x) 6=f q(~x′) ∧ g1(~x) = g1(~x′) ]

≤ 2−q logn + q·nc+2 · ε = n−q + q·nc+2 · ε ,

where the second inequality follows by a union bound, and the first term of the third inequality is due
to that conditioned on any ~y = f q( ~X) random variable ~X is uniform over some set of size at most
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(2r·nc)q, so we apply Lemma 3.1 (setting a≤q(r + c · logn), d≥qlogn and k = 1) to get

Pr
~x

$←−{0,1}qn, h1
$←−H1

[ ∃ ~x′ 6= ~x ∧ f q(~x) = f q(~x′) ∧ h1(~x) = h1(~x′) ]

= E~y←fq(Uqn)[ Pr
~x

$←−(fq)−1(~y), h1
$←−H1

[ ∃ ~x′ 6= ~x ∧ f q(~x) = f q(~x′) ∧ h1(~x) = h1(~x′) ] ]

≤ E~y←fq(Uqn)[ 2−q logn ] = n−q .

We proceed to the proof of bounding the second term. Suppose for contradiction that there exists Ag1

of running time t− nO(1) such that

Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1)

[ ~x′ ← Ag1(~x, h, h1) ∧ f q(~x)6=f q(~x′) ∧ g1(~x) = g1(~x′) ] > q·nc+2 · ε

Then, define Ã as in Algorithm 2. Conditioned on Ag1 finds a collision, i.e., f q(~x) 6=f q(~x′) and g1(~x) =

g1(~x′), there exists at least one i∗ ∈ [q] satisfying f(xi∗)6=f(x′i∗) and trunc(h(f(xi∗))) = trunc(h(f(x′i∗))).
We have

Algorithm 2 (trunc ◦ h)-collision finder Ã on input (x, h).

Input: (x, h)
$←− {0, 1}n ×H

Sample ~x = (x1, . . . , xq)
$←− {0, 1}qn,h1

$←− H1, i
$←− [q]

~x′ = (x′1, . . . , x
′
q)← Ag1( (x1, . . . , xi−1, x, xi+1, . . . , xq) , h, h1) {i.e., replace xi with x }

return x′i

Pr
x

$←−{0,1}n, h $←−H
[ x′ ← Ã(x, h) ∧ f(x) 6=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′))) ]

≥ Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1)

[ ~x′ ← Ag1(~x, h, h1) ∧ f q(~x) 6=f q(~x′) ∧ g1(~x) = g1(~x′) ∧ i = i∗ ]

> q·nc+2ε · (1/q) = nc+2ε ,

which is a contradiction to Lemma 4.1 (recall that s′ = 2logn) and thus completes the proof. �

5 UOWHFs from Regular OWFs and Beyond

5.1 UOWHFs from Any (Almost-)Regular OWFs

Ames et al. [1] presented an elegant construction based on any almost-regular OWFs9, where no
knowledge is required about the regularity of the OWF. Furthermore, their construction enjoys output
length Θ(n) and key length O(n· log n) and makes O(n/ log n) calls to the underlying OWF. To see this,
we set s = Ω(logn) in Theorem 5.1 and thus get a construction of UOWHFs by making κ = O(n/ log n)
calls to any (α, α · β)-almost regular (t, ε)-OWF, where α and β need not to be efficiently computable,
and the construction tolerates regularity slackness for any β = nO(1) or even certain β = (1/ε)O(1).
We note that the number of calls O(n/ log n) is optimal (for black-box constructions) in general by
matching the lower bound of [2].

9The authors of [1] mainly stated the neat case, i.e., for β = 1 and s = 1, and similar to Theorem 4.3 it (implicitly in
their proof) generalizes to Theorem 5.1, where almost regularity and logarithmic shrinkage are considered.
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Definition 5.1 (the generalized iterate [1]) Let n ∈ N, function f : {0, 1}n → {0, 1}n, and let H be
a family of pairwise-independent hash functions from {0, 1}n+s to {0, 1}n. For i ≤ κ ∈ N, x1 ∈ {0, 1}n,
v1, . . . , vκ ∈ {0, 1}s and vector ~hκ = (h1, . . . , hκ) ∈ Hκ, recursively define the ith randomized iterate by:

x1
y1

v1

h1f
x2

y2

v2

h2f · · · xκ
yκ
vκ

hκf
xκ+1

f yκ+1

yi = f(xi), xi+1 = hi(yi‖vi)

We denote the κth iterate by function gκf , i.e., yk+1 = gκf (v1‖ . . . ‖vκ, x1,~h
κ), where x1

$←− {0, 1}n,

v1, . . . , vκ
$←− {0, 1}s, ~hκ←Shoup(UO(n·logn)) and Shoup : {0, 1}O(n·logn) → Hκ is Shoup’s generator [24].

Theorem 5.1 (UOWHFs from unknown almost-regular OWFs [1]) For security parameter n∈N,
any (not necessarily efficient) α = α(n), β = β(n) ≥ 1 and any efficiently computable s = s(n),
κ = κ(n) such that s(n)·κ(n) ≥ n+ s(n), let f : {0, 1}n → {0, 1}n be any (α, α · β)-almost regular
(length-preserving) (t, ε)-one-way function, let gκf , H and Shoup : {0, 1}q∈O(n·logn) → Hκ be defined as
in Definition 5.1. Then, we have that

G = {gf : {0, 1}s·κ → {0, 1}n , gf (z) = gκf (z, x1, Shoup(u)), z
def
= v1‖ . . . ‖vκ, x1 ∈ {0, 1}n, u ∈ {0, 1}q }

is a family of (t − nO(1), poly(β, 2s, κ) · εΘ(1))-UOWHFs with key length O(n · log n), output length n
and at least s bits of shrinkage.
Notice that x1 is not input to hash function gf but the part (together with u) of the description of gf .

5.2 UOWHFs from Weakly Unknown-Regular OWFs

Next, we introduce the construction where the underlying OWF can be far from regular, as long as the
fraction of x’s that have maximal number of siblings is noticeable. The proof of the theorem below is
deferred to Section 5.5, where we put together all the necessary technical ingredients.

Theorem 5.2 Assume that f is a weakly unknown-regular one-way function on a noticeable fraction
(i.e., n−c for constant c) of domain. Then, there exists an explicit construction of UOWHF family
(stated as Construction 5.1) with output length Θ(n), key length O(n · logn) by making n2c+1 · ω(1)
black-box calls to f .

5.3 An Explicit Construction

The main idea is to transform any weakly unknown-regular one-way function f into a family of functions
F = {fu : u ∈ {0, 1}O(n logn)} such that F is almost regular and that it preserves the one-way-ness of f .
F is constructed with a succinct description u based on (the derandomized version of) the randomized

iterate. Finally, we sample a random fu
$←− F and plug it into Theorem 5.1 to get the UOWHFs as

desired. We refer to Construction 5.1 for more details.

Definition 5.2 (the randomized iterate [11, 8]) Let n ∈ N, function f : {0, 1}n → {0, 1}n, and
let H be a family of pairwise-independent length-preserving hash functions over {0, 1}n. For k ∈ N,
x1 ∈ {0, 1}n and vector ~hk = (h1, . . . , hk) ∈ Hk, recursively define the ith randomized iterate by:

x1
f

y1
h1 x2

f
y2

h2 · · · xk
f

yk
hk
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yi = f(xi), xi+1 = hi(yi) .

We denote the ith iterate by function f i, i.e., yi = f i(x1,~h
k), where ~hk is possibly redundant as for

i ≤ k + 1 yi only depends on ~hi−1.

The randomized version refers to the case where x1
$←− {0, 1}n and ~hk

$←− Hk.

The derandomized version refers to that x1
$←− {0, 1}n, u

$←− {0, 1}q∈O(n·logn), ~hk := BSG(u), where
BSG : {0, 1}q → {0, 1}k·log |H| is a bounded-space generator that 2−2n-fools every (2n+1, k, log |H|)-LBP
(see Definition B.1), and log |H| is the description length of H (e.g., 2n bits for concreteness).

We refer to Definition B.1 for the definition of bounded-width layered branching program (LBP). We
note that the aforementioned bounded-space generators exist due to Theorem B.1 (see Appendix B) by
setting s(n) = 2n+1, v(n) = log |H| = Θ(n), k(n) = poly(n) and ε(n) = 2−2n and thus q(n)=O(n·log n).

Remark 5.1 (on what is proven in [27].) In [27], the authors introduced weakly unknown-regular
one-way functions and then constructed a pseudorandom generator with seed length O(n · log n) based
on the randomized iterate. They showed that “every k = n2c · log n · ω(1) iterations are hard-to-invert”,
i.e., for any j it is hard to predict xj given yj+k = f j+k(x1, BSG(u)) and u. A PRG thus follows by
outputting log n hardcore bits for every k iterations. In this paper, we first adapt their findings to show
that fu(·) = fk(·, BSG(u)) constitutes a family of one-way functions, i.e., given yk = fu(x1) and u it is
infeasible to find any x′1 such that yk = fk(x′1, BSG(u)). This is stated as Lemma 5.2 with proof given
in Appendix B. However, it is still insufficient to construct UOWHFs with the one-way-ness of fu. We

further show in Lemma 5.3 that a random fu
$←− F is almost regular (in a slightly weaker sense than

Definition 2.5 but already suffices for our needs).

Construction 5.1 (an explicit construction) For constant c and k = n2c · log n · ω(1), let f be as
defined in Definition 2.6, let fk and BSG(·) be as defined in Definition 5.2, define function family

F def
= { fu : {0, 1}n → {0, 1}n, fu(x)=fk(x,BSG(u)), u ∈ {0, 1}O(n· logn) } (2)

and further define G as in Theorem 5.1, i.e.,

G = {gfu : {0, 1}κ·s → {0, 1}n , gfu(z) = gκfu(z, x1, Shoup(u
′)), x1 ∈ {0, 1}n, u, u′ ∈ {0, 1}O(n·logn) }

where gκfu and Shoup(·) are as defined in Definition 5.1, and κ·s≥n + s (e.g., set s = log n, κ =
Ω(n/ log n)).

Why a family of OWFs? Note that the UOWHF gfu operates on input z and enjoys output length
Θ(n), and it is described by key (x1, u, u

′) ∈ {0, 1}O(n·logn). An alternative is to view fu as a single

one-way function rather than a family of OWFs, i.e., f̃(x, u)
def
= (fu(x), u) and plug f̃ into the UOWHF

construction as in Theorem 5.1. However, in this case, the output and key lengths of the UOWHF are
O(n · log n) and O(n · log2 n) respectively since f̃ now has input and output length O(n · log n).

Definition 5.3 (events) For any n, j≤k ∈ N, define events

Ej
def
=

(
(X1, ~H

k) ∈
{

(x1,~h
k) : yj = f j(x1,~h

k) ∈ Ymax

})

E ′j
def
=

(
(X1, Uq) ∈

{
(x1, u) : yj = f j(x1, BSG(u)) ∈ Ymax

})
where Ymax

def
= {y : 2max−1≤|f−1(y)| < 2max}, (X1, ~H

k) and (X1, Uq) are uniform over {0, 1}n×Hk and
{0, 1}n × {0, 1}q respectively.
Note that by definition Ymax = f(Xmax) (see Definition 2.6) and thus Pr[f(Un) ∈ Ymax] ≥ n−c.
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We will use the following inequalities from [27] and reproduce their proofs in Appendix B. It is not
hard to see that (3), (5) and (7) hold for the randomized version. For example, we have by the pairwise
independence of H that all x1, . . ., xk are i.i.d. to Un so that (5) immediately follows and (7) follows
by a Chernoff bound. Then, for every inequality (4), (6) and (8), we define an LBP (see Definition B.1)
and argue that the advantage of the LBP on ~Hk and BSG(Uq) is bounded by 2−2n and thus (4), (6)
and (8) follow from their respective counterparts (3), (5) and (7) by adding an additive term 2−2n.

Lemma 5.1 (some inequalities from [27]) For any n, k ∈ N, it holds that

CP( Yk | ~Hk) ≤ k·2max−n+1 , (3)

CP( Y ′k | Uq) ≤ k·2max−n+1 + 2−2n, (4)

∀j ∈ [k] : Pr[Ej ] ≥ n−c , (5)

∀j ∈ [k] : Pr[E ′j ] ≥ n−c − 2−2n , (6)

Pr[E1 ∨ E2 ∨ . . . ∨ Ek] ≥ 1− exp−k/n
2c
, (7)

Pr[E ′1 ∨ E ′2 ∨ . . . ∨ E ′k] ≥ 1− exp−k/n
2c −2−2n , (8)

where Yk = fk(X1, ~H
k) and Y ′k = fk(X1, BSG(Uq)).

Lemma 5.2 (F is one-way) Assume that f is a (t, ε)-OWF that is weakly unknown-regular on an
n−c fraction of domain, let F = {fu} be as defined in (2). Then, for any PPT A of running time
t− nO(1) it holds that

Pr
u

$←−{0,1}q , x $←−{0,1}n
[ A(u, fu(x)) ∈ f−1

u ( fu(x) ) ] ≤
√

28·k4 · n3c · ε + exp−k/n
2c

+ 2−2n . (9)

where q ∈ Θ(n·logn), u ∈ {0, 1}q and fu(x)=fk(x,BSG(u)) as defined in Definition 5.2.

Although non-trivial, the above lemma is mainly attributed to and adapted from a related statement
in [27] (see Remark 5.1). We refer the readers to Appendix B for its adapted proof.

5.4 F is Almost-Regular

Lemma 5.3 (F is almost-regular) For n, k ∈ N, let c and f be as defined in Definition 2.6, let H,fk

and BSG : {0, 1}q∈O(n·logn) → {0, 1}k·log |H| be as defined in Definition 5.2. Then, for any a ≥ 0 it holds
that

Pr
u

$←−{0,1}q , x $←−{0,1}n
[ 2max−a−1 ≤ |f−1

u ( fu(x) )| ≤ 2max +a+1 ] ≥ 1 − k·2−a+2 − exp−k/n
2c − 2−2n,

(10)
where u ∈ {0, 1}q and fu(x)=fk(x,BSG(u)).

Proof. We define Slow
def
=

(
(X1, Uq) ∈ {(x, u) : 0 < |f−1

u (fu(x))| < 2max−a−1}
)

and Sup
def
=

(
(X1, Uq) ∈

{(x, u) : |f−1
u (fu(x))| > 2max +a+1}

)
, where X1 is uniform over {0, 1}n. Clearly, the left-hand of (10) is
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lower bounded by 1−Pr[Slow]−Pr[Sup] and thus it suffices to upper bound both Pr[Slow] and Pr[Sup].
We first have

Pr[Slow] = Pr[Slow ∧ (E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)] + Pr[Slow ∧ ¬(E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)]

≤ Pr[
k∨
j=1

(Slow ∧ E ′j)] + Pr[¬(E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)]

≤
k∑
j=1

Pr[Slow ∧ E ′j ] + (exp−k/n
2c

+ 2−2n)

≤ k·2−a + exp−k/n
2c

+ 2−2n

where the first inequality is trivial, the second is by the union bound and (8), and the third is due to

that for every j ∈ [k] with shorthand fu,j(x)
def
= f j(x,BSG(u)) it holds that

Pr[Slow ∧ E ′j ] =
∑
u

Pr[Uq = u] ·
∑

x: fu,j(x)∈Ymax ∧ 0<|f−1
u (fu(x))|<2max−a−1

Pr[X1 = x|Uq = u]

≤
∑
u

Pr[Uq = u] ·
∑

x: fu,j(x)∈Ymax ∧ 0<|f−1
u,j (fu,j(x))|<2max−a−1

Pr[X1 = x | Uq = u]

≤
∑
u

Pr[Uq = u] · |Ymax|·2max−a−1·2−n

≤ 2n+1−max · 2−n+max−a−1 = 2−a

where the first inequality is due to Fact 5.1 (setting f1=fu,j , f2 = f◦hk−1◦ . . . ◦f ◦ hj and thus f̄ = fu),
the second follows from the fact that there are |Ymax| possible values for fu,j(x) ∈ Ymax and every fu,j(x)
has less than 2max−a−1 preimages (by definition of Slow), and the third is due to |Ymax|≤2n+1−max. Next
we proceed to bounding the second term, i.e., Pr[Sup] ≤ k·2−a+1. We have:

k·2max−n+1 + 2−2n ≥ CP( Y ′k | Uq) = Eu←Uq [
∑
y

Pr[ fu(X1) = y | Uq = u]2 ]

> 2max+a−n+1 · Eu←Uq [
∑

y: |f−1
u (y)|>2max +a+1}

Pr[ fu(X1) = y | Uq = u] ]

= 2max+a−n+1 · Pr[Sup] ,

where the first inequality is by (4), and the second is due to that for any (y, u) satisfying |f−1
u (y)| >

2max +a+1 it holds that Pr[ fu(X1) = y | Uq = u] > 2max+a−n+1. It follows that Pr[Sup] ≤ (k·2max−n+1 +
2−2n)/2max+a−n+1≤2−a+1 and hence completes the proof. �

Fact 5.1 Let f1 : X → Y and f2 : Y → Z be any functions, and let X be any random variable over X .
Then, for any integer t > 0 and any set Xa ⊆ X it holds that∑

x: x∈Xa ∧ 0<|f̄−1(f̄(x))|<t

Pr[X = x] ≤
∑

x: x∈Xa ∧ 0<|f−1
1 (f1(x))|<t

Pr[X = x]

where f̄ = f2◦f1

Proof. We use shorthands X1
def
={x : 0 < |f̄−1(f̄(x))| < t} and X2

def
={x : 0 < |f−1

1 (f1(x))| < t}. It
suffices to show that X1 ⊆ X2. This is not hard to see since any x satisfying 0 < |f̄−1(f̄(x))| < t implies
0 < |f−1

1 (f1(x))| < t. �
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5.5 Putting Things Together

Proof sketch of Theorem 5.2. Consider a (t,ε)-OWF f as defined in Definition 2.6. Although f is far
from regular, iterating it (as defined in Construction 5.1) sufficiently many, say k = n2c · log n · ω(1),
times yields a family of one-way functions F with description size O(n · log n), as stated in Lemma 5.2.
Furthermore, Lemma 5.3 states that, for α = 2max−a−1 and any β = 22a+2 ≥ 4, a random function

fu
$←− F is (α, α · β)-almost regular except for a (O(k/

√
β) + negl(n))-fraction. Therefore, plug fu

into Theorem 5.1 and set s = log n, β = (1/εO(1)) for some small enough constant O(1) so that
poly(β, 2s, κ) · εΘ(1) remains negligible, we obtain a family of UOWHFs with output length Θ(n) and
key length O(n · logn). In total, it makes κ = O(n/ log n) calls to fk for k = n2c · log n · ω(1) and thus
O(n2c+1 · ω(1)) calls to f . �
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A Lemmata and Proofs Omitted

Lemma A.1 (The injective hash lemma for almost flat sources) For any integers a, d, k and l
satisfying a≤l and any real value β ≥ 1, let Y be any random variable over a support set Y ⊆ {0, 1}l

such that every y ∈ Y satisfies 2−a ≤ Pr[Y = y] ≤ 2−aβ, and let H def
= {h : {0, 1}l → {0, 1}a+d} be a

family of (k·2−(a+d))-almost universal hash functions. Then, we have that

Pr
y←Y, h

$←−H
[ ∃ỹ ∈ Y : ỹ 6= y ∧ h(ỹ) = h(y) ] ≤ k · β·2−d .

Proof. It follows from |Y|·2−a≤
∑

y∈Y Pr[Y = y] = 1 that |Y| ≤ 2a. We denote by UY the uniform
distribution over Y. Note that UY and Y are of the same support set. We define

S∗ def
= {(y, h) ∈ (Y,H) : ∃ỹ ∈ Y ∧ ỹ 6= y ∧ h(ỹ) = h(y)}

and thus by the standard injective hash lemma (i.e., Lemma 3.1) it holds that

Pr[(UY , H) ∈ S∗] ≤ k·2−(a+d−log |Y|) ≤ k·2−d .

On the other hand, we have

Pr[(UY , H) ∈ S∗] =
∑
h

Pr[H = h]
∑

y:(y,h)∈S∗

1

|Y|

≥
∑
h

Pr[H = h]
∑

y:(y,h)∈S∗
2−a

≥
∑
h

Pr[H = h]
∑

y:(y,h)∈S∗
Pr[Y = y]/β = Pr[(Y,H) ∈ S∗]/β .

It immediately follows that Pr[(Y,H) ∈ S∗] ≤ k·β·2−d. �

Lemma A.2 (regularity-preserving OWF) For any r1 = r1(n) ≤ r2 = r2(n), and any efficiently
computable κ = κ(n) ∈ O(n) and δ = δ(n) ∈ O(n), let f : {0, 1}n → {0, 1}l be any (2r1 , 2r2)-almost
regular (t,ε)-one-way function, let H = {h : {0, 1}l → {0, 1}n+δ+κ} be a family of (poly(n)·2−(n+δ+κ))-
almost universal hash functions with description length10 O(n), define function f ′ : {0, 1}n × H →
{0, 1}n+δ+κ ×H as

f ′(x, h) = (h(f(x)), h) . (11)

Then, we have

1. Regularity-preserving. f ′ is (2r1 , 2r2)-regular except on a poly(n)·2−(2r1+κ+δ−r2)-fraction of
inputs, i.e.,

Pr
x

$←−{0,1}n, h $←−H
[ 2r1 ≤ |f ′−1(f ′(x, h))| ≤ 2r2 ] ≥ 1− poly(n)·2−(2r1+κ+δ−r2) .

2. Hardness-preserving. f ′ is a (t− nO(1), ε+ poly(n)·2−(2r1+κ+δ−r2))-one-way function.

10 Such efficient H exists for any efficiently computable l = l(n) ∈ poly(n) and κ = κ(n), δ = δ(n) ∈ O(n) by Fact 2.1.

21



Proof of Lemma A.2. As for every y = f(x) we have 2r1≤|f−1(y)|≤2r2 it suffices to show that the
fraction of y’s (drawn from Y = f(Un)) on which h is 1-to-1 is overwhelming, i.e.,

Pr
x

$←−{0,1}n, h $←−H
[ 2r1 ≤ |f ′−1(f ′(x, h))| ≤ 2r2 ]

≥ Pr
y←f(Un), h

$←−H
[ ¬∃ỹ∈f({0, 1}n) : h(ỹ) = h(y) ∧ y 6= ỹ ]

= 1 − Pr
y←f(Un), h

$←−H
[ ∃ỹ∈f({0, 1}n) : h(ỹ) = h(y) ∧ y 6= ỹ ]

≥ 1− poly(n)·2−(2r1+κ+δ−r2) ,

where the second inequality is by Lemma A.1 (setting Y = f(Un), a = n−r1, β = 2r2−r1 , d = r1 +δ+κ,
k = poly(n)). Further, it is not hard to see that any f ′-inverting algorithm Af ′ implies an f -inverting
algorithm Af . That is, on input f(x), Af applies random h to f(x), and then invokes Af ′ on (h(f(x)), h)
to recover x. The inversion probability of Af is

Pr
y←f(Un)

[Af (y) ∈ f−1(y)]

≥ Pr
y←f(Un),h

$←−H
[Af ′(h(y), h) ∈ f ′−1(h(y), h) ∧ ¬

(
∃ỹ∈f({0, 1}n) : h(ỹ) = h(y) ∧ y 6= ỹ

)
]

= 1 − Pr
y←f(Un),h

$←−H
[Af ′(h(y), h) /∈ f ′−1(h(y), h) ∨

(
∃ỹ∈f({0, 1}n) : h(ỹ) = h(y) ∧ y 6= ỹ

)
]

≥ 1 − Pr
y←f(Un),h

$←−H
[Af ′(h(y), h) /∈ f ′−1(h(y), h)] − Pr

y←f(Un),h
$←−H

[∃ỹ∈f({0, 1}n) : h(ỹ) = h(y) ∧ y 6= ỹ ]

≥ Pr
y←f(Un),h

$←−H
[Af ′(h(y), h) ∈ f ′−1(h(y), h)] − poly(n)·2−(2r1+κ+δ−r2) ,

where the first inequality refers to that Af inverts f if Af ′ inverts f ′ on those (h(y), h) for which there
exists no distinct ỹ satisfying h(ỹ) = h(y), the second inequality is the union bound, and the third is
due to the probability that h is not injective on Y as given above. This completes the proof. �

Proof of Fact 3.1. The first statement immediately follows from Lemma A.2 by setting r1 = r2 = δ = 0.
As for the second statement, let f ′ be as defined in (11) from Lemma A.2 with δ = n, we further define
a padded function f̄ : {0, 1}2n+κ ×H → {0, 1}2n+κ ×H as

f̄(x, dummy, h)
def
=f ′(x, h) ,

where x ∈ {0, 1}n, dummy ∈ {0, 1}n+κ, and h ∈ H (which is of size O(n)). Note that for every
(h(f(x)), h) the preimage-size of f̄ is multiplied by a factor of 2n+κ than that of f ′ due to the (n+ κ)-
bit padding dummy. Finally, with δ = n the negligible term poly·2−(2r1+κ+δ−r2) is further bounded by
poly·2−(2r1+κ). This concludes the second statement. �

Fact A.1 For any (2r, 2rnc)-almost regular (length-preserving) (t, ε)-one-way function f : {0, 1}n →
{0, 1}n and any inverter Inv of running t, it holds that

Pr
y∗

$←−{0,1}l
[ f(Inv(y∗)) = y∗ ] ≤ 2−r · ε .
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Proof.

Pr
y∗

$←−{0,1}n
[ f(Inv(y∗)) = y∗ ]

=
∑

y∈f({0,1}n)

Pr
y∗

$←−{0,1}n
[y = y∗]·Pr[f(Inv(y)) = y]

≤ 2−r ·
∑

y∈f({0,1}n)

Pr[f(Un) = y]·Pr[f(Inv(y)) = y]

≤ 2−r · ε

where the first inequality is due to Pr[f(Un) = y] ≥ 2r−n and the second is due to f ’s one-way-ness. �

Proof of Lemma 4.1. Suppose for contradiction that there exists an efficient Ã of running time t′ such
that

Pr
x

$←−{0,1}n,h $←−H
[ x′←Ã(x, h) : f(x) 6= f(x′) ∧ h(f(x))[u] = h(f(x′))[u] ] = ε′ > nc·2s′ · ε

where u = n−r−c log n−s′. We proceed to the definition of algorithm InvÃ (that inverts f by invoking

Ã) as in Algorithm 3. By Claim 3.1, conditioned on f(x)6=y∗ it is equivalent to consider that InvÃ

Algorithm 3 InvÃ that inverts f on input y∗ using random coins (x, v).

Input: y∗
$←− {0, 1}n

Sample x
$←− {0, 1}n

if f(x) = y∗ then
Output x and terminate.

end if

sample h := (f(x)− y∗)−1 · v, where v
$←− V = {v ∈ {0, 1}n \ {~0} : v[u] =

u︷ ︸︸ ︷
0 . . . 0}

{note: The above implies h
$←− {h ∈ H : h(f(x))[u] = h(y∗)[u]} by the algebraic structure of h. }

x′ ← Ã(x, h)
if f(x′)=y∗ then

Output x′

else
Output ⊥

end if
Terminate

samples (x,h,v) from {0, 1}n ×H× V uniformly and independently, from which y∗ can be determined.
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Then, we argue that InvÃ inverts f with the following probability (see the rationale below)

Pr
y∗

$←−{0,1}n, x $←−{0,1}n, v $←−V
[ f(InvÃ(y∗)) = y∗ ]

≥ Pr
x

$←−{0,1}n,y∗ $←−{0,1}n
[ f(x) = y∗ ] + Pr

x
$←−{0,1}n,y∗ $←−{0,1}n

[ f(x)6=y∗ ]

× Pr
x

$←−{0,1}n,h $←−H,x 6=(x′←Ã(x,h)),v
$←−V

[ h(f(x))[u] = h(f(x′))[u] ∧ y∗ = f(x′) | f(x)6=y∗ ]

≥ 2−n + (1− 2−n) · ε′ · Pr
v

$←−V
[ y∗ = f(x′) | f(x) 6=y∗ ∧ f(x) 6= f(x′) ∧ h(f(x))[u] = h(f(x′))[u] ]

= 2−n + (1− 2−n) · ε′ · 1

|V|

= 2−n + (1− 2−n) · ε′ · 1

2r+c logn+s′ − 1
> nc·2s′ · ε · 2−(r+c logn+s′) = ε · 2−r ,

where Ã takes only x and h as input (i.e., independent of v), and thus conditioned on that Ã produces a
valid f(x′) 6= f(x) satisfying h(f(x′))[u] = h(f(x))[u], we have by Claim 3.1 that string y∗ is uniformly

distributed over set Y∗def={y∗ : y∗ = f(x) − v·h−1, v ∈ V}. Note that the already fixed f(x′) is also an
element of Y∗ and thus y∗ hits f(x′) with probability 1/|Y∗|=1/|V|= 1/(2n−u − 1). We thus complete
the proof by reaching a contradiction to Fact A.1. �

Proof of Corollary 3.1. Denote by E the event that f is 1-to-1 on uniformly random x, i.e., E def
= X ∈

{x : |f−1(f(x))| = 1}. It follows from Theorem 3.1 that conditioned on E (with probability Pr[E ]≥1−δ)
that G1 is a family of (t − nO(1), 2s

′ · ε)-universal one-way hash functions with actual shrinkage s′ =
log (2n · Pr[E ])−(n−s) = s−log Pr[E ] ≤ s+ 1. Therefore, overall the resulting G is a family of (t−nO(1),
2s+1 · ε+ δ)-universal one-way hash functions with shrinkage s. �

Proof of Lemma 4.2.

Pr
x

$←−{0,1}n, h1
$←−H1

[ ∃x′ : x′ 6= x ∧ f ′(x, h1) = f ′(x′, h1)]

= Ey←f(Un)

[
Pr

x
$←−f−1(y), h1

$←−H1

[∃x′∈f−1(y) : x′ 6= x ∧ h1(x) = h1(x′)]

]
≤ Ey←f(Un) [ 2−d ] = 2−d ,

where the inequality is due to that conditioned on any y = f(X) random variable X is a flat distribution
on a set of size at most 2r·nc, so we apply Lemma 3.1 (setting Y = f−1(y), a≤r + c · logn, and k = 1).
�

Proof of Lemma 4.3. Suppose that there exists some inverter A′ for f ′ of running time t−O(n) such
that

Pr[ A′(f ′(X,H1)) ∈ f ′−1 ( f ′(X,H1) ) ] >
√

2d+3 · nc · ε .

First we consider the collision probability of H1(X) given f(X) and H1, i.e.,

CP( H1(X) | f(X), H1 ) = Ey←f(Un)[ CP( H1(X) | f(X) = y, H1 ) ]

≤ Ey←f(Un)[ CP( X | f(X) = y ) + max
x1 6=x2,f(x1)=f(x2)

{ Pr[H1(x1) = H1(x2)] } ]

≤ Ey←f(Un)[ 2−r + 2−r−c logn−d ]

≤ 2−r+1
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where we note that the argument is similar to the proof of the injective hash lemma. To apply
Lemma B.1, let W = {0, 1}m=r+c logn+d, Z = f({0, 1}n) × H1 and thus e = d + c · log n + 1, and
define Adv as the success probability of A′ on the corresponding input, i.e.,

Adv(w, z = (y, h1))
def
= Pr[ A′(y, w, h1) ∈ f ′−1(y, w, h1) ] ,

where the probability is taken over the internal coins of A′. Thus,

Pr[ A′(f(X), Ur+c logn+d, H1)∈f ′−1(f(X), Ur+c logn+d, H1) ]

= E[Adv(UW , Z)] ≥ E[Adv(W,Z)]2/2e+2

= Pr[ A′(f(X), H1(X), H1)∈f ′−1(f(X), H1(X), H1) ]2/2d+c·logn+3

> (
√

2d+3 · nc · ε)2/2d+c·logn+3 = ε

where the first inequality is due to Lemma B.1 and the second is by the assumption. This immediately

implies another inverter A for f that on input y, it samples h1
$←− H1, w←Ur+c logn+d, invokes (x′, h′1)←

A′(y, w, h1) and produces x′ as output. In particular, A inverts f with the following probability

Pr[A(f(X))∈f−1(f(X))] ≥ Pr[ A′(f(X), Ur+c logn+d, H1)∈f ′−1(f(X), Ur+c logn+d, H1) ] > ε

which is a contradiction to the one-way-ness of f and thus completes the proof. �

B Proofs Reproduced and Adapted from [27]

A technical Lemma. To prove Lemma 4.3 and Lemma 5.2, we will need the following lemma that
was implicit in [11] (and folklore in leakage-resilient cryptography) and was abstracted out in [27].
Informally, it states that “if any algorithm wins a one-sided game (e.g., inverting a OWF) on uniformly
sampled challenges only with some negligible probability, then it cannot do much better (beyond a
negligible advantage) in case that the challenges are sampled from any distribution of logarithmic Rényi
entropy deficiency”.

Lemma B.1 (one-sided game on imperfect randomness [27]) For any e ≤ m ∈ N, let W and
Z be any sets with |W| = 2m, let Adv : W ×Z → [0, 1] be any (deterministic) real-valued function, let
(W,Z) be any random variable over set W ×Z with CP(W |Z) ≤ 2e−m, we have

E[Adv(W,Z)] ≤
√

2e+2 · E[Adv(UW , Z)] (12)

where UW denotes uniform distribution over W and independent of Z.

Proof of Lemma B.1. For any given δ define Sδ
def
= {(w, z) : Pr[W = w|Z = z] ≥ 2e−m/δ}

2e−m ≥
∑
z

Pr[Z = z]
∑
w

Pr[W = w|Z = z]2

≥
∑
z

Pr[Z = z]
∑

w:(w,z)∈Sδ

Pr[W = w|Z = z]·2−(m−e)/δ

≥ (2e−m/δ) · Pr[(W,Z) ∈ Sδ] ,

and thus Pr[(W,Z) ∈ Sδ] ≤ δ. It follows that

E[Adv(W,Z)] =
∑

(w,z)∈Sδ

Pr[(W,Z) = (w, z)] · Adv(w, z) +
∑

(w,z)/∈Sδ

Pr[Z = z] · Pr[W = w|Z = z] · Adv(w, z)

≤
∑

(w,z)∈Sδ

Pr[(W,Z) = (w, z)] + (2e/δ) ·
∑

(w,z)/∈Sδ

Pr[Z = z]·2−m · Adv(w, z)

≤ δ + (2e/δ) · E[Adv(UW , Z)] ,
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and we complete the proof by setting δ =
√

2e · E[Adv(UW , Z)]. �

Proof of (3),(5) and (7). We have that x1, x2 = h1(y1), . . ., xk = hk−1(yk−1) are all i.i.d. to Un due to
the universality of H, which that E1, . . . and Ek are i.i.d. events with probability at least n−c. For every
j ∈ [k], define ζj = 1 iff Ej occurs (and ζj = 0 otherwise). It follows by a Chernoff-Hoeffding bound that

Pr[ (¬E1) ∧ . . . ∧ (¬Ek) ] = Pr[

k∑
j=1

ζj = 0 ] ≤ exp−k/n
2c

which yields (7) by taking a negation. Finally, Regarding (3), consider two instances of the random
iterate seeded with independent x1 and x′1 and a common random ~hk, the collision probability is upper
bounded by the sum of events that the first collision occurs on points y1, y2, . . ., yk ∈ Y[max] respectively.
We thus have by the pairwise independence of H that

CP( Yk | ~Hk)

≤ Pr
x1,x′1

$←−{0,1}n
[f(x1) = f(x′1)] +

k∑
j=2

(
Pr

yj−1 6=y′j−1, hj−1
$←−H

[f(xj) = f(x′j)]

)

≤ k · CP(f(Un)) ≤ k

max∑
i=1

∑
y∈Yi

Pr[f(Un) = y]·2i−n = k

max∑
i=1

Pr[f(Un) ∈ Yi]·2i−n

≤ k·2max−n(1 + 2−1 + . . .+ 2−(max−1)) ≤ k·2max−n+1 .

�

Definition B.1 (bounded-width layered branching program - LBP) An (s, k, v)-LBP M is a
finite directed acyclic graph whose nodes are partitioned into k + 1 layers indexed by {1, . . ., k + 1}.
The first layer has a single node (the source), the last layer has two nodes (sinks) labeled with 0 and 1,
and each of the intermediate layers has up to 2s nodes. Each node in the i ∈ [k] layer has exactly 2v

outgoing labeled edges to the (i+ 1)th layer, one for every possible string hi ∈ {0, 1}v.

Theorem B.1 (bounded-space generator [20, 16]) Let s(n), k(n), v(n) ∈ N and ε(n) ∈ (0, 1) be
polynomial-time computable functions. Then, there exist a polynomial-time computable function q(n) ∈
Θ(v(n) + (s(n) + log(k(n)/ε(n))) log k(n)) and a generator BSG : {0, 1}q(n) → {0, 1}k(n)·v(n) that runs
in time poly(s(n), k(n), v(n), log(1/ε(n))), and ε(n)-fools every (s(n), k(n), v(n))- LBP M , i.e.,

| Pr[M(Uk(n)·v(n)) = 1] − Pr[M(BSG(Un)) = 1] | ≤ ε(n) .

Proof of (4). For any k ∈ N, consider the following (2n, k, log |H|)-LBP M1: on source node input
(y1 = f(x1),y′1 = f(x′1)). For 1≤i ≤ k, at each ith layer M1 computes yi := f(hi−1(yi−1)) and
y′i := f(hi−1(y′i−1)) . Finally, at the (k + 1)th layer M1 outputs 1 iff yk = y′k ∈ Ymax. Imagine running

two iterates with random x1, x′1 and seeded by a common hash function from distribution either ~Hk or
BSG(Uq), we have

CP( Yk | ~Hk ) = Pr
(x1,x′1)←U2n, ~hk← ~Hk

[M1(x1, x
′
1,
~hk) = 1]

CP( Y ′k | BSG(Uq) ) = Pr
(x1,x′1)←U2n, ~hk←BSG(Uq)

[M1(x1, x
′
1,
~hk) = 1]
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and thus

| CP(Yk | ~Hk ) − CP( Y ′k | BSG(Uq) ) |

≤ E(x1,x′1)←U2n

[
| Pr[M1(x1, x

′
1,
~Hk) = 1] − Pr[M1(x1, x

′
1, BSG(Uq)) = 1]|

]
≤ 2−2n .

It follows by (3) that

CP(Y ′k | BSG(Uq) ) ≤ CP( Yk | ~Hk ) + 2−2n ≤ k·2max−n+1 + 2−2n .

Note that for any ~hk and any u1, u2∈BSG−1(~hk),

CP( Y ′k | Uq = u1 ) = CP( Y ′k | Uq = u2) = CP( Y ′k | BSG(Uq) = ~hk ) .

Therefore,
CP(Y ′k | Uq ) = CP(Y ′k | BSG(Uq) ) ≤ k·2max−n+1 + 2−2n .

�

Proof of (6). Similar to that of (4), we define another (n+ 1, k, log |H|)-LBP M2 that on source node
input (x1, tag1 = 0), it computes yi := f(xi) , xi+1 := hi(yi), for every i ≤ k and sets tagi = 1 if i = j
and yi ∈ Ymax (or otherwise tagi := tagi−1). Finally, it outputs tagk. Thus,

Pr[E ′j ] ≥ Pr[Ej ]− 2−2n ≥ n−c − 2−2n .

�

Proof of (8). Consider the following (n + 1, k, log |H|)-LBP M3: on source node input (x1, tag1) and
layered input vector ~hk, it computes yi := f(xi), xi+1 := hi(yi), at each ith layer, and sets tagi = 1 iff
either tagi−1 = 1 or yi ∈ Ymax. Finally, M3 outputs tagk. By the bounded space generator we have

| Pr[M3(X1, ~H
k) = 1] − Pr[M3(X1, BSG(Uq) = 1] | = |Pr[

k∨
i=1

Ei ]− Pr[
k∨
i=1

E ′i ] | ≤ 2−2n ,

and thus by (7)

Pr[

k∨
i=1

E ′i ] ≥ Pr[

k∨
i=1

Ei ] − 2−2n ≥ 1− exp−k/n
2c −2−2n .

�

B.1 F Is a Family of One-way Functions

Proof of Lemma 5.2. Assume for contradiction that there exists A (of running time t − nO(1)) that
inverts fu with some non-negligible εA, i.e.,

Pr
u←Uq , x

$←−{0,1}n
[ A(u, fu(x)) ∈ f−1

u ( fu(x) ) ] ≥ εA .

We use shorthand C for the event that A inverts fu, i.e.,

C def
=

(
(X1, Uq) ∈

{
(x, u) : A(u, fu(x)) ∈ f−1

u (fu(x))
})
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and thus

εA ≤ Pr[C]
= Pr[C ∧ (E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)] + Pr[C ∧ ¬(E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)]

≤ Pr[
k∨
j=1

(C ∧ E ′j)] + Pr[¬(E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)]

≤
k∑
j=1

Pr[C ∧ E ′j ] + (exp−k/n
2c

+2−2n)

where the third inequality follows from the union bound and (8). We have by an averaging argument
that there exists j∗ ∈ [k] such that Pr[C ∧ E ′j∗ ] ≥ (εA − exp−k/n

2c −2−2n)/k. That is, conditioned on

event E ′j∗ , algorithm A inverts fu(x)=fk(x,BSG(u)) to produce x′ ∈ fu−1(fu(x)) with probability

Pr[ C | E ′j∗ ] =
Pr[C ∧ E ′j∗ ]
Pr[ E ′j∗ ]

≥ Pr[C ∧ E ′j∗ ] ≥ (εA − exp−k/n
2c −2−2n)/k .

The above implies an algorithm MA (as given in Algorithm 4) that inverts yj∗ = f j
∗
(x,BSG(u)) (with

respect to f) to get xj∗ ∈ f−1(yj∗) with almost the same probability. Loosely speaking, on input yj∗ ,
the algorithm MA evaluates the iterate to obtain yk, invokes A on yk to get x1, and produces xj∗ (again
by evaluating the iterate on x1) as a candidate preimage of yj∗ under function f . The only issue is

that j∗ is unknown, so it simply makes a random guess j
$←− [k], which hits j∗ with probability 1/k.

Therefore, it holds that

Algorithm 4 MA.

Input: u ∈ {0, 1}q, y ∈ {0, 1}n

Sample j
$←− [k];(

~hk = (h1, . . . , hk)
)

:= BSG(u);
Let ỹj := y ;
FOR i = j + 1 TO k

Compute x̃i := hi−1(ỹi−1), ỹi := f(x̃i);
x̃1 ← A(u, ỹk);
FOR i = 1 TO j − 1

Compute ỹi := f(x̃i), x̃i+1 := hi(ỹi) ;

Output: x̃j

Pr[ MA(Uq, Y
′
j∗ ; j ) ∈ f−1(Y ′j∗) | j = j∗ ∧ E ′j∗ ] ≥ (εA − exp−k/n

2c −2−2n)/k , (13)

where we recall that Y ′j∗ = f j
∗
(X1, BSG(Uq)). We state in Claim B.1 that replacing the above Y ′j∗

(which correlated to Uq) with f(Un) (which is independent of Uq) the inverting probability weakens
only by a 1/poly(n) factor and thus MA becomes an inverter for f .

ε ≥ Pr[ MA( Uq, f(Un); j ) ∈ f−1(f(Un)) ]

= Pr[j = j∗] · Pr[f(Un) ∈ Ymax ] · Pr[ MA( Uq, f(Un); j ) ∈ f−1(f(Un)) | j = j∗ ∧ f(Un) ∈ Ymax ]

≥ (εA − exp−k/n
2c −2−2n)2

28·k4 · n3c
,

where the first inequality is due to the one-way-ness of f . This yields an upper bound on εA (by taking
a square root) as desired and thus completes the proof. �
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the rationale for Claim B.1. By Lemma B.1, the collision probability of (Uq, Y
′
j∗) conditioned on

E ′j∗ is small enough and close to that of the uniform distribution of (Uq, UYmax). Thus, any algorithm
that inverts the former (i.e., Y ′j∗ given Uq) with a non-negligible probability will invert the the latter
(i.e., UYmax given uncorrelated Uq) with also a non-negligible probability.

Claim B.1

Pr[ MA( Uq, f(Un); j ) ∈ f−1(f(Un)) | j = j∗ ∧ f(Un) ∈ Ymax ] ≥ (εA − exp−k/n
2c −2−2n)2

28·k3 · n2c
. (14)

Proof of Claim B.1. To apply Lemma B.1, let W = {0, 1}q × Ymax, let Z be empty set, W be the
distribution of (Uq, Y

′
j∗) conditioned on E ′j∗ (i.e., Y ′j∗ ∈ Ymax), and define

Adv(u, y)
def
= Pr[ MA(u, y; j ) ∈ f−1(y) | j = j∗ ] .

where the probability is taken over the internal coins of MA. Thus, we have

Adv(W ) = Pr[ MA(Uq, Y
′
j∗ ; j ) ∈ f−1(Y ′j∗) | j = j∗ ∧ E ′j∗ ] .

and

CP(W ) = CP( (Uq, Y
′
j∗ ) | E ′j∗ ) =

CP( (Uq, Y
′
j∗ ) ∧ E ′j∗)

Pr[ E ′j∗ ]2

≤
CP( (Uq, Y

′
j∗) )

Pr[ E ′j∗ ]2

≤
2−q · CP( Y ′j∗ |Uq )

(n−c − 2−2n)2

≤ j∗·2max−n+1 + 2−2n

(n−2c/4) · 2q
≤ 16k · n2c

2n−max +q
≤ (32k · n2c)︸ ︷︷ ︸

2e

· 2−m ,

where the fourth inequality is due to 2−2n ≤ j∗·2max−n+1 and j∗ ≤ k and the fifth inequality is by
2m−q = |Ymax| ≤ 1/2max−1−n. We thus have

Pr[ MA( Uq, f(Un); j ) ∈ f−1(f(Un)) | j = j∗ ∧ f(Un) ∈ Ymax ]

=
∑

(u,y)∈{0,1}q×Ymax

2−q · Pr[f(Un) = y | f(Un) ∈ Ymax] · Adv(u, y)

≥
∑

(u,y)∈{0,1}q×Ymax

2−q · 1

2|Ymax|
· Adv(u, y)

=
E[Adv(UW)]

2
≥ E[Adv(W )]2

2e+3

≥ (εA − exp−k/n
2c −2−2n)2

28·k3 · n2c
,

where the first inequality is because for any y ∈ Ymax we have

Pr[f(Un) = y | f(Un) ∈ Ymax] =
Pr[f(Un) = y]∑

y∗∈Ymax
Pr[f(Un) = y∗]

=
1∑

y∗∈Ymax

Pr[f(Un)=y∗]
Pr[f(Un)=y]

≥ 1

2|Ymax|
,

the second inequality follows from (12) and the third is due to (13) and 2e = 32k · n2c. �
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