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Abstract

We revisit the problem of black-box constructions of universal one-way hash functions (UOWHFs)
from several (from specific to more general) classes of one-way functions (OWFs), and give respec-
tive constructions that either improve or generalize the best previously known. In addition, the
parameters we achieve are either optimal or almost optimal simultaneously up to small factors, e.g.,
arbitrarily small ω(1).

• For any 1-to-1 one-way function, we give an optimal construction of UOWHFs with key and
output length Θ(n) by making a single call to the underlying OWF. This improves the con-
structions of Naor and Yung (STOC 1989) and De Santis and Yung (Eurocrypt 1990) that need
key length O(n · ω(log n)).

• For any known-(almost-)regular one-way function with known hardness, we give an optimal
construction of UOWHFs with key and output length Θ(n) and a single call to the one-way
function.

• For any known-(almost-)regular one-way function, we give a construction of UOWHFs with key
and output length O(n·ω(1)) and by making ω(1) non-adaptive calls to the one-way function.
This improves the construction of Barhum and Maurer (Latincrypt 2012) that requires key and
output length O(n·ω(log n)) and ω(log n) calls.

• For any weakly-regular one-way function introduced by Yu et al. at TCC 2015 (i.e., the set of
inputs with maximal number of siblings is of an n−c-fraction for some constant c), we give a
construction of UOWHFs with key length O(n·logn) and output length Θ(n). This generalizes
the construction of Ames et al. (Asiacrypt 2012) which requires an unknown-regular one-way
function (i.e., c = 0).

Along the way, we use several techniques that might be of independent interest. We show that
almost 1-to-1 (except for a negligible fraction) one-way functions and known (almost-)regular one-
way functions are equivalent in the known-hardness (or non-uniform) setting, by giving an optimal
construction of the former from the latter. In addition, we show how to transform any one-way
function that is far from regular (but only weakly regular on a noticeable fraction of domain) into
an almost-regular one-way function.
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1 Introduction

Informally, a family of compressing hash functions, denoted by G, is called universal one-way, if given
a random function g ∈ G and a random (or equivalently, any pre-fixed) input x, it is infeasible for any
efficient algorithm to find any x′ 6= x satisfying g(x) = g(x′). The seminal result that one-way functions
(OWFs) imply universal one-way hash functions (UOWHFs) [19] constitutes one of the central pieces
of modern cryptography. Applications of UOWHFs include basing digital signatures [9] on minimal
assumptions (one-way functions), Cramer-Shoup encryption scheme [4], statistically hiding commitment
scheme [12, 13], etc.

UOWHFs from any OWFs. The principle possibility result that UOWHFs can be based on any
OWF was established by Rompel [19] (with some corrections given in [20, 16]). However, Rompel’s
construction was quite complicated and extremely unpractical. In particular, for any one-way function
on n-bit inputs it requires key length Õ(n12) and output length Õ(n8). Haitner et al. [11] improved the
construction via the notion of inaccessible entropy [13], and reduced key and output length to Õ(n7).
Therefore, even the best known generic UOWHF constructions (based on arbitrary OWFs) are mainly
of theoretical interest and are too inefficient to be of any practical use.

UOWHFs from special OWFs. Another line of research focuses on more efficient (and nearly
practical) constructions of UOWHFs from special structured OWFs. Naor and Yung gave an elegant
“hash-then-truncate” construction of UOWHFs with key and output length Θ(n) which does a single
call to any one-way permutation. More specifically, let f : {0, 1}n → {0, 1}n be a one-way permutation,
let h be a random permutation (over n bits) from a pairwise-independent hash permutation family H,
and let trunc : {0, 1}n → {0, 1}n−1 be a truncating function that outputs the first n − 1 bits of input,
then the following

Gowp
def
= { (trunc ◦ h ◦ f) : {0, 1}n → {0, 1}n−1 , h ∈ H }

is a family of UOWHFs with 1 bit of shrinkage (i.e., compress by 1 bit), where “◦” denotes function
composition. However, for a slightly weaker primitive, namely, 1-to-1 one-way functions, the authors of
[17] only gave a rather complicated construction. De Santis and Yung [21] gave an improved construction
from any 1-to-1 OWF f : {0, 1}n → {0, 1}l as below:

G1-1
def
= { (hnn−1 ◦ . . . ◦ hl−1

l−2 ◦ h
l
l−1 ◦ f) : {0, 1}n → {0, 1}n−1 , hnn−1 ∈ Hnn−1, . . . , h

l
l−1 ∈ Hll−1 } ,

where each Hii−1 denotes a family of pairwise-independent hash functions that compress i-bit strings
into (i − 1) bits. Although G1-1 enjoys linear output length and a single function call, it requires1 key
length O(ω(log n)·n). In addition, the work of [21] also introduced a construction from any known-
regular2 one-way function with key and output length O(ω(log2 n) ·n) and O(ω(1) · log n) adaptive calls,
which was recently improved by Barhum and Maurer [3] to key and output length O(ω(log n) · n) and
O(ω(1) · log n) non-adaptive calls. Based on unknown-regular one-way functions, Ames et al. [1] pre-
sented a more general construction with output length Θ(n), key length O(logn · n) and Õ(n) adaptive
calls. We refer to Table 1 for a summary of previous constructions and a comparison to our work.

1A straightforward calculation suggests that G1-1 needs key length O(l·(l − n)), and we know (see Fact 1) that every

1-to-1 one-way function implies another one-way function f ′ : {0, 1}n
′∈Θ(n) → {0, 1}n

′+ω(log n) that is 1-to-1 except on a
negligible fraction of inputs, which implies that the key length of [17, 21] can be pushed to O(ω(logn)·n).

2A function f is regular if every image has the same number (say α) of preimages, and it is known- (resp., unknown-
) regular if α is efficiently computable (resp., inefficient to approximate). More generally (as introduced in [24]), f is
weakly unknown-regular if the fraction of x’s with maximal |f−1(f(x))| (which is not necessarily efficiently computable)
is noticeable. We stress that here “weakly” is used to describe “regularity” (rather than “one-way-ness” as in “weakly
one-way functions”).
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Table 1: A summary of existing constructions [17, 21, 3, 1] and our work, where KR-OWF and UR-
OWF are the shorthands for known-regular and unknown-regular one-way functions respectively, ε-hard
KR-OWF additionally assumes that the hardness parameter ε of KR-OWF is known, and n−c-WUR-
OWF is the shorthand for weakly unknown-regular one-way functions (see Footnote 2 and formally
Definition 5.1).

Assumption Output Length Key Length # of Calls Type of Call

[17] OWP Θ(n) Θ(n) 1 non-adaptive

[21, 17] 1-to-1 OWF Θ(n) O(ω(log n)·n) 1 non-adaptive

[21] KR-OWF O(ω(log2 n) · n) O(ω(log2 n) · n) O(ω(log n)) adaptive

[3] KR-OWF O(ω(log n) · n) O(ω(log n) · n) O(ω(log n)) non-adaptive

[1] UR-OWF Θ(n) O(log n · n) Õ(n) adaptive

ours 1-to-1 OWF Θ(n) Θ(n) 1 non-adaptive

ours ε-hard KR-OWF Θ(n) Θ(n) 1 non-adaptive

ours KR-OWF O(ω(1) · n) O(ω(1) · n) O(ω(1)) non-adaptive

ours n−c-WUR-OWF Θ(n) O(log n · n) Õ(n2c+1) adaptive

Summary of our constructions. In this paper, we give the following constructions from the

respective aforementioned one-way functions. The first two constructions enjoy optimal parameters
simultaneously and they are (almost) security-preserving3, the third achieves parameters that are al-
most optimal up to an arbitrarily small super-constant factor ω(1) (e.g., log log log n or even less), and
thus they all improve upon the respective known constructions. The fourth construction generalizes
to beyond regular one-way functions (as introduced in [24]) with optimal output length Θ(n) and key
length O(n · log n). Although there remains a gap between this class of OWFs and arbitrary ones,
our construction is nearly practical compared with the best generic construction with seed/key length
Õ(n7) [13]. We remark that further improvement on key length O(n · log n) of the fourth construction
requires more key-length efficient domain extender (for Merkle-Damg̊ard construction of UOWHFs)
than Shoup’s [22], which seems far beyond reach of conventional techniques. Finally, the first three con-
structions have optimal shrinkages (per invocation of OWF) by matching the upper bound of Gennaro
et al. [5].

1. For any 1-to-1 one-way function, we construct an optimal family of UOWHFs with key and output
length Θ(n) and a single OWF call. This improves the constructions of Naor and Yung [17] and
De Santis and Yung [21] that require key length O(n · ω(log n)).

2. For any known-regular one-way function with known hardness, we give another optimal construc-
tion of UOWHFs with key and output length Θ(n) and a single call.

3. For any known-regular one-way function, we give a construction of UOWHFs with key and output
length O(ω(1)·n) and ω(1) non-adaptive calls. This improves the construction of Barhum and
Maurer [3] that requires key and output length O(n·ω(log n)) and ω(log n) calls.

4. For any one-way function f that is weakly unknown-regular on a noticeable fraction (i.e., n−c for
constant c) of domain [24], we give a construction of UOWHFs with key length O(n·logn) and
output length Θ(n). This generalizes the construction of Ames et al. [1] that assumes unknown-
regular one-way functions (i.e., c = 0).

3The security of the first UOWHF is essentially the same as the respective OWF, and the security of the second one is
roughly a square root of its underlying OWF.
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On the (a)symmetry to PRGs. Our results further exhibit the inherent “black-box duality”
[5, 13, 11] between UOWHFs and PRGs. Firstly, we abstract out a lemma about universal hashing (see
Lemma 3.1) that is implicit in previous works [19, 16, 13] and plays a dual role in UOWHF constructions
to the leftover hash lemma in PRG constructions. Informally, it says that when applying a universal
hash function h to any random variable X of max-entropy4 no more than a to produce an (a + d)-
bit output, h will be injective on X except for a 2−Ω(d) fraction. In contrast, the leftover hash lemma
states that when hashing any X of min-entropy (or Rényi entropy) no less than a into (a−d)-
bit strings, the resulting output distribution will be 2−Ω(d)-close (in terms of statistical distance) to
uniform, where the symmetry is highlighted in bold. Secondly, constructions #2 and #3 above match
the best known results about constructions of PRGs from known-regular OWFs (see [25]), namely, seed
length O(ω(1)·n) or even Θ(n) if the hardness of the underlying OWF is known. Thirdly, construction
#4 is symmetric to the recent PRG construction [24] based on the same class of one-way functions
with succinct key/seed length O(n · log n). Finally (and perhaps more interestingly), construction #1
is asymmetric to the case of PRGs, where we do not know how to construct a linear seed length PRG
from an arbitrary 1-to-1 one-way function5.

On the efficiency, feasibility and limits. Constructions #1, #2 and #3 are practically relevant
as most one-way function candidates turn out to be known-almost-regular or even 1-to-1. Goldreich,
Levin and Nisan [8] showed how to base almost 1-to-1 (except for a negligible fraction) one-way functions
on intractable problems such as RSA6 and DLP, and thus construction #1 enables to build optimal
UOWHFs from those problems. A byproduct of construction #2 is the equivalence of almost 1-to-1
one-way functions and known-(almost-)regular one-way functions in certain (known-hardness or non-
uniform) settings, where we give an optimal construction of the former from the latter. Moreover,
unknown regular one-way functions further reduce the knowledge required about the underlying one-
way functions, and the problem of basing cryptographic primitives (PRGs, UOWHFs, etc.) on weaker
assumptions is of theoretic interests. It improves our understanding about the feasibility and limits of
black-box reductions. In particular, Holenstein and Sinha [14], Barhum and Holenstein [2] showed that
Ω(n/ log n) black-box calls to an arbitrary (including unknown-regular) one-way function is necessary to
construct PRGs and UOWHFs, and the lower bound is matched by explicit constructions of PRGs [10]
and UOWHFs [1] respectively. The recent work of [24] carried on this line of research even further by
considering a more general class of one-way functions (which they call weakly unknown-regular one-way
functions), namely, the underlying one-way function can have an arbitrary structure as long as the set
of x with maximal number of siblings (i.e., x and x′ are siblings of each other if f(x) = f(x′)) is of
noticeable fraction. The authors of [24] gave a construction of PRG with seed length O(n · log n) from
weakly unknown-regular OWFs. However, their analysis is quite ad-hoc (see Remark 5.1), and doesn’t
seem to generalize to UOWHFs. As an intermediate step of construction #4, we prove that “iterating
such a one-way function (weakly regular on only a noticeable fraction) polynomially many times yields
a one-way function that is almost-regular on an overwhelming fraction” and thus unify the approach to
the two dual objects (i.e., PRGs and UOWHFs). We mention an (arguable) analogue to this problem,
namely, hardness amplification of one-way functions [23], where a function that is weakly one-way (for
which every efficient algorithm has a noticeable fraction to fail upon) can be turned into strongly one-way

4X has max-entropy a if its support is of size 2a.
5Given a 1-to-1 one-way function f , one might think of getting a PRG by hashing f(Un) into n− s bits concatenated

with s + 1 hard-core bits of f , where s ∈ ω(logn) is the necessary entropy loss due to the leftover hash lemma. This is
in general not possible without knowing the exact hardness of the underlying f . See more discussions and the relaxed
solutions to this problem by Goldreich [6, Section 3.5.1.3]. For example, we get a linear seed-length PRG of the following
weaker form, i.e., for every ε = 1/poly(n) there exists a weak PRG of seed length Θ(n) whose output distribution is
ε-indistinguishable from uniform to all PPT distinguishers. Alternatively, we use parallel repetition to obtain a standard
PRG with seed length O(ω(1)·n) [25].

6RSA is typically known as a (sequence of) family of trapdoor permutations, which was transformed into a single
(sequence of) 1-to-1 one-way function in [8].
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(hard to invert on an overwhelming portion) by parallel repetition [23] or even sequential composition
(assuming additionally that the underlying function is regular) [10].

The roadmap. We outline below the steps to build UOWHFs from the respective one-way function
f : {0, 1}n → {0, 1}l introduced above. We first show that the following assumptions (about output
length) can be made without loss of generality: l ∈ O(n) for 1-to-1 one-way functions and length-
preserving-ness (i.e., l = n) for arbitrary one-way functions. We state this as Fact 1 with a full proof
given in Appendix A. Haitner et al. [10] showed that any one-way function implies a length-preserving
one-way function, and we show in Fact 1 an even stronger version that (1) any 1-to-1 one-way function
f : {0, 1}n → {0, 1}l implies a one-way function f ′ : {0, 1}n′∈Θ(n) → {0, 1}l′∈Θ(n) that is 1-to-1 except
for a negligible fraction; (2) any one-way function f with α ≤ |f−1(y)| ≤ α·β implies another length-
preserving one-way function f ′ : {0, 1}n′∈Θ(n) → {0, 1}n′ with α′ ≤ |f ′−1(y)| ≤ α′·β except for a
negligible fraction, where the size of range β is preserved, and α′ is efficiently computable if α is.

Based on 1-to-1 OWFs. We adapt Naor-Yung’s elegant “hash-then-truncate” approach (for one-way
permutation) to any 1-to-1 one-way function:

G1
def
= { (trunc ◦ h ◦ f) : {0, 1}n → {0, 1}n−s , h ∈ H } ,

where H is a family of universal7 hash permutations on l bits, and trunc : {0, 1}l → {0, 1}n−s is a
truncating function that outputs the first n − s bits of input. We show that if f is a (t,ε)- 1-to-1
OWF then the resulting G1 is a (t − nO(1), 2s+1 · ε)-UOWHF family with key and output length Θ(n)
and shrinkage s (see Definition 2.3 and Definition 2.7 for formal definitions). The construction enjoys
optimal parameters and somewhat counter-intuitively the security bound drops only by factor 2s (which
is optimal by [5]) rather than by 2l−n+s (i.e., exponential in the number of bits truncated which would
render the construction useless). We refer to the proof of Theorem 3.1 and Remark 3.1 for more technical
details and further discussions.

Based on known-(almost-)regular ε-hard OWFs. Given an almost-regular f (see Definition 2.6)
which is known to be (t,ε)-one-way for some efficiently computable ε, we define the following function
family

G2
def
= { g : {0, 1}n → {0, 1}n−s, g(x) = ( trunc(h(f(x))), h1(x) ), h ∈ H, h1 ∈ H1 }

where H is a family of universal hash permutations, and let H1 and trunc be a family of universal
hash functions and the truncating function (both with appropriate output sizes) respectively. We
show that G2 is a UOWHF family with key and output length Θ(n) and shrinkage s. The rationale
is that for any8 x 6= x′ colliding on g ∈ G2 it either satisfies “f(x) = f(x′) ∧ h1(x) = h1(x′)” or
“f(x) 6=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′)))”. The former is unconditionally bounded by uni-
versal hashing, and the latter is computationally bounded (and reducible to the one-way-ness of f).

Interestingly, by abstracting out function f ′(x, h1)
def
= (f(x), h1(x), h1) from the above construction, we

further show that f ′ is a one-way function that is 1-to-1 except for a negligible fraction. We refer to
Theorem 4.1, Lemma 4.1 and Theorem 4.2 for the details.

Based on known-(almost-)regular OWFs. Next, we consider any known-(almost)-regular OWF
f whose hardness parameter is ε unknown (i.e., ε is negligible but may not be efficiently computable).
In this case, we run q independent copies of f , and we get a construction by making q non-adaptive
calls with shrinkage q log n, key and output length O(q · n), where q ∈ ω(1) can be any efficiently
computable super-constant. The parallel repetition technique was also used in similar contexts (e.g.,

7Many existing UOWHF constructions use pairwise (or even 3-wise) independent hashing to facilitate the analysis, but
in fact universal hashing suffices here.

8More precisely, x is sampled at random and x′ can be any distinct value (i.e., x′ 6= x) efficiently computable from x
and g.
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the construction of PRG from any known regular OWF [25]). We refer to Theorem 4.3 for the detailed
construction and proof.

Based on a more general class of OWFs. We show iterating the class of one-way functions
introduced in [24] sufficiently many times yields a one-way function f ′ that is almost-regular, and thus
plugging this f ′ into the construction of Ames et al.[1] yields a construction of UOWHFs with output
length Θ(n) and key length O(n · log n).

2 Preliminaries

Notations and definitions. We use [n] to denote set {1, . . . , n}. We use capital letters (e.g.,
X, Y ) for random variables, standard letters (e.g., x, y) for values, and calligraphic letters (e.g. X ,
Y) for sets. The support of a random variable X, denoted by Supp(X), refers to the set of values
on which X takes with non-zero probability, i.e., {x : Pr[X = x] > 0}. For a binary string x =
x1 . . . xn, denote by x[t] the first t bits of x, i.e., x1 . . . xt. x‖y refers the concatenation of x and y.
We denote by trunc : {0, 1}n → {0, 1}t a truncating function that outputs the first t bits of input,
i.e., trunc(x) = x[t]. |S| denotes the cardinality of set S. For function f : {0, 1}n → {0, 1}l(n), we use

shorthand f({0, 1}n)
def
= {f(x) : x ∈ {0, 1}n}, and denote by f−1(y) the set of y’s preimages under f ,

i.e., f−1(y)
def
= {x : f(x) = y}. We say f is length-preserving if l(n) = n. We use s ← S to denote

sampling an element s according to distribution S, and let s
$←− S denote sampling s uniformly from

set S, and y := f(x) denote value assignment. We use Un and UX to denote uniform distributions over
{0, 1}n and X respectively, and let f(Un) be the distribution induced by applying function f to Un. For
probabilistic algorithm A, we use A(x; r) to denote the output of A on input x and internal coin r. The
min-entropy and max-entropy (see, e.g., [13]) of a random variable X, denoted by H∞(X) and H0(X)
respectively, are defined as:

H∞(X)
def
= log min

x∈Supp(X)

1

Pr[X = x]
; H0(X)

def
= log |Supp(X)| .

We use ‘+/−’ and ‘·’ for addition/subtraction and multiplication between field elements respectively.
The zero element of any finite field is denoted by ~0.

Collision probability. We use CP(X) to denote the collision probability of X, i.e., CP(X)
def
=∑

x Pr[X = x]2, and denote by CP(X|Z) the average collision probability of X conditioned on another
(possibly correlated) random variable Z by

CP(X|Z)
def
= Ez←Z

[ ∑
x Pr[X = x| Z = z]2

]
.

Simplifying Notations. To simplify the presentation, we use the following simplified notations.
Throughout, most parameters are functions of the security parameter n (e.g., t(n), ε(n), r(n)) and we
often omit n when clear from the context (e.g., t, ε, r). Parameters (e.g., ε, r) are said to be known if
they are polynomial-time computable from n. By notation f : {0, 1}n → {0, 1}l we refer to the ensemble
of functions {f : {0, 1}n → {0, 1}l(n)}n∈N. As slight abuse of notion, poly might be referring to the set
of all polynomials or a certain polynomial, and h might be either a function or its description which

will be clear from context. For example, in h(y)
def
=h ·y the first h denotes a function, the second h refers

to a string (a finite field element) that describes the function (i.e., multiplying y by h).

Definition 2.1 (ρ-almost universal hashing) A family of functions H = {h : {0, 1}l → {0, 1}t} is
ρ-almost universal if for any distinct x1, x2 ∈ {0, 1}l, it holds that

Pr
h

$←−H
[h(x1) = h(x2)] ≤ ρ .
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In the special case ρ = 2−t, we say that H is universal.

Definition 2.2 (pairwise independent hashing) A family of functions H = {h : {0, 1}l → {0, 1}t}
is pairwise independent if any distinct x1, x2 ∈ {0, 1}l and any v1, v2 ∈ {0, 1}t it holds that Pr

h
$←−H[ h(x1) =

v1 ∧ h(x2) = v2 ] = 2−2t.

Definition 2.3 (one-way functions) A sequence of functions {f : {0, 1}n → {0, 1}l(n)}n∈N is (t(n),ε(n))-
one-way if f is polynomial-time computable and for any probabilistic algorithm A of running time t(n)

Pr
x

$←−{0,1}n
[A(1n, f(x))∈f−1(f(x))] ≤ ε(n).

Hereafter we use simplified notation f : {0, 1}n → {0, 1}l(n) for the above one-way function, where t(·)
and 1/ε(·) are super-polynomial.

Definition 2.4 (a family of one-way functions) A sequence of function family F = {Fn}n∈N, where
Fn = {fu : {0, 1}n → {0, 1}l(n), u ∈ {0, 1}q(n)}, is (t(n),ε(n))-one-way if for any n ∈ N, u ∈ {0, 1}q(n)

and x ∈ {0, 1}n, the value fu(x) can be computed in polynomial time, and for any probabilistic algorithm
A of running time t(n), we have that

Pr
x

$←−{0,1}n; u
$←−{0,1}q(n)

[ A(1n, u, fu(x))∈f−1
u (fu(x)) ] ≤ ε(n) .

We use shorthands F = {fu : {0, 1}n → {0, 1}l(n), u ∈ {0, 1}q(n)} for {Fn}n∈N.

Definition 2.5 (almost 1-to-1 functions) A function f : {0, 1}n → {0, 1}l(n) is ε(n)-almost 1-to-1
if there exists a negligible function ε(n), such that for every n ∈ N we have

Pr
x

$←−{0,1}n
[ ∃x′ : x′ 6= x ∧ f(x) = f(x′) ] ≤ ε(n).

In particular, f is 1-to-1 if ε(n) ≡ 0.

Definition 2.6 (almost regular functions) For integer functions α = α(n) and β = β(n), a func-
tion f : {0, 1}n → {0, 1}l(n) is α-regular if for every n ∈ N and x ∈ {0, 1}n we have

|f−1(f(x))| = α.

f is (α, α·β)-almost regular if for every n ∈ N and x ∈ {0, 1}n we have

α ≤ |f−1(f(x))| ≤ α · β.

In particular, f is known-(almost)-regular if α is polynomial-time computable, or otherwise it is called
unknown-(almost)-regular. Standard “almost-regularity” for a (t, ε)-one-way function f refers to that
f is (α, α·β)-almost-regular for β = poly(n) or at most β = (1/ε)Θ(1) for certain small constant
0 < Θ(1) < 1.

Definition 2.7 (UOWHFs [17]) A sequence of function family G = {Gn}n∈N, where Gn = {gu :
{0, 1}`(n) → {0, 1}`(n)−s(n), u ∈ {0, 1}q(n), ` ∈ poly}, is a family of (t(n),ε(n))-universal one-way hash
functions if for every n ∈ N, u ∈ {0, 1}q(n) and x ∈ {0, 1}`(n), the value gu(x) can be computed in
polynomial time, and for every probabilistic algorithm A of running time t(n), it holds that

Pr
x

$←−{0,1}`(n); u
$←−{0,1}q(n); x′←A(1n,x,u)

[ x 6= x′ ∧ gu(x) = gu(x′) ] ≤ ε(n) .

The difference between input and output lengths (i.e., s(n)) is called shrinkage. For succinctness,
hereafter we will use shorthand G = {gu : {0, 1}` → {0, 1}`−s, u ∈ {0, 1}q} for {Gn}n∈N defined above.
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3 UOWHFs from 1-to-1 One-way Functions

3.1 A Technical Lemma and Its Applications

We state a technical lemma about universal hashing (see Lemma 3.1) below and it plays a symmetric
role in the construction of UOWHFs to that the leftover hash lemma does in PRGs. The proof follows
from the universality of the hash functions and we include it in Appendix A.1 for completeness.

Lemma 3.1 (The injective hash lemma) For any integers a, d, k and l satisfying a≤l, let Y be

any random variable over {0, 1}l with H0(Y )≤a, and let H def
= {h : {0, 1}l → {0, 1}a+d} be a family of

(k·2−(a+d))-almost universal hash functions. Then, we have that

Pr
y←Y, h

$←−H
[ ∃ỹ ∈ Supp(Y ) : ỹ 6= y ∧ h(ỹ) = h(y) ] ≤ k·2−d .

Recall that k = 1 corresponds to the special case that H is universal.

In addition to being a technical tool for UOWHF constructions, Lemma 3.1 is also used to reduce
the output lengths of one-way functions without loss generality. That is, the input and output lengths
of a 1-to-1 one-way function f : {0, 1}n → {0, 1}l(n) can be assumed to be linearly related (i.e., l(n) =
O(n)). For almost regular one-way functions, we can even assume that they are length-preserving (i.e.,
l(n) = n). We refer to Appendix A.1 for the proof of Fact 1.

Fact 1 For any r1 = r1(n) ≤ r2 = r2(n) and any efficiently computable κ = κ(n) ∈ O(n), we have

1. Any 1-to-1 (t,ε)-one-way function f : {0, 1}n → {0, 1}l implies a (t − nO(1), ε + poly(n) · 2−κ)-
one-way function f ′ : {0, 1}n′∈Θ(n) → {0, 1}(n′+κ)∈Θ(n) which is 1-to-1 except on a (poly(n) · 2−κ)-
fraction of inputs, i.e.,

Pr
x

$←−{0,1}n′
[ ∃x′ ∈ {0, 1}n′ : x′ 6= x ∧ f ′(x) = f ′(x′) ] ≤ poly(n) · 2−κ

2. Any (2r1 , 2r2)-almost regular (t,ε)-one-way function f : {0, 1}n → {0, 1}l implies a length-preserving
(t−nO(1),ε+poly(n)·2−(r1+κ))-one-way function f̄ : {0, 1}n′∈Θ(n) → {0, 1}n′ which is (2κ+r1 , 2κ+r2)-
almost regular except on a (poly(n) · 2−(r1+κ))-fraction of inputs, i.e.,

Pr
x

$←−{0,1}n′
[ 2κ+r1 ≤ |f̄−1(f̄(x))| ≤ 2κ+r2 ] ≥ 1− poly(n) · 2−(r1+κ) .

Note that 2r2−r1 is arbitrary (i.e., not necessarily bounded by poly(n)), and thus the second statement
applies to any one-way function f . It suffices to set κ = ω(log n) to have a negligible error bound.

Therefore, we will assume in the remainder of the paper that the underlying 1-to-1 one-way function
has linear output length (i.e., l(n) = O(n)) and that the almost-regular and weakly unknown-regular
one-way functions are length-preserving (i.e., l(n) = n).

3.2 UOWHFs from 1-to-1 OWFs

For a 1-to-1 OWF f : {0, 1}n → {0, 1}l, we define a cryptographic game between a challenger C and

an inverter Inv. That is, C samples a random y∗
$←− {0, 1}l and sends it to Inv, and Inv wins the game

iff he comes up with any x′ satisfying f(x′) = y∗. Note that even unbounded Inv wins this game with
advantage no more than 2−(l−n) (which is probability that y∗ ∈ f({0, 1}n)), and Fact 2 states that the
chance to win is even smaller for computationally bounded Inv.
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Fact 2 For any 1-to-1 (t,ε)-one-way function f : {0, 1}n → {0, 1}l and any probabilistic algorithm Inv
of running time t, it holds that

Pr
y∗

$←−{0,1}l
[ f(Inv(y∗)) = y∗ ] ≤ 2−(l−n) · ε .

Proof.

Pr
y∗

$←−{0,1}l
[ f(Inv(y∗)) = y∗ ] ≤ Pr

y∗
$←−{0,1}l

[y∗ ∈ f({0, 1}n)] · Pr
y∗

$←−f({0,1}n)

[ f(Inv(y∗)) = y∗ ] ≤ 2−(l−n) · ε .

�

Remark 3.1 (on the proof sketch of Theorem 3.1) We use a trick to prove Theorem 3.1. We
show that any A that ε′-breaks the TCR of the constructed UOWHF implies an InvA (of almost the same
efficiency as A) that wins the above game (i.e., inverting f on a random y∗ ∈ {0, 1}l) with advantage
roughly 2n−l−s · ε′. This may seem useless since l− n can be Ω(n) or even poly(n). However, by Fact 2
this term (i.e., 2n−l−s · ε′) is actually upper bounded by 2−(l−n) · ε. The conclusion ε′≤2sε immediately
follows by cancelling the factor (l − n). In other words, the security bound does not depend on the
number of bits truncated (i.e., l − n+ s), but only on shrinkage s, and it is tight due to [5].

Theorem 3.1 (UOWHFs from 1-to-1 OWFs) Let f : {0, 1}n → {0, 1}l∈O(n) be any 1-to-1 (t, ε)-
one-way function, let H be a family of permutations9 over {0, 1}l as follows:

H = {h : {0, 1}l → {0, 1}l , h(y)
def
=h · y, where y ∈ GF (2l), ~0 6=h ∈ GF (2l) } ,

let trunc : {0, 1}l → {0, 1}n−s be a truncating function, where s = s(n) is efficiently computable. Then,
we have that

G1
def
= { (trunc ◦ h ◦ f ) : {0, 1}n → {0, 1}n−s , h ∈ H }

is a family of (t− nO(1), 2s+1 · ε)-UOWHFs with key and output length Θ(n), and shrinkage s.

Proof. Suppose for contradiction that there exists a G1-collision finder A of running time t′ that on
input (x, h), breaks the target collision resistance with some non-negligible probability ε′, i.e.,

Pr
x

$←−{0,1}n,h $←−H
[ x′←A(x, h) : x 6= x′ ∧ h(f(x))[n−s] = h(f(x′))[n−s] ] = ε′ > 2s+1 · ε

We define algorithm InvA (that inverts f on input y∗
$←− {0, 1}l by invoking A) as in Algorithm 1. Define

event Eneq
def
= (f(x)6=y∗). We argue that InvA inverts f with the following probability (see the rationale

below)

Pr
y∗

$←−{0,1}l, x $←−{0,1}n, v $←−V
[ f(InvA(y∗)) = y∗ ]

≥ Pr
x

$←−{0,1}n,y∗ $←−{0,1}l
[ Eneq ] · Pr

x
$←−{0,1}n, y∗ $←−{0,1}l\{f(x)}, v

$←−V
[ f(InvA(y∗)) = y∗ | Eneq ]

≥ (1− 2−l) · Pr
x

$←−{0,1}n,h $←−H,x′←A(x,h),v
$←−V

[x 6= x′ ∧ h(f(x))[n−s] = h(f(x′))[n−s] ∧ y∗ = f(x′) ]

≥ (1− 2−l) · ε′ · Pr
v

$←−V
[y∗ = f(x′) | Eneq ∧ x 6= x′ ∧ h(f(x))[n−s] = h(f(x′))[n−s] ]

=
(1− 2−l) · ε′

|V|
=

(1− 2−l) · ε′

2l−n+s − 1
>

ε′/2

2l−n+s
> ε·2−(l−n) ,

9In fact, H constitutes a family of universal hash permutations. However, our proofs only use the concrete construction
of H and benefit from its algebraic property over finite fields, rather than assuming a universal H plus a constructible

property [13] (given any x and y there exists a PPT sampler to output h
$←− {h ∈ H : h(x) = y}).
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Algorithm 1 InvA that inverts f on input y∗ using random coins (x, v).

Input: y∗
$←− {0, 1}l

Sample x
$←− {0, 1}n

if f(x) = y∗ then
Output x and terminate.

end if

sample h := (f(x)− y∗)−1 · v, where v
$←− V = {v ∈ {0, 1}l \ {~0} : v[n−s] =

n−s︷ ︸︸ ︷
0 . . . 0}

{The above implies h
$←− {h ∈ H : h(f(x))[n−s] = h(y∗)[n−s]} by the GF (2l) arithmetics. }

x′ ← A(x, h)
if f(x′)=y∗ then

Output x′

else
Output ⊥

end if
Terminate

where the first inequality is straightforward (note that conditioned on Eneq the sampling of x and y∗

are uniform over {0, 1}n and {0, 1}l \ {f(x)} respectively), the second inequality follows from Claim 1,

namely, conditioned on Eneq it is equivalent to consider (x, h, v)
$←− {0, 1}n × H × V and then y∗ :=

f(x)− v · h−1, and the third inequality is due to that A takes only x and h as input (i.e., independent
of v). That is, conditioned on that A produces a valid x′ 6= x satisfying h(f(x′))[n−s] = h(f(x))[n−s], we

have by Claim 1 that string y∗ is uniformly distributed over set Y∗def={f(x)− v·h−1, v ∈ V}. Note that
the already fixed f(x′) is also an element of Y∗ and thus y∗ hits f(x′) with probability 1/|Y∗|=1/|V|.
We complete the proof by reaching a contradiction to Fact 2. �

Claim 1 (equivalent sampling) Let the values h, v, x, y∗ be sampled as in Algorithm 1 (or as in

Algorithm 2), and conditioned on event Eneq
def
= (f(x) 6=y∗), it is equivalent to sample (x, h, v)

$←−
{0, 1}n ×H× V uniformly and independently and then determine y∗ := f(x)− v · h−1.

Proof of Claim 1. We know that (x, v) is uniformly sampled from {0, 1}n × V by definition, and thus
it suffices to show that “fix any (x, v), and conditioned on y∗ 6= f(x) (i.e., Y ∗ is uniform distributed
over {0, 1}l \ {f(x)}), it holds that h is uniform over H”. This follows from that v 6= ~0 (V excludes ~0

by definition) and hence h = (f(x)−Y ∗)−1 · v is uniform over {0, 1}l \ {~0}, namely, h
$←− H. Finally, for

any given (x, h, v), one efficiently determines the value y∗ = f(x)− v · h−1 due to the arithmetics over
the finite field. �

A simple corollary of Theorem 3.1 below assumes an almost 1-to-1 one-way function. See its proof
in Appendix A.3.

Corollary 3.1 (UOWHFs from almost 1-to-1 OWFs) Let f , H, trunc and G1 be the same as
assumed/defined in Theorem 3.1 except that f is δ-almost 1-to-1. Then, G1 is a family of (t − nO(1),
2s+1 · ε+ δ)-universal one-way hash functions with key and output length Θ(n), and shrinkage s.

4 UOWHFs from Known Regular OWFs

We proceed to the more general case that f is a known almost-regular function. Recall that by Fact 1
we can assume WLOG that the underlying almost regular one-way function is length-preserving. We

9



first show a construction where the hardness parameter ε is known, and then remove the dependency
on ε.

4.1 Compressing the Output is Necessary but Not Sufficient

We attempt to generalize the Naor-Yung approach for one-way permutations (and 1-to-1 one-way func-
tions) to almost regular one-way functions by compressing (using trunc ◦ h) the output Y = f(X)
into H∞(Y ) − s′ bits for s′ ∈ O(log (1/ε)). However, this only gives a weak form of guarantee, as
stated in Lemma 4.1 below, that given a random x it is infeasible for efficient algorithms to find any
f(x′) 6= f(x) such that trunc(h(f(x′))) = trunc(h(f(x))). Otherwise said, it does not rule out the pos-
sibility that one may easily find x′ 6= x satisfying f(x′) = f(x). Hence, compressing the output is only
a useful intermediate step to obtain UOWHFs. Lemma 4.1 below further generalizes Theorem 3.1 to
known-(almost-)regular functions, whose proof is similar to that of Theorem 3.1 and thus we defer the
redundancy to Appendix A.

Lemma 4.1 For any constant c, any efficiently computable r = r(n) and s′ = s′(n), let f : {0, 1}n →
{0, 1}n be any (2r, 2rnc)-almost regular (length-preserving) (t, ε)-one-way function, let H be a family of
permutations over {0, 1}n as below

H = {h : {0, 1}n → {0, 1}n , h(y)
def
=h · y, where y ∈ GF (2n), ~0 6=h ∈ GF (2n) } ,

let trunc : {0, 1}n → {0, 1}n−r−c· logn−s′ be a truncating function. Then, for any Ã of running time
t− nO(1) (for some universal constant O(1)) we have that

Pr
x

$←−{0,1}n, h $←−H, x′←Ã(x,h)

[ f(x) 6=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′))) ] ≤ nc·2s′+1 · ε .

4.2 Known (Almost-)Regular OWFs with Known Hardness

We first give an optimal construction assuming that the inversion probability upper bound ε is known.
Note that in addition to hashing the output f(x) (as we did in Lemma 4.1), we also hash the input x
to ensure that no distinct x′ collides with x with respect to the resulting function.

Theorem 4.1 (UOWHFs from known-almost-regular ε-hard OWFs) Let f : {0, 1}n → {0, 1}n
be any (2r, 2rnc)-almost regular (length-preserving) (t,ε)-one-way function as assumed in Lemma 4.1.
Let shrinkage s = s(n) be any efficiently computable function, and let H and trunc be as defined in
Lemma 4.1 with s′ = (s + log(1/ε) − c log n)/2, and let H1 = {h1 : {0, 1}n → {0, 1}r+c logn+s′−s} be a
family of universal hash functions. Then, we have that

G2
def
= { g : {0, 1}n → {0, 1}n−s , g(x)

def
= (g1(x), h1(x)), g1 ∈ H , h1 ∈ H1 }

where g1
def
= (trunc ◦ h ◦ f), is a (t−nO(1), O(

√
2s · nc · ε))-universal one-way hash function family with

key and output length Θ(n).
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Proof. Define shorthands E1
def
=
(
x 6= x′ ∧ f(x) = f(x′) ∧ h1(x) = h1(x′)

)
and E2

def
=
(
f(x) 6= f(x′) ∧

g1(x) = g1(x′)
)
. For any G2-collision finder A, we have

Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x′←A(x,h,h1)

[ x 6=x′ ∧ g(x) = g(x′) ]

≤ Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x′←A(x,h,h1)

[ E1 ∨ E2 ]

≤ Pr
x

$←−{0,1}n, h1
$←−H1

[ ∃ x′ 6= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]

+ Pr
x

$←−{0,1}n, (h,h1)
$←−(H,H1), x′←A(x,h,h1)

[ f(x)6=f(x′) ∧ g1(x) = g1(x′) ]

≤ 2−(s′−s) + nc·2s′+1 · ε =
√

2s · nc · ε + 2
√

2s · nc · ε = 3
√

2s · nc · ε ,

where the first inequality refers to that any collision on g ∈ G2 (for x′ 6= x) must satisfy either E1 or E2

and the second inequality follows by a union bound. We already know by Lemma 4.1 that the second
term is bounded by nc·2s′+1ε, and it thus remains to show that the first term is bounded by 2−(s′−s).
Conditioned on any y = f(X) random variable X is a flat distribution on a set of size at most 2r·nc, so
we apply Lemma 3.1 (setting a = r + c · logn, d≥s′ − s and k = 1) to get

Pr
x

$←−{0,1}n, h1
$←−H1

[ ∃ x′ 6= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]

= Ey←f(Un)

[
Pr

x
$←−f−1(y), h1

$←−H1

[ ∃ x′ 6= x ∧ f(x) = f(x′) ∧ h1(x) = h1(x′) ]

]
≤ Ey←f(Un)[ 2−(s′−s) ] = 2−(s′−s) ,

which completes the proof. �

4.3 An Alternative Approach to Section 4.2

A neater (and perhaps more intuitive) approach is to construct an almost 1-to-1 one-way function
f ′ (with input and output lengths Θ(n)) based on f (stated as Theorem 4.2) and then plug f ′ into
Corollary 3.1 (using f ′ in place of f). This statement is interesting in its own right as it implies that
almost 1-to-1 one-way functions and known-(almost-)regular one-way functions (with known hardness)
are equivalent. Taking a closer look at Theorem 4.2 we find that this almost 1-to-1 f ′ is also present
(as an intermediate function) in construction G2 of Theorem 4.1 (except with slightly different length
parameters). Lemma 4.2 and Lemma 4.3 state the almost injectiveness and one-way-ness of f ′ respec-
tively, for which we determine a judicious value for d (assuming knowledge about ε) in Theorem 4.2 to
achieve injectiveness and one-way-ness simultaneously.

Theorem 4.2 (almost 1-to-1 OWF from almost-regular ε-hard OWF) Let f : {0, 1}n → {0, 1}n
be any (2r, 2rnc)-almost regular (length-preserving) (t,ε)-one-way function as assumed in Lemma 4.1.
For efficiently computable d = d(n) ∈ N, define

f ′ : {0, 1}n ×H1 → {0, 1}n × {0, 1}r+c·logn+d ×H1

f ′(x, h1)
def
= (f(x), h1(x), h1)

where H1 is a family of universal hash functions from n bits to r + c·log n + d bits. Then, for d =
log(1/ε)−c·logn−3

3 we have that f ′ is 2 3
√
ε · nc-almost 1-to-1 and (t− O(n), 2 3

√
ε · nc)-one-way with input

and output lengths Θ(n).
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Proof. The almost 1-to-1-ness and one-way-ness of f ′ follow from Lemma 4.2 and Lemma 4.3 respec-
tively by setting parameter d = log(1/ε)−c·logn−3

3 . �

We give the proofs of Lemma 4.2 and Lemma 4.3 in Appendix A.3.

Lemma 4.2 (f ′ is almost 1-to-1) f ′ defined in Theorem 4.2 is 2−d-almost 1-to-1.

Lemma 4.3 (f ′ is one-way) f ′ defined in Theorem 4.2 is a (t− O(n),
√

2d+3 · nc · ε)-one-way func-
tion.

4.4 UOWHFs from any Known (Almost-)Regular OWFs

Removing the dependency on ε. Unfortunately, Theorem 4.1 doesn’t immediately apply to an
arbitrary regular function as in general we assume no knowledge about ε (other than that ε is negligible).
To see the difficulty, check the proof of Theorem 4.1 where the security of the resulting UOWHF is
bounded by the sum of two terms, i.e., 2−(s′−s) + nc·2s′+1 · ε. Without knowing ε, one may end
up setting some super-polynomial 2s

′
(to make the first term negligible) which kills the second term

nc·2s′+1 · ε. Same problems arise in similar situations (e.g., construction of PRGs from regular OWFs
[25]). A remedy for this is parallel repetition: run q ∈ ω(1) copies of f on ~x = (x1, . . . , xq), apply
hash-then-truncate (setting s′ = 2 log n) to every copy f(xi), which shrinks the entropies by 2q log n
bits and yields a bound O(ε·nc+2). Next, apply a single hashing to ~x that expands q· log n bits (to yield
another negligible term n−q). This gives a family of UOWHFs with shrinkage 2q log n−q log n = q log n,
and key and output length O(q · n) for any (efficiently computable) q ∈ ω(1). The proof is similar in
spirit to that of Theorem 4.1 and we include it in Appendix A.4 due to lack of space.

Definition 4.1 (parallel repetition) For any function g : X → Y, we define its q-fold parallel repe-
tition gq : X q → Yq as

gq(x1, ..., xq) = ( g(x1) , ..., g(xq) ) .

For simplicity, we use shorthand ~x
def
= (x1, . . . , xq) and thus gq(~x)=gq(x1, . . . , xq).

Theorem 4.3 (UOWHFs from any known almost-regular OWFs) Let f : {0, 1}n → {0, 1}n be
any (2r, 2rnc)-almost regular (length-preserving) (t,ε)-one-way function as assumed in Lemma 4.1.
Then, for any efficiently computable q = q(n) = ω(1), let H and trunc be as defined in Lemma 4.1
with s′ = 2 log n, and let H1 = {h1 : {0, 1}q·n → {0, 1}q(r+(c+1) logn)} be a family of universal hash
functions, we have that

G3
def
= { g : {0, 1}qn → {0, 1}qn−q logn , g(~x)

def
= (g1(~x), h1(~x)), h ∈ H , h1 ∈ H1 }

where g1
def
= (trunc ◦ h ◦ f)q, is a (t− nO(1),n−q + 2q·nc+2 · ε)-universal one-way hash function family

with key and output length O(q · n), and shrinkage q· log n.

5 Going Beyond Almost-Regular OWFs

Although (almost) optimal, our foregoing constructions need at least almost-regularity, i.e., the one-
way function f satisfies α ≤ |f−1(f(x))| ≤ α · β for all (or at least an overwhelming portion of) x,
where α is efficiently computable and β = poly(n) (or at most β = O(log (1/ε)) for an (ε−1,ε)-hard
f). Complementary to our work, Ames et al. [1] gave an elegant construction from unknown-(almost-
)regular one-way functions (see Appendix B.1), namely, without knowledge about α, for which they pay
a cost of much increased number of one-way function calls (i.e., O(n/logn), which is necessary due to
[2]) and key length O(n log n). In this section, we further weaken the assumption so that f can have an
arbitrary structure (i.e., β is not bounded) as long as the fraction of x’s with (nearly) maximal number
of siblings is noticeable.
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5.1 A More General Class of OWFs

The following class of one-way functions was introduced in [24] as a relaxation to unknown-(almost-
)regular one-way functions.

Definition 5.1 (weakly unknown-regular OWFs [24]) Let f : {0, 1}n → {0, 1}l(n) be a one-way
function, and for every n ∈ N, divide domain {0, 1}n into sets X1, . . . ,Xn (i.e., X1 ∪ . . .∪Xn = {0, 1}n)

such that Xj
def
= {x : 2j−1 ≤ |f−1(f(x))| < 2j}, and define max = max(n) to be the maximal subscript of

the non-empty sets, i.e., |Xmax| > 0 and |Xmax +1 ∪ . . .∪Xn| = 0. We say that f is weakly unknown-
regular if there exists a constant c such that for all sufficiently large n :

Pr[Un ∈ Xmax] ≥ n−c . (1)

Note that max(·) can be arbitrary (not necessarily efficient) functions and thus unknown-regular one-way
functions fall into a special case10 for c = 0.

5.2 UOWHFs from Beyond Almost-Regular OWFs

We state below the main results of this section, namely, the fourth construction which is based on
weakly unknown-regular one-way functions (see Definition 5.1).
Theorem 5.1 Assume that f is a weakly unknown-regular one-way function on an n−c-fraction of
domain for constant c. Then, there exists an explicit construction of UOWHF family (stated as Con-
struction 1 in Appendix B.4) with output length Θ(n), key length O(n · logn) by making n2c+1 · ω(1)
black-box calls to f .

The main idea is to transform any weakly unknown-regular one-way function f into a family of
functions F = {fu : u ∈ {0, 1}O(n logn)} such that F is almost regular and that it preserves the one-
way-ness of f . F is constructed based on (the derandomized version of) the randomized iterate with a

succinct description u. Finally, we sample a random fu
$←− F and plug it into the construction by Ames

et al. (see Theorem B.1) to get the UOWHFs as desired.

Definition 5.2 (the randomized iterate [10, 7]) Let n ∈ N, function f : {0, 1}n → {0, 1}n, and
let H be a family of pairwise-independent length-preserving hash functions over {0, 1}n. For k ∈ N,
x1 ∈ {0, 1}n and vector ~hk = (h1, . . . , hk) ∈ Hk, recursively define the ith randomized iterate by:

x1
f

y1
h1 x2

f
y2

h2 · · · xk
f

yk
hk

yi = f(xi), xi+1 = hi(yi) .

We denote the ith iterate by function f i, i.e., yi = f i(x1,~h
k), where ~hk is possibly redundant as for

i ≤ k + 1 yi only depends on ~hi−1.

The randomized version refers to the case where x1
$←− {0, 1}n and ~hk

$←− Hk.

The derandomized version refers to that x1
$←− {0, 1}n, u

$←− {0, 1}q∈O(n·logn), ~hk := BSG(u), where
BSG : {0, 1}q → {0, 1}k·log |H| is a bounded-space generator that 2−2n-fools every (2n+1, k, log |H|)-LBP
(see Definition B.2), and log |H| is the description length of H (e.g., 2n bits for concreteness).

We refer to Definition B.2 for the definition of bounded-width layered branching program (LBP).
Note that the aforementioned bounded-space generators exist due to Theorem B.2 (see Appendix B.2)
by setting s = 2n+ 1, v = log |H| = Θ(n), k = poly(n) and ε = 2−2n and thus q=O(n · log n).

10In fact, our construction #4 only assumes a relaxed condition than (1), i.e., Pr[Un ∈ Xmax−O(log n)∪ . . .∪Xmax] ≥ n−c,
so that unknown-almost-regular one-way functions become a special case for c = 0.
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Remark 5.1 (on what is proven in [24]) The authors of [24] introduced weakly unknown-regular
one-way functions from which they constructed a pseudorandom generator with seed length O(n · log n)
based on the randomized iterate. They showed that “every k = n2c · log n · ω(1) iterations are hard-to-
invert”, i.e., for any j it is hard to predict xj given yj+k = f j+k(x1, BSG(u)) and u. A PRG thus follows
by outputting log n hardcore bits for every k iterations. In this paper, we first adapt their findings to
show that fu(·) = fk(·, BSG(u)) constitutes a family of one-way functions, i.e., given yk = fu(x1) and
u it is infeasible to find any x′1 such that yk = fk(x′1, BSG(u)). This is stated as Lemma 5.1 with proof
given in Appendix B.2. However, it is still insufficient to construct UOWHFs with the one-way-ness of

fu. We further show in Lemma 5.2 that a random fu
$←− F is almost regular (in a slightly weaker sense

than Definition 2.6 but already suffices for our needs).

Following [24], we define the following events. Some inequalities about these events from [24] are
stated as Lemma B.2 (along with proof reproduced) in Appendix B.2.

Definition 5.3 (events) For any n, j≤k ∈ N, define events

Ej
def
=

(
(X1, ~H

k) ∈
{

(x1,~h
k) : yj = f j(x1,~h

k) ∈ Ymax

})

E ′j
def
=

(
(X1, Uq) ∈

{
(x1, u) : yj = f j(x1, BSG(u)) ∈ Ymax

})
where Ymax

def
= {y : 2max−1≤|f−1(y)| < 2max}, (X1, ~H

k) and (X1, Uq) are uniform over {0, 1}n × Hk
and {0, 1}n×{0, 1}q respectively. Note that by definition Ymax = f(Xmax) (see Definition 5.1) and thus
Pr[f(Un) ∈ Ymax] ≥ n−c.

Lemma 5.1 (F is one-way) Assume that f is a (t, ε)-OWF that is weakly unknown-regular on an
n−c fraction of domain, define a family of functions

F def
= { fu : {0, 1}n → {0, 1}n, fu(x)=fk(x,BSG(u)), u ∈ {0, 1}O(n· logn) } (2)

where H,fk and BSG : {0, 1}q∈O(n·logn) → {0, 1}k·log |H| are as defined in Definition 5.2. Then, for any
A of running time t− nO(1) it holds that

Pr
u

$←−{0,1}q , x $←−{0,1}n
[ A(u, fu(x)) ∈ f−1

u ( fu(x) ) ] ≤
√

28·k4 · n3c · ε+ 2−k/n
2c

+ 2−2n . (3)

Lemma 5.1 is mainly attributed to and adapted from [24] (see Remark 5.1). We refer to Appendix B.2
for the adapted proof.

Lemma 5.2 (F is almost-regular) Let F = {fu} be as defined in Lemma 5.1. Then, for any a ≥ 0
it holds that

Pr
u

$←−{0,1}q , x $←−{0,1}n
[ 2max−a−1 ≤ |f−1

u ( fu(x) )| ≤ 2max +a+1 ] ≥ 1 − k

2a−2
− 1

2k/n2c −
1

22n
, (4)

where u ∈ {0, 1}q∈O(n·logn) and fu(x)=fk(x,BSG(u)).

Proof. We define Slow
def
=

(
(X1, Uq) ∈ {(x, u) : 0 < |f−1

u (fu(x))| < 2max−a−1}
)

and Sup
def
=

(
(X1, Uq) ∈

{(x, u) : |f−1
u (fu(x))| > 2max +a+1}

)
, where X1 is uniform over {0, 1}n. The left-hand of (4) is lower
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bounded by 1 − Pr[Slow] − Pr[Sup] and thus it suffices to upper bound both Pr[Slow] and Pr[Sup]. We
have

Pr[Slow] = Pr[Slow ∧ (E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)] + Pr[Slow ∧ ¬(E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)]

≤ Pr[
k∨
j=1

(Slow ∧ E ′j)] + Pr[¬(E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)]

≤
k∑
j=1

Pr[Slow ∧ E ′j ] + (2−k/n
2c

+ 2−2n)

≤ k·2−a + 2−k/n
2c

+ 2−2n

where the first inequality is trivial, the second is by the union bound and (12), and the third is due to

that for every j ∈ [k] with shorthand fu,j(x)
def
= f j(x,BSG(u)) it holds that

Pr[Slow ∧ E ′j ] =
∑
u

Pr[Uq = u] ·
∑

x: fu,j(x)∈Ymax ∧ 0<|f−1
u (fu(x))|<2max−a−1

Pr[X1 = x|Uq = u]

≤
∑
u

Pr[Uq = u] ·
∑

x: fu,j(x)∈Ymax ∧ 0<|f−1
u,j (fu,j(x))|<2max−a−1

Pr[X1 = x | Uq = u]

≤
∑
u

Pr[Uq = u] · |Ymax|·2max−a−1·2−n

≤ 2n+1−max · 2−n+max−a−1 = 2−a

where the first inequality is due to Fact 3 (setting f1=fu,j , f2 = f◦hk−1◦ . . . ◦f ◦hj and thus f̄ = fu), the
second follows from the fact that there are |Ymax| possible values for fu,j(x) ∈ Ymax and every fu,j(x)
has less than 2max−a−1 preimages (by definition of Slow), and the third is due to |Ymax|≤2n+1−max.
Next we proceed to bounding the second term, i.e., Pr[Sup] ≤ k·2−a+1.

k·2max−n+1 + 2−2n ≥ CP( Y ′k | Uq) = Eu←Uq

[ ∑
y

Pr[ fu(X1) = y | Uq = u]2
]

> 2max+a−n+1 · Eu←Uq

[ ∑
y: |f−1

u (y)|>2max +a+1

Pr[ fu(X1) = y | Uq = u]

]
= 2max+a−n+1 · Pr[Sup] ,

where the first inequality is by (8), and the second is due to that for any (y, u) satisfying |f−1
u (y)| >

2max +a+1 and it holds that

Pr[ fu(X1) = y | Uq = u] = Pr[ X1 ∈ f−1
u (y) ] > 2−n·2max+a+1 = 2max+a−n+1 .

It follows that Pr[Sup] ≤ (k·2max−n+1 + 2−2n)/2max+a−n+1≤k·2−a+1 and hence completes the proof. �

Fact 3 Let f1 : X → Y and f2 : Y → Z be any functions, and let f̄
def
= f2◦f1. Then for any t ∈ N+ it

holds that
{x : 0 < |f̄−1(f̄(x))| < t} ⊆ {x : 0 < |f−1

1 (f1(x))| < t} .

Proof. Any x satisfying 0 < |f̄−1(f̄(x))| < t implies 0 < |f−1
1 (f1(x))| < t. �

Given that F is a family of unknown-(almost-)regular one-way functions with description length
O(n · log n), we just plug a random fu ∈ F into the Ames et al.’s construction [1] to yield a family
of UOWHFs with output length Θ(n) and key length O(n · log n). We refer to Appendix B.4 for
Construction 1 and the proof Theorem 5.1, where we put together all the necessary technical details.
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A Lemmata and Proofs Omitted

A.1 The Hash Lemma and Output Length Simplifications

Proof of Lemma 3.1.

Pr
y←Y, h

$←−H
[ ∃ỹ ∈ Supp(Y ) : ỹ 6= y ∧ h(ỹ) = h(y) ]

≤ max
y
{ Pr
h

$←−H
[ ∃ỹ∈Supp(Y ) : ỹ 6= y ∧ h(ỹ) = h(y) ] }

≤ max
y
{

∑
ỹ∈Supp(Y )\{y}

Pr
h

$←−H
[ h(ỹ) = h(y) ] }

≤ |Supp(Y )| · k·2−(a+d) ≤ k·2−d ,

where the second inequality is a union bound, the third inequality follows by the universality of H and
the last one is due to H0(Y )≤a. �

It is folklore that almost universal hash functions can be efficiently constructed. See for example
the following construction.

Fact 4 (efficient constructions of almost universal hashing) For any integers t≤l, there exists
a family of O(l/t)·2−t-almost universal hash functions H = {h : {0, 1}l → {0, 1}t} such that H has
description length O(t) and every h ∈ H is computable in time poly(l).
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A concrete example. Assume without loss of generality that t divides l , i.e., l = k·t for some k ∈ N
(otherwise use l′ = d(l/t)e · t instead of l), and parse x as a sequence of t-bit strings (x1, . . . , xk). Then,

we have that H = {ha : ha(x)
def
=
∑k

i=1 a
i·xi, a, xi ∈ GF (2t)} is a family of k·2−t-almost universal hash

functions of description length t.

Lemma A.1 (regularity-preserving OWF) For any r1 = r1(n) ≤ r2 = r2(n), and any efficiently
computable κ = κ(n) ∈ O(n), let f : {0, 1}n → {0, 1}l be any (2r1 , 2r2)-almost regular (t,ε)-one-way
function, let H = {h : {0, 1}l → {0, 1}n+κ} be a family of (poly(n)·2−(n+κ))-almost universal hash
functions with description length11 O(n), define function f ′ : {0, 1}n ×H → {0, 1}n+κ ×H as

f ′(x, h) = (h(f(x)), h) . (5)

Then, we have

1. Regularity-preserving. f ′ is (2r1 , 2r2)-regular except on a poly(n)·2−(r1+κ)-fraction of inputs,
i.e.,

Pr
x

$←−{0,1}n, h $←−H
[ 2r1 ≤ |f ′−1(f ′(x, h))| ≤ 2r2 ] ≥ 1− poly(n)·2−(r1+κ) .

2. Hardness-preserving. f ′ is a (t− nO(1), ε+ poly(n)·2−(r1+κ))-one-way function.

Proof of Lemma A.1. As for every y = f(x) we have 2r1≤|f−1(y)|≤2r2 it suffices to show that the
fraction of y’s (drawn from Y = f(Un)) on which h is 1-to-1 is overwhelming, i.e.,

Pr
x

$←−{0,1}n, h $←−H
[ 2r1 ≤ |f ′−1(f ′(x, h))| ≤ 2r2 ]

≥ Pr
y←f(Un), h

$←−H
[ ¬∃ỹ∈f({0, 1}n) : h(ỹ) = h(y) ∧ y 6= ỹ ]

= 1 − Pr
y←f(Un), h

$←−H
[ ∃ỹ∈f({0, 1}n) : h(ỹ) = h(y) ∧ y 6= ỹ ]

≥ 1− poly(n)·2−(r1+κ) ,

where the second inequality is by Lemma 3.1 (setting Y = f(Un), a≤n− r1, d = r1 + κ, k = poly(n)).
Further, it is not hard to see that any f ′-inverting algorithm Af ′ implies an f -inverting algorithm Af .
That is, on input f(x), Af applies random h to f(x), and then invokes Af ′ on (h(f(x)), h) to recover x.
The inversion probability of Af is

Pr
y←f(Un)

[Af (y) ∈ f−1(y)]

≥ Pr
y←f(Un),h

$←−H
[Af ′(h(y), h) ∈ f ′−1(h(y), h) ∧ ¬

(
∃ỹ∈f({0, 1}n) : h(ỹ) = h(y) ∧ y 6= ỹ

)
]

= 1− Pr
y←f(Un),h

$←−H
[Af ′(h(y), h) /∈ f ′−1(h(y), h) ∨

(
∃ỹ∈f({0, 1}n) : h(ỹ) = h(y)∧y 6= ỹ

)
]

≥ 1− Pr
y←f(Un),h

$←−H
[Af ′(h(y), h) /∈ f ′−1(h(y), h)]− Pr

y←f(Un),h
$←−H

[∃ỹ∈f({0, 1}n) : h(ỹ) = h(y)∧y 6= ỹ ]

≥ Pr
y←f(Un),h

$←−H
[Af ′(h(y), h) ∈ f ′−1(h(y), h)] − poly(n)·2−(r1+κ) ,

11 Such efficient H exists for any efficiently computable l ∈ poly(n) and κ ∈ O(n) by Fact 4.
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where the first inequality refers to that Af inverts f if Af ′ inverts f ′ on those (h(y), h) for which there
exists no ỹ 6= y satisfying h(ỹ) = h(y), the second inequality is the union bound, and the third is due
to the probability that h is not injective on Y as given above. This completes the proof. �

Proof of Fact 1. The first statement immediately follows from Lemma A.1 by setting r1 = r2 = 0.
As for the second statement, let f ′ be as defined in (5) from Lemma A.1, we further define a padded
function f̄ : {0, 1}n+κ ×H → {0, 1}n+κ ×H as

f̄(x, dummy, h)
def
=f ′(x, h) ,

where x ∈ {0, 1}n, dummy ∈ {0, 1}κ, and h ∈ H (which is of size O(n)). Note that for every (h(f(x)), h)
the preimage-size of f̄ is multiplied by a factor of 2κ than that of f ′ due to the κ-bit padding dummy.
This concludes the second statement. �

A.2 Proof for Lemma 4.1

Fact 5 For any (2r, 2rnc)-almost regular (length-preserving) (t, ε)-one-way function f : {0, 1}n →
{0, 1}n and any inverter Inv of running t, it holds that

Pr
y∗

$←−{0,1}l
[ f(Inv(y∗)) = y∗ ] ≤ 2−r · ε .

Proof.

Pr
y∗

$←−{0,1}n
[ f(Inv(y∗)) = y∗ ]

=
∑

y∈f({0,1}n)

Pr
y∗

$←−{0,1}n
[y = y∗]·Pr[f(Inv(y)) = y]

≤ 2−r ·
∑

y∈f({0,1}n)

Pr[f(Un) = y]·Pr[f(Inv(y)) = y]

≤ 2−r · ε

where the first inequality is due to Pr[f(Un) = y] ≥ 2r−n and the second is due to f ’s one-way-ness. �

Proof of Lemma 4.1. Suppose for contradiction that there exists an efficient Ã of running time t′ such
that

Pr
x

$←−{0,1}n,h $←−H
[ x′←Ã(x, h) : f(x) 6= f(x′) ∧ h(f(x))[u] = h(f(x′))[u] ] = ε′ > nc·2s′+1 · ε

where u = n−r−c log n−s′. We proceed to the definition of algorithm InvÃ (that inverts f by invoking

Ã) as in Algorithm 2. By Claim 1, conditioned on f(x) 6=y∗ it is equivalent to consider that InvÃ samples
(x,h,v) from {0, 1}n×H×V uniformly and independently, from which y∗ can be determined. Then, we

argue that InvÃ inverts f with the following probability (see the rationale below)

Pr
y∗

$←−{0,1}n, x $←−{0,1}n, v $←−V
[ f(InvÃ(y∗)) = y∗ ]

≥ Pr
y∗

$←−{0,1}n, x $←−{0,1}n
[ Eneq ] · Pr

y∗
$←−{0,1}n\{f(x)}, x

$←−{0,1}n, v $←−V
[ f(InvÃ(y∗)) = y∗ | Eneq ]

≥ (1− 2−n) · Pr
x

$←−{0,1}n,h $←−H,x′←Ã(x,h),v
$←−V

[ f(x) 6=f(x′) ∧ h(f(x))[u] = h(f(x′))[u] ∧ y∗ = f(x′) ]

≥ (1− 2−n)ε′ · Pr
v

$←−V
[ y∗ = f(x′) | Eneq ∧ f(x) 6= f(x′) ∧ h(f(x))[u] = h(f(x′))[u] ]

= (1− 2−n)ε′ · 1

|V|
>

ε′

2
· 1

2r+c logn+s′ − 1
>

nc·2s′+1 · ε
2r+c logn+s′+1

= ε · 2−r ,
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Algorithm 2 InvÃ that inverts f on input y∗ using random coins (x, v).

Input: y∗
$←− {0, 1}n

Sample x
$←− {0, 1}n

if f(x) = y∗ then
Output x and terminate.

end if

sample h := (f(x)− y∗)−1 · v, where v
$←− V = {v ∈ {0, 1}n \ {~0} : v[u] =

u︷ ︸︸ ︷
0 . . . 0}

{note: The above implies h
$←− {h ∈ H : h(f(x))[u] = h(y∗)[u]} by the algebraic structure of h. }

x′ ← Ã(x, h)
if f(x′)=y∗ then

Output x′

else
Output ⊥

end if
Terminate

where the first inequality is straightforward (note that conditioned on Eneq the sampling of y∗ and x are
independent and uniform over {0, 1}n \ {f(x)} and {0, 1}n respectively), the second inequality follows

from Claim 1, namely, conditioned on Eneq it is equivalent to consider (x, h, v)
$←− {0, 1}n×H×V and then

y∗ := f(x)−v·h−1, and the third inequality is due to that Ã takes only x and h as input (i.e., independent
of v). That is, given that Ã produces a valid f(x′) 6= f(x) satisfying h(f(x′))[n−s] = h(f(x))[n−s], we

have by Claim 1 that string y∗ is uniformly distributed over set Y∗def={f(x)− v·h−1, v ∈ V}. Note that
the already fixed f(x′) is also an element of Y∗ and thus y∗ hits f(x′) with probability 1/|Y∗|=1/|V| =
1/(2n−u − 1). We thus complete the proof by reaching a contradiction to Fact 5. �

A.3 The Equivalence Between 1-to-1 and Known-Almost-Regular One-way Func-
tions

Proof of Corollary 3.1. Recall the construction of UOWHF as below

G1
def
= { (trunc ◦ h ◦ f ) : {0, 1}n → {0, 1}n−s , h ∈ H } ,

where h and trunc are defined as in Theorem 3.1 but now f is 1-to-1 only on a (1− δ)-fraction. In fact,
we already prove (by checking the proof of Theorem 3.1) a more general version than Theorem 3.1: for
any (t,ε)-one-way function f and any A of running time t− nO(1) it holds that

Pr
x

$←−{0,1}n,g1
$←−G1,x′←A(x,h)

[ f(x) 6= f(x′) ∧ g1(x) = g1(x′) ]

≤ 2l−n+s+1 · max
time(Inv) ≤ t

{ Pr
y∗

$←−{0,1}l
[ f(Inv(y∗)) = y∗ ] } ,

where the maximum is taken over all Inv of running time t. Hence, the statement of Theorem 3.1 follows
from Fact 2 and that for 1-to-1 f “f(x) 6= f(x′)” is equivalent to “x 6= x′”. Now that f is not strictly
1-to-1, we need to adapt the proofs. First we observe that Fact 2 holds for any (t,ε)-one-way function
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f , i.e.,

Pr
y∗

$←−{0,1}l
[ f(Inv(y∗)) = y∗ ]

=
∑

y∗∈{0,1}l
2−l · Pr[ f(Inv(y∗)) = y∗ ]

=
∑

y∗∈f({0,1}n)

2−l · Pr[ f(Inv(y∗)) = y∗ ]

≤ 2n−l ·
∑

y∗∈f({0,1}n)

Pr[f(Un) = y∗] · Pr[ f(Inv(y∗)) = y∗ ]

≤ 2n−l · ε ,

where the first inequality is due to for any y∗ ∈ f({0, 1}n) it holds that Pr[f(Un) = y∗] ≥ 2−n and the
second inequality is due to the one-way-ness of f . Therefore, we have

Pr
x

$←−{0,1}n,g1
$←−G1,x′←A(x,h)

[ f(x) 6= f(x′) ∧ g1(x) = g1(x′) ] ≤ 2s+1ε .

Denote by X1
def
= {x : |f−1(f(x))| = 1} and thus

Pr
x

$←−{0,1}n,g1
$←−G1,x′←A(x,h)

[ x 6= x′ ∧ g1(x) = g1(x′) ]

≤ Pr
x

$←−{0,1}n,g1
$←−G1,x′←A(x,h)

[ x ∈ X1 ∧ x 6= x′ ∧ g1(x) = g1(x′) ] + Pr
x

$←−{0,1}n
[x /∈ X1]

≤ Pr
x

$←−{0,1}n,g1
$←−G1,x′←A(x,h)

[ x ∈ X1 ∧ f(x) 6= f(x′) ∧ g1(x) = g1(x′) ] + δ

≤ Pr
x

$←−{0,1}n,g1
$←−G1,x′←A(x,h)

[ f(x) 6= f(x′) ∧ g1(x) = g1(x′) ] + δ

≤ 2s+1ε + δ ,

where the second inequality follows from the fact that for any x ∈ X1 the condition “x 6= x′” implies
“f(x) 6= f(x′)” (by considering both cases x′ ∈ X1 and x′ /∈ X1). This completes the proof. �

Proof of Lemma 4.2.

Pr
x

$←−{0,1}n, h1
$←−H1

[ ∃x′ : x′ 6= x ∧ f ′(x, h1) = f ′(x′, h1)]

= Ey←f(Un)

[
Pr

x
$←−f−1(y), h1

$←−H1

[∃x′∈f−1(y) : x′ 6= x ∧ h1(x) = h1(x′)]

]
≤ Ey←f(Un) [ 2−d ] = 2−d ,

where the inequality is due to that conditioned on any y = f(X) random variable X is a flat distribution
on a set of size at most 2r·nc, so we apply Lemma 3.1 (setting a≤r + c · logn, and k = 1). �

Proof of Lemma 4.3. Suppose that there exists some inverter A′ for f ′ of running time t−O(n) such
that

Pr[ A′(f ′(X,H1)) ∈ f ′−1 ( f ′(X,H1) ) ] >
√

2d+3 · nc · ε .
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First we consider the collision probability of H1(X) given f(X) and H1, i.e.,

CP( H1(X) | f(X), H1 )

= Ey←f(Un)[ CP( H1(X) | f(X) = y, H1 ) ]

≤ max
y

{
CP( X | f(X) = y ) + max

x1 6=x2,f(x1)=f(x2)
{ Pr[H1(x1) = H1(x2)] }

}
≤ max

y
{ 2−r + 2−r−c logn−d }

≤ 2−r+1

where the first inequality follows from the fact that condition on f(X) = y the collision probability of
H1(X) is bounded by the collision probability of X and the probability of H1(x1) = H1(x2) for x1 6= x2.
To apply Lemma B.1, let W = {0, 1}m=r+c logn+d, Z = f({0, 1}n) ×H1 and thus e = d + c · log n + 1,
and define Adv as the success probability of A′ on the corresponding input, i.e.,

Adv(w, z = (y, h1))
def
= Pr[ A′(y, w, h1) ∈ f ′−1(y, w, h1) ] ,

where the probability is taken over the internal coins of A′. Thus,

Pr[ A′(f(X), Ur+c logn+d, H1)∈f ′−1(f(X), Ur+c logn+d, H1) ]

= E[Adv(UW , Z)] ≥ E[Adv(W,Z)]2/2e+2

= Pr[ A′(f(X), H1(X), H1)∈f ′−1(f(X), H1(X), H1) ]2/2d+c·logn+3

> (
√

2d+3 · nc · ε)2/2d+c·logn+3 = ε

where the first inequality is due to Lemma B.1 and the second is by the assumption. This immediately

implies another inverter A for f that on input y, it samples h1
$←− H1, w←Ur+c logn+d, invokes (x′, h′1)←

A′(y, w, h1) and produces x′ as output. In particular, A inverts f with the following probability

Pr[A(f(X))∈f−1(f(X))]

≥ Pr[ A′(f(X), Ur+c logn+d, H1)∈f ′−1(f(X), Ur+c logn+d, H1) ]

> ε

which is a contradiction to the one-way-ness of f and thus completes the proof. �

A.4 The Third Construction

Proof of Theorem 4.3. Similar to the proof of Theorem 4.1, define E1
def
=
(
~x 6= ~x′ ∧ f q(~x) = f q(~x′) ∧

h1(~x) = h1(~x′)
)

and E2
def
=
(
f q(~x) 6= f q(~x′) ∧ g1(~x) = g1(~x′)

)
, we have

Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1), ~x′←A(~x,h,h1)

[ ~x 6= ~x′ ∧ g(~x) = g(~x′)]

≤ Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1), ~x′←A(~x,h,h1)

[ E1 ∨ E2 ]

≤ Pr
~x

$←−{0,1}qn, h1
$←−H1

[ ∃ ~x′ 6= ~x ∧ f q(~x) = f q(~x′) ∧ h1(~x) = h1(~x′) ]

+ Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1)

[ ~x′ ← A(~x, h, h1) ∧ f q(~x) 6=f q(~x′) ∧ g1(~x) = g1(~x′) ]

≤ 2−q logn + 2q·nc+2 · ε = n−q + 2q·nc+2 · ε ,
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where the second inequality follows by a union bound, and the first term of the third inequality is due
to that conditioned on any ~y = f q( ~X) random variable ~X is uniform over some set of size at most
(2r·nc)q, so we apply Lemma 3.1 (setting a = q(r + c · logn), d≥qlogn and k = 1) to get

Pr
~x

$←−{0,1}qn, h1
$←−H1

[ ∃ ~x′ 6= ~x ∧ f q(~x) = f q(~x′) ∧ h1(~x) = h1(~x′) ]

= E~y←fq(Uqn)

[
Pr
~x

$←−(fq)−1(~y), h1
$←−H1

[ ∃ ~x′ 6= ~x ∧ f q(~x) = f q(~x′) ∧ h1(~x) = h1(~x′) ]

]
≤ E~y←fq(Uqn)[ 2−q logn ] = n−q .

We proceed to the proof of bounding the second term. Suppose for contradiction that there exists Ag1

of running time t− nO(1) such that

Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1)

[ ~x′ ← Ag1(~x, h, h1) ∧ f q(~x)6=f q(~x′) ∧ g1(~x) = g1(~x′) ] > 2q·nc+2 · ε

Then, define Ã as in Algorithm 3. Conditioned on that Ag1 finds a collision, i.e., f q(~x)6=f q(~x′) and

g1(~x) = g1(~x′), there exists at least one i∗ ∈ [q] satisfying f(xi∗)6=f(x′i∗) and trunc(h(f(xi∗))) = trunc(h(f(x′i∗))).
We have

Algorithm 3 (trunc ◦ h)-collision finder Ã on input (x, h).

Input: (x, h)
$←− {0, 1}n ×H

Sample ~x = (x1, . . . , xq)
$←− {0, 1}qn,h1

$←− H1, i
$←− [q]

~x′ = (x′1, . . . , x
′
q)← Ag1( (x1, . . . , xi−1, x, xi+1, . . . , xq) , h, h1) {i.e., replace xi with x }

return x′i

Pr
x

$←−{0,1}n, h $←−H
[ x′ ← Ã(x, h) ∧ f(x)6=f(x′) ∧ trunc(h(f(x))) = trunc(h(f(x′))) ]

≥ Pr
~x

$←−{0,1}qn, (h,h1)
$←−(H,H1)

[ ~x′ ← Ag1(~x, h, h1) ∧ f q(~x) 6=f q(~x′) ∧ g1(~x) = g1(~x′) ∧ i = i∗ ]

> 2q·nc+2ε · (1/q) = 2nc+2ε ,

which is a contradiction to Lemma 4.1 (recall that s′ = 2logn) and thus completes the proof. �

B Preliminaries and Details for the Fourth Construction

B.1 UOWHFs from Unknown (Almost-)Regular OWFs

Ames et al. [1] presented an elegant construction based on any almost-regular OWFs12, where no
knowledge is required about the regularity of the OWF. Furthermore, their construction enjoys output
length Θ(n) and key length O(n· log n) and makes O(n/ log n) calls to the underlying OWF. To see this,
we set s = Ω(logn) in Theorem B.1 and thus get a construction of UOWHFs by making κ = O(n/ log n)
calls to any (α, α · β)-almost regular (t, ε)-OWF, where α and β need not to be efficiently computable,
and the construction tolerates regularity slackness for any β = nO(1) or even certain β = (1/ε)O(1).
We note that the number of calls O(n/ log n) is optimal (for black-box constructions) in general by
matching the lower bound of [2].

12The authors of [1] mainly stated the neat case, i.e., for β = 1 and s = 1, and similar to Theorem 4.3 it (implicitly in
their proof) generalizes to Theorem B.1, where almost regularity and logarithmic shrinkage are considered.
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Definition B.1 (the generalized iterate [1]) Let n ∈ N, function f : {0, 1}n → {0, 1}n, and let H
be a family of pairwise-independent hash functions from {0, 1}n+s to {0, 1}n. For i ≤ κ ∈ N, x1 ∈
{0, 1}n, v1, . . . , vκ ∈ {0, 1}s and vector ~hκ = (h1, . . . , hκ) ∈ Hκ, recursively define the ith randomized
iterate by:

x1
y1

v1

h1f
x2

y2

v2

h2f · · · xκ
yκ
vκ

hκf
xκ+1

f yκ+1

yi = f(xi), xi+1 = hi(yi‖vi)

We denote the κth iterate by function gκf , i.e., yk+1 = gκf (v1‖ . . . ‖vκ, x1,~h
κ), where x1

$←− {0, 1}n,

v1, . . . , vκ
$←− {0, 1}s, ~hκ←Shoup(UO(n·logn)) and Shoup : {0, 1}O(n·logn) → Hκ is Shoup’s generator [22].

Theorem B.1 (UOWHFs from unknown almost-regular OWFs [1]) For security parameter n∈N,
any (not necessarily efficient) α = α(n), β = β(n) ≥ 1 and any efficiently computable s = s(n),
κ = κ(n) such that s(n)·κ(n) ≥ n+ s(n), let f : {0, 1}n → {0, 1}n be any (α, α · β)-almost regular
(length-preserving) (t, ε)-one-way function, let gκf , H and Shoup : {0, 1}q∈O(n·logn) → Hκ be defined as
in Definition B.1. Then, we have that

G = {gf : {0, 1}s·κ → {0, 1}n , gf (z) = gκf (z, x1, Shoup(u)), z
def
= v1‖ . . . ‖vκ }

where each function gf is described by (x1, u) ∈ {0, 1}n×{0, 1}q, is a family of (t−nO(1), poly(β, 2s, κ) ·
εΘ(1))-UOWHFs with key length O(n · log n), output length n and at least s bits of shrinkage.
Notice that x1 is not input to hash function gf but the part (together with u) of the description of gf .

B.2 Some Lemmas and Proofs Reproduced and Adapted from [24]

A technical Lemma. To prove Lemma 4.3 and Lemma 5.1, we will need the following lemma that
was folklore in leakage-resilient cryptography and was explicitly stated in [24]. Informally, it states that
“if any algorithm wins a one-sided game (e.g., inverting a OWF) on uniformly sampled challenges only
with some negligible probability, then it cannot do much better (beyond a negligible advantage) in case
that the challenges are sampled from any distribution of logarithmic Rényi entropy deficiency”.

Lemma B.1 (one-sided game on imperfect randomness [24]) For any e ≤ m ∈ N, let W and
Z be any sets with |W| = 2m, let Adv : W ×Z → [0, 1] be any (deterministic) real-valued function, let
(W,Z) be any random variable over set W ×Z with CP(W |Z) ≤ 2e−m, we have

E[Adv(W,Z)] ≤
√

2e+2 · E[Adv(UW , Z)] (6)

where UW denotes uniform distribution over W and independent of Z.

Definition B.2 (bounded-width layered branching program - LBP) An (s, k, v)-LBP M is a
finite directed acyclic graph whose nodes are partitioned into k + 1 layers indexed by {1, . . ., k + 1}.
The first layer has a single node (the source), the last layer has two nodes (sinks) labeled with 0 and 1,
and each of the intermediate layers has up to 2s nodes. Each node in the i ∈ [k] layer has exactly 2v

outgoing labeled edges to the (i+ 1)th layer, one for every possible string hi ∈ {0, 1}v.

Theorem B.2 (bounded-space generator [18, 15]) Let s = s(n), k = k(n), v = v(n) ∈ N and ε =
ε(n) ∈ (0, 1) be polynomial-time computable functions. Then, there exist a polynomial-time computable
function q = q(n) = Θ(v+ (s+ log(k/ε)) · log k) and a generator BSG : {0, 1}q → {0, 1}k·v that runs in
time poly(s, k, v, log(1/ε)), and ε-fools every (s, k, v)- LBP M , i.e.,

| Pr[M(Uk·v) = 1] − Pr[M(BSG(Un)) = 1] | ≤ ε .
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We state some inequalities in Lemma B.2 below along with their proofs (reproduced from [24]). It
is not hard to see that (7), (9) and (11) hold for the randomized version. For example, we have by
the pairwise independence of H that all x1, . . ., xk are i.i.d. to Un so that (9) immediately follows and
(11) follows by a Chernoff bound. Then, for every inequality (8), (10) and (12), we define an LBP (see
Definition B.2) and argue that the advantage of the LBP on ~Hk and BSG(Uq) is bounded by 2−2n and
thus (8), (10) and (12) follow from their respective counterparts (7), (9) and (11) by adding an additive
term 2−2n.

Lemma B.2 (some inequalities from [24]) For any n, k ∈ N, it holds that

CP( Yk | ~Hk) ≤ k·2max−n+1 , (7)

CP( Y ′k | Uq) ≤ k·2max−n+1 + 2−2n, (8)

∀j ∈ [k] : Pr[Ej ] ≥ n−c , (9)

∀j ∈ [k] : Pr[E ′j ] ≥ n−c − 2−2n , (10)

Pr[E1 ∨ E2 ∨ . . . ∨ Ek] ≥ 1− 2−k/n
2c
, (11)

Pr[E ′1 ∨ E ′2 ∨ . . . ∨ E ′k] ≥ 1− 2−k/n
2c − 2−2n , (12)

where Yk = fk(X1, ~H
k) and Y ′k = fk(X1, BSG(Uq)).

Proof of (7),(9) and (11). We have that x1, x2 = h1(y1), . . ., xk = hk−1(yk−1) are all i.i.d. to Un due
to the universality of H, which implies that E1, . . . and Ek are i.i.d. events with probability at least n−c.
For every j ∈ [k], define ζj = 1 iff Ej occurs (and ζj = 0 otherwise). It follows by a Chernoff-Hoeffding
bound that

Pr[ (¬E1) ∧ . . . ∧ (¬Ek) ] = Pr[
k∑
j=1

ζj = 0 ] ≤ 2−k/n
2c

which yields (11) by taking a negation. Finally, Regarding (7), consider two instances of the random
iterate seeded with independent x1 and x′1 and a common random ~hk, the collision probability is upper
bounded by the sum of events that the first collision occurs on points y1, y2, . . ., yk ∈ Y[max] respectively.
We thus have by the pairwise independence of H that

CP( Yk | ~Hk)

≤ Pr
x1,x′1

$←−{0,1}n
[f(x1) = f(x′1)] +

k∑
j=2

(
Pr

yj−1 6=y′j−1, hj−1
$←−H

[f(xj) = f(x′j)]

)
≤ k · CP(f(Un))

≤ k
max∑
i=1

∑
y∈Yi

Pr[f(Un) = y]·2i−n

= k
max∑
i=1

Pr[f(Un) ∈ Yi]·2i−n

≤ k·2max−n(1 + 2−1 + . . .+ 2−(max−1)) ≤ k·2max−n+1 .

�

Proof of (8). For any k ∈ N, consider the following (2n, k, log |H|)-LBP M1: on source node input
(y1 = f(x1),y′1 = f(x′1)). For 1≤i ≤ k, at each ith layer M1 computes yi := f(hi−1(yi−1)) and
y′i := f(hi−1(y′i−1)) . Finally, at the (k + 1)th layer M1 outputs 1 iff yk = y′k ∈ Ymax. Imagine running
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two iterates with random x1, x′1 and seeded by a common hash function from distribution either ~Hk or
BSG(Uq), we have

CP( Yk | ~Hk ) = Pr
(x1,x′1)←U2n, ~hk← ~Hk

[M1(x1, x
′
1,
~hk) = 1]

CP( Y ′k | BSG(Uq) ) = Pr
(x1,x′1)←U2n, ~hk←BSG(Uq)

[M1(x1, x
′
1,
~hk) = 1]

and thus

| CP(Yk | ~Hk ) − CP( Y ′k | BSG(Uq) ) |

≤ E(x1,x′1)←U2n

[
| Pr[M1(x1, x

′
1,
~Hk) = 1] − Pr[M1(x1, x

′
1, BSG(Uq)) = 1]|

]
≤ 2−2n .

It follows by (7) that

CP(Y ′k | BSG(Uq) ) ≤ CP( Yk | ~Hk ) + 2−2n ≤ k·2max−n+1 + 2−2n .

Note that for any ~hk and any u1, u2∈BSG−1(~hk),

CP( Y ′k | Uq = u1 ) = CP( Y ′k | Uq = u2) = CP( Y ′k | BSG(Uq) = ~hk ) .

Therefore,
CP(Y ′k | Uq ) = CP(Y ′k | BSG(Uq) ) ≤ k·2max−n+1 + 2−2n .

�

Proof of (10). Similar to that of (8), we define another (n+ 1, k, log |H|)-LBP M2 that on source node
input (x1, tag1 = 0), it computes yi := f(xi) , xi+1 := hi(yi), for every i ≤ k and sets tagi = 1 if i = j
and yi ∈ Ymax (or otherwise tagi := tagi−1). Finally, it outputs tagk. Thus,

Pr[E ′j ] ≥ Pr[Ej ]− 2−2n ≥ n−c − 2−2n .

�

Proof of (12). Consider the following (n+ 1, k, log |H|)-LBP M3: on source node input (x1, tag1) and
layered input vector ~hk, it computes yi := f(xi), xi+1 := hi(yi), at each ith layer, and sets tagi = 1 iff
either tagi−1 = 1 or yi ∈ Ymax. Finally, M3 outputs tagk. By the bounded space generator we have

| Pr[M3(X1, ~H
k) = 1] − Pr[M3(X1, BSG(Uq) = 1] |

= |Pr[
k∨
i=1

Ei ]− Pr[
k∨
i=1

E ′i ] | ≤ 2−2n ,

and thus by (11)

Pr[
k∨
i=1

E ′i ] ≥ Pr[
k∨
i=1

Ei ] − 2−2n ≥ 1− 2−k/n
2c − 2−2n .

�
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B.3 F Is a Family of One-way Functions

Proof of Lemma 5.1. Assume for contradiction that there exists A (of running time t − nO(1)) that
inverts fu with some non-negligible εA, i.e.,

Pr
u←Uq , x

$←−{0,1}n
[ A(u, fu(x)) ∈ f−1

u ( fu(x) ) ] ≥ εA .

We use shorthand C for the event that A inverts fu, i.e.,

C def
=

(
(X1, Uq) ∈

{
(x, u) : A(u, fu(x)) ∈ f−1

u (fu(x))
})

and thus

εA ≤ Pr[C]
= Pr[C ∧ (E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)] + Pr[C ∧ ¬(E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)]

≤ Pr[

k∨
j=1

(C ∧ E ′j)] + Pr[¬(E ′1 ∨ E ′2 ∨ . . . ∨ E ′k)]

≤
k∑
j=1

Pr[C ∧ E ′j ] + (2−k/n
2c

+ 2−2n)

where the third inequality follows from the union bound and (12). We have by an averaging argument
that there exists j∗ ∈ [k] such that Pr[C ∧E ′j∗ ] ≥ (εA− 2−k/n

2c − 2−2n)/k. That is, conditioned on event

E ′j∗ , algorithm A inverts fu(x)=fk(x,BSG(u)) to produce x′ ∈ fu−1(fu(x)) with probability

Pr[ C | E ′j∗ ] =
Pr[C ∧ E ′j∗ ]
Pr[ E ′j∗ ]

≥ Pr[C ∧ E ′j∗ ] ≥ (εA − 2−k/n
2c − 2−2n)/k .

The above implies an algorithm MA (as given in Algorithm 4) that inverts yj∗ = f j
∗
(x,BSG(u)) with

respect to f to get xj∗ ∈ f−1(yj∗) with almost the same probability. Loosely speaking, on input yj∗ , the
algorithm MA evaluates the iterate to obtain yk, invokes A on yk to get x1, and produces xj∗ (again by
evaluating the iterate on x1) as a candidate preimage of yj∗ under function f . The only issue is that j∗

is unknown, so it simply makes a random guess j
$←− [k], which hits j∗ with probability 1/k. Therefore,

Algorithm 4 MA.

Input: u ∈ {0, 1}q, y ∈ {0, 1}n

Sample j
$←− [k];(

~hk = (h1, . . . , hk)
)

:= BSG(u);
Let ỹj := y ;
FOR i = j + 1 TO k

Compute x̃i := hi−1(ỹi−1), ỹi := f(x̃i);
x̃1 ← A(u, ỹk);
FOR i = 1 TO j − 1

Compute ỹi := f(x̃i), x̃i+1 := hi(ỹi) ;

Output: x̃j

it holds that

Pr[ MA(Uq, Y
′
j∗ ; j ) ∈ f−1(Y ′j∗) | j = j∗ ∧ E ′j∗ ] ≥ (εA − 2−k/n

2c − 2−2n)/k , (13)
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where we recall that Y ′j∗ = f j
∗
(X1, BSG(Uq)). We state in Claim 2 that replacing the above Y ′j∗ (which

is correlated to Uq) with f(Un) (which is independent of Uq) the inverting probability weakens only by
a 1/poly(n) factor and thus makes MA an inverter for f .

ε ≥ Pr[ MA( Uq, f(Un); j ) ∈ f−1(f(Un)) ]

= Pr[j = j∗] · Pr[f(Un) ∈ Ymax ] · Pr[ MA( Uq, f(Un); j ) ∈ f−1(f(Un)) | Ehit ]

≥ (εA − 2−k/n
2c − 2−2n)2

28·k4 · n3c
,

where Ehit
def
= (j = j∗ ∧ f(Un) ∈ Ymax), the first inequality is due to the one-way-ness of f . This yields

an upper bound on εA (by taking a square root) as desired and thus completes the proof. �

the rationale for Claim 2. By Lemma B.1, the collision probability of (Uq, Y
′
j∗) conditioned on

E ′j∗ is small enough and close to that of the uniform distribution of (Uq, UYmax). Thus, any algorithm
that inverts the former (i.e., Y ′j∗ given Uq) with a non-negligible probability will invert the the latter
(i.e., UYmax given uncorrelated Uq) with also a non-negligible probability.

Claim 2 With shorthand Ehit
def
= (j = j∗ ∧ f(Un) ∈ Ymax) we have that

Pr[ MA( Uq, f(Un); j ) ∈ f−1(f(Un)) | Ehit ] ≥ (εA − 2−k/n
2c − 2−2n)2

28·k3 · n2c
. (14)

Proof of Claim 2. To apply Lemma B.1, let W = {0, 1}q × Ymax, let Z be empty set, W be the
distribution of (Uq, Y

′
j∗) conditioned on E ′j∗ (i.e., Y ′j∗ ∈ Ymax), and define

Adv(u, y)
def
= Pr[ MA(u, y; j ) ∈ f−1(y) | j = j∗ ] .

where the probability is taken over the internal coins of MA. Thus, we have

Adv(W ) = Pr[ MA(Uq, Y
′
j∗ ; j ) ∈ f−1(Y ′j∗) | j = j∗ ∧ E ′j∗ ] .

and

CP(W ) = CP( (Uq, Y
′
j∗ ) | E ′j∗ ) =

CP( (Uq, Y
′
j∗ ) ∧ E ′j∗)

Pr[ E ′j∗ ]2

≤
CP( (Uq, Y

′
j∗) )

Pr[ E ′j∗ ]2

≤
2−q · CP( Y ′j∗ |Uq )

(n−c − 2−2n)2

≤ j∗·2max−n+1 + 2−2n

(n−2c/4) · 2q
≤ 16k · n2c

2n−max +q
≤ (32k · n2c)︸ ︷︷ ︸

2e

· 2−m ,

where the fourth inequality is due to 2−2n ≤ j∗·2max−n+1 and j∗ ≤ k and the fifth inequality is by

28



2m−q = |Ymax| ≤ 1/2max−1−n. We thus have

Pr[ MA( Uq, f(Un); j ) ∈ f−1(f(Un)) | j = j∗ ∧ f(Un) ∈ Ymax ]

=
∑

(u,y)∈{0,1}q×Ymax

2−q · Pr[f(Un) = y | f(Un) ∈ Ymax] · Adv(u, y)

≥
∑

(u,y)∈{0,1}q×Ymax

2−q · 1

2|Ymax|
· Adv(u, y)

=
E[Adv(UW)]

2
≥ E[Adv(W )]2

2e+3

≥ (εA − 2−k/n
2c − 2−2n)2

28·k3 · n2c
,

where the first inequality is because for any y ∈ Ymax we have

Pr[f(Un) = y | f(Un) ∈ Ymax] =
Pr[f(Un) = y]∑

y∗∈Ymax
Pr[f(Un) = y∗]

=
1∑

y∗∈Ymax

Pr[f(Un)=y∗]
Pr[f(Un)=y]

≥ 1

2|Ymax|
,

the second inequality follows from (6) and the third is due to (13) and 2e = 32k · n2c. �

B.4 Putting Things Together

Construction 1 (UOWHF construction #4) For constant c and k = n2c · log n · ω(1), let f be as
defined in Definition 5.1, let fk and BSG(·) be as defined in Definition 5.2, let F = {fu} be defined as
in (2), and further define G as in Theorem B.1, i.e.,

G = {gfu : {0, 1}κ·s → {0, 1}n , gfu(z) = gκfu(z, x1, Shoup(u
′)) }

where gfu is described by string (x1, u, u
′) ∈ {0, 1}n×{0, 1}O(n·logn)×{0, 1}O(n·logn), gκfu and Shoup(·) are

as defined in Definition B.1 (use fu in place of f), and κ·s≥n+ s (e.g., set s = log n, κ = Ω(n/ log n)).

Why a family of OWFs? Note that the UOWHF gfu operates on input z and enjoys output length
Θ(n), and it is described by key (x1, u, u

′) ∈ {0, 1}O(n·logn). An alternative is to view fu as a single

one-way function rather than a family of OWFs, i.e., f̃(x, u)
def
= (fu(x), u) and plug f̃ into the UOWHF

construction as in Theorem B.1. However, in this case, the output and key lengths of the UOWHF are
O(n · log n) and O(n · log2 n) respectively since f̃ now has input and output length O(n · log n).

Proof sketch of Theorem 5.1. Consider a (t,ε)-OWF f as defined in Definition 5.1. Although f is
far from regular, iterating it (as defined in Construction 1) sufficiently many, say k = n2c · log n · ω(1),
times yields a family of one-way functions F with description size O(n · log n), as stated in Lemma 5.1.
Furthermore, Lemma 5.2 states that, for α = 2max−a−1 and any β = 22a+2 ≥ 4, a random function

fu
$←− F is (α, α · β)-almost regular except for a (O(k/

√
β) + negl(n))-fraction. Therefore, plug fu

into Theorem B.1 and set s = log n, β = (1/εO(1)) for some small enough constant O(1) so that
poly(β, 2s, κ) · εΘ(1) remains negligible, we obtain a family of UOWHFs with output length Θ(n) and
key length O(n · logn). In total, it makes κ = O(n/ log n) calls to fk for k = n2c · log n · ω(1) and thus
O(n2c+1 · ω(1)) calls to f . �
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