
Relational Hash

Avradip Mandal and Arnab Roy

Fujitsu Laboratories of America
Sunnyvale, CA 94085

Abstract. Traditional cryptographic hash functions allow one to easily check whether the original
plain-texts are equal or not, given a pair of hash values. Probabilistic hash functions extend this
concept where given a probabilistic hash of a value and the value itself, one can efficiently check
whether the hash corresponds to the given value. However, given distinct probabilistic hashes of
the same value it is not possible to check whether they correspond to the same value. In this
work we introduce a new cryptographic primitive called relational hash using which, given a pair
of (relational) hash values, one can determine whether the original plain-texts were related or
not. We formalize various natural security notions for the relational hash primitive - one-wayness,
unforgeability and oracle simulatibility.
We develop a relational hash scheme for discovering linear relations among bit-vectors (elements
of Fn2) and Fp-vectors. Using these linear relational hash schemes we develop relational hashes for
detecting proximity in terms of hamming distance. These proximity relational hashing scheme can
be adapted to a privacy preserving biometric authentication scheme.
We also introduce the notion of relational encryption, which is a regular semantically secure public
key encryption for any adversary which only has access to the public key. However, a semi-trusted
entity can be given a relational key using which it can discover relations among ciphertexts, but
still cannot decrypt and recover the plaintexts.

Keywords: Probabilistic Hash Functions, Biometric Authentication, Functional Encryption.

1 Introduction

We propose a cryptographic primitive called relational hash, which is an extension of traditional
cryptographic hash functions. Any collision resistance hash function h, is in fact a relational hash

for the equality relation. Given h(x1) and h(x2), one can easily verify whether x1
?
= x2, just

by checking h(x1)
?
= h(x2). However, a probabilistic hash function [Can97] ph does not admit

efficient checking of x1
?
= x2, given ph(x1, r1) and ph(x2, r2), where the ri’s are randomnesses

used for hashing.
So the question arises whether we can build probabilistic hash functions which admit verifi-

cation of equality given just the hashes. Extending further, given the hashes and a relation R,
can we efficiently determine if the underlying plaintexts are in the relation R? We give positive
answers in this direction and construct a linear relational hash scheme. In our scheme, for any

x, y ∈ Fn2 , given just the hashes of x and y it is possible to verify whether x + y
?
= z (for any

z ∈ Fn2). A linear relational hash scheme is also trivially an equality relational hash scheme, by
taking z to be all 0’s. We also extend our construction to verify linear relations over Fnp .

For any relational hash primitive, we formalize a few natural and desirable security properties,
namely one-wayness, unforgeability and oracle simulatibility. The notion of oracle simulatibility
was introduced in [Can97,CMR98] for the equality relation. Here we extend the definition of the
concept for arbitrary relations. We show that our linear relational hash constructions satisfy all
three security notions.

While the linear relational hash is itself interesting from a theoretical point of view, it has
little practical significance. However, we show that using a linear relational hash and error
correcting codes it is possible to build relational hashing schemes which can verify proximity
relations. The most motivating application of the proximity relation hash primitive is a pri-
vacy preserving biometric authentication scheme. Using a relational hash scheme for proximity

relation, one can build a biometric authentication scheme which guarantees template privacy.
During both the registration and authentication phase of the protocol the client always sends
a hashed version of the template. The relational hash scheme will guarantee that, with access
to a relational secret key the server can only verify whether the original templates are close to
each other or not. Existing biometric authentication schemes, e.g. fuzzy vault [JS02], fuzzy com-
mitment [JW99] and secure sketch [DRS04,DS05] based schemes only guarantee privacy during
the registration phase. Compared to that, the relational hash based scheme would guarantee
template privacy in both the registration and authentication phase.

We point out that the existence of a general purpose obfuscator O does not necessarily imply
that we can build relational hash functions for any relation. Suppose we publish O(Rx(·, ·)) and
O(Ry(·, ·)) for domain elements x and y, where Rx(·, ·) is a function which outputs R(x, y′, z′),
taking y′, z′ input (Ry(·, ·) is defined similarly). The verifier will have the power to evaluate
R(x, y′, z′) and R(x′, y, z′) for any (x′, y′, z′) of his choice, but still the verifier will be unable to
find out R(x, y, z′). Hence the obfuscations do not qualify as relational hashes.

Using relational hash in a black box manner we can also build another cryptographic prim-
itive called relational encryption. Relational encryption has the following remarkable property:
with just the knowledge of a public key it is a semantically secure public key encryption scheme.
However, a semi-trusted entity can be given a relational key using which it can discover a given
relation among ciphertexts, but still not be able to decrypt and recover the plaintexts.

Conceptually, the relational encryption primitive is similar to multi-input functional encryp-
tion [GKL+13,GGJS13]. However, unlike multi-input functional encryption, which is defined in a
generalized setting and the goal is to evaluate a function f(x1, · · · , xn) with n inputs x1, · · · , xn,
we only consider relations of a specific nature and security guarantees of varying strength, rang-
ing from one-wayness to oracle simulatability. This allows us to build our primitive in a public
key setting, which is not possible in the framework of multi-input functional encryption for these
particular relations.

Organization of the paper. In Section 2, we formally define the notion of relational hash and
its desired security properties. In the following section (Section 3), we construct a relational
hash for linearity over Fn2 . This construction is secure under the standard SXDH assumption
and a new hardness assumption Binary Mix DLP (Assumption 1). In Appendix C, we show that
the Binary Mix DLP assumption can actually be reduced to the more standard Random Modular
Subset Sum assumption (Assumption 7). As an added assurance in Appendix D, we show that
the Binary Mix DLP assumption is also secure in the Generic Group Model [Sho97].

In Section 4, we show how to construct a proximity (in terms of hamming distance) relational
hash using a linear relational hash and a linear error correcting code. Afterwards, in Section 5,
we extend the linear relational hash construction over Fn2 (from Section 3) to Fnp .

In Section 6, we formally define the notion of sparse and biased relations. We argue that only
biased relations allow a strong notion of security of relational hash functions. We also discuss
the relations between various security notions of relational hash functions in this section. In the
following section (Section 6), we show that the linear relational hash construction from Section
3 actually satisfies a stronger security property (Oracle Simulatability), albeit from a stronger
hardness assumption called Decisional Binary Mix. In Appendix D, we also argue the Decisional
Binary Mix assumption is in fact secure in the Generic Group Model.

Finally, in Section 7.1, we introduce the notion of relational encryption, and show how we
can build relational encryption schemes based on relation hash schemes from previous sections.

Notations. We denote a sequence xj , · · · , xk as 〈xi〉ki=j . We treat Fnp as an Fp vector space
and write x ∈ Fnp also as 〈xi〉ni=1. Group elements are written in bold font: g, f. The security
parameter is denoted as λ.

2

2 Relational Hash

The concept of relational hash is an extension of regular probabilistic hash functions. In this
work, we only consider 3-tuple relations. Suppose R ⊆ X ×Y ×Z be a 3-tuple relation, that we
are interested in. We abuse the notation a bit, and often use the equivalent functional notation
R : X×Y ×Z → {0, 1}. The relational hash for the relation R, will specify two hash algorithms
Hash1 and Hash2 which will output the hash values Hash1(x) and Hash2(y) for any x ∈ X
and y ∈ Y . Any relational hash must also specify a verification algorithm Verify, which will
take Hash1(x) , Hash2(y) and any z ∈ Z as input and output R(x, y, z). Formally, we define
the notion of relational hash as follows.

Let {Rλ}λ∈N be a relation ensemble defined over set ensembles {Xλ}λ∈N, {Yλ}λ∈N and
{Zλ}λ∈N such that Rλ ⊆ Xλ × Yλ × Zλ. A relational hash for {Rλ}λ∈N consists of four al-
gorithms:

– A randomized key generation algorithm: KeyGen(1λ) outputs key pk from key space Kλ.

– The hash algorithm of first type (possibly randomized): Hash1 : Kλ × Xλ → RangeXλ,
here RangeXλ denotes the range of Hash1 for security parameter λ.

– The hash algorithm of second type (possibly randomized): Hash2 : Kλ × Yλ → RangeYλ,
here RangeYλ denotes the range of Hash2 for security parameter λ.

– The deterministic verification algorithm: Verify : Kλ × RangeXλ × RangeYλ × Zλ →
{0, 1}.

In the rest of the paper we will drop the subscript λ for simplicity and it will be implicitly
assumed in the algorithm descriptions. Often, we will also denote the 1 output of Verify as
Accept, and the 0 output as Reject. The definition of relational hashing consists of two
requirements: Correctness and Security (or Secrecy).

Correctness: Informally speaking, the correctness condition is, if an honest party evaluates
Verify(Hash1(pk, x),Hash2(pk, y), z) for some key pk which is the output of KeyGen and
any (x, y, z) ∈ X × Y ×Z, the output can differ from R(x, y, z) only with negligible probability
(the probability is calculated over the internal randomness of KeyGen, Hash1 and Hash2).
Formally,

Definition 1 (Relational Hash - Correctness). A relational hash scheme for a relation
R ⊆ X × Y × Z is a tuple of algorithms (KeyGen,Hash1,Hash2,Verify) satisfying the
following correctness condition. Compute:

pk ← KeyGen(1λ), hx← Hash1(pk, x), hy ← Hash2(pk, y),
b← Verify(pk, hx, hy, z)

Then for any (x, y, z) ∈ X × Y × Z we require that b ∼= R(x, y, z) with overwhelming probability
(calculated over the internal randomness of KeyGen, Hash1 and Hash2).

Note that a trivially correct relational hash scheme is a set of identity functions as hash algo-
rithms and the relation itself as verify algorithm. Of course, as we will see such instantiations of
relational hash schemes are not secure.

Security: However, the notion of security for a relational hash is not straight forward. It will
depend in the context where the relational hash is going to be used and also on the a priori
information available to the adversary. Recall, for a regular hash function one of the weakest
form of security is one-wayness. A function f is called one-way if given f(x), it is hard to output
x.

3

Definition 2 (Security of Relational Hash - One-way). Let X and Y be independent proba-
bility distributions over X and Y . We define a relational hash scheme (KeyGen,Hash1,Hash2,
Verify) to be one-way secure for the probability distributions X and Y, if the following hold:

– pk ← Keygen(1λ), x← X , y ← Y, hx← Hash1(pk, x), hy ← Hash2(pk, y)
– For any Probabilistic Polynomial Time (PPT) adversary A1, there exists a negligible function

negl(), such that Pr[A1(pk, hx) = x] < negl(λ).
– For any Probabilistic Polynomial Time (PPT) adversary A2, there exists a negligible function

negl(), such that Pr[A2(pk, hy) = y] < negl(λ).

Here the probabilities are calculated over the internal randomness of KeyGen, Hash1 and
Hash2, internal randomness of the adversarial algorithms A1 and A2 as well as the probability
distributions X and Y.

In this work, we are mostly interested in sparse relations (Definition 6). Informally speaking,
for a sparse relation R ⊆ X × Y × Z and unknown x it is hard to output y and z such that
(x, y, z) ∈ R. A relational hash scheme is called unforgeable if given hx = Hash1(pk, x) and pk
it is hard to output hy, such that Verify(pk, hx, hy) outputs 1. Formally,

Definition 3 (Security of Relational Hash - Unforgeable). Let, X and Y be independent
probability distributions over X and Y . A Relational Hash scheme (KeyGen,Hash1,Hash2,
Verify) is unforgeable for the probability distributions X and Y, if the following holds:

– pk ← Keygen(1λ), x← X , y ← Y, hx← Hash1(pk, x), hy ← Hash2(pk, y)
– For any adversary A1, there exists a negligible function negl(), such that

Pr[(hy′, z)← A1(pk, hx) ∧Verify(pk, hx, hy′, z) = 1] < negl(λ)

– For any adversary A2, there exists a negligible function negl(), such that

Pr[(hx′, z)← A2(pk, hy) ∧Verify(pk, hx′, hy, z) = 1] < negl(λ)

For relational hash functions, the strongest form of security notion is based on oracle simula-
tions. The concept of oracle simulation was introduced in [Can97]. However, over there authors
were interested in regular probabilistic hash functions. In case of relational hash functions, we
want to say that: having hx = Hash1(pk, x) gives no information on x, besides the ability to
evaluate the value of R(x, y, z) for any y, z chosen from their respective domains. Similarly,
hy = Hash1(pk, y) should not provide any extra information other than the ability to evaluate
the value of R(x, y, z) for any x ∈ X and z ∈ Z. Also, having access to both hx and hy, one
should be able to only evaluate R(x, y, z) for any z ∈ Z.

For any relation R ⊆ X × Y × Z and x ∈ X, y ∈ Y , let Rx(·, ·) : Y × Z → {0, 1},
Ry(·, ·) : X × Z → {0, 1} and Rx,y(·) : Z → {0, 1} be the oracles defined as follows:

– For any y′ ∈ Y, z′ ∈ Z,Rx(y′, z′) = 1 if and only if (x, y′, z′) ∈ R.
– For any x′ ∈ X, z′ ∈ Z,Ry(x′, z′) = 1 if and only if (x′, y, z′) ∈ R.
– For any z′ ∈ Z,Rx,y(z′) = 1 if and only if (x, y, z′) ∈ R.

Definition 4 (Security of Relational Hash - Oracle Simulation). Let, X and Y be in-
dependent probability distributions over X and Y . A relational hash scheme (KeyGen,Hash1,
Hash2,Verify) is said to be oracle simulation secure with respect to the distributions X and
Y if for any PPT adversary C, there exists a PPT simulator S such that for any predicate
P (·, ·, ·) : K × X × Y → {0, 1} (where K is the range of KeyGen), there exists a negligible
function negl(), such that

|Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]− Pr[SRx,Ry,Rx,y (pk) = P (pk, x, y)]| < negl(λ),

where x← X , y ← Y and pk ← Keygen(1λ).

4

3 Relational Hash for Linearity in Fn
2

We now construct a Relational Hash scheme for the domains X,Y, Z = Fn2 and the relation
R = {(x, y, z) | x+ y = z ∧ x, y, z ∈ Fn2}

KeyGen: Given the security parameter, bilinear groups G1,G2,GT are generated of prime order
q, exponential in the security parameter, and with a bilinear pairing operator e. Now we sample
generators g0 ← G1 and h0 ← G2. Next we sample 〈ai〉n+1

i=1 and 〈bi〉n+1
i=1 , all randomly from Z∗q .

Define gi = gai0 and hi = hbi0 . Now we define the output of KeyGen as pk := (pk1, pk2, pkR),
defined as follows:

pk1 := 〈gi〉
n+1
i=0 , pk2 := 〈hi〉n+1

i=0 , pkR :=

n+1∑
i=1

aibi

Hash1: Given plaintext x = 〈xi〉ni=1 ∈ Fn2 and pk1 = 〈gi〉
n+1
i=0 , the hash is constructed as follows:

Sample a random r ∈ Z∗q and then compute the following:

hx :=
(
gr0,
〈
g
(−1)xir
i

〉n
i=1

,grn+1

)
Hash2: Given plaintext y = 〈yi〉ni=1 ∈ Fn2 and pk2 = 〈hi〉n+1

i=0 , the hash is constructed as follows:
Sample a random s ∈ Z∗q and then compute the following:

hy :=
(
hs0,
〈
h
(−1)yis
i

〉n
i=1

,hsn+1

)
Verify: Given hashes hx = 〈hxi〉n+1

i=0 and hy = 〈hyi〉n+1
i=0 , the quantity z = 〈zi〉ni=1 ∈ Fn2 and

pkR, the algorithm Verify checks the following equality:

e(hx0, hy0)
pkR ?

= e(hxn+1, hyn+1)
n∏
i=1

e(hxi, hyi)
(−1)zi

Correctness. For any, x, y ∈ Fn2 we have

Hash1(x) = (hx0, 〈hxi〉ni=1 , hxn+1) =
(
gr0,
〈
g
(−1)xir
i

〉n
i=1

,grn+1

)
Hash2(y) = (hy0, 〈hyi〉ni=1 , hyn+1) =

(
hs0,
〈
h
(−1)yis
i

〉n
i=1

,hsn+1

)
Hence,

e(hxn+1, hyn+1)
n∏
i=1

e(hxi, hyi)
(−1)(xi+yi) = e(grn+1,h

s
n+1)

n∏
i=1

e
(
g
(−1)xir
i ,h

(−1)yis
i

)(−1)(xi+yi)
=

n+1∏
i=1

e (gri ,h
s
i) =

n+1∏
i=1

e
(
gair0 ,hbis0

)
= e (gr0,h

s
0)

∑n+1
i=1 aibi = e(hx0, hy0)

pkR

This shows that our relational hash scheme correctly verifies tuples of the form (x, y, x+ y) for
any x, y ∈ Fn2 .

On the other hand, if the verification equation gets satisfied for some z ∈ Fn2 , we must have

e (gr0,h
s
0)

∑n+1
i=1 aibi = e(grn+1,h

s
n+1)

n∏
i=1

e
(
g
(−1)xir
i ,h

(−1)yis
i

)(−1)zi
=⇒

n∑
i=1

aibi =
n∑
i=1

(−1)xi+yi+ziaibi

5

Let U ⊆ {1, · · · , n} be the set of indices, such that i ∈ U if and only if xi + yi 6= zi. Now, the
above equation reduces to ∑

i∈Q
aibi = 0.

If x+ y 6= z, then Q is non empty and we can consider a fixed i∗ ∈ Q and we have

ai∗bi∗ = −
∑

i∈Q\{i∗}

aibi.

Now, if we fix ai’s and bi’s for i ∈ Q \ {i∗} and consider only the randomness of ai∗ and bi∗ , the
above equation holds with probability at most 1/q when

∑
i∈Q\{i∗} aibi 6= 0 and with probability

at most 2/q when
∑

i∈Q\{i∗} aibi = 0. This implies for any tuple (x, y, z) with z 6= x + y, the
verification equation gets satisfied with probability at most 2/q. Hence the above algorithms in
fact constitute a correct relational hash for linearity over Fn2 . ut

Security. This relational hash can be shown to be one-way secure based on the SXDH assump-
tion, and a new hardness assumption we call Binary Mix DLP. The assumption says if we choose
a random x from Fn2 (for sufficiently large n), n random elements g1, · · · ,gn from group G then

given the product
∏n
i=1 g

(−1)xi
i it is hard to find any candidate x.

Assumption 1 (Binary Mix DLP) : Assuming a generation algorithm G that outputs a tuple
(n, q,G) such that G is a group of prime order q, the Binary Mix DLP assumption asserts that

given random elements 〈gi〉
n
i=1 from the group G and

∏n
i=1 g

(−1)xi
i , for a random x ← Fn2 , it is

computationally infeasible to output y ∈ Fn2 such that

n∏
i=1

g
(−1)xi
i =

n∏
i=1

g
(−1)yi
i .

More formally, for all PPT adversaries A, there exists a negligible function negl() such that

Pr

[
(n, q,G)← G(1λ);x← Fn2 , 〈gi〉

n
i=1 ← G; y ← A

(
〈gi〉

n
i=1 ,

∏n
i=1 g

(−1)xi
i

)
:∏n

i=1 g
(−1)xi
i =

∏n
i=1 g

(−1)yi
i

]
< negl(λ).

Theorem 1. The above algorithms (KeyGen,Hash1,Hash2,Verify) constitute a relational
hash scheme for the relation R = {(x, y, z) | x + y = z ∧ x, y, z ∈ Fn2}. The scheme is one-way
secure under the SXDH assumption and Binary Mix DLP assumptions, when x and y are sampled
uniformly from Fn2 .

We now prove the theorem, assuming a lemma (Lemma 4) which holds under the SXDH and
Binary Mix DLP assumptions. While the lemma is formally stated and proved in Appendix B,

we provide an intuitive description here. The lemma states that given
(
g, 〈ĝi〉

n
i=1 ,g

r,
∏n
i=1 ĝri ,〈

ĝ
(−1)xir
i

〉n
i=1

)
, it is hard to compute x ∈ Fn2 . Now we show that if the relational hash is not

one-way secure (and we have a one-wayness adversary B), then we can construct an adversary A
breaking Lemma 4. To achieve that, consider that the adversary A is given a Lemma 4 challenge(
g, 〈ĝi〉

n
i=1 ,g

r,
∏n
i=1 ĝri ,

〈
ĝ
(−1)xir
i

〉n
i=1

)
. We now construct the one-wayness challenge as follows:

We sample u, s and 〈ui〉ni=1, all randomly from Z∗q . Sample h0 randomly from G2. Now we define
the output of KeyGen to be pk := (pk1, pk2, pkR) defined as follows:

pk1 :=

(
g,

〈
ĝ
u−1
i
i

〉n
i=1

,gu
n∏
i=1

ĝ−1i

)
, pk2 :=

(
h0, 〈huis0 〉

n
i=1 ,h

s
0

)
, pkR := us

6

Observe that g,

〈
ĝ
u−1
i
i

〉n
i=1

,h0, 〈huis0 〉
n
i=1 ,h

s
0 and us are all uniformly random and independent

elements of their respective domains 1. The group element gu
∏n
i=1 ĝ−1i is fixed given the other

elements. Hence (pk1, pk2, pkR) has identical distribution as the output of the original KeyGen.
A publishes (pk1, pk2, pkR) to the adversary B and then also gives a challenge hash:

hx :=

gr,

〈
ĝ
(−1)xir·u−1

i
i

〉n
i=1

,gr·u

(
n∏
i=1

ĝri

)−1 .

Once B outputs an element y ∈ Fn2 , A just relays that to the Lemma 4 challenger. Now,
observe that hx is identically distributed as Hash1(x) for a random x ← Fn2 . Therefore, the
probability that y = x is same as the advantage of B against the security of the relational hash
scheme. Therefore the scheme is secure given Lemma 4. ut

Unforgeability and Oracle Simulation Security. In Section 6, we show this relational hash is
in fact a 2-value perfectly one-way function, albeit under a stronger hardness assumption. By
Theorem 7 from Section 6, that will imply this relational hash construction is also unforgeable
and oracle simulation secure.

4 Relational Hash for Hamming Proximity

In this section we construct a relational hash for the domains X,Y = Fn2 and the relation
Rδ = {(x, y) | dist(x, y) ≤ δ ∧ x, y ∈ Fn2}, where dist is the hamming distance and δ is a
positive integer less than n. 2 Specifically, we construct a relational hash for proximity from a
family of binary (n, k, d) linear error correcting codes (ECC) C and a relational hash for linearity
in Fk2: (KeyGenLinear,HashLinear1,HashLinear2,VerifyLinear).

For any C ∈ C, Encode and Decode are the encoding and decoding algorithms of the
(n, k, d) error correcting code C. For any x ∈ Fn2 , weight(x) is the usual hamming weight of x,
denoting number of one’s in the binary representation of x. For any error vector e ∈ Fn2 , with
weight(e) ≤ d/2 and m ∈ Fk2 we have,

Decode(Encode(m) + e) = m.

If weight(e) > d/2, the decoding algorithm Decode is allowed to return ⊥.

KeyGen: Given the security parameter, choose a binary (n, k, 2δ + 1) linear error correcting
code C, where k is of the order of the security parameter. Run KeyGenLinear and let pklin
be its output. Publish,

pk := (Encode,Decode, pklin)

Hash1: Given plaintext x ∈ Fn2 and pk = (Encode,Decode, pklin), the hash value is con-
structed as follows: Sample a random r ← Fk2 and then compute the following:

hx1 := x+ Encode(r)

hx2 := HashLinear1(pklin, r)

Publish the final hash value hx := (hx1, hx2).

1 Roughly, ĝ
u−1
i
i ’s are randomized by the ĝi’s; h

uis
0 ’s are randomized by the ui’s; h

s
0 is randomized by s and us

is randomized by u.
2 Note, the notion of relational hash is defined over 3-tuple relations (Definition 8). However, here proximity

encryption is defined over 2-tuple relations. 2-tuple relations can be regarded as special cases of 3-tuple relations,
where the third entry does not matter. E.g. the relation R′δ ⊆ Fn2 ×Fn2 ×Z (where Z is any non empty domain)
and (x, y, z) ∈ R′δ if and only if (x, y) ∈ Rδ for all z ∈ Z.

7

Hash2 is defined similarly.

Verify: Given the hash values hx = (hx1, hx2), hy = (hy1, hy2) and pk = (Encode,Decode,
pklin) verification is done as follows.

– Recover z as z := Decode(hx1 + hx2).

– Output Reject if Decode returns ⊥ or dist(Encode(z), hx1 + hx2) > δ

– Output VerifyLinear(pklin, hx2, hy2, z).

Theorem 2. The above algorithms (KeyGen,Hash1,Hash2,Verify) constitute a relational
hash for the relation Rδ = {(x, y) | dist(x, y) ≤ δ ∧ x, y ∈ Fn2}. The scheme is one-way secure
with respect to the uniform distributions on Fn2 if the linear relational hash is a one-way secure
with respect to the uniform distributions on Fk2. The scheme is unforgeable for the uniform distri-
butions on Fn2 if the linear relational hash is unforgeable with respect to the uniform distributions
on Fk2.

Correctness. For any x, y ∈ Fn2 , we have

Hash1(x) = (hx1, hx2) = (x+ Encode(r),HashLinear1(pklin, r)) for some random r ∈ Fk2
Hash2(y) = (hy1, hy2) = (y + Encode(s),HashLinear2(pklin, s)) for some random s ∈ Fk2

If dist(x, y) ≤ δ, Decode(hx1 + hx2) will output (r + s) and the tuple

(HashLinear1(pklin, r),HashLinear2(pklin, s), r + s)

will get verified by VerifyLinear. This shows the above proximity hash correctly verifies tuples
(x, y), for any x, y ∈ Fn2 and dist(x, y) ≤ δ.

On the other hand, if dist(x, y) > δ and Verify outputs Accept, then the output of
z = Decode(hx1+hx2) can never be same as (r+s), because dist(Encode(r+s), hx1+hx2) =
dist(x, y) > δ. Also, from correctness of linear relational hash we know VerifyLinear(pklin,
hx2, hy2, z) outputs Accept only with negligible probability (for any z 6= r + s). Hence the
above algorithms constitute a correct relational hash for proximity over Fn2 .

One-wayness. We show that if there exists an attacker A breaking one-way security (Definition
2) for the proximity hash scheme with non-negligible probability, then we can build an attacker
which breaks the one-way security for the linear relational hash scheme with non-negligible
probability.

Let (pklin, hxlin = HashLinear1(pklin, r)) be the linear relational hash challenge for some
random r ← Fk2. We choose random x′ ← Fn2 , and give

pk := (Encode,Decode, pklin)

hx := (x′, hxlin)

to the attacker A. Clearly hx is indistinguishable from a proximity hash of a random m← Fn2 .
If A breaks one-wayness of the proximity hash with non-negligible probability and outputs m′,
then we can output

Decode(m′ + x′).

With non-negligible probability this value will be same as r, breaking one-wayness of linear
relational hash.

8

Unforgeability. We show if there exists an attacker A breaking unforgeability (Definition 3)
for the proximity hash scheme with non-negligible probability, then we can build an attacker
which breaks the unforgeability security property for the linear relational hash scheme with
non-negligible probability.

Let (pklin, hxlin = HashLinear1(pklin, r)) be the linear relational hash challenge for some
random r ← Fk2. We choose random x′ ← Fn2 , and give

pk := (Encode,Decode, pklin)

hx := (x′, hxlin)

to the attacker A. Clearly hx is indistinguishable from a proximity hash of a random m← Fn2 .
If A breaks unforgeability of the proximity hash with non-negligible probability and outputs
(m′, hylin), then we know VerifyLinear must accept the input (pklin, hxlin, hylin,Decode(x′+
m′)). Hence,

(hylin,Decode(x′ +m′))

will be a valid forgery breaking the linear relational hash challenge. ut

5 Relational Hash for Linearity in Fn
p

We now construct a Relational Hash scheme for the domains X,Y, Z = Fnp and the relation
R = {(x, y, z) | x+ y = z ∧ x, y, z ∈ Fnp}.

KeyGen: Given the security parameter, bilinear groups G1,G2,GT are generated of prime order
q, exponential in the security parameter and equal to 1 (mod p). This means the group Z∗q has
a subgroup Jp of order p. Let ω be an arbitrary generator of Jp. Now we sample generators
g0 ← G1 and h0 ← G2. Next we sample 〈ai〉n+1

i=1 and 〈bi〉n+1
i=1 , all randomly from Zq. Define

gi = gai0 and hi = hbi0 . Now we define the output of KeyGen as pk := (ω, pk1, pk2, pkR) defined
as follows:

pk1 := 〈gi〉
n+1
i=0 , pk2 := 〈hi〉n+1

i=0 , pkR :=
n+1∑
i=1

aibi

Hash1: Given plaintext x = 〈xi〉ni=1 ∈ Fnp , ω and pk1 = g0, 〈gi〉
n
i=1, the hash is constructed as

follows: Sample a random r ∈ Z∗q and then compute the following:

hx :=
(
gr0,
〈
gω

xir
i

〉n
i=1

,grn+1

)
Hash2 is analogously defined in the group G2.

Verify: Given hashes hx = 〈hxi〉n+1
i=0 and hy = 〈hyi〉n+1

i=0 , the parameter z = 〈zi〉ni=1 ∈ Fnp and
pkR and ω, the algorithm Verify checks the following equality:

e(hx0, hy0)
pkR ?

= e(hxn+1, hyn+1)

n∏
i=1

e(hxi, hyi)
ω−zi

Correctness. The correctness property of the scheme can be proven similar to the correctness of
the Fn2 linear relational hash from Section 3. For details see Appendix E.

9

Security. We assume n log p is at least in the order of security parameter and the p-ary Mix DLP
assumption (stated below) holds. This is a generalized version of Binary Mix DLP(Assumption
1). For p = 2 the assumptions are equivalent. This assumption also incorporates the case when
n is small (constant), but p is large (exponential in security parameter λ).

Assumption 2 (p-ary Mix DLP) Assuming a generation algorithm G that outputs a tuple (n, q,
ω,G) such that G is a group of prime order q = 1 (mod p), for some prime p and ω is an ar-
bitrary element from Z∗q of order p, the p-ary Mix DLP assumption asserts that given random

elements 〈gi〉
n
i=1 from the group G and

∏n
i=1 gω

xi

i , for a random x ← Fnp , it is computationally
infeasible to output y ∈ Fnp such that,

n∏
i=1

gω
xi

i =

n∏
i=1

gω
yi

i .

More formally, for all PPT adversaries A, there exists a negligible function negl() such that

Pr

[
(n, q, ω,G)← G(1λ);x← Fnp , 〈gi〉

n
i=1 ← G; y ← A

(
〈gi〉

n
i=1 ,

∏n
i=1 gω

xi

i

)
:∏n

i=1 gω
xi

i =
∏n
i=1 gω

yi

i

]
< negl(λ).

Theorem 3. The above algorithms (KeyGen,Hash1,Hash2,Verify) constitute a relational
hash scheme for the relation R = {(x, y, z) | x + y = z ∧ x, y, z ∈ Fnp}. The scheme is one-way
secure under the SXDH assumption and p-ary Mix DLP assumption, when x and y’s are sample
uniformly from Fnp .

A proof sketch is given in Appendix F.

Unforgeability and Oracle Simulation Security. This relational hash is also in fact a 2-value per-
fectly one-way function, albeit under a stronger hardness assumption. The hardness assumption
and proof of 2-value perfectly one-wayness is analogous to the Fn2 case. By Theorem 7 from Sec-
tion 6, that will imply this relational hash construction is also unforgeable and oracle simulation
secure.

Relational Hash for Hamming Proximity in Fn
p . As in the case for Fn2 , we can also construct

a relational hash for the domains X,Y = Fnp and the relation Rδ = {(x, y) | dist(x, y) ≤ δ ∧
x, y ∈ Fnp}, where dist is the p-ary hamming distance and δ is a positive integer less than n. We
use a family of (n, k, d) linear error correcting codes (ECC) C of alphabet size p and a relational
hash for linearity in Fkp: (KeyGenLinear,HashLinear1,HashLinear2,VerifyLinear). The
construction, correctness and security are analogous to the binary case.

6 Relation among Notions of Security for Relational Hashes

In Section 2 we introduced three natural definitions of security for relational hash functions:
one-wayness, unforgeability and oracle simulation security. In this section we define the notion
of sparse and biased relations. We show, if a relational hash function is unforgeable that implies
the relation must be sparse. Following [CMR98], we define the notion of 2-value Perfectly One-
Way (2-POW) function. We show if a relational hash function is 2-POW, then the relation must
be biased. We also show the 2-POW property is actually a sufficient condition for simulation
security, as well as unforgeability (when the relation is sparse).

Definition 5. A relation R ⊆ X×Y ×Z is called a biased relation in the first co-ordinate with
respect to a probability distribution X over X, if for all PPTs A:

Pr[x,w ← X , (y, z)← A(λ) : R(x, y, z) 6= R(w, y, z)] < negl(λ)

10

Similarly, we can define a biased relation in the second co-ordinate with respect to a probability
distribution Y over Y . A relation R ⊆ X × Y × Z is called a biased relation with respect to
independent probability distributions X over X and Y over Y , if it is a biased relation in first
coordinate with respect to X , as well as a biased relation in second coordinate with respect to
Y.

Definition 6. A relation R ⊆ X×Y ×Z is called a sparse relation in the first co-ordinate with
respect to a probability distribution X over X, if for all PPTs A:

Pr[x← X , (y, z)← A(λ) : (x, y, z) ∈ R] < negl(λ)

Similarly, we can define a sparse relation in the second co-ordinate with respect to a probability
distribution Y over Y . A relation R ⊆ X × Y × Z is called a sparse relation with respect to
independent probability distributions X over X and Y over Y , if it is a sparse relation in first
coordinate with respect to X , as well as a sprase relation in second coordinate with respect to
Y.

Remark. We note that a biased relation may not be such that it is sparse or its complement
is sparse. A counterexample is a relation R(x, y, z), which outputs the first bit of y. This is a
biased relation, but neither R, nor its complement R̄ is sparse.

Now, we show if a relational hash function is unforgeable, that implies the relation must be
sparse.

Theorem 4. If a relational hash scheme (KeyGen,Hash1,Hash2,Verify) for a relation R
is unforgeable for probability distributions independent probability distributions X over X and Y
over Y , then the relation R is sparse with respect to X and Y.

Proof. Suppose, the relation R is not sparse over first coordinate, and there exists an PPT
attacker A such that Pr[x ← X , (y, z) ← A(λ) : (x, y, z) ∈ R] is non-negligible. Now, given an
unforgeablity challenge (pk, cx1), such that pk ← KeyGen(1λ), cx1 := Hash1(pk, x) for some
x ← X ; we can just get (y, z) ← A(λ) and output (Hash2(pk, y), z). From the correctness of
the relational hash function, it follows that this output is a valid forgery with non-negligible
probability. ut

Following [CMR98], we recall the definition of 2-value perfectly one-way (POW) function.
This is a useful property, because if we can show a relational hash function is 2-POW, that would
immediately imply the relational hash function is simulation secure, as well as unforgeable (if
the relation is sparse).

Definition 7 (2-value Perfectly One-Way function). Let, X be a probability distribution
over X. H = {hk}k∈K be a keyed probabilistic function family with domain X and randomness
space U , where the key k gets sampled from a probability distribution K over K. H is 2-value
perfectly one-way (POW) with respect to X and K if for any PPT distinguisher D,

|Pr[D(k, hk(x, r1), hk(x, r2)) = 1]− Pr[D(k, hk(x1, r1), hk(x2, r2)) = 1]| < negl(λ),

where x, x1, x2 are drawn independently from X , k is drawn from K and r1, r2 are generated
unifromly at random from randomness space U .

11

Remark. In [CMR98], the key k was universally quantified, and function k was called 2-POW
if the inequality was true for all k ∈ K. However, for our purpose it sufficient if we consider
random k coming from K (or KeyGen) distribution.

Now, we show if a relational hash is 2-POW, then the relation must be biased.

Theorem 5. Given a relational hash scheme (KeyGen,Hash1,Hash2,Verify) for a relation
R, if Hash1 is 2-value Probabilistic One-Way with respect to X and KeyGen, then R is a biased
relation in the 1st co-ordinate with respect to X .

Proof. We are given that,

∀ PPT D :

∣∣∣∣ Pr[D(k,Hash1(k, x, r1),Hash1(k, x, r2)) = 1]
−Pr[D(k,Hash1(k, x1, r1),Hash1(k, x2, r2)) = 1]

∣∣∣∣ < negl(λ)

Suppose R is a biased relation in the 1st co-ordinate. Then, there exists an efficient algorithm
A, which outputs (y, z) ∈ Y × Z, such that Pr[x← X, (y, z)← A(λ) : R(x, y, z) 6= R(w, y, z)] is
non-negligible in the security parameter. So now given (k,Hash1(k, x, r1),Hash1(k,w, r2)), we
generate (y, z) ← A(λ), compute Hash2(k, y, r

′) and then compute Verify(k,Hash1(k, x, r1),
Hash2(k, y, r

′), z) and Verify(k,Hash1(k,w, r2),Hash2(k, y, r
′), z). By the correctness of the

relational hash scheme, these boolean results are R(x, y, z) and R(w, y, z) respectively. In the case
R(x, y, z) = R(w, y, z), the distinguisher D outputs 1, else 0. By the non-sparseness of R, D will
have a non-negligible chance of distinguishing the distributions. Hence we get a contradiction.

ut

Theorem 6, stated below shows if a relational hash is 2-POW, then it is also oracle simulation
secure.

Theorem 6. If a relational hash scheme (KeyGen,Hash1,Hash2,Verify) is such that both
Hash1 and Hash2 are individually 2-value Probabilistic One-Way for distributions (X ,KeyGen)
and (Y,KeyGen) respectively, then the relational hash scheme is Oracle Simulation Secure for
the distribution X × Y. Formally, for all PPT C, there exists a PPT S, such that:∣∣∣∣Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]

−Pr[SRx,Ry ,Rx,y(pk) = P (pk, x, y)]

∣∣∣∣ < negl(λ),

where pk ← KeyGen, x← X , y ← Y.

We postpone the proof to Appendix G. Finally, we show if a relational hash is 2-POW as well
as sparse, then it must be unforgeable.

Theorem 7. If a relational hash scheme (KeyGen,Hash1,Hash2,Verify) for a sparse rela-
tion R with respect to independent probability distributions X and Y, is such that Hash1 (Hash2)
is 2-value Probabilistic One-Way for distribution X (Y) and KeyGen, then the relational hash
scheme is unforgeable for the distribution X (Y).

Proof. Assume that the scheme is not unforgeable. This means that given (pk,Hash1(pk, x, r))
for x← X , there is an attacker A, which outputs Hash2(pk, y, s), z, such that R(x, y, z) = 1, with
non-negligible probability. Using A, we now build an attacker B which distinguishes the distribu-
tions (pk,Hash1(pk, x, r1),Hash1(pk, x, r2)) and (pk,Hash1(pk, x, r1),Hash1(pk, x

′, r2)) with
non-negligible probability. Given (pk,Hash1(pk, x, r1),Hash1(pk,w, r2)), B sends Hash1(pk, x,
r1) to A. With non-negligible probability A outputs Hash2(pk, y, s), z, such that R(x, y, z) = 1.
Now since R is a sparse relation, if w 6= x, then with non-negligible probability R(w, y, z) = 0,
whereas if w = x, then R(w, y, z) = 1. Now R(w, y, z) can be efficiently evaluated by computing
Verify(pk,Hash1(pk, w, r2),Hash2(pk, y, s), z). Thus, B will have a non-negligible probability
of breaking the 2-value POW security of Hash1. ut

12

Stronger Security Properties for the Relational Hash Constructions. In Theorem 8,
we show that the relational hash construction for linearity over Fn2 from Section 3 is actually a
2-value perfectly one-way function. This property is based on a stronger hardness assumption
called Decisional Binary Mix (Assumption 3). In Appendix D (Theorem 11) we show that this
assumption holds in Generic Group Model [Sho97]. One can easily verify that the linearity
relation over Fn2 , R = {(r, s, z) | r+s = z∧r, s, z ∈ Fn2} is actually a sparse relation with respect
to uniform distributions over Fn2 . Hence, by Theorem 6 and Theorem 7 we get that the relational
hash construction from Section 3 is actually oracle simulation secure as well as unforgeable with
respect to the uniform distributions over Fn2 .

Assumption 3 (Decisional Binary Mix) Assuming a generation algorithm G that outputs a
tuple (n, q,G) such that G is a group of prime order q, the Decisional Binary Mix assumption
asserts that for random x, y ← Fn2 , given random elements 〈gi〉

n
i=1, 〈fi〉ni=1 from the group G it

is hard to distinguish the following distributions:(
n∏
i=1

g
(−1)xi
i ,

n∏
i=1

f
(−1)xi
i

)
and

(
n∏
i=1

g
(−1)xi
i ,

n∏
i=1

f
(−1)yi
i

)
.

More formally, for all PPT adversaries A, there exists a negligible function negl() such that∣∣∣∣∣∣∣∣∣∣
Pr

[
(n, q,G)← G(1λ);x← Fn2 , 〈gi〉

n
i=1 ← G, 〈fi〉ni=1 ← G;

A
(
〈gi〉

n
i=1 ,

∏n
i=1 g

(−1)xi
i , 〈fi〉ni=1 ,

∏n
i=1 f

(−1)xi
i

)
→ 1

]

−Pr

[
(n, q,G)← G(1λ);x, y ← Fn2 , 〈gi〉

n
i=1 ← G, 〈fi〉ni=1 ← G;

A
(
〈gi〉

n
i=1 ,

∏n
i=1 g

(−1)xi
i , 〈fi〉ni=1 ,

∏n
i=1 f

(−1)yi
i

)
→ 1

]
∣∣∣∣∣∣∣∣∣∣
< negl(λ)

Theorem 8. The algorithms (KeyGen,Hash1,Verify) in Section 3 constitute a 2-value Prob-
abilistic One Way Function for the uniform distribution on Fn2 . In more details, sample ran-
dom elements g0 ← G1,h0 ← G2, 〈ai〉n+1

i=1 , 〈bi〉
n+1
i=1 ← Z∗q. Let gi = gai0 and hi = hbi0 and

pkR =
∑n+1

i=1 aibi. Let pk = (〈gi〉
n+1
i=0 , 〈hi〉

n+1
i=0 , pkR). Under the Decisional Binary Mix and DDH

assumptions, the following distributions are computationally indistinguishable given random
r, s← Z∗q and random x, y ← Fn2 :(

pk, gr0,
〈
g
(−1)xir
i

〉n
i=1

,grn+1, gs0,
〈
g
(−1)xis
i

〉n
i=1

,gsn+1

)
and (

pk, gr0,
〈
g
(−1)xir
i

〉n
i=1

,grn+1, gs0,
〈
g
(−1)yis
i

〉n
i=1

,gsn+1

)
.

We postpone the proof to Appendix H.

7 Applications

We enlist two interesting applications of relational hash functions: relational encryption and
privacy preserving biometric authentication.

7.1 Relational Encryption

The concept of relational hash functions extends naturally to relational encryption. With just
the knowledge of a public key it is a semantically secure public key encryption scheme. However,
a semi-trusted entity can be given a relational key using which it can discover a given relation

13

among ciphertexts, but still not be able to decrypt and recover the plaintext. In Appendix I we
formally define the notion of relational encryption and its desired security properties. We also
give black box relational encryption constructions from a relational hash primitive and a CPA
secure encryption scheme. Moreover, we also give more efficient non-black box constructions
starting from relational hash constructions for linearity and proximity from previous sections.

Conceptually, the relational encryption primitive is similar to multi-input functional encryp-
tion [GKL+13,GGJS13]. However, unlike multi-input functional encryption, which is defined in a
generalized setting and the goal is to evaluate a function f(x1, · · · , xn) with n inputs x1, · · · , xn,
we only consider relations of a specific nature and security guarantees of varying strength, rang-
ing from one-wayness to oracle simulatability. This allows us to build our primitive in a public
key setting, which is not possible in the framework of multi-input functional encryption for these
particular relations.

7.2 Privacy Preserving Biometric Authentication

Suppose we have a biometric authentication scheme, where during registration phase a particular
user generates a biometric template x ∈ {0, 1}n and sends it to the server. During authentication
phase the user generates a new biometric template y ∈ {0, 1}n and sends y to server. The server
authenticates the user if dist(x, y) ≤ δ. The drawback of this scheme is the lack of template
privacy. Existing biometric authentication schemes, e.g. fuzzy vault [JS02], fuzzy commitment
[JW99] and secure sketch [DRS04,DS05] based schemes only guarantee privacy during the regis-
tration phase. However, if we have a relational hash (KeyGen,Hash1,Hash2,Verify) for the
relation Rδ = {(x, y) | dist(x, y) ≤ δ∧x, y ∈ Fn2}, we readily get a privacy preserving biometric
authentication scheme as follows: 1. A trusted third party (TTP) runs KeyGen and publishes
pk ← KeyGen. 2. During Registration, client generates biometric template x ∈ {0, 1}n and
sends hx = Hash1(pk, x) to server. 3. During Authentication, client generates biometric tem-
plate y ∈ {0, 1}n and sends hy = Hash2(pk, y) to server. 4. Server authenticates the user iff
Verify(pk, hx, hy) returns Accept.

If we assume that the biometric templates of individuals follow uniform distribution over
{0, 1}n, then Theorem 2 from Section 4 would imply that the server can never recover the
original biometric template x. Moreover, the unforgeability property guarantees that even if the
server’s database gets leaked to an attacker then also the attacker cannot come up with a forged
hy′, which would authenticate the attacker. Also, if we use a relational encryption (where a
trusted third party will run KeyGen, the server will have the relational key, the private key
will be thrown away) instead of a relational hash, then we have the added security that only the
server can check relations and authenticate the users. Even if the server’s database gets leaked to
an attacker, without access to the relational key it will look like a semantically secure encrypted
database.

In spite of these strong guarantees there are a few drawbacks of our privacy preserving
authentication scheme, which remain open problems for further exploration. One basic premise
of this scheme is that the biometric template x comes from a uniform distribution over {0, 1}n.
From a practical point of view this is really a strong assumption. One interesting open problem
in this direction is, whether we can build a privacy preserving biometric authentication scheme
when x comes from a distribution with high min-entropy.

In addition, Theorem 2 is no longer applicable if the server receives hx = Hash1(pk, x) and
hy = Hash2(pk, y), where x and y do not come from independent uniform distributions. In
practice, this is an important case: for example, if x and y are generated by the same person
they clearly come from dependent distributions with dist(x, y) ≤ δ. We still conjecture that
even in this case the proximity relational hash construction from Section 4 remains one-way
(albeit the security will probably depend on a stronger hardness assumption).

14

References

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin, editor,
Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages
41–55, Santa Barbara, CA, USA, August 15–19, 2004. Springer, Berlin, Germany.

Can97. Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial information. In
Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture Notes
in Computer Science, pages 455–469, Santa Barbara, CA, USA, August 17–21, 1997. Springer, Berlin,
Germany.

CMR98. Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way probabilistic hash functions
(preliminary version). In 30th Annual ACM Symposium on Theory of Computing, pages 131–140,
Dallas, Texas, USA, May 23–26, 1998. ACM Press.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, 1976.

DRS04. Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In Christian Cachin and Jan Camenisch, editors, Advances in
Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 523–540,
Interlaken, Switzerland, May 2–6, 2004. Springer, Berlin, Germany.

DS05. Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial information. In Harold N.
Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of Computing, pages
654–663, Baltimore, Maryland, USA, May 22–24, 2005. ACM Press.

GGJS13. Shafi Goldwasser, Vipul Goyal, Abhishek Jain, and Amit Sahai. Multi-input functional encryption.
Cryptology ePrint Archive, Report 2013/727, 2013. http://eprint.iacr.org/2013/727.

GKL+13. S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Multi-input func-
tional encryption. Cryptology ePrint Archive, Report 2013/774, 2013. http://eprint.iacr.org/

2013/774.

JS02. Ari Juels and Madhu Sudan. A fuzzy vault scheme. Cryptology ePrint Archive, Report 2002/093,
2002. http://eprint.iacr.org/2002/093.

JW99. Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In ACM CCS 99: 6th Conference on
Computer and Communications Security, pages 28–36, Kent Ridge Digital Labs, Singapore, Novem-
ber 1–4, 1999. ACM Press.

Lyu05. Vadim Lyubashevsky. On random high density subset sums. Electronic Colloquium on Computational
Complexity (ECCC), 12(007), 2005.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor,
Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages
256–266, Konstanz, Germany, May 11–15, 1997. Springer, Berlin, Germany.

A Hardness Assumptions

We summarize the standard hardness assumptions used in this paper.

Assumption 4 (DDH [DH76]) Assuming a generation algorithm G that outputs a tuple (q,G,g)
such that G is of prime order q and has generator g, the DDH assumption asserts that it is com-
putationally infeasible to distinguish between (g,ga,gb,gc) and (g,ga,gb,gab) for a, b, c ← Z∗q.
More formally, for all PPT adversaries A there exists a negligible function negl() such that∣∣∣∣Pr[(q,G,g)← G(1λ); a, b, c← Z∗q : A(g,ga,gb,gc) = 1]−

Pr[(q,G,g)← G(1λ); a, b← Z∗q : A(g,ga,gb,gab) = 1]

∣∣∣∣ < negl(λ)

Assumption 5 (XDH [BBS04]) Consider a generation algorithm G taking the security pa-
rameter as input, that outputs a tuple (q,G1,G2,GT , e,g1,g2), where G1,G2 and GT are groups
of prime order q with generators g1,g2 and e(g1,g2) respectively and which allow an efficiently
computable Zq-bilinear pairing map e : G1 ×G2 → GT . The eXternal decisional Diffie-Hellman
(XDH) assumption asserts that the Decisional Diffie-Hellman (DDH) problem is hard in one of
the groups G1 and G2.

15

http://eprint.iacr.org/2013/727
http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2002/093

Assumption 6 (SXDH [BBS04]) Consider a generation algorithm G taking the security pa-
rameter as input, that outputs a tuple (q,G1,G2,GT , e,g1,g2), where G1,G2 and GT are groups
of prime order q with generators g1,g2 and e(g1,g2) respectively and which allow an efficiently
computable Z∗q-bilinear pairing map e : G1 × G2 → GT . The Symmetric eXternal decisional
Diffie-Hellman (SXDH) assumption asserts that the Decisional Diffie-Hellman (DDH) problem
is hard in both the groups G1 and G2.

Assumption 7 (Random Modular Subset Sum [Lyu05]) Assuming a generation algorithm
G that outputs a tuple (n, q),where q is prime,the Random Modular Subset Sum assumption asserts
that given random elements 〈ai〉ni=1 from the group Zq and

∑n
i=1 εiai for a random ε← {0, 1}n,

it is hard to output η ∈ {0, 1}n such that

n∑
i=1

ηiai = c mod q.

More formally, for all PPT A, there exists a negligible function negl() such that

Pr

[
(n, q)← G(1λ); 〈ai〉ni=1 ← Zq; ε← {0, 1}n; c =

∑n
i=1 εiai

A(〈ai〉ni=1 , c)→ η;
∑n

i=1 ηiai = c mod q

]
< negl(λ).

B Lemma for Proving Security of Fn
2 Linear Relational Hash

In this section we go through a sequence of lemmas, leading to Lemma 4, which is directly used
in the proof of Theorem 1.

Lemma 1. (DDH) : For random g,h← G and r ← Z∗q, the following tuples are computation-
ally indistinguishable under the DDH assumption:

(g,h,gr,hr) ≈DDH (g,h,gr,h−r).

Proof. We have,

(g,h,gr,hr) ≈DDH (g,h,gr,hr
′
) ≈statistical (g,h,gr,h−r

′
) ≈DDH (g,h,gr,h−r),

where r, r′ are generated independently randomly from Z∗q . ut

Lemma 2. Under the Binary Mix DLP assumption, given random elements g, 〈gi〉
n
i=1 from a

group G and gr,v =
∏n
i=1 g

(−1)xir
i , 〈zi〉ni=1 = 〈gri 〉

n
i=1 for random r ← Z∗q and random x← Fn2 it

is hard to output y ∈ Fn2 such that

v =

n∏
i=1

z
(−1)yi
i .

Formally, for all PPT adversaries A there exists a negligible function negl() such that

Pr

[
G← G(1λ); g, 〈gi〉

n
i=1 ← G; r ← Z∗q ;x← Fn2 ;

y ← A
(
g, 〈gi〉

n
i=1 ,g

r,v =
∏n
i=1 g

(−1)xir
i , 〈zi〉ni=1 = 〈gri 〉

n
i=1

) : v =
n∏
i=1

z
(−1)yi
i

]
< negl(λ)

Proof. Suppose there exists an adversary A∗ for which the above probability is non negligible. We

will show, using the adversary A∗ we can break Lemma 2 challenge. (〈gi〉
n
i=1 ,w =

∏n
i=1 g

(−1)xi
i)

be the Binary-Mix-DLP (Assumption 1) challenge. We choose random g ← G and random
r ← Z∗q . We send

(
g, 〈gi〉

n
i=1 ,g

r,wr, 〈gri 〉
n
i=1

)
to the adversary A∗. We publish the output of A∗

to the Binary-Mix-DLP challenger. Clearly, the success probability of breaking the Binary-Mix-
DLP assumption is same as success probability of the adversary A∗. Hence, under Binary-Mix-
DLP assumption the success probability of A∗ can not be non-negligible. ut

16

Lemma 3. Under the DDH assumption, given random elements g, 〈gi〉
n
i=1 from a group G,

random r ← Z∗q and any x ∈ Fn2 the following tuples are computationally indistinguishable.(
g, 〈gi〉

n
i=1 ,g

r,

n∏
i=1

gri ,
〈
g
(−1)xir
i

〉n
i=1

)
≈DDH

(
g, 〈gi〉

n
i=1 ,g

r,
n∏
i=1

g
(−1)xir
i , 〈gri 〉

n
i=1

)
Proof. We define a sequence of games 〈Gamej〉nj=1. We argue, in Gamej , for random g, 〈gi〉

n
i=1

from a group G, random r ← Z∗q and any x ∈ Fn2 the following tuples are computationally
indistinguishable under DDH assumption

g, 〈gi〉
n
i=1 ,g

r,

j−1∏
i=1

g
(−1)xir
i

n∏
i=j

gri , 〈gri 〉
j−1
i=1 ,

〈
g
(−1)xir
i

〉n
i=j


≈DDHg, 〈gi〉

n
i=1 ,g

r,

j∏
i=1

g
(−1)xir
i

n∏
i=j+1

gri , 〈gri 〉
j
i=1 ,

〈
g
(−1)xir
i

〉n
i=j+1

 .

If xj = 0, then the above two distributions are in fact identical. So, we can only consider
the case xj = 1. In this case we need to show the following distributions are computationally
indistinguishable under DDH.g, 〈gi〉

n
i=1 ,g

r,grj

j−1∏
i=1

g
(−1)xir
i

n∏
i=j+1

gri , 〈gri 〉
j−1
i=1 ,g

−r
j ,
〈
g
(−1)xir
i

〉n
i=j+1

 (1)

≈DDHg, 〈gi〉
n
i=1 ,g

r,g−rj

j−1∏
i=1

g
(−1)xir
i

n∏
i=j+1

gri , 〈gri 〉
j−1
i=1 ,g

r
j ,
〈
g
(−1)xir
i

〉n
i=j+1

 . (2)

Suppose there exists an adversary A∗, which can distinguish between the above two distributions
within non-negligible advantage. We will show using the adversary A∗, we can break a DDH
challenge (g,h,gr, χ) (where χ is either hr or h−r with probability 1/2 each). Given a DDH
challenge (g,h,gr, χ), we take random 〈ui〉j−1i=1 ← Z∗q and random 〈ui〉ni=j+1 ← Z∗q and invoke
adversary A∗ with inputg, 〈gui〉j−1i=1 ,h, 〈g

ui〉ni=j+1 ,g
r, χ

j−1∏
i=1

g(−1)xiuir
n∏

i=j+1

guir, 〈guir〉j−1i=1 , χ
−1,
〈
g(−1)xiuir

〉n
i=j+1

 .

Depending on whether χ takes the value hr or h−r, the above expression is identically distributed
as expression (1) or expression (2). So, using the output of A∗, we can break the DDH chal-
lenge. In other words, there is no such adversary A∗, which breaks Gamej with non-negligible
probability, for xj = 1. Now, transitioning through the sequence of games 〈Gamej〉nj=1 we can
argue the validity of this lemma. ut

Lemma 4. Under the Binary Mix DLP and DDH Assumptions, given random elements g, 〈ĝi〉
n
i=1

from a group G and gr, v̂ =
∏n
i=1 ĝri , 〈ẑi〉

n
i=1 =

〈
ĝ
(−1)xir
i

〉n
i=1

for a random r ← Z∗q, and random

r ← Fn2 it is hard to output y ∈ Fn2 , such that

v̂ =
n∏
i=1

ẑ
(−1)yi
i .

17

Formally, for all PPT adversaries A there exists a negligible function negl() such that

Pr

[
G← G(1λ); g, 〈ĝi〉

n
i=1 ← G; r ← Z∗q ; r ← Fn2 ;

y ← A
(
g, 〈ĝi〉

n
i=1 ,g

r, v̂ =
∏n
i=1 ĝri , 〈ẑi〉

n
i=1 =

〈
ĝ
(−1)xir
i

〉n
i=1

) : v̂ =

n∏
i=1

ẑ
(−1)yi
i

]
< negl(λ)

Proof. Suppose we are given a Lemma 2 challenge(
g, 〈gi〉

n
i=1 ,g

r,v =
n∏
i=1

g
(−1)xir
i , 〈zi〉ni=1 = 〈gri 〉

n
i=1

)
,

for some random g, 〈gi〉
n
i=1 ← G, random r ← Z∗q and random x← Fn2 . Lemma 2 says, it is hard

to output y ∈ Fn2 such that

v =

n∏
i=1

z
(−1)yi
i .

We will show if there exists an adversary A∗ which breaks Lemma 4 with non-negligible proba-
bility; we can use the adversary A∗ to break Lemma 2 challenge with non-negligible probability.
A∗ takes input (

g, 〈gi〉
n
i=1 ,g

r, v̂ =

n∏
i=1

gri , 〈ẑi〉
n
i=1 =

〈
g
(−1)xir
i

〉n
i=1

)
and outputs y. Whenever, A∗ succeeds we have

v̂ =
n∏
i=1

ẑ
(−1)yi
i .

Lemma 3 says, Lemma 4 and Lemma 2 challenges are indistinguishable for all x ∈ Fn2 (hence,
for random x← Fn2 as well) under DDH assumption. Hence we can give the Lemma 2 challenge(
g, 〈gi〉

n
i=1 ,g

r,v =
∏n
i=1 g

(−1)xir
i , 〈zi〉ni=1 = 〈gri 〉

n
i=1

)
to A∗ and with non-negligible probability

A∗’s output y will satisfy the relation

v =
n∏
i=1

z
(−1)yi
i ,

which is a contradiction to Lemma 2. ut

C Binary Mix DLP is as Hard as Random Modular Subset Sum

We recall the Binary Mix DLP assumption (Assumption 1) from Section 3.

Assumption 1 (Binary Mix DLP) : Assuming a generation algorithm G that outputs a tuple
(n, q,G) such that G is a group of prime order q, the Binary Mix DLP assumption asserts that

given random elements 〈gi〉
n
i=1 from the group G and

∏n
i=1 g

(−1)xi
i , for a random x ← Fn2 , it is

computationally infeasible to output y ∈ Fn2 such that

n∏
i=1

g
(−1)xi
i =

n∏
i=1

g
(−1)yi
i .

More formally, for all PPT adversaries A, there exists a negligible function negl() such that

Pr

[
(n, q,G)← G(1λ);x← Fn2 , 〈gi〉

n
i=1 ← G; y ← A

(
〈gi〉

n
i=1 ,

∏n
i=1 g

(−1)xi
i

)
:∏n

i=1 g
(−1)xi
i =

∏n
i=1 g

(−1)yi
i

]
< negl(λ).

18

Theorem 9. The Binary-Mix-DLP assumption (Assumption 1) can be reduced to the Random-
Modular-Subset-Sum assumption (Assumption 7).

Proof. We show, given a Binary-Mix-DLP attacker A, we can solve any Random-Modular-
Subset-Sum challenge (〈ai〉ni=1 , c). Suppose, the Binary-Mix-DLP attacker A works in a group
G of order q, which has a generator g. We invoke A on input(

〈gai〉ni=1 ,g
−2c+

∑n
i=1 ai

)
.

If A successfully outputs τ ∈ Fn2 as a solution to the above Binary-Mix-DLP problem, τ is also
a solution to the Random-Modular-Subset-Sum challenge. ut

D Generic Group Model

In this section we show Assumption 1 and Assumption 3 hold in Generic Group Model. Let
A be a probabilistic polynomial time (PPT) generic group adversary. Following [Sho97], the
generic group model is implemented by choosing a random encoding σ : G → {0, 1}m (where
m >> log q). Instead of working directly with group elements, A works with images of group
elements under σ. This implies, all A can do, is test for elemental equality. A is also given access
to following two oracles:

– Group Action Oracle : Given σ(g1) and σ(g2), it returns σ(g1g2).

– Group Inversion Oracle : Given σ(g), it returns σ(g−1).

We also assume, A queries the oracles with encoding of the elements it has previously seen.
This assumption holds, because the probability of choosing a string which is also a image of σ
is negligible (as m >> log q).

Theorem 10. The Binary Mix DLP assumption (Assumption 1) holds in Generic Group Model.

Proof. We consider an algorithm B playing the following game with A. Algorithm B chooses n
bit strings uniformly in {0, 1}m: 〈

σig
〉n
i=1

, σg

and gives them to A. Internally, B keeps track of the encoded elements using polynomials in the
ring

Fq[R1, · · · , Rn, Tg].

To maintain consistency with the bit strings given to A, B creates a list L of pairs (F, σ)
where F is a polynomial in the ring specified above and σ is the encoding of a group element.
The polynomial F represents the exponent of the encoded element. Initially, L is set to,

L0 = {
〈
(Ri, σ

i
g)
〉n
i=1

, (Tg, σg)}.

Algorithm B simulates the oracles as follows.

– Group Action : Given two strings σi, σj , B recovers the corresponding polynomials Fi, Fj
and computes Fi + Fj . If Fi + Fj is already in L, B returns the corresponding bit string;
otherwise it returns a uniform bit string σ ∈ {0, 1}m and stores (Fi + Fj , σ) in L.

– Group Inversion : Given an element σ, B recovers the corresponding polynomial represen-
tation F and computes−F . If the polynomial−F is already in L, B returns the corresponding
bit string; otherwise it returns a uniform bit string σ ∈ {0, 1}m and stores (−F, σ) in L.

19

After A queried the oracles, it outputs a y ∈ Fn2 . At this point, B chooses random x ← Fn2
and 〈ri〉ni=1 from Zq at random. B sets:

〈Ri〉ni=1 = 〈ri〉ni=1

Tg =
n∑
i=1

(−1)xiri

A wins the game if one of the following is true.

– Case - I : Tg =
∑n

i=1(−1)yiRi
– Case - II : Simulation of B is inconsistent.

Suppose x is the random variable corresponding to random choice of x. Now, we find an upper
bound for the Case - I probability.

Pr

[
Tg =

n∑
i=1

(−1)yiRi

]
= Pr

[
n∑
i=1

(−1)xiRi =

n∑
i=1

(−1)yiRi

]

= Pr

[
n∑
i=1

(−1)xiRi =

n∑
i=1

(−1)yiRi
∣∣x = y

]
Pr[x = y]

+
∑
η∈Fn2
η 6=0n

Pr

[
n∑
i=1

(−1)xiRi =
n∑
i=1

(−1)yiRi
∣∣x = y + η

]
Pr[x = y + η]

=
1

2n
+

1

2n

∑
η∈Fn2
η 6=0n

Pr

[
n∑
i=1

(−1)yi((−1)ηi − 1)Ri = 0
∣∣x = y + η

]

=
1

2n
+

1

2n

∑
η∈Fn2
η 6=0n

Pr

−2
∑
i:ηi=1

(−1)yiRi = 0


=

1

2n
+

1

2n

∑
η∈Fn2
η 6=0n

1

q

≤ 1

2n
+

1

q

The list L, is initially set to L0. New polynomials get added to the list, because of invocation
of Group Action and Group Inversion oracles by A. However, the operations of these two oracles
never increase the degree of the polynomials present in the list L. In other words, any polynomial
Fi ∈ L is of the form:

Fi =
n∑
k=1

aikRk + +ciTg,

where
〈
aik
〉n
k=1

, ci are some constants from Zq.
We need to show, two distinct polynomials Fi and Fj can collide after substituting random

values of 〈ri〉ni=1 , x only with negligible probability. In other words, we need to find an upper
bound of the probability that the polynomial

Fi − Fj =
n∑
k=1

(aik − a
j
k)Rk + (ci − cj)Tg

20

hits a zero.

Lemma 5 shows, this upper bound is actually 1
q + 1

2n . Now, if an adversary makes t queries,
the size of the list L can be upper bounded by |L0|+ t = n+ t+ 1. Hence, the probability that
the B ’s simulation is inconsistent is at most

(n+ t+ 1)2
(

1

q
+

1

2n

)
.

After adding the upper bound of the probability of Case-I along with it, we get an upper bound
of A’s advantage as, (

(n+ t+ 1)2 + 1
)(1

q
+

1

2n

)
.

ut

Lemma 5. For any nonzero polynomial

F =

n∑
i=1

aiRi + cTg,

in Fq[R1, · · · , Rn, Tg] the probability that the polynomial hits a zero is at most

1

q
+

1

2n
,

where 〈ri〉ni=1 are chosen from Zq at random, x is chosen from Fn2 at random and 〈Ri〉ni=1, Tg
are substituted as follows:

〈Ri〉ni=1 = 〈ri〉ni=1

Tg =
n∑
i=1

(−1)xiri.

Proof. x be the random variables corresponding to the random choices of x from Fn2 .

Pr[F = 0] = Pr

[
n∑
i=1

(ai + (−1)xic)Ri = 0

]

Now we evaluate an upper bound for the right hand expression in various cases, depending on
the values of the constants 〈ai〉ni=1 , c.

Case I - (c 6= 0): For any u ∈ Fn2 ,

Pr

[
n∑
i=1

(ai + (−1)xic)Ri = 0

]
≤ (1− 1

2n
)
1

q
+

1

2n
.

Note, the (1− 1
2n) factor comes from the fact that, all ai’s might take the values ±c, and in that

case all coefficients of Ri’s becomes zero with probability 1
2n .

21

Case II - (c = 0) : There erists i∗, s.t. ai∗ 6= 0 (otherwise, F becomes a zero polynomial).

Pr

[
n∑
i=1

(ai + (−1)xic)Ri = 0

]
=

1

q
.

Combining both the cases, we get

Pr

[
n∑
i=1

(ai + (−1)xic)Ri = 0

]
≤ 1

q
+

1

2n
.

ut

Theorem 11. The Decisional Binary Mix assumption (Assumption 3) holds in Generic Group
Model.

Proof. We consider an algorithm B playing the following game with A. Algorithm B chooses
2n+ 1 bit strings uniformly in {0, 1}m:〈

σig
〉n
i=1

,
〈
σif
〉n
i=1

, σg, σ
0
f , σ

1
f ,

and gives them to A. Internally, B keeps track of the encoded elements using polynomials in the
ring

Fq[R1, · · · , Rn, S1, · · · , Sn, Tg, Tf,0, Tf,1].

To maintain consistency with the bit strings given to A, B creates a list L of pairs (F, σ)
where F is a polynomial in the ring specified above and σ is the encoding of a group element.
The polynomial F represents the exponent of the encoded element. Initially, L is set to,

L0 = {
〈
(Ri, σ

i
g)
〉n
i=1

,
〈
(Si, σ

i
f)
〉n
i=1

, (Tg, σg), (Tf,0, σ
0
f), (Tf,1, σ

1
f)}.

Algorithm B simulates the oracles as follows.

– Group Action : Given two strings σi, σj , B recovers the corresponding polynomials Fi, Fj
and computes Fi + Fj . If Fi + Fj is already in L, B returns the corresponding bit string;
otherwise it returns a uniform bit string σ ∈ {0, 1}m and stores (Fi + Fj , σ) in L.

– Group Inversion : Given an element σ, B recovers the corresponding polynomial represen-
tation F and computes−F . If the polynomial−F is already in L, B returns the corresponding
bit string; otherwise it returns a uniform bit string σ ∈ {0, 1}m and stores (−F, σ) in L.

After A queried the oracles, it outputs a bit b′. At this point, B chooses a bit b at random
and 〈ri〉ni=1 , 〈si〉

n
i=1 from Zq at random. B also chooses x, y from Fn2 at random. B sets:

〈Ri〉ni=1 = 〈ri〉ni=1

〈Si〉ni=1 = 〈si〉ni=1

Tg =

n∑
i=1

(−1)xiri

Tf,b =

n∑
i=1

(−1)xisi

Tf,1−b =

n∑
i=1

(−1)yisi

22

If the simulation provided by B is consistent, it reveals nothing about b. This means A
can only guess the correct value of b with probability 1/2. The simulation can be inconsistent,
only if the random choices of b, 〈ri〉ni=1 , 〈si〉

n
i=1 , x, y by B produce a collision(i.e. two different

polynomials taking the same value) in the list L.
The list L, is initially set to L0. New polynomials get added to the list, because of invocation

of Group Action and Group Inversion oracles by A. However, the operations of these two oracles
never increase the degree of the polynomials present in the list L. In other words, any polynomial
Fi ∈ L is of the form:

Fi =
n∑
k=1

aikRk +
n∑
k=1

bikSk + ciTg + diTf,0 + eiTf,1,

where
〈
aik
〉n
k=1

,
〈
bik
〉n
k=1

, ci, di, ei are some constants from Zq.
We need to show, two distinct polynomials Fi and Fj can collide after substituting random

values of b, 〈ri〉ni=1 , 〈si〉
n
i=1 , x, y only with negligible probability. In other words, we need to find

an upper bound of the probability that the polynomial

Fi − Fj =

n∑
k=1

(aik − a
j
k)Rk +

n∑
k=1

(bik − b
j
k)Sk + (ci − cj)Tg + (di − dj)Tf,0 + (ei − ej)Tf,1

hits a zero.
Lemma 6 shows, this upper bound is actually 1

q + 1
2n . Now, if an adversary makes t queries,

the size of the list L can be upper bounded by |L0|+ t = 2n+ t+ 3. Hence, the probability that
the B ’s simulation is inconsistent is at most

(2n+ t+ 3)2
(

1

q
+

1

2n

)
,

which is an upper bound of the advantage of any generic group adversary such as A. ut

Lemma 6. For any nonzero polynomial

F =
n∑
i=1

aiRi +
n∑
i=1

biSi + cTg + dTf,0 + eTf,1,

in Fq[R1, · · · , Rn, S1, · · · , Sn, Tg, Tf,0, Tf,1] the probability that the polynomial hits a zero is at
most

1

q
+

1

2n
,

where bit b is chosen at random, 〈ri〉ni=1 , 〈si〉
n
i=1 are chosen from Zq at random, x, y are chosen

from Fn2 at random and 〈Ri〉ni=1, 〈Si〉ni=1, Tg, Tf,0, Tf,1 are substituted as follows:

〈Ri〉ni=1 = 〈ri〉ni=1

〈Si〉ni=1 = 〈si〉ni=1

Tg =
n∑
i=1

(−1)xiri

Tf,b =

n∑
i=1

(−1)xisi

Tf,1−b =

n∑
i=1

(−1)yisi.

23

Proof. At first we upper bound the probability Pr[F = 0|b = 0]. x and y be the random variables
corresponding to the random choices of x and y from Fn2 .

Pr[F = 0|b = 0] = Pr

[
n∑
i=1

(ai + (−1)xic)Ri +
n∑
i=1

(bi + (−1)xid+ (−1)yie)Si = 0

]

Now we evaluate an upper bound for the right hand expression in various cases, depending on
the values of the constants 〈ai〉ni=1 , 〈bi〉

n
i=1 , c, d, e.

Case I - (c 6= 0): For any u ∈ Fn2 ,

Pr

[
n∑
i=1

(ai + (−1)xic)Ri = u

]
≤ (1− 1

2n
)
1

q
+

1

2n
.

Note, the (1− 1
2n) factor comes from the fact that, all ai’s might take the values ±c, and in that

case all coefficients of Ri’s becomes zero with probability 1
2n . The additive 1

2n term comes for
the special case u = 0.

Case II - (c = 0 and there exists i∗, s.t. ai∗ 6= 0): For any u ∈ Fn2 ,

Pr

[
n∑
i=1

(ai + (−1)xic)Ri = u

]
=

1

q
.

Case III - (c = 0 , ai = 0 for all i, d 6= 0, e 6= 0): For any u ∈ Fn2 ,

Pr

[
n∑
i=1

(bi + (−1)xid+ (−1)yie)Si = u

]
≤ (1− 1

4n
)
1

q
+

1

4n
.

Note, the (1− 1
4n) factor comes from the fact that, all bi’s might take the values (±d±e), and in

that case all coefficients of Si’s becomes zero with probability 1
4n . The additive 1

4n term comes
for the special case u = 0.

Case IV - (c = 0 , ai = 0 for all i, d = 0, e 6= 0): For any u ∈ Fn2 ,

Pr

[
n∑
i=1

(bi + (−1)xid+ (−1)yie)Si = u

]
≤ (1− 1

2n
)
1

q
+

1

2n
.

Note, the (1− 1
2n) factor comes from the fact that, all bi’s might take the values ±e, and in that

case all coefficients of Si’s becomes zero with probability 1
2n . The additive 1

2n term comes for
the special case u = 0.

Case V - (c = 0 , ai = 0 for all i, d 6= 0, e = 0): For any u ∈ Fn2 ,

Pr

[
n∑
i=1

(bi + (−1)xid+ (−1)yie)Si = u

]
≤ (1− 1

2n
)
1

q
+

1

2n
.

Note, the (1− 1
2n) factor comes from the fact that, all bi’s might take the values ±d, and in that

case all coefficients of Si’s becomes zero with probability 1
2n . The additive 1

2n term comes for
the special case u = 0.

24

Case VI - (c = 0 , ai = 0 for all i, d = 0, e = 0): There exists j∗, s.t. bj∗ 6= 0 (otherwise, F
becomes the zero polynomial). Hence, for any u ∈ Fn2 ,

Pr

[
n∑
i=1

(bi + (−1)xid+ (−1)yie)Si = u

]
=

1

q
.

Hence, combining all cases together we have,

Pr[F = 0|b = 0] = Pr

[
n∑
i=1

(ai + (−1)xic)Ri +
n∑
i=1

(bi + (−1)xid+ (−1)yie)Si = 0

]

≤ 1

q
+

1

2n

With a similar analysis, we can also show

Pr[F = 0|b = 1] ≤ 1

q
+

1

2n
.

ut

E Correctness of the Fn
p Linear Relational Hash

For any, x, y ∈ Fnp we have

Hash1(x) = (hx0, 〈hxi〉ni=1 , hxn+1) =
(
gr0,
〈
gω

xir
i

〉n
i=1

,grn+1

)
Hash1(y) = (hy0, 〈hyi〉ni=1 , hyn+1) =

(
hs0,
〈
hω

yis
i

〉n
i=1

,hsn+1

)
Hence,

e(hxn+1, hyn+1)
n∏
i=1

e(hxi, hyi)
ω−(xi+yi) = e(grn+1,h

s
n+1)

n∏
i=1

e
(
gω

xir
i ,hω

yis
i

)ω−(xi+yi)

=

n+1∏
i=1

e (gri ,h
s
i) =

n+1∏
i=1

e
(
gair0 ,hbis0

)
= e (gr0,h

s
0)

∑n+1
i=1 aibi = e(hx0, hy0)

pkR

This shows that our relational hash scheme correctly verifies tuples of the form (x, y, x+ y) for
any x, y ∈ Fnp .

On the other hand, if the verification equation gets satisfied for some z ∈ Fnp , we must have

e (gr0,h
s
0)

∑n+1
i=1 aibi = e(grn+1,h

s
n+1)

n∏
i=1

e
(
gω

xir
i ,hω

yis
i

)ω−zi
=⇒

n∑
i=1

aibi =
n∑
i=1

ωxi+yi−ziaibi

Let U ⊆ {1, · · · , n} be the set of indices, such that j ∈ U if and only if xi + yi 6= zi. Now, the
above equation reduces to ∑

i∈Q
(1− ωxi+yi−zi)aibi = 0.

25

If x+ y 6= z, then Q is non empty and we can consider a fixed i∗ ∈ Q and we have

ai∗bi∗ = −(1− ωxi∗+yi∗−zi∗)−1
∑

i∈Q\{i∗}

(1− ωxi+yi−zi)aibi.

Now, if we fix ai’s and bi’s for i ∈ Q \ {i∗} and consider only the randomness of ai∗ and bi∗ , the
above equation holds with probability at most 1/q when

∑
i∈Q\{i∗}(1 − ωxi+yi−zi)aibi 6= 0 and

with probability at most 2/q when
∑

i∈Q\{i∗}(1− ωxi+yi−zi)aibi = 0. This implies for any tuple
(x, y, z) with z 6= x + y, the verification equation gets satisfied with probability at most 2/q.
Hence the above algorithms in fact constitute a correct relational hash for linearity over Fnp . ut

F Proof Sketch of One-wayness of the Fn
p Linear Relational Hash

We prove the theorem starting with a similar lemma as the Fn2 case. We skip the proof of this
lemma as it is almost identical to the Fn2 lemma. Detailed proof will be provided in the full
version.

Lemma 7. Under the p-ary Mix DLP and DDH Assumptions, given random elements g, 〈ĝi〉
n
i=1

from a group G and gr, v̂ =
∏n
i=1 ĝri , 〈ẑi〉

n
i=1 =

〈
ĝω

xir
i

〉n
i=1

for a random r ← Z∗q, and random
x← Fnp it is hard to output y ∈ Fnp , such that

v̂ =

n∏
i=1

ẑω
−yi

i .

Formally, for all PPT adversaries A there exists a negligible function negl() such that

Pr

[
G← G(1λ); g, 〈ĝi〉

n
i=1 ← G; r ← Z∗q ;x← Fnp ;

y ← A
(
g, 〈ĝi〉

n
i=1 ,g

r, v̂ =
∏n
i=1 ĝri , 〈ẑi〉

n
i=1 =

〈
ĝω

xir
i

〉n
i=1

) : v̂ =
n∏
i=1

ẑω
−yi

i

]
< negl(η)

Now we show that if the relational hash is not one-way secure (and we have a one-wayness
adversary B), then we can construct an adversary A breaking Lemma 7. To achieve that, consider

that the adversary A is given a Lemma 7 challenge
(
g, 〈ĝi〉

n
i=1 ,g

r,
∏n
i=1 ĝri ,

〈
ĝω

xir
i

〉n
i=1

)
. We now

construct the one-wayness challenge as follows: We sample u, s and 〈ui〉ni=1, all randomly from Z∗q .
Sample h0 randomly from G2. Now we define the output of KeyGen to be pk := (pk1, pk2, pkR)
defined as follows:

pk1 :=

(
g,

〈
ĝ
u−1
i
i

〉n
i=1

,gu
n∏
i=1

ĝ−1i

)
, pk2 :=

(
h0, 〈huis0 〉

n
i=1 ,h

s
0

)
, pkR := us

Observe that g,

〈
ĝ
u−1
i
i

〉n
i=1

,h0, 〈huis0 〉
n
i=1 ,h

s
0 and us are all uniformly random and independent

elements of their respective domains. The group element gu
∏n
i=1 ĝ−1i is fixed given the other

elements. Hence (pk1, pk2, pkR) has identical distribution as the output of the original KeyGen.
A publishes (pk1, pk2, pkR) to the adversary B and then also gives a challenge hash:

hx :=

gr,

〈
ĝ
ωxir·u−1

i
i

〉n
i=1

,gr·u

(
n∏
i=1

ĝri

)−1 .

Once B outputs an element y ∈ Fnp , A just relays that to the Lemma 4 challenger. Now,
observe that hx is identically distributed as Hash1(x) for a random x ← Fnp . Therefore, the
probability that y = x is same as the advantage of B against the security of the relational hash
scheme. Therefore the scheme is secure given Lemma 7. ut

26

G Proof of Theorem 6

We, recall in Definition 4 Oracle Simulation Security implies having access to hash value Hash1(
pk, x) is not more useful than a relational oracle Rx(·, ·) for predicting P (pk, x), for all predicates
P . At first, we prove Lemma 8, which says having access to a relational hash value, which is
2-POW is not really helpful for predicting the value of any predicate.

Lemma 8. If a probabilistic function family {hk}k∈K with domain X and randomness space U
is 2-value perfectly One-Way with respect to probability distributions X (over X) and K (over
K), then for all predicates P (·, ·) and all PPTs A:

|Pr[A(k, hk(x, r)) = P (k, x)]− Pr[A(k, hk(x
′, r)) = P (k, x)]| ≤ negl(λ).

Here, x and x′ are independently sampled from X , k ← K and r comes from a uniform distri-
bution over randomness space U

Proof. Let D(k, y0, y1) be the distinguisher that outputs 1 iff A(y0) = A(y1). For every x and k

define Qx,k
def
= Pr[A(k, hk(x, r)) = 1]. Now we have,

|Pr[A(k, hk(x, r)) = P (k, x)]− Pr[A(k, hk(x
′, r)) = P (k, x)]|

≤ ∆(〈A(k, hk(x, r)), k, x〉 ,
〈
A(k, hk(x

′, r)), k, x
〉

)

= Expx,k[|Qx,k − Expx[Qx,k]|]

≤ Expk

[√
Varx[Qx,k]

]
≤
√

Expk [Varx[Qx,k]]

=

√
Expk,x

[
Q2
x,k

]
− Expk[Expx[Qx,k]2]

=

√
1

2
|Pr[D(k, hk(x, r1), hk(x, r2)) = 1]− Pr[D(k, hk(x1, r1), hk(x2, r2)) = 1]|

ut

Now we prove Theorem 6. Let C be an adversary which given pk,Hash1(pk, x),Hash2(pk, y)
outputs a single bit. Let S be the adversary that, given pk, randomly selects x′ ← X and y′ ← Y,
and outputs C(pk,Hash1(pk, x

′),Hash2(pk, y
′)).

We now have,∣∣∣∣Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]
−Pr[SRx,Ry ,Rx,y(pk) = P (pk, x, y)]

∣∣∣∣
=

∣∣∣∣ Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]
−Pr[C(pk,Hash1(pk, x

′),Hash2(pk, y
′)) = P (pk, x, y)]

∣∣∣∣
≤
∣∣∣∣ Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]
−Pr[C(pk,Hash1(pk, x),Hash2(pk, y

′)) = P (pk, x, y)]

∣∣∣∣+ negl(λ)

(Since Hash1 is a 2-value POW and by Lemma 8.)

≤ negl(λ)

(Since Hash2 is a 2-value POW and by Lemma 8.)

ut

27

H Proof of Theorem 8

We prove this theorem using the following lemma.

Lemma 9. Under the Decisional Binary Mix and DDH assumptions, the following distributions
are computationally indistinguishable given random elements g0, 〈gi〉

n
i=1 ← G and r, s← Z∗q and

random x, y ← Fn2 :(
g0, 〈gi〉

n
i=1 , gr0,

〈
g
(−1)xir
i

〉n
i=1

,

n∏
i=1

gri , gs0,
〈
g
(−1)xis
i

〉n
i=1

,

n∏
i=1

gsi

)

and (
g0, 〈gi〉

n
i=1 , gr0,

〈
g
(−1)xir
i

〉n
i=1

,
n∏
i=1

gri , gs0,
〈
g
(−1)yis
i

〉n
i=1

,
n∏
i=1

gsi

)
.

Proof. We show that the following distributions are indistinguishable:

Dist0
def
=

(
g0, 〈gi〉

n
i=1 , gr0,

〈
g
(−1)xir
i

〉n
i=1

,

n∏
i=1

gri , gs0,
〈
g
(−1)xis
i

〉n
i=1

,

n∏
i=1

gsi

)

and

Dist′0
def
=

(
g0, 〈gi〉

n
i=1 , f0, 〈fi〉ni=1 ,

n∏
i=1

f
(−1)xi
i , h0, 〈hi〉ni=1 ,

n∏
i=1

h
(−1)xi
i

)
,

where the gi, fi and hi’s are sampled independently randomly.

Let

Dist0,k
def
=


g0, 〈gi〉

n
i=1 ,

gr0,
〈
g
(−1)xir
i

〉k−1
i=1

, 〈fi〉ni=k ,
∏k−1
i=1 gri ·

∏n
i=k f

(−1)xi
i ,

gs0,
〈
g
(−1)xis
i

〉k−1
i=1

, 〈hi〉ni=k ,
∏k−1
i=1 gsi ·

∏n
i=k h

(−1)xi
i


Suppose a DDH instance (u,v,ur,w) is given, where the challenge is to decide whether w is

vr or random. We construct the following distribution, after choosing s and ui’s randomly from
Z∗q , fi and hi’s randomly from G and x randomly from Fn2 :

Dist0,k,DDH
def
=


u, 〈uui〉k−1i=1 ,v, 〈uui〉

n
i=k+1 ,

ur,
〈
ur(−1)

xiui
〉k−1
i=1

,w(−1)xk , 〈fi〉ni=k+1 ,
∏k−1
i=1 urui ·w ·

∏n
i=k+1 f

(−1)xi
i ,

us,
〈
us(−1)

xiui
〉k−1
i=1

, 〈hi〉ni=k ,
∏k−1
i=1 usui ·

∏n
i=k h

(−1)xi
i


Now, note that Dist0,k,DDH is identical to Dist0,k when w is random and is otherwise

identical to:

Dist0,k+1/2
def
=


g0, 〈gi〉

n
i=1 ,

gr0,
〈
g
(−1)xir
i

〉k
i=1

, 〈fi〉ni=k+1 ,
∏k
i=1 gri ·

∏n
i=k+1 f

(−1)xi
i ,

gs0,
〈
g
(−1)xis
i

〉k−1
i=1

, 〈hi〉ni=k ,
∏k−1
i=1 gsi ·

∏n
i=k h

(−1)xi
i


By a similar reduction, Dist0,k+1/2 ≈DDH Dist0,k+1, leading to the conclusion Dist0,k ≈DDH

Dist0,k+1. Completing the chain, we have, Dist0 = Dist0,n+1 ≈DDH · · · ≈DDH Dist0,1 = Dist′0.

28

By doing an analogous proof, we have that the following distributions are indistinguishable
as well:

Dist1
def
=

(
g0, 〈gi〉

n
i=1 , gr0,

〈
g
(−1)xir
i

〉n
i=1

,
n∏
i=1

gri , gs0,
〈
g
(−1)yis
i

〉n
i=1

,
n∏
i=1

gsi

)

and

Dist′1
def
=

(
g0, 〈gi〉

n
i=1 , f0, 〈fi〉ni=1 ,

n∏
i=1

f
(−1)xi
i , h0, 〈hi〉ni=1 ,

n∏
i=1

h
(−1)yi
i

)
,

where the gi, fi and hi’s are sampled independently randomly.

Finally observe that Dist′0 and Dist′1 are indistinguishable by the Decisional Binary Mix
(DBM) assumption. Hence we have: Dist0 ≈DDH,DBM Dist1. ut

Now we proceed to prove Theorem 8. Specifically, we show that an adversary for distin-
guishing the distributions (Let’s call them ∆0 and ∆1) in Theorem 8 can be used to build an
adversary for distinguishing Dist0 and Dist1. So suppose we are given a sample:(

g0, 〈gi〉
n
i=1 , gr0,

〈
g
(−1)xir
i

〉n
i=1

,
n∏
i=1

gri , gs0,
〈
g
(−1)zis
i

〉n
i=1

,
n∏
i=1

gsi

)
,

where the task is to decide if z = x or independently random.

We now construct a ∆0/∆1 distinguishing adversary B as follows: We sample u, s and 〈ui〉ni=1,
all randomly from Z∗q . Sample h0 randomly from G2. Now we define pk as (pk1, pk2, pkR):

pk1 := g0,

〈
g
u−1
i
i

〉n
i=1

,gu0

n∏
i=1

g−1i

pk2 := h0, 〈huis0 〉
n
i=1 ,h

s
0

pkR := us

Observe that g0,

〈
g
u−1
i
i

〉n
i=1

,h0, 〈huis0 〉
n
i=1 ,h

s
0 and us are all uniformly random and independent

elements of their respective domains. The group element gu0
∏n
i=1 g−1i is fixed given the other

elements. Hence (pk1, pk2, pkR) has identical distribution as the original protocol.

A then publishes the following tuple to the adversary B:

Tuple
def
=


pk,

gr0,

〈
g
(−1)xir·u−1

i
i

〉n
i=1

,gr·u0 (
∏n
i=1 gri)

−1 ,

gs0,

〈
g
(−1)zis·u−1

i
i

〉n
i=1

,gs·u0 (
∏n
i=1 gsi)

−1

 .

A then relays the response of B. In the case that z = x, Tuple is from the distribution ∆0.
In the case that z is random, Tuple is from the distribution ∆1. ut

I Relational Encryption

Definition 8 (Relational Encryption). A Relational Encryption scheme for a relation R ⊆
X × Y ×Z is a tuple of algorithms (KeyGen,Enc1,Dec1,Enc2,Dec2,Verify) satisfying the

29

following correctness conditions:

(pk1, sk1, pk2, sk2, skR)← KeyGen(1λ)

cx← Enc1(pk1, x)

cy ← Enc2(pk2, y)

b← Verify(skR, cx, cy, z)

then we require that b ∼= R(x, y, z) with overwhelming probability.

Definition 9 (Security Definition). We define a Relational Encryption scheme (KeyGen,
Enc1, Enc2,Dec1,Dec2,Verify) to be IND-CPA secure if the following hold:

– Let K1(1
λ) be the algorithm that runs KeyGen(1λ), takes its output (pk1, sk1, pk2, sk2, skR)

and outputs (pk1, sk1). Then (K1,Enc1,Dec1) is IND-CPA secure.

– Let K2(1
λ) be the algorithm that runs KeyGen(1λ), takes its output (pk1, sk1, pk2, sk2, skR)

and outputs (pk2, sk2). Then (K2,Enc2,Dec2) is IND-CPA secure.

Moreover, the relational encryption scheme is one-way secure or unforgeable or oracle simula-
tion secure if condition 1, 2 or 3 holds. Let KR(1λ) be the algorithm that runs KeyGen(1λ),
takes its output (pk1, sk1, pk2, sk2, skR) and outputs pk = (pk1, pk2, skR). Suppose, X and Y be
independent probability distributions over X and Y .

1. The relation encryption scheme is one-way secure for the probability distributions X and Y
if

(KR,Enc1,Enc2,Verify)

is a one-way secure relational hash for the probability distributions X and Y.

2. The relation encryption scheme is unforgeable for the probability distributions X and Y if

(KR,Enc1,Enc2,Verify)

is an unforgeable relational hash for the probability distributions X and Y.

3. The relation encryption scheme is oracle simulation secure for the probability distributions
X and Y if

(KR,Enc1,Enc2,Verify)

is an oracle simulation secure relational hash for the probability distributions X and Y.

I.1 Black Box Construction of Relational Encryption Scheme from a Relational
Hash

Given a relational hash scheme,

(KeyGenHash,Hash1,Hash2,VerifyHash)

for a relation R ⊆ X × Y × Z and an IND-CPA secure encryption scheme

(KeyGenCPA,EncCPA,DecCPA)

we can build a relation encryption scheme for the same relation R as follows.

30

KeyGen: Run KeyGenCPA three times and get three pairs of public/private keys.

(pk1cpa, sk
1
cpa)← KeyGenCPA

(pk2cpa, sk
2
cpa)← KeyGenCPA

(pk3cpa, sk
3
cpa)← KeyGenCPA

Also run KeyGenHash get the hash public key pkhash.

pkhash ← KeyGenHash.

Define, pk1, sk1, pk2, sk2, skR as follows:

pk1 = (pk1cpa, pk
3
cpa, pkhash)

sk1 = sk1cpa

pk2 = (pk2cpa, pk
3
cpa, pkhash)

sk2 = sk2cpa

skR = (sk3cpa, pkhash)

Output
(pk1, sk1, pk2, sk2, skR).

Enc1: Given x ∈ X, and pk1 = (pk1cpa, pk
3
cpa, pkhash) evaluate

cx1 = EncCPA(pk1cpa, x)

cx2 = EncCPA(pk3cpa,Hash1(pkhash, x))

Output
cx = (cx1, cx2)

Dec1: Given cx = (cx1, cx2) and sk1 = sk1cpa output

DecCPA(sk1cpa, cx1).

Enc2 and Dec2 are defined similarly.

Verify: Given skR = (sk3cpa, pkhash), cx = (cx1, cx2), cy = (cy1, cy2) and z ∈ Z, output

VerifyHash(pkhash,DecCPA(sk3cpa, cx2),DecCPA(sk3cpa, cy2), z).

Theorem 12. The relational encryption scheme defined by

(KeyGen,Enc1,Enc2,Dec1,Dec2,Verify)

is IND-CPA secure if (KeyGenCPA,EncCPA,DecCPA) is an IND-CPA secure relational
encryption scheme. Moreover, the relation encryption scheme is

– one-way secure if (KeyGenHash,Hash1,Hash2,VerifyHash) is one-way secure relational
hash

– unforgeable if (KeyGenHash,Hash1,Hash2,VerifyHash) is unforgeable relational hash
– oracle-simulation secure if (KeyGenHash,Hash1,Hash2,VerifyHash) is oracle-simulation

secure relational hash.

31

I.2 Relational Encryption for Linearity in Fn
2

The relational hash scheme for linearity over Fn2 in Section 3, is in fact a relational encryption
scheme if KeyGen outputs the following secret keys,

sk1 := 〈ai〉ni=1

sk2 := 〈bi〉ni=1

along with the public keys and the relational key pk1, pk2, skR.

Enc1 and Enc2 are exactly same as Hash1 and Hash2. Decryption algorithms would work
as follows.

Dec1: Given ciphertext cx = 〈cxi〉n+1
i=0 and sk1 = 〈ai〉ni=1, the plaintext is constructed, bit by

bit, as follows:

xi :=


0 if cxi = cxai0
1 if cxi = cx−ai0

⊥ else

Dec2: Given ciphertext cy = 〈cyi〉n+1
i=0 and sk2 = 〈bi〉ni=1, the plaintext is constructed, bit by

bit, as follows:

yi :=


0 if cyi = cybi0
1 if cyi = cy−bi0

⊥ else

I.3 Relational Encryption for Proximity

It is also possible to build a Relational encryption scheme for proximity from

– a family of (n, k, d) linear error correcting code (ECC) C.
– a IND-CPA secure encryption scheme (KeyGenCPA,EncCPA,DecCPA).

– a Relational Encryption scheme for linearity in Fk2:

(KeyGenLinear,EncLinear1,DecLinear1,EncLinear2,DecLinear2,VerifyLinear).

This is ‘slightly’ efficient than the generic construction given in Section I.1.

KeyGen: Given the security parameter, choose a (n, k, 2δ) linear error correcting code C, where
k is in the same order as the security parameter. Run the key generator algorithms of the CPA
secure encryption scheme and the relational encryption for linearity.

– (pkcpa, skcpa) be the output of KeyGenCPA

– (pk1,lin, pk2,lin, sk1,lin, sk2,lin, skRlin) be the output of KeyGenLinear

Now we define the output of KeyGen as follows:

pk1 := (Encode,Decode, pkcpa, pk1,lin) sk1 := (skcpa, sk1,lin)

pk2 := (Encode,Decode, pkcpa, pk2,lin) sk2 := (skcpa, sk2,lin)

skR := (skcpa, skRlin)

32

Enc1: Given plaintext x ∈ Fn2 and pk1 = (Encode,Decode, pkcpa, pk1,lin), the ciphertext is
constructed as follows: Sample a random r ← Fk2 and then compute the following:

cx1 := EncCPA(pkcpa,m+ Encode(r))

cx2 := EncLinear1(pk1,lin, r)

Publish the final ciphertext cx := (cx1, cx2).

Dec1: Given ciphertext cx = (cx1, cx2) and sk1 = (skcpa, sk1,lin), the plaintext is constructed,
as follows:

x := DecCPA(skcpa, cx1) + DecLinear1(sk1,lin, cx2)

Enc1 and Dec2 are defined similarly.

Verify: Given the ciphertexts cx := (cx1, cx2), cy := (cy1, cy2) and skR := (skcpa, skRlin)
verification is done as follows. Note, Verify has access to Decode, which is available in the
public key information.

– Recover z as

z := Decode(DecCPA(skcpa, cx1) + DecCPA(skcpa, cy1)).

Output Reject if Decode returns ⊥.
– Output VerifyLinear(skRlin, cx2, cy2, z).

I.4 Relational Encryption for Linearity in Fn
p

If p is at most a polynomial in the security parameter3 λ, i.e., p = λO(1) then similar to Section
I.2 the above mentioned relational hash, is in fact a relational encryption scheme. KeyGen
would output the following secret keys,

sk1 := 〈ai〉ni=1

sk2 := 〈bi〉ni=1

along with the public keys and the relational key pk1, pk2, skR.
Enc1 and Enc2 are exactly same as Hash1 and Hash2. Decryption algorithms would work

as follows.

Dec1: Given ciphertext cx = 〈cxi〉n+1
i=0 and sk1 = 〈ai〉ni=1, the plaintext is constructed, bit by

bit, as follows:

xi :=

{
µ if cxi = cxω

µai
0 for some µ ∈ Fp

⊥ if no such µ exists

This operation is poly-time in λ, since the number of possibilities for µ is bounded by a polyno-
mial in λ.

Dec2 is analogously defined in the group G2.

3 This implies n must be in the order of security parameter, otherwise p-ary-Mix-DLP assumption (Assumption
2) won’t hold.

33

	Relational Hash
	Avradip Mandal and Arnab Roy

