Lightweight Delegatable Proofs of Storage

Jia Xu*, An Jia Yang!, Jianying Zhou*, Duncan S. Wong'
*Institute for Infocomm Research, Singapore
Email: {xuj,zhoujy} @i2r.a-star.edu.sg
TCity University of Hong Kong, China
Email: {ayang3-c,duncan}@my.cityu.edu.hk

Abstract—Proofs of storage (including Proofs of Retrievability
and Provable Data Possession) is a cryptographic tool, which
enables data owner or third party auditor to audit integrity of
data stored remotely in a cloud storage server, without keeping a
local copy of data or downloading data back during auditing.
We observe that all existing publicly verifiable POS schemes
suffer from a serious drawback: It is extremely slow to compute
authentication tags for all data blocks, due to many expensive
group exponentiation operations. Surprisingly, it is even much
slower than typical network uploading speed, and becomes the
bottleneck of the setup phase of the POS scheme. We propose a
new variant formulation called “Delegatable Proofs of Storage”.
In this new relaxed formulation, we are able to construct a
POS scheme, which on one side is as efficient as private key
POS schemes, and on the other side can support third party
auditor and can efficiently switch auditors at any time, close to
the functionalities of publicly verifiable POS schemes. Compared
to traditional publicly verifiable POS schemes, we speed up the
tag generation process by at least several hundred times, without
sacrificing efficiency in any other aspect. Like many existing
schemes, we can also speed up our tag generation process by N
times using N CPU cores in parallel. We prove that our scheme
is sound under Bilinear Strong Diffie-Hellman Assumption in
standard model.

I. INTRODUCTION

Since Proofs of Retrievability (POR [26]) and Provable
Data Possession (PDP [4]]) are proposed in 2007, a lot of
effort of research community is devoted to constructing proofs
of storage schemes with more advanced features. The new
features include, public key verifiability [31], supporting dy-
namic operations [11]], [20], [35]] (i.e. inserting/deleting/editing
a data block), supporting multiple cloud servers [16], privacy-
preserving against auditor [42], and supporting data shar-
ing [37], etc.

A. Drawback of Publicly Verifiable Proof of Storage

Expensive Setup Preprocessing. We look back into the
very first feature—public verifiability, and observe that all
existing publicly verifiable POS schemes suffer from serious
drawbacks: (1) Merkle Hash Tree based method is not disk 10-
efficient and not even a sub-linear memory authenticator [27]:
Every bit of the file has to be accessed by the cloud storage
server in each remote integrity auditing process. (2) By our
knowledge, all other publicly verifiable POS schemes employ
a lot of expensive operation (e.g. group exponentiation) to
generate authentication tags for data blocks. As a result, it
is prohibitively expensive to generate authentication tags for
medium or large size data file. For example, Wang er al. [3§]]
achieves throughput of data pre-processing (i.e. generating
authentication tag) at speed 17.2KB/s with an Intel Core 2

1.86GHz workstation CPU, which means it will take about 17
hours to generate authentication tags for a 1GB file. Even if
the user has a CPU with 8 cores, it still requires more than 2
hours’ heavy computation. Such amount of heavy computation
is not appropriate for a laptop, not to mention tablet computer
(e.g. iPad) or smart phone.

In many publicly verifiable POS (POR/PDP) scheme (e.g.
[4]1, (31], [38]], [42]), publicly verifiable authentication tag
function, which is a variant of signing algorithm in a digital
signature scheme, is applied directly over every block of a
large user data. This is one of a few application scenarios that
a public key cryptography primitive is directly applied over
large user data. In contrast, (1) public key encryption scheme
is typically employed to encrypt a short symmetric cipher
key, and the more efficient symmetric cipher (e.g. AES) will
encrypt the user data; (2) digital signature scheme is typically
applied over a short hash digest of large user data, where the
hash function (e.g. SHA256) is much more efficient (in term
of throughput) than digital signature signing algorithm.

Lack of Control on Auditing. The benefit of publicly ver-
ifiable POS schemes is that, anyone with the public key can
audit the integrity of data in cloud storage, to relieve the burden
from the data owner. However, one should not allow any third
party to audit his/her data at their will, and delegation of
auditing task has to be in a controlled and organized manner.
Otherwise, we cannot prevent extreme cases: (1) on one hand,
some data file could attract too much attention from public, and
are audited unnecessarily too frequently by the public, which
might actually result in distributed denial of service attack
against the cloud storage server; (2) on the other hand, some
unpopular data file may be audited by the public too rarely, so
that the possible data loss event might be detected and alerted
to the data owner too late and no effective countermeasure can
be done to reduce the damage at that time.

B. Approaches to Mitigate Drawback

Outsourcing Expensive Operation. To reduce the computa-
tion burden on data owner for preprocessing in setup phase, the
data owner could outsource expensive operations (e.g. group
exponentiation) during authentication tag generation, by using
existing techniques (e.g. [25], [45]).

However, this approach just shifts the computation burden
from data owner to cloud storage server, instead of reducing
the amount of expensive operations.

Dual Instantiations of Privately Verifiable Proof of Storage.
The data owner could independently apply an existing privately
verifiable POS scheme over an input file twice, in order to



generate two key pairs and two authentication tags per each
data block, where one key pair and authentication tag (per data
block) will be utilized by data owner to perform data integrity
check, and the other key pair and authentication tag (per data
block) will be utilized by auditor to perform data integrity
check, using the interactive proof algorithm in the privately
verifiable POS scheme. The limitation of this approach is that,
in order to add an extra auditor or switch the auditor, the data
owner has to download the whole data file to refresh the key
pair and authentication tags for auditor.

Recently, [2]] gave an alternative solution. The data owner
runs privately verifiable POS scheme (i.e. Shacham-Water’s
scheme [31] as in [2]) over a data file to get a key pair and
authentication tag per each data block, and uploads the data
file together with newly generated authentication tags to cloud
storage server. Next, the auditor downloads the whole file from
cloud storage server, and independently runs the same privately
verifiable POS scheme over the downloaded file, to get another
key pair and another set of authentication tags. The auditor
uploads these authentication tags to cloud storage server. For
each challenge query provided by the auditor, the cloud storage
server will compute two responses, where one is upon data
owner’s authentication tags and the other is upon auditor’s
authentication tags. Then the auditor can verify the response
generated upon his/her authentication tags, and keeps the other
response available for data owner.

Since [2]] aims to resolve possible framing attack among the
data owner, cloud storage server and auditor, all communica-
tion messages are digitally signed by senders, and the auditor
has to prove to the data owner that, his/her authentication
tags are generated correctly, where this proof method is very
expensive, and comparable to tag generation complexity of
publicly verifiable POS scheme (e.g. [4]], [31], [38], [42]).
Furthermore, in this scheme, in the case of revoking or adding
an auditor, the new auditor has to download the whole file,
then compute authentication tags, and prove that these tags
are correctly generated to the data owner.

We remark that our early version of this work appeared
as internal technique report in early 2014, before [2]] became
available to public.

Program Obfuscation. Very recently, [14] proposed to con-
struct publicly verifiable POR from privately verifiable POR
using indistinguishability obfuscation technique [21]. This
obfuscation technique is able to embed the data owner’s secret
key in a verifier program, in a way such that it is hard to
recover the secret key from the obfuscated verifier program.
Therefore, this obfuscated verifier program could be treated as
public key and given to the auditor to perform data integrity
check. However, both [[14]] and [21] admit that indistinguisha-
bility obfuscation is currently impractical. Particularly, [[17]
implements the scheme of [21] and shows that, it requires
about 9 hours to obfuscate a simple function which contains
just 15 AND gates, and resulted obfuscated program has size
31.1 GB. Furthermore, it requires around 3.3 hours to evaluate
the obfuscated program on a single input.

C. Our Approach

To address the issues of existing publicly verifiable POS
schemes, we propose a hybrid POS scheme, which on one

hand supports delegation of data auditing task and switch-
ing/adding/revoking an auditor, like publicly verifiable POS
schemes, and on the other hand is as efficient as a privately
verifiable POS scheme.

Unlike in publicly verifiable POS scheme, the data owner
could delegate the auditing task to some semi-trusted third
party auditor, and this auditor is responsible to audit the
data stored in cloud storage on behalf of the data owner,
in a controlled way, with proper frequency. We call such an
exclusive auditor as Owner-Delegated-Auditor or ODA for
short. In real world applications, ODA could be another server
that provides free or paid auditing service to many cloud users.

Our bottom line is that, even if all auditors colluded with
the dishonest cloud server, our formulation and scheme should
guarantee that the data owner still retains the capability to
perform POR auditing by herself.

Overview of Our Scheme. Our scheme generates two
pairs of public/private keys: (pk,sk) and (vpk,vsk). The
verification public/private key pair (vpk,vsk) is delegated to
the ODA. Our scheme proposes a novel linear homomorphic
authentication tag function [J5]], which is extremely lightweight,
without any expensive operations (e.g. group exponentiation or
bilinear map). Our tag function generates two tags (o, t;) for
each data block, where tag o; is generated in a way similar
to Shacham and Waters’ privately verifiable POR scheme [31]],
and tag t; is generated in a completely new way. Each of tag o;
and tag t; is of length equal to 1/m-fraction of length of a data
block, where the data block is treated as a vector of dimension
mﬂ ODA is able to verify data integrity remotely by checking
consistency among the data blocks and both tags {(o;,;)} that
are stored in the cloud storage server, using the verification
secret key vsk. The data owner retains the capability to verify
data integrity by checking consistency between the data blocks
and tags {o;}, using the master secret key sk. When an ODA
is revoked and replaced by a new ODA, all authentication tags
{t;} and the verification key pair (vpk, vsk) will be updated by
data owner without downloading the data file from cloud, but
tags {o;} and master key pair (pk, sk) will keep unchanged.

Furthermore, we customize the polynomial commitment
scheme proposed by Kate er al. [1]] and integrate it into our
homomorphic authentication tag scheme, in order to reduce
proof size from O(m) to O(1).

D. Contributions

Our contributions can be summarized as below:

e We propose a new formulation called “Delegatable
Proofs of Storage” (DPOS), as a relaxed variant of
publicly verifiable POS. Our formulation allows data
owner to delegate auditing task to a third party auditor,
and meanwhile retains the capability to perform audit
task by herself, even if the auditor colluded with the
cloud storage server. Our formulation also support
revoking and switching auditors efficiently.

e  We design a new scheme under this formulation. Our
scheme is as efficient as privately verifiable POS:

'm can take any positive integer value and typical value is from a hundred

to a thousand



TABLE 1.

PERFORMANCE COMPARISON OF PROOFS OF STORAGE (POR,PDP) SCHEMES. IN THIS TABLE, PUBLICLY VERIFIABLE POS SCHEMES

APPEAR ABOVE OUR SCHEME, AND PRIVATELY VERIFIABLE POS SCHEMES APPEAR BELOW OUR SCHEME.
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f [38] is a journal version of [42], and the main scheme is almost the same as [42].
We now consider the one_that divides each data block into m sectors.

T In Hao et al.’s paper [24], the authentication tags are stored at both the client
and the verifier side, rather than the server side.

11 The private key verifiable POR scheme of Shacham and Waters [31], [32]. Notice that the public key verifiable POS

scheme of [31]], [32] also appears in this table.

K, k are system parameters, |h| is the length of a hash output. | F'| is the data file
size. A is group element size. m is the number of sectors in each data block. £ is
the sampling size.

The tag generation throughput is slightly larger than
10MB/s per CPU core. On the other side, our scheme
allows delegation of auditing task to a semi-trusted
third party auditor, and also supports switching and
revoking an auditor at any time, like a publicly ver-
ifiable POS scheme. We compare the performance
complexity of our scheme with the state of arts in
Table [I, and experiment shows the tag generation
speed of our scheme is more than hundred times
faster than the state of art of publicly verifiable POS
schemes.

We prove that our scheme is sound (Theorem (1| and
Theorem [2] on page [8) under Bilinear Strong Diffie-
Hellman Assumption in standard model.

II. RELATED WORK

Recently, much growing attention has been paid to integrity
check of data stored at untrusted servers [3]-[6], [8], [9l,
(13, [16], [18]-[20], [24], [26], [291-[34], [36]-[44], [46]-
[52]. In CCS’07, Ateniese et al. [4]] defined the provable
data possession (PDP) model and proposed the first publicly
verifiable PDP scheme. Their scheme used RSA-based homo-
morphic authenticators and sampled a number of data blocks
rather than the whole data file to audit the outsourced data,
which can reduce the communication complexity significantly.
However, in their scheme, a linear combination of sampled
blocks are exposed to the third party auditor (TPA) at each
auditing, which may leak the data information to the TPA. At
the meantime, Juels and Kaliski [26] described a similar but
stronger model: proof of retrievability (POR), which enables
auditing of not only the integrity but also the retrievability
of remote data files by employing spot-checking and error-
correcting codes. Nevertheless, their proposed scheme allows
for only a bounded number of auditing services and does not
support public verification.

Shacham and Waters [31], [32] proposed two POR
schemes, where one is private key verifiable and the other
is public key verifiable, and gave a rigorous proof of security
under the POR model [26]]. Similar to [4]], their scheme utilized
homomorphic authenticators built from BLS signatures [7].
Subsequently, Zeng et al. [50], Wang et al. [43]], [44] proposed
some similar constructions for publicly verifiable remote data
integrity check, which adopted the BLS based homomorphic
authenticators. With the same reason as [4]], these protocols do
not support data privacy. In [38], [42], Wang er al. extended
their scheme to be privacy preserving. The idea is to mask the
linear combination of sampled blocks in the server’s response
with some random value. With the similar masking technique,
Zhu et al. [52] introduced another privacy-preserving public
auditing scheme. Later, Hao er al. [24] and Yang et al
[48] proposed two privacy-preserving public auditing schemes
without applying the masking technique. Yuan et al. [49]
gave a POR scheme with public verifiability and constant
communication cost.

However, all of the publicly verifiable PDP/POR protocols
require the data owner to do a large amount of computation
of exponentiation on big numbers for generating the authenti-
cation tags upon preprocessing the data file. This makes these
schemes impractical for file of medium or large size.

III. FORMULATION

We propose a formulation called DPOS, based on existing
POR [26], [31] and PDP [4] formulations. We provide the
system model in Section and the trust model in Sec-
tion We will defer the security definition to Section [V]
where the security analysis of our scheme will be provided.

A. System Model

Definition 1: A Delegatable Proofs of Storage (DPOS)
scheme consists of algorithms (KeyGen, Tag, UpdVK,



OwnerVerify), and a pair of interactive algorithms (P,V),
where each algorithm is described as below

o KeyGen(1*) — (pk, sk,vpk,vsk) : Given a security
parameter 1%, this randomized key generating algo-
rithm generates a pair of public/private master keys
(pk, sk) and a pair of public/private verification keys
(vpk,vsk).

o Tag(sk,vsk, F) — (Paramp,{(0;,t;)}) : Given the
master secret key sk, the verification secret key vsk,
and a data file F' as input, the tag algorithm gener-
ates a file parameter Paramy and authentication tags
{(oi,t;)}, where a unique file identifier idp is a part
of Paramp.

o UpdVK(uvpk,vsk,{t;}) — (vpk',vsk’,{t;}) : Given
the current verification key pair (vpk,vsk) and
the current authentication tags {¢;}, this updating
algorithm generates the new verification key pair
(vpk’,vsk’) and the new authentication tags {t.}.

b <P(pk7vpk7{(ﬁiaJi;ti)}i)’V(USkvvpk’pk7ParamF)>
— (b,Chall,Resp): The verifier algorithm V
interacts with the prover algorithm P to output a
decision bit b € {1,0}, Chall and Resp, where
the input of P consists of the master public key
pk, the verification public key vpk, and file blocks
{F};} and authentication tags {o;,t;}, and the input
of V consists of the verification secret key wsk,
verification public key wvpk, master public key pk,
and file information Paramg.

e OwnerVerify(sk, pk,Chall Resp) — (bo,b1) : The
owner verifier algorithm OwnerVerify takes as input
the master key pair (sk,pk) and Chall and Resp,
and outputs two decision bits bg,b; € {0,1}, where
by indicates accepting or rejecting the storage server,
and b; indicates accepting or rejecting the ODA.

A DPOS system is described as below and illustrated in
Fig [I(a)] and Fig [I(b)

Definition 2: A DPOS system among three parties—
data owner, cloud storage server and auditor, can be im-
plemented by running a DPOS scheme (KeyGen, Tag,
UpdVK,(P, V), OwnerVerify) in the following three phases,
where the setup phase will execute at the very beginning, for
only once (for one file); the proof phase and revoke phase can
execute for multiple times and in any (interleaved) order.
Setup phase The data owner runs the key generating algorithm
KeyGen(1*) for only once, to generate the master key pair
(pk, sk) and the verification key pair (vpk,vsk). For every
input data file, the data owner runs the tag algorithm Tag over
the (possibly erasure encoded) file, to generate authentication
tags {(o;,t;)} and file parameter Paramp. At the end of setup
phase, the data owner sends the file F', all authentication tags
{(oi,t;)}, file parameter Paramp, and public keys (pk,vpk)
to the cloud storage server. The data owner also chooses an
exclusive third party auditor, called Owner-Delegated-Auditor
(ODA, for short), and delegates the verification key pair
(vpk, vsk) and file parameter Paramp to the ODA. After that,
the data owner may keep only keys (pk, sk, vpk,vsk) and file
parameter Paramy in local storage, and delete everything else

pk, vpk, vsk
2

(Challenge, Response)
|~

to

Owner Delegated Auditor

Data Owners

(a) The framework of DPOS

{o:}ocicn

L

New Owner Delegated Auditor

Data Owners

(b) Updating Verification key (vpk, vsk)
Fig. 1.
from local storage.
Proof phase The proof phase consists of multiple proof
sessions. In each proof session, the ODA, who runs algorithm
V, interacts with the cloud storage server, who runs algorithm
P, to audit the integrity of data owner’s file, on behalf of the
data owner. Therefore, ODA is also called verifier and cloud
storage server is also called prover. ODA also keep all (Chall,
Resp) pairs, and allow data owner to fetch and verify these
pairs at any time.
Revoke phase In the revoke phase, the data owner downloads
all tags {¢;} from cloud storage server, revokes the current
verification key pair, and generates a fresh verification key
pair and new tags {¢;}. The data owner also chooses a new
ODA, and delegates the new verification key pair to this new
ODA, and sends the updated tags {t;} to the cloud storage
server to replace the old tags {t;}.

Illustration of system model of DPOS.

Definition 3 (Completeness): A DPOS scheme (KeyGen,
Tag, UpdVK, (P,V), OwnerVerify) is complete, if the follow-
ing condition holds: For any keys (pk,sk, vpk,vsk) generated
by KeyGen, for any file F, if all parties follow our scheme
exactly and the data stored in cloud storage is intact, then
interactive proof algorithms (P, V) will always output (1,...)



and OwnerVerify algorithm will always output (1, 1).

Application of DPOS System: A Full Story. 1In a real
world application, with our scheme (and some other tools),
data owner can delegate auditing task to ODA and ensure
that, ODA performs the verification task at the right time and
with the right challenge (e.g. the challenge message is really
randomly chosen).

We require three additional building blocks: (1) error cor-
recting code (e.g Reed-Solomon code [28]]), which can correct
errors in data blocks up to a certain amount; (2) timed-release
encryption (e.g. [[10], [12]), which can encrypt a message w.r.t.
a future time point ¢, such that only after time ¢, the holder of
ciphertext can decrypt it successfully; (3) ReceiveServer
(e.g. a trusted email server) with persistent buffer storage and
synchronized time clock, which can receive a message via
Internet and record the message together with the message-
arrival-time.

Now let us put all pieces together: During the setup phase,
the data owner runs the KeyGen algorithm to generate master
key pair (sk,pk) and verification key pair (vsk, vpk), where
sk will be kept private by data owner, vsk will be kept private
by the ODA, and (pk,vpk) will be publicly available. To
upload a file F' to a cloud storage server, the data owner will di-
vide file F' into equal-length blocks, and apply error correcting
code on each block independently. Then each erasure encoded
block will be divided into equal-length slices, and all slices
will be permutated randomly across different blocks. For each
newly formed data block denoted as F;, the data owner applies
Tag algorithm to generate authentication tag (04, 1;) using key
(sk,vsk,pk). Then all data blocks {F;}; together with their
authentication tags {o;,t;} are uploaded to the cloud storage
server. Optionally, the data owner may choose to delete the
local copy of data file and tags, in order to save local storage
space. To delegate the auditing task over file F', the data owner
chooses properly N future time points (g, t1,...,tn—1) and
N random seeds (Sy,...,Sn_1), Where tg < t; < ... <
tny—1. Data owner encrypts the seed S; w.r.t time point ¢;, to
obtain ciphertext CText,;. Data owner delegates auditing task
to the ODA by sending all timed-release ciphertexts {CText;}
and time points ¢;’s to the ODA at once. The security property
of timed-release encryption will ensure that, only after time
point ¢;, the ODA is able to decrypt the ciphertext CText;
and thus recover the seeds &;. ODA then derives a challenge
from seed G; and starts an interactive proof session with cloud
storage server. After receiving response from server, ODA
verifies whether the response is valid using verification secret
key vsk and sends her decision bit and challenge-response pair
to ReceiveServer, where ReceiveServer will keep
the received challenge-response pairs together with message-
arrival-time ¢, in its persistent storage device. Data owner
may download all outstanding challenge-response pairs from
ReceiveServer, at any time he/she likes. Data owner can
verify the response using algorithm OwnerVerify and check
whether the difference (¢ — ¢;) is within a reasonable range.
Optionally, data owner can verify multiple challenge-response
pairs at once using batch-verification, to reduce computation
time. If ODA’s decision bit does not match data owner’s
decision bit or the timing check fails, then data owner can
switch to another auditor and runs UpdVK to update the
verification key pair and authentication tags {¢;}. In addition,

the data owner may also add an extra auditor, and generates a
new pair of verification keys by running UpdVK.

B. Trust Model

In this paper, we aim to protect data integrity of data
owner’s file. The data owner is fully trusted, and the cloud
storage server and ODA are semi-trusted in different sense:
(1) The cloud storage server is trusted in maintaining service
availability and is not trusted in maintaining data integrity (e.g.
the server might delete some rarely accessed data for economic
benefits, or hide the data corruption events caused by server
failures or attacks to maintain reputation). (2) Before he/she
is revoked, the ODA is trusted in performing the delegated
auditing task and protecting his/her verification secret key
securely. A revoked ODA could be potentially malicious and
might surrender his/her verification secret key to the cloud
storage server.

We assume that each communication party is authenticated
and all communication data among the data owner, the cloud
storage server and ODA is via some secure channel (i.e. chan-
nel privacy and integrity are protected). Privacy-preserving
against auditor and framing attack among these three parties
could be dealt with existing techniques and is out of scope of
this paper.

IV. OUR PROPOSED SCHEME
A. Preliminaries

Let G and G be two multiplicative cyclic groups of prime
order p. Let g be a randomly chosen generator of group G. A
bilinear map is a map e : G x G — G with the following
properties:

(1)  Bilinearity: e(u®,v*) = e(u,v)® for all u,v € G
and a,b € Z,,.

(2)  Non-degeneracy: If g is a generator of G, then e(g, g)
is a generator of Gr, i.e. e(g,g) # 1.

(3) Computable: There exists an efficient algorithm to
compute e(u,v) for all u,v € G.

In the rest of this paper, the term “bilinear map” will refer
to the non-degenerate and efficiently computable bilinear map
only.

For vector @ = (ay,...,an) and b= (b1,...,bm), the
notation <Ei7 I;> def > ajb; denotes the dot product (ak.a

Jj=1
inner product) of the two vectors @ and b. For vector ¥ =

m—1 .
(vo,--.,VUm—1) the notation ]P’g(:c)déf >~ vz’ denotes the

polynomial in variable & with ¥ being the coefficient vector.

B. Construction of the Proposed DPOS Scheme

We define our DPOS scheme (KeyGen, Tag, UpdVK,
(P, V), OwnerVerify) as below, and these algorithms will run
in the way as specified in Definition 2] (on page [). We remind
that in the following description of algorithms, some equations
have inline explanation highlighted in red color, which is not a
part of algorithm procedures but could be useful to understand
the correctness of our algorithms.



KeyGen(1*) — (pk, sk, vpk, vsk) Choose at random a \-bits
prime p and a bilinear map e : G xG — G, where G and G
are both multiplicative cyclic groups of prime order p. Choose
at random a generator g € G. Choose at random o, 7y, p €r Zs,
and (81, B2, .., Bm) €r (Z,)™. For each j € [1,m], define
o = o’ mod p, and compute g; = g%, h; = g°Bi . Let
ap =1, fo =1, go = g% = g, ho = g°, vector & :=
(a1, a2, ...y i), and B := (51, P2,. .., Bm). Choose two
random seeds sg,s; for pseudorandom function PRFseeq :
{0,1}* x N — Z,,.

The secret key is sk = (a,ﬁ, so) and the public key
is pk = (90,91,---,9m). The verification secret key is
vsk = (p,7,s1) and the verification public key is vpk =
(hoshiy .oy hum).

Tag(sk,vsk, F) — (Paramp, {(0y,t;)}) Split ﬁleﬂ F into n
blocks, where each block is treated as a vector of m elements
from Z,: {F; = (Fi 0, -, Fim—1) € Z}}' }ic[o,n—1)- Choose a
unique identifier idr € {0,1}*. Define a customized’| pseu-
dorandom function w.r.t. the file F: R,(i) = PRFs(idp,1).

For each block 1*:‘;', 0 <i<n—1, compute

o; = <o7, FZ> + Rso(1)= o Pg (@) + Ry, (1) mod p
ey
tii=p <ﬁ, F;> + YRs, (i) + Rs, (i) mod p (2)

The general information of F' is Paramp := (idp,n).

UpdVK(vpk, vsk, {ti}icjo,n—1]) — (vpk',vsk', {t]}ici0,n-1])
Parse vpk as (ho,...,h,) and vsk as (p,~,s1). Verify the
integrity of all tags {¢;} (We will discuss how to do this
verification later), and abort if the verification fails. Choose
at random 7' €p Z; and choose a random seed s} for
pseudorandom function R. For each j € [0,m], compute
;= h;.yl = g(p'”’/)ﬂj € G. For each i € [0,n — 1], compute
a new authentication tag

t; =7 (ti — Ry, (1)) + Ry, (i) mod p.
=y"-p </§ ﬁz> + (v 7)) Rso (1) + R, (i) mod p

The new verification public key is vpk’ := (h(,...,h),)
and the new verification secret key is vsk’ := (v -p, 77, $})-
<P(pka Upk7 {F‘Za Ti, ti}iG[O,nfl] )a V(U8k7 Upk7 pka ParamF)>
— (b,Chall,Resp)

V1: Verifier parses Paramp as (idg,n). Verifier chooses a
random subset C = {iy,i2,...,i.} C [0,n — 1] of size ¢,
where i; < ig < ... < i.. Choose at random w,§ € Z;, and
compute w;, := w* mod p for each ¢ € [1,c]. Verifier sends
(idp, {(i,w;) : ¢ € C},§) to the prover to initiate a proof
session. .

P1: Prover finds the file and tags {(F;, 0;,t;)}; corresponding

ZPossibly, the input has been encoded by the data owner using some error
erasure code.

3With such a customized function R, the input idp will become implicit
and this will make our expression short.

to idp. Prover computes Fc Z™, and &,t € Z,, as below.

F = (Z in) mod p; 3)

i€C

o= (Z wicri> mod p; 4@
i€C

t:= (Z witi> mod p. 5)
i€C

Evaluate polynomial P (x) at point x = ¢ to obtain z :=
P2(¢) mod p. Divide the polynomial (in variable x) Pz (x)—
Px(€) with (z—¢&) using polynomial long division, and derlote
the coefficient vector of resulting quotient polynomial as v =
(vo, - .- Um—2), that is, Pz(z) = P2@-P20 1hod p. (Note:

z—§
(z — &) can divide polynomial P z(x) — Pz (&) perfectly, since the latter

polynomial evaluates to 0 at point © = £.)

Compute (Yo, ¥s, ba) € G* as below

m—1 f:[j] m—1 ; j:[J] P o(a)

Yo = [T 97 7= 1] (g"> =g 7 (©6)
j=0 j=0
m—1 m—1 f-'[] oL

Vg 1= hﬁjl]: H (g/"dJ*l) I g/’<’6" '7:> @)
=0 =0
m—2 m—2 N

¢a = g;’J: H (g(yJ> _ ng,(u). (8)
=0 =0

Prover sends (2, ¢o, 7, t, %4, %3) to the verifier.

V2: Let Chall := (&, {(4,w;) : i € C}) and Resp = (2, ¢q,
7). Verifier sets b := 1 if the following equalities hold and
sets b := 0 otherwise.

e(Varg) = e(bas 9°/95) - el9,9)* ©)
eWmQ&)V 2 (s, 9) 0
< e(g, 9°) . (g 9*7'9_"201017151(0) (10)

Output (b, Chall,Resp).

OwnerVerify(sk, pk, b, Chall,Resp) — (bg, b1)

Parse Chall as (&, {(i,w;) : ¢ € C}) and parse Resp as
(2, ¢, 7). Verifier will set by := 1 if the following equality
hold; otherwise set by := 0.

5 <_ E wiRso (U)
e(g, g7) -e(g,g)\ =°

7

(c(6ar9°/9)el9,9)7)"
(11

If ODA’s decision b equals to by, then set by := 1;
otherwise set by := 0. Output (bg, by).



1) Batch Verification: Alternatively, the data owner can
also perform batch verification on a set of challenge-response
pairs {(Chall(L),Resp(b))}be[l’n] as below to achieve even
lower amortized complexity: Choose weight value p, €r Z;,
for each ¢ € [1,7n] and verify the following equality

«

L E HL‘Z(L)
[T e(od).g%/g5" e(g, )<t =
L€[1,n]
> o (— > </h' > 111717350(1')>>
e(g, g ) relgig)\ ML et
(12)

2) Completeness: We prove in Appendix [A] that if all
parties are honest and data is intact, then equalities in Eq (9),
and will hold for certain. In addition, Eq [11]implies

Eq [12] directly.

C. Discussion

a) How fto verify the integrity of all tag values {t;}
in algorithm UpdVK?: A straightforward method is that:
The data owner keeps tack a hash (e.g. SHA256) value of
tollt ... ||tn—1 in local storage, and updates this hash value
when executing UpdVK.

b) How to reduce the size of challenge {(i,w;) : i €
C}?: Dodis et al. [19]’s result can be used to represent a
challenge {(i,w;) : ¢ € C} compactly as below: Choose the
subset C using Goldreich [22]’s (9, e)-hitte where the subset
C can be represented compactly with only logn + 31log(1/e)
bits. Assume n < 240 (sufficient for practical file size) and let
€ = 2780 Then C can be represented with 280 bits. Recall
that {w; : i € C} is derived from some single value w € Z.

D. Experiment Result

We implement a prototype of our scheme in C language
and using GMP E] and PBC °| library. We run the prototype in
a Laptop PC with a 2.5GHz Intel Core 2 Duo mobile CPU
(model T9300, released in 2008). Our test files are randomly
generated and of size from 128MB to 1GB. We achieve a
throughput of data preprocessing at speed slightly larger than
10 megabytes per second, with A = 1024. Detailed experiment
data will be provided in the full paper.

In contrast, Atenesis et al. [3]], [4] achieves throughput of
data preprocessing at speed 0.05 megabytes per second with a
3.0GHz desktop CPU [4]. Wang et al. [38]] achieves throughput
of data pre-processing at speed 9.0KB/s and 17.2KB/s with an
Intel Core 2 1.86GHz workstation CPU, when a data block
is a vector of dimension m = 1 and m = 10, respectively.
According to the pre-processing complexity of [38] shown
in Table [Il the theoretical optimal throughput speed of [38]]
is twice of the speed for dimension m = 1, which can be
approached only when m tends to +oco.

4Goldreich [22]’s (8, €)-hitter guarantees that, for any subset W C [0, n—1]
with size |W| > (1 — §)n, PrfCNW # 0] > 1 — e. Readers may refer to
[19] for more details.

°GNU Multiple Precision Arithmetic Library: https:/gmplib.org/

The Pairing-Based Cryptography Library: |http://crypto.stanford.edu/pbc/

Therefore, the data pre-processing in our scheme is 200
times faster than Atenesis et al. [3], [4]], and 500 times faster
than Wang et al. [38]], using a single CPU core. We remark that,
all of these schemes (ours and [3]], [4]], [38]) and some others
can be speedup by N times using N CPU cores in parallel.
However, typical cloud user who runs the data pre-processing
task, might have CPU cores number < 4.

V. SECURITY ANALYSIS
A. Security Formulation

We will define soundness security in two layers. Intuitively,
if a cloud storage server can pass auditor’s verification, then
there exists an efficient extractor algorithm, which can output
the challenged data blocks. Furthermore, if a cloud storage
server with knowledge of verification secret key can pass data
owner’s verification, then there exists an efficient extractor
algorithm, which can output the challenged data blocks. If the
data file is erasure encoded in advance, the whole data file
could be decoded from sufficiently amount of challenged data
blocks.

1) Definition of Soundness w.r.t Verification of Auditor:
Based on the existing Provable Data Possession formulation [4]
and Proofs of Retrievability formulation [26], [31], we de-
fine DPOS soundness security game Gamegoung between a
probabilistic polynomial time (PPT) adversary A (i.e. dis-
honest prover/cloud storage server) and a PPT challenger C
w.rt. a DPOS scheme £ = (KeyGen, Tag, UpdVK, (P,V),
OwnerVerify) as below.

Setup: The challenger C runs the key generating algo-
rithm KeyGen(1%) to obtain two pair of public-private keys
(pk, sk) and (vpk,vsk). The challenger C gives the public
key (pk,vpk) to the adversary A and keeps the private key
(sk,vsk) securely.

Learning: The adversary .4 adaptively makes polynomially
many queries, where each query is one of the following:

e STORE-QUERY(F): Given a data file F chosen
by A, the challenger C runs tagging algorithm
(Paramp,{(0y,t;)}) <+ Tag(sk,vsk,F), where
Paramp = (idp,n), and sends the data file F,
authentication tags {(o;,t;)}, public keys (pk,vpk),
and file parameter Paramp, to A.

e  VERIFY-QUERY(idp): Given a file identifier idp
chosen by A, if idp is not the (partial) output of some
previous STORE-QUERY that A has made, ignore this
query. Otherwise, the challenger C initiates a proof
session with A w.r.t. the data file F associated to
the identifier id in this way: The adversary C, who
runs the verifier algorithm V(vsk, vpk, pk,Paramp),
interacts with the adversary A, who replaces the
prover algorithm P with any PPT algorithm of
its choice, and obtains an output (b,Chall,Resp),
where b € {1,0}. The challenger runs the algo-
rithm OwnerVerify(b, Chall,Resp) to obtain output
(bo,b1) € {0,1}2. The challenger sends the two
decision bits (b, by) to the adversary as feedback.

e REVOKEVK-QUERY: To respond to this query, the
challenger runs the verification key update algorithm


https://gmplib.org/
http://crypto.stanford.edu/pbc/

to obtain a new pair of verification keys (vpk’,vsk’,
{ti}) = UpdVK(vpk,vsk,{t;}), and sends the re-
voked verification secret key vsk and the new veri-
fication public key vpk’ and new authentication tags
{t;} to the adversary A, and keeps vsk’ private.

Commit: Adversary A outputs and commits on
(id*,Memo, P), where each of them is described as below:

e afile identifier id* among all file identifiers it obtains
from C by making STORE-QUERIES in Learning
phase;

e a bit-string Memo;

e a description of PPT prover algorithm P (e.g. an
executable binary file).

Challenge: The challenger randomly chooses a subset C* C
[0, np« — 1] of size ¢ < A\"Y, where F* denotes the data file
associated to identifier id*, and npg- is the number of blocks
in file F™*.

Extract: Let £PMe™) (ysk, vpk, pk, Paramp-, id*, C*) denote
a knowledge-extractor algorithm with oracle access to prover
algorithm P(Memo). More precisely, the extractor algorithm &
will revoke the verifier algorithm V(vsk,vpk, pk,Paramp-)
to interact with P(Memo), and observes all communication
between the prover and verifier. It is worthy pointing out that:
(1) the extractor £ can feed input (including random coins)
to the verifier V, and cannot access the internal states (e.g.
random coins) of the prover P(Memo), unless the prover P
sends its internal states to verifier; (2) the extractor £ can
rewind the algorithm P, as in formulation of Shacham and
Waters [31], [32]]. The goal of this knowledge extractor is to
output data blocks {(i,F}) : i € C*}.

The adversary A wins this DPOS soundness security
game Gamegoyng, if the verifier algorithm V(vsk, vpk, pk,
Paramp-) accepts the prover algorithm P(Memo) with some
noticeable probability 1/A™ for some positive integer 7, where
the sampling set is fixed as C*. More precisely,

(P(Memo), V(vsk,

Sampling
vpk, pk,Paramp-)) = (1,...)

Pr set is C*
(13)

The challenger C wins this game, if these exists PPT
knowledge extractor algorithm & such that the extracted blocks
{(i,F}) : i € C*} are identical to the original {(i,F;) : ¢ €
C*} with overwhelming high probability. That is,

By gls(Memo)(Usk7vpk,kaDara_mF*,id*,c*)
— {(,F,) ;i€ C*)

(14)

Definition 4 (Soundness-1): A DPOS scheme is sound
against dishonest cloud storage server w.r.t. auditor, if for any
PPT adversary A, A wins the above DPOS security game
Gamegoung implies that the challenger C wins the same security
game.

|21

> 1—negl(N).

2) Definition of Soundness w.r.t Verification of Owner:
We define Game2goung by modifying the DPOS soundness
security game Gamegoung as below: (1) In the Setup phase,
the verification private key vsk is given to the adversary A;
(2) in the Extract phase, the knowledge extractor has oracle
access to OwnerVerify(sk, . ..), additionally.

Definition 5 (Soundness-2): A DPOS scheme is sound
against dishonest cloud storage server w.r.t. owner , if for any
PPT adversary A, A wins the above DPOS security game
Game2goung, 1.€.

Py OwnerVerify(sk, pk, (P(Memo), V(vsk, Sampling
vpk, pk,Paramp«))) = (1,...) set is C*
(15)
>1/A7, for some positive integer constant 7, (16)

implies that the challenger C wins the same security game, i.e.
there exists PPT knowledge extractor algorithm & such that

p EIS(Memo),OwnerVerify(sk,...)(,Usk, Upk,pk:, Paramp-, id*, C*)
— {(i,F:) ;i € C*)
a7
> 1—negl(\) (18)

Remarks:

e The two events “adversary A wins” and “challenger
C wins” are not mutually exclusive.

e The above knowledge extractor formulates the no-
tion that “data owner is capable to recover data
file efficiently (i.e. in polynomial time) from the
cloud storage server”, if the cloud storage sever can
pass verification with noticeable probability and its
behavior will not change any more. The knowledge
extractor might also serve as the contingency plarﬂ
(or last resort) to recover data file, when downloaded
file from cloud is always corrupt but the cloud server
can always pass the verification with high probability.

e Unlike POR [31], [32], our formulation separates
“error correcting code” out from POS scheme, since
error correcting code is orthogonal to our design of
homomorphic authentication tag function. If required,
error correcting code can be straightforwardly com-
bined with our DPOS scheme, and the analysis of
such combination is easy.

B. Security Claim

Definition 6 (m-Bilinear Strong Diffie-Hellman Assumption):

Let e : G x G — Gp be a bilinear map where G and Gr
are both multiplicative cyclic groups of prime order p.
Let g be a randomly chosen generator of group G. Let
§ €R Zj be chosen at random. Given as input a (m + 1)-tuple
T = (9,959 ....g°") € G™FL, for any PPT adversary A,
the following probability is negligible

Pr|d = e(g,9)" ) where (¢c,d) = A(T)} < negl(log p).

7Cloud server’s cooperation might be required.



Theorem 1: Suppose m-BSDH Assumption hold, and PRF
is a secure pseudorandom function. The DPOS scheme con-
structed in Section is sound w.r.t. auditor, according to
Definition (]

Theorem 2: Suppose m-BSDH Assumption hold, and PRF
is a secure pseudorandom function. The DPOS scheme con-

structed in Section [[V]is sound w.r.t. data owner, according to
Definition

C. Proof of Theorem [I[}—Soundness w.r.t Auditor

1) Unforgeability of Our Authentication Tag under Verifi-
cation Private Key: Game 1 The first game is the same as
soundness security game Gamegqung, except that the pseudo-
random function R, outputs true randomness. Precisely, for
each given seed sg, the function R is evaluated in the following
way:

1) The challenger keeps a table to store all previous
encountered input-output pairs (v, R, (v)).

2)  Given an input v, the challenger lookups the table
for v, if there exists an entry (v,u), then return u
as output. Otherwise, choose u at random from the
range of R, insert (v, Rs,(v) := u) into the table and
return w as output.

Game 2 The second game is the same as Game 1, except
that the pseudorandom function R, with seed s; outputs true
randomness. The details are similar as in Game 1.

For ease of exposition, we clarify two related but distinct
concepts: valid proof and genuine proof (or value). (1) A proof
(or value) is genuine, if it is the same as the one generated
by an honest (deterministic) prover on the same query and the
same context. (2) A proof is valid, if it is accepted by the
honest verifier.

In our scheme, for each query and given context, we will
show that it is hard to find two distinct proofs (or responses)
(2,...) and (#,...), which are both accepted by ODA and
z # 2 mod p.

Lemma 3: Suppose m-BSDH Assumption holds. In Game

2, any PPT adversary is unable to find two distinct tuples Ty =

(Zv¢a§ 7,1, 1/}(1,1;[}[3) and Ty = (Zlv Ia; a,t, ¢a7w,3)’ such

that both are accepted by ODA w.r.t the same challenge and
z # 7' mod p.

p |:T0 and T4 are both accepted by ODA and T [0]767;1 [0] 2and :| (19)

T5(2,3,4,5]=T1(2,3,4,5], where (T, T;)=A%""
< Pr[B solves m-BSDH Problem | (20)

(Proof of Lemma [3] is given in Appendix [B-B]

Lemma 4: Suppose m-BSDH Assumption holds. In Game

2, any PPT adversary is unable to find two distinct tuples

Ty = (Zvd)a; 5—753 wa,wﬁ) and Ty = (Z/a :1; 5/a{/a¢&awlﬁ)s

such that both T and 7 are accepted by ODA w.ur.t the

same challenge, 2 # 2 and (7,1, Y, ¥p) # (0,1, ¢4, V).

Precisely, for any PPT adversary A in Game 2, there exists a
PPT algorithm D, such that

p |:T0 and T are both accepted by ODA and T [0]#74 [0] and ] (21)

To[2,3,4,5]#T1 [2,3,4,5], where (Tp, Ty )=.A%"m¢2
< Pr[D solves m-BSDH Problem | (22)

(Proof of Lemma [4] is given in Appendix [B-C).

2) Construction of Knowledge Extractor: We explicitly
construct the knowledge extractor algorithm using two sub-
routines, named SIMULATOR Algorithm [I] (on page [0) and
SOLVER Algorithm [2] (on page [T0).

Algorithm 1: SIMULATOR

Input: (P,Memo, V, pk, vsk, vpk, C*, N1, Ny, N3),
where C* is a set of block indices, and
Ni, Ny, N3 are integers
Output: A set S, representing transcript of an execution
of this algorithm
1 Initiate the set S < () as empty set;
2 foreach ¢ from 1 to Ny do
3 Choose weight vector W; = (w; 1,...,w; ) at
random as in Step V1 of algorithm V ;
foreach j from 1 to N> do
5 Choose value ¢; ; at random as in Step V1 of
algorithm V;
foreach k from 1 to N3 do
Send (C*,W;,&; ;) as challenge query to
algorithm P(Memo) and get response
(Zijks- )3
8 Send this response to algorithm
V(vsk,vpk, pk,Paramp~ ), which outputs
decision bit b; ;5 at Step V2;

9 Update S « SU{(WZ', Ei,ja Zi,j ks bi,j,k)} ;

10 Note: Different instances of revocation of P(Memo) are
independent.

11 end

12 end

13 end

Before introducing SOLVER Algorithm [2] on page let
us define sets S¢, Syy based on set S as below:

Se = {(VV7 €) : Iwitness set W s.t. ‘W(‘%V%;Zjl\;éesw’} ;o (23)

Syy = {W : Jwitness set W s.t. ‘W‘Z({,nv’g‘é;gew’} . (24

3) Analysis of Knowledge Extractor:

Lemma 5: If |Syy| > ¢, then the algorithm SOLVER can
output {F; };ec~ correctly, with o.h.p.

Lemma [3] directly follows from the unforgeability of our
authentication tag (i.e. Lemma [3] and Lemma [ and Claim [T]
and Claim [2} where the two claims are as below.

Claim 1: If |Syy| > ¢, then procedure SOLVER will abort
(i.e. output Failure) with negligible probability (in ).
(Proof is given in Appendix [B-DI)

Claim 2: 1If for every tuple (W, &, z,1) € S, the value z is
genuine (i.e. the same as computed by an honest prover w.r.t.
the same query and context (C*, W, ¢)), then the output of
SOLVER Algorithm at Line [36|is correct, i.e. {AF} = {F}}.
(Proof is given in Appendix [B-D2)

Given the challenge (C*, W = {w; : i € C*},§) in Step
V1 of verifier algorithm V, and random coin € 4 of adversary
A in Step P1, the response of adversary in Step P1 will be
deterministic and so is the output of the verifier in Step V2



Algorithm 2: SOLVER

Input: Set S, which is the output OE, SIMULATOR.
Output: A guess of data blocks {F;, : v € [1,c|}
where {iq,...,i.} = C*.

Find set Sg¢, by filtering S;
foreach (W,¢) € S¢ do

| find witness set Wiy ¢ := {2 : (W,§,2,1) € S}
end
Find set Syy, by sorting and filtering S¢ ;
foreach W € Sy do

| find witness set Wy := {£ : (W,€) € Se}s
end
if [Syy| < |C*| then

o 0 N AN R W N =

10 | Abort and output Failurel;

11 else

12 | Find subset {W7,... ., W;} C Sy ;

13 end

14 foreach i from 1 upto ¢ do

15 if W+ <m then

16 | Abort and output Failure2;

17 else

18 | Find subset {&;y,..., &, C Wi

19 end

20 foreach j from 1 to m do

21 if [Wiye ¢ )| <1 then

2 | Abort and output Failure3;

23 else

24 | Choose z7; €r Wiy, ¢ 3

25 end

26 end

27 Find the polynomial Pz of degree (m — 1) passing
all of m points {(&;;, 27;)}7%; ;

28 if number of polynomials found # 1 then

29 | Abort and output Failure4 ;

30 end

31 end

32 Solve the linear system
ST

(AT A x (W W) = (B F),
where A;’s are unknown, and W/ and JF; are given,
1 € [1, ¢]. Note: W = (ws,w ., w§) and the coefficient matrix
(Wi, ..., WrT) is a simple variant of Vandermonde matrix;
33 if number of solutions of above linear system # 1 then
34 | Abort and output Failure5 ;
35 else
36 | return the unique solution {A}}5_, ;
37 end

2
R

of algorithm V. Let notations W, &, €4 denote the random
variables, respectively.

Let function fo-(W,&,€4) denote the boolean output of
verifier in Step V2.

Definition 7: For any § € (0, 1),
e W is §-good, if gpcr [fo-(W, &,€4)=1]>4;
s <A
e ¢is d-good wrt W, if Er[fc*(V[C g, Cyu)=1]>6.
A

Lemma 6: Let parameters N1 = [2X\e 1], Ny = N3 =
[4Xe~1] in SIMULATOR Algorithm |1} Recall that the set Sy

is constructed at Line [5] of SOLVER Algorithm [5] If adversary
A can pass auditor’s verification with probability > e, i.e.

P . — 1] > ¢, then S| > .
W,&A[fc (W, €,€4) =1] > ¢, then [Syy| > ¢

Lemma [6] directly follows from Claim [3] and Claim [4] as
below.
Claim 3: If Pr [fo-(W,€,€4) = 1] > ¢, there exist
WLE,Ca

at least c distinct eyé—good W,’s among all of N; instances of
W;’s generated at Line [3] of Algorithm [T} (Proof is given in

Appendix [B-ET)

Claim 4: If W; is €/2-good, then W; € S,y with o.h.p.
(Proof is given in Appendix

Proof of Theorem [I} First of all, the complexity of the
extractor is O(Ny - No - N3 - (Tpy +1og(Ny - Ny - N3))) =
0(326—_2}3 x | Tpyv + log 323)), which is polynomial in A, if
e > 1/poly(A) is noticeable, where Tpy denotes the time

complexity of the interactive algorithm (P,V) and integer
parameters Ny, Na, N3 are specified as in Lemma [6]

Since R is a secure pseudorandom function, the soundness
security game Gameg,y,g and Game 1 are computationally
indistinguishable. So are Game 1 and Game 2. Therefore,
Lemma [3|and Lemma [] also hold in Gamegounq With negligible
difference in success probability. Consequently, the premise
(i.e. if-part) of Claim [2] holds with o.h.p. Claim [I] and Claim 2]
together imply Lemma [5] Lemma [6] ensures that the premise
of Lemma E] will hold. Therefore, the conclusion (then-part)
of Lemma E] holds, that is, the extractor algorithm constructed
previous can output the selected file blocks with overwhelming
high probability as desired.

Claim 1]
Claim 2]
Lemma = Lemma
Lemma @ = Theorem 1] 25)
Claim 3]
Claim @ } = Lemma

D. Proof of Theorem [2}—Soundness w.r.t Owner

1) Unforgeability of Our Authentication Tag under Master
Private Key: Game 1’ The same as Game2goung, €xcept that
pseudo random function R, is replaced by true randomness.
The detail is similar to definition of Game 1.

Game 2’ The same as Game 1°, except that pseudo random
function R4, is replaced by true randomness.

Lemma 7: Suppose m-BSDH Assumption holds. In Game
2’, any PPT adversary is unable to find two distinct tuples
To = (2,¢a,0) and Ty = (2/,¢,,,3’), such that both Tj and
T, are accepted by data owner w.r.t the same challenge and
Ty # T;. Precisely, for any PPT adversary .4 in Game 2, there
exists a PPT algorithm B, such that

To#T: are both accepted by owner
P |: where (T, T} )=.A%"m? (26)

< Pr[B solves m-BSDH Problem | 27
(Proof is given in Appendix [C-A)



2) Construction and Analysis of Knowledge Extractor : In
this case, the construction and analysis of knowledge extractor
algorithm is identical as for auditor case, except that: at Line[9]
of SIMULATOR Algorithm |I} the decision bit b; ;; should
represent data owner’s first decision bit (i.e bg—indicating
whether data owner accepts storage server) upon response
provided by P(Memo), instead of auditor’s decision bit.

The rest of proof for Theorem [2] is identical to proof for
Theorem [T}

VI. CONCLUSION

We proposed a novel and efficient POS scheme. On one
side, the proposed scheme is as efficient as privately verifiable
POS scheme, especially very efficient in authentication tag
generation. On the other side, the proposed scheme supports
third party auditor and can revoke an auditor at any time,
close to the functionality of publicly verifiable POS scheme.
Compared to existing publicly verifiable POS scheme, our
scheme improves the authentication tag generation speed by
more than 100 times. How to prevent data leakage to ODA
during proof process and how to enable dynamic operations
(e.g. inserting/deleting a data block) in our scheme are in future
work.
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APPENDIX A
PROOF FOR COMPLETENESS

If all parties are honest and data are intact, we have

e(9,9)*"# ) = e(¢a, g, 28)
e(9,9)" %) = e(¢a, 9% /9°) - e(g,9). (29)
v.’[',]P,a(I) = % mod p 30)
z=Pz(£) modp (3D

1) Correctness of Equation (9): By combining Eq @)G0)GTH(@),

we can compute the right hand side of Equation (@) as below:

RHS = ¢(gF5(®) | g>=¢). Vg (a) (a—g)+2

=e(9,9) 2 = e(va, 9)

e(g,9)* = e(g,9

= LHS. (32)

2) Correctness of Equation @?@ Substituting Eq (28) into

Eq (T0), we have left hand side of Eq
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LHS = (e(g,9)7#(") 97%)" = (g, 9)*7#(*) = e(9,9)(% 7).

LHS” (33)
_ e(g, ) F
T S we 69
e(g, g'c¢ )
(&, F)
_ e, 9" 3%
( > wi((& F7>+R<o(i))>
elg, g€c
(&, F)
_ e(9,9) 36)
<<54» > wiﬁi>+‘2 wiRso(i>>
e (97 g) i€C 1€C
(& F)
_ e(9,9) 37
(&, F)+ = w77290(2))
(g,g)< ee
= —1 38
= R INOR %)
(9,9)
We can compute the right hand side of Eq (T0):
RHS (39)
_ elg,9)"? %)
a 2 witi— X wiRsy (3) (40)
elg, gicc icc )
o(6. 7)
_ e(9,9) ‘ @
> wi(G—Rey ()
e(g, g'€©
e( 9)° o(B, F)
- _ 4
( > wi(o(B. F) 7Ry >)> @
elg, g?EC
o(B, F)
- 9,9) “3)
(p< > wiF >+ > wi"YRa‘()(i))
1€C i€C
(B, F
_ e(9,9) 44)
(P + E Wyt "/Rm (1)>
= = LHS. (45)

P wi"Yng( i)
e(g,9)'€C

3) Correctness of Equation (T1):

(46)
2 wio; <* P wz‘Rso(i)>
RHS =e(g, g°€¢  )-e(g, g)\ €€ “4n
<,2 wi(o mw»)
=e(g,g) \'€C (48)
(5,me ™)
=e(g,g) \'€C (49)
<o7, > waL>
=e(g,9)\ €€ (50)
=e(g,9)(% %) &)
=LHS (52)



APPENDIX B
PROOF FOR SOUNDNESS W.R.T. AUDITOR

A. Simulate Game 2 using the input of m-BSDH Problem

Let bilinear map e : G X G — G and tuple T = (g,gg,ggz, o ,ggm) S
G™ be as stated in the m-BSDH Assumption. With information T, we can
simulate Game 2 as below. Recall that the adversary A in this game is the
dishonest prover (i.e. the cloud storage server).

Setup. Let « := ¢, which is unknown. Define o; := o? mod p for each
j € [1,m]. Choose at random two group elements ~,p €gr Z%, a vector
U = (ui,...,um) €g Z7, and pseudorandom function seed s1. For each
J € [1,m], we can find values of g;: g; := g% = g* =g €G. Let
go = g and hg = g”. Implicitly define the unknown vector ﬁ as pﬁ —ya =
4. For each j, compute h; := g;.Y Sghi = gvitui = gPBi = hoj € G.
The secret key is sk = (c, 3, so), the public key is pk = (g0, g1, - - - , m)»
the verification secret key is vsk = (p, 7y, s1), and the verification public key
is vpk = (ho,h1,...,hm), where the random seed sg for pseudorandom
function PRF will be determined later. Send (pk, vpk) to the adversary.

Notice that, the simglator knows values of vsk, vpk and pk, but does
not know values of («, 3, so).

Learning.

. STORE-QUERY(F): Given a data file F' chosen by the adversary
A. The simulator simulates the algorithm Tag as below: For each
¢t € [0,n — 1], choose the authentication tag o; €r Zj, at
random, which will implicitly define the values of the file-specific

randomness Rs, (4). The simulator is able to compute: g<6" F) —
™ Filj-1]. o(B, F; 5 Fili—1], Rso (i) —
11 g; ;o gteF IT Ry poogeo

j=1 Jj=1

%. The simulator can also compute ¢; := yo; + <ﬁ, 1*?}>+
g i

Rs,(2) mod p, which is equal to 7<<62, F;> +Rso(i)) +
(PB =&, Fy) + Ry (i) = p(B, Fy) +7Ruq (i) + Ray (0)
as desired. Send file F' and authentication tags {(%,0;,t;)} to the
adversary A.

. VERIFY-QUERY: The simulator has full information of pk, vpk,
and . Although the simulator does not know s1, it knows values
g%s1® for each i € [0,n — 1]. The simulator can execute the
verifier algorithm V in the proposed DPOS scheme exactly. So the
simulator can find the exactly same decision bit b € {1,0} as in a
real game.

Next, the simulator tries to find the decision bit by of the owner.
Notice that Eq E in algorithm OwnerVerify can be written equiv-
alently as below

o? af a z ,-Zc wiRSO Q) T
e(pa,g” /97%) - (g%, 9)" - e(g, 9)'€ =e(9,9)° (53)
Although sp is unknown, the simulat%r is still able to compute
both sides of the above equation: g g2,9°¢ gf, and

2 wiRsqg(4) S\ Wy
s computed as [] (gRSO(')) . Recall

the term g?€€

that challenge (C, {w;},&) is chosen by simulator, (2, ¢a,d) is
(part of) response provided by adversary, and (g, g1, g2) are part of
public key pk. So the simulator can find the exactly same decision
bit by € {1,0} as in a real game. Simulator sends (b, bg) to the
adversary as result to this query.

. REVOKEVK-QUERY: The simulator has knowledge of wpk and
vsk, and runs algorithm UpdVK(vpk,vsk,{t;}) to obtain new
verification key pair (vpk’, vsk’) and new authentication tags {¢/}.

B. Proof for Lemma [3|

Proof: Our hypothesis is: Adversary A can output such (7p,71) as
stated in Lemma EI Let bilinear map e G x G — Gr and tuple
T=(g,9°% g§27 e ,ggm) € G™ be as stated in the m-BSDH Assumption.
We will construct a PPT algorithm B, which will simulate Game 2 to interact
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with adversary A as in Appendix [B-Al and then compute (c,d) from A’s
output (Tp, T1), such that d = e(g, g)1/ (),

The algorithm B simulates the Game 2 to interact with the adversary A,
from information 7', as in Appendix By the hypothesis, both Tp and 77
are valid, i.e. satisfy Eq (J) and Eq :

e(Ya,9) = e(da, 9°/9°) - e(g,9)*

e(Parg) = eldh, 9°/9%) - elg,9)"

Combining Eq (6) and Eq §3). we have (¢a /@, 9° /%) = e(g,9)* ~*.

Since 2’ # z mod p, the inverse (2/ —2) ™! mod p exists. Let c = —¢

mod p and compute d as d = e(pa /P, g)(z/*z)f1 mod P ¢ Gp. Output
(c,d) as the solution to the m-BSDH problem. One can verify that

(54
(55)

’ — a—§ ’ —
@°+¢ = (e(@a/dh, 977 md )T < e(ga /gl g2 THE DT
(56)

(57

. (2/=2)"' mod p
) ) = ¢(9,9)-

= <6(97g

C. Proof for Lemma

Proof: Our hypothesis is: Adversary A can output such (7p,71) as
stated in Lemma [] Let bilinear map e G x G — Gr and tuple
T = (9,9, g<27 ...,95) € G™ be as stated in the -BSDH Assumption.
We will construct a PPT algorithm D, which will simulate Game 2 to interact
with adversary A, and then compute (¢, d) from A’s output (7o, T1), such
that d = e(g,g)1/<§+c>.

The algorithm D simulates the Game 2 to interact with the adversary A,
from information T, as in Appendix By the hypothesis, both Ty and 771
are valid, i.e. satisfy Eq (J) and Eq :

e(Ya, g‘*))7 e(¥s,9)
— = - 58
( e(g, 97) P T iR @) 9
elg, gt -g 1€C
/ @ v e ! 5
e(Ya g/) _ (¥5,9) A 59
e(g, g" ) - - E wiRsl(z)
elg, g g €©
Divide Eq (38) with Eq (39), we have
v
(e, g\ (e 9 . .
o = €
e(g,9)A° e(g,9)At 3

where Ao :=5" — & and At :=t — .

For ease of exposition, let us represent the above Eq as AY = B,
where the meaning of variable A and B can be explained straightforwardly by
looking at Eq (60). The adversary A (i.e. the dishonest prover/cloud storage
server) has sufficient information to compute values of A and B by itself. So
the adversary A is able to compute values A and B, such that AY = B.

Notice that, in our scheme, among all data that the adversary (dishonest
cloud storage server) owns (i.e data blocks, authentication tags {o;, ¢; }, and
public keys (pk, vpk)), the secret value ~ only appears in the computation
of t;, where ~ is perfectly protected by R, (¢) (which is frue randomness
in Game 2) from the adversary A (dishonest prover). Once a verification
public/private key pair is revoked, « will be re-randomized as '+, where ~/
is a newly chosen uniform random variable hidden from A. Therefore, v is
semantically secure against .4, and A is unable do brute-force search attack
to find values of . Therefore, the adversary A is unable to compute a pair
(A, B) such that AY = B and A # 1. As a result, it has to be the case that
A=B=1=c¢(g,9)° € Gr.

e(wa

o
v 9%) _
e(9,9)27

Recall that (Yo, 3,7, t) # (Vh, 7,[)’5, &’,t") are distinct, by our hypoth-

esis.

v
E(E» 9)

e(g.9)5F | = B=1 €Gr

We have A = <



Case 1: Ag #0 mod p. Let ¢ =0 € Zp and compute d € G as below

d:e(d]ijl7 g)(Aa)71 mod p € Gr.

[e3

(61)

One can verify that (¢, d) is a solution to the m-BSDH problem, by computing

Yo (Ac)™! mod p
e(g, 9) = (6(*,41“)) (62)
Ve (Ag)~! mod p
e(g, )"/ (F) = (6(17/79“/(“6))) =d €Gr.
: 63)

Case 2: Ac =0 mod p. Since Ac =0, A=1 € G and a # 0, we can
conclude ¥ = ny Both tuples T and 77 should also satisfy Eq @, we
have

e(Va,9) = e(¢a, 9%/9°) - e(g,9)* (64
e(¥h,g) = eldh, 9°/9%) - e(g,9)" (65)

Notice o = 9, and z # 2’. The same as proof of Lemma we letc = —¢

mod p and compute d as d = e(¢pa /P, g)<2/*2)71 mod p ¢ G, where
(e, d) will be a solution to the m-BSD problem.

Therefore, Pr[(c,d) solves m-BSDH problem] = Pr[A wins Lem H].
]

D. Proof of Lemma 3]
1) Proof of Claim [I}

Failurel Loot at the “if” statement at Line
(on page . Since our hypothesis of Claim
Pr[SOLVER outputs Failurel] = 0.

Proof:

of SOLVER Algorithm [2]
is [Syw| > ¢, we have

i

Failure2 Loot at codes around the “if” statement at Line@of SOLVER Algo-
rithm 2] By the definition of Syy, for each W € Sy, there exists an witness
set Wiy with size at least m. Thus, Pr[SOLVER outputs Failure2] = 0.

Failure3 Loot at codes around the “if” statement at Line 2] of SOLVER
Algorithm [2| By definition of set Syy, since 52‘7 ;€ W[Wi*]’ where W[W?] is
the witness set for W' € Syy, we have (WZ*,E;‘]) € Sg¢. By definition
of set Sg, the witness set W[Wi*é;]_] has size at least 1. Therefore,

Pr[SOLVER outputs Failure3] = 0.

Failure4 Look at codes from Line 27 to Line 29] of SOLVER Algorithm [2]
According to Lagrange polynomial interpolation method, the polynomial of
degree (m — 1) that passes through all of m distinct points do exit and is
unique. Thus, Pr[SOLVER outputs Failure4]| = 0.

Failure5 Look at codes from Line [32] to Line [34] of SOLVER Algo-
rithmE In the linear equation system at Line @, the coefficient matrix is
(W WET), where row vector Wi = (wg, w?,...,w§) fori € [1,¢]
and all w;’s are distinct (See codes around Line @ of Algorithm |Z|) It is
straightforward to find that this coefficient matrix has non-zero determinant,
due to the property of Vandermonde matrix. Therefore, the linear equation
system has unique solution, and Pr[SOLVER outputs Failure5] = 0.

For the above reason, if set Sy, has size at least ¢, then with overwhelm-
ing high probability, the procedure SOLVER will output a solution (i.e. return
a value at Line [36), instead of abort with failure. ]

2) Proof of Claim 2] Proof: By definition of sets S¢ and Syy,
these sets only concern tuple (W, ¢, z,b) € S with b = 1. So at Line
the value z;  is genuine for any ¢ € [1, ], j € [1,m], by the assumption of
Claim[@

Since polynomial with degree (m — 1) and passing m distinct points is
unique (Lagrange polynomial), the resulting polynomial Pz at Line E is
genuine. Recall Eq (3) at Step P1 of prover algorithm P1,

S wF

LeC*

Fi= mod p. (66)

Therefore, {F‘l} ,ecx is a solution to the linear equation system at Line
Since this linear equation system has unique solution A¥’s, we have
{F.}.ecx = {AF : i € [1,c]}. More precisely, letting C*
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{t1,t2,...,tc}, where 11 < 12 < 13 < ... < tc, we have F,; = A}

for each ¢ € [1, ¢].

Proof of Lemma [6]

Claim 5: Suppose  Pr  [fox(W,€&,€4) = 1] > €. We have
W,E,€ 4

D
2)

Pr(W is (e/2)-good] > €/2;
If W is (e/2)-good, then Pr[€ is (e/4)-good w.r.t W] > €/4.

Proof of Claim El Treating W as the first parameter of function fco=,
and the 2-tuple (&, € 4) as the second parameter, we apply Lemma and have
Pr[W is (e/2)-good] > €/2. Define a new function

fw,cr (6, €)% for (W€, €a).

Given that W is (¢/2)-good, we apply Lemma [§| again on function
fw,c*(-,-), where the first parameter of fiyy,c+ 1s & and the second
parameter is € 4. We get Pr[€ is (e/4)-good w.r.t. W] > e/4.

1) Proof of Claim E Proof: Looking at Line [3| of SIMULATOR
Algorithm |I| Ny instances of value VW will be generated and denoted as
Wi,...,Wp,. Define r; 1 if W; is (e/2)-good, otherwise r; = 0.
Then (r1,...,7n;) can be considered as the result of N independent
Bernoulli experiment with probability Pr[r; = 1] = Pr[WW is €/2-good].
We have probability Pr[WV is ¢/2-good] > €/2, under our hypothesis that

Pr [fo~(W,€,€4) = 1] > ¢, according to Claim Therefore,

W,E,€ 4
Pr[r; = 1] > ¢/2 for each .

Notice that N1 = [A(¢/2)"1]. We apply Lemma El on ri,...,Tn,
which are results of N7 independent Bernoulli experiment with probability
d = Pr[r; = 1] > ¢/2. With overwhelming high probability in A, there exist
d := ¢ < A%9 distinet indices i1,...,ic € [1,N1], such that r;, = 1 for
each j € [1,c]. As a result, for each j € [1, ], W;; is €/2-good.

Since all W;’s are chosen independently and uniformly randomly from a
domain of size (p — 1), the collision probability is

Prida#be {ir,... ic}, Wa=W, (67)
c 1, 1
< (YPriwi, = wiy) < 5e e (68)

which is negligible in A = log p. Consequently, all W;, , ..

., W, are distinct
with o.h.p. (1 — %02 . ﬁ) Claimis proved.

2) Proof of Claim ' Proof of Claim ‘ By applying Claim
if W; is (e/2)-good, then Prg[€ is (e/4)-good w.r.t Wi] > €/4.

Let r; = 1if & ; is €/4-good w.r.t. Wy, and r; = O otherwise. Then
(r1,...,7N,) can be considered as the result of N independent Bernoulli
experiment with probability Pr[r; = 1] = Pr[£ is (¢/4)-good w.r.t W;] >
e/4.

Notice that No = [A(e/4)~1]. Applying LemmaEl over 7;’s, with over-
whelming high probability, there exist d := m < \%9indices j,,¢ € [1,m],
such that r;, = 1 and thus &; j, is €/4-good w.rt. Wj.

For each ¢ € [1,m], we can show that (W;,&; ;,) € S¢ as below: Let
rp = 1if b; j, x = 1, otherwise 7, = 0. Pr[ry, = 1] = Pr[b; ;, r = 1] =
gr[fc* (Wi,&,j” QA) 1} > 6/4. Notice that N3 = [)\(6/4)_1“.

A

Applying Lemma E| over ri’s, with overwhelming high probability, there
exists at least one index k* € [1, N3], such that rp+ = 1, which implies
that bi,j“k* = 1. Therefore, (W’L‘7£i7jL7Zi,jL,k*7bi,jL,k* = 1) € S. By
definition of S¢, (W;,&; 5,) € Sg with {z; ;, 1=} as witness set.

Consequently, W; € Syy with {&; j, }.c[1,m] as Witness set. Claimis
proved. ]



APPENDIX C
PROOF OF SOUNDNESS W.R.T OWNER

A. Proof of Lemmal7]

Proof: Simulate Game 2’ using the input of m-BSDH problem, as in
Appendix with the difference that vsk is given to the adversary in setup
phase. Since both Ty = (z,¢a,d) and Ty (#', ¢,,,0") are valid, i.e.
satisfying Eq ([I) in algorithm OwnerVerify, we have

(69)

)

(70)

= 2 wiRso(9)
i€eC

(6(¢a,g“/g§)6(g,g)z)a < e(g, g‘?)~6(g7g)<

(

— 2 wiRsq (i)
i€C

6(97 gdl) : e(gvg)

2

(e(diw 9%/9%)e(g, g)z/)a

Combining Eq (89) and Eq (70), we have

(e(@hsas 9°/9%)e(g, )7 )

“ L e g7 ) an

Case 1: ¢/ = 5. If 2/ = z, then we have (¢, 05, g%/g%) = e(g, 9)°.
which implies that £ = a or ¢, = ¢a.

Otherwise, 2z’ # z. Thus the inverse (2’ —2) ™1 mod p exits. Let ¢ = 0
and compute d as below

d=e(@lbzt, 9°/g) "D €Gr (72)
It is easy to verify that d*T¢ = d* = e(g, g).

Case 2: 0/ # 5. Thus the inverse (¢/ —¢)~1 mod p exits. Let ¢ = 0 and
compute d as

(6/=5)~' mod p

d= (e(¢’a¢;1, 9%/9%)e(g, 9)Z/’Z)

It is easy to verify that d*1¢ = d* = e(g, g).

cGr (73)

APPENDIX D
Two LEMMAS ON RANDOM SAMPLING

In this section, we provide two lemmas on random sampling which
will simplify our proof of main theorem. These lemmas may have appeared
(implicitly) in the cryptography literature. Here we do not declare any
contribution on them.

Lemma 8: Let X and Y be two finite sets. Let X’ denote a random variable
over the domain X and Y denote a (dependent or independent) random variable
over the domain Y. Consider any function f : X x Y — {0, 1}, such that
Pr[f(X,Y) = 1] > € > 0 for some real value €. For any constant a € (0, %),
define a set Sq = {z € X: Pr[f(z,Y) = 1] > ae}. We have

PrlX € Sq] > <1—a> > 1e = O(e).
T a 2
Proof of Lemma @ We have
€ 74
< Prf(x,Y) =1] (75)
= > Prf(z,¥) =1Pr[X =x] +
TES,
> Prif(z,Y) = 1]Prix = (76)
z€X\S,
< Z 1-Pr[X =2a] + Z ae - Pr[X = z] a7
€S, z€X\S,
= ae+ (1 —ae) Z Pr[X = z] (78)
TES,
= PrlX € S,] = Zpr[x_xp(}_“)e(;e, d = O(e).
TES, € @
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Lemma 9: Let k be an integer. Let §, e € (0, 1] be two real values and
§ > e Let t = [re1]. Independently sample ¢ number of values 71, ..., 7
from {0, 1} under the Bernoulli distribution with probability é. Let d be a
positive integer and d < k¢ for some real valued constant ¢ € (0,1). Then
with overwhelming high probability (w.r.t. ), there exist d distinct indices
i1,%2,...,1q € [1,] such that Vj € [LdLTij =1.

We remark that the original form of Chernoff bound [15], [23]] does not serve
our purpose.

Proof of Lemma El Let us consider the set S = {i € [1,¢] : r; = 1}.
We will show that the size of set S is at least d with overwhelming high
probability.

For each index 4 € [1,¢], we have Prjr; = 1] =6 > e.

d—1 d—1
- )
Prlisi<d = Y Prisi=j1=) ()Fa-8 9
=0 j=o J
d—1 t )
< ( ) I(1— eyt (80)
j=0
d—1 ¢
d—17q _ Nt—d+1
< ]2:% PR EED 81)
S d(l{+ 1)d71671€+(’)(nc) (82)
KC
< o (83)

where e is the base of natural logarithm.

Now we explain the above inference. Equation (80) can be derived from
Equation (79), since for each j € {0,1,2,...,d—1}, function () = 67 (1—
8)t=7,8 € (0,1), has a negative first order derivative since x > x¢ > d, and
is thus a monotone decreasing function of § € (0, 1).

Equation (81) can be derived from Equation (80), since the probabil-
ity mass function of a binomial distribution is a bell shape (like normal
distribution) and reach its maximum at j = ¢ -€ > s > d. That is, for
0 <j<d<t-e the function g(j) = (;) () (1 — €)*~7 is a monotone
increasing function of j.

Equation %can be derived from Equation (§I), due to the following
two Equations and (83).

(1 _ 6)t7d+1 (1 _ E)%X(et+e(fd+1)) < (1 _ 6)%><(mfemc)
k—O (k) .
< (2) = e o, (84)
e
(d t 1>6d—1 < led=1 = (1e)d1 < (s 4+ 1)0 ! (85)

Equation (83) can be derived from Equation (82), since

(k +1)2-1

o (H + 1)“‘i -1 _ e(nc—l) In(k+1)—Kk+0 (k) _ e—O(n)‘
er—O(k°

e —O (k%)

So de=O(r) < ge.e=O(k) jg negligible in x. Recall that d < k¢ for constant
c € (0,1).

Therefore, Pr[|S| < d] is negligible in x and the set S has size at least
d with overwhelming high probability (1 — Pr[|S| < d]) in . [ ]

(86)
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