
Almost Optimal Short Adaptive Non-Interactive Zero Knowledge

First eprint version, May 30, 2014

Helger Lipmaa

University of Tartu, Estonia

Abstract. Several recent short NIZK arguments are constructed in a modular way from a small number
of basic arguments like the product argument or the shift argument. The main technical novelty of
the current work is a significantly more efficient version of the product argument. Based on this, we
propose an adaptive NIZK range argument with almost optimal complexity: constant communication
(in group elements), constant verifier’s computational complexity (in cryptographic operations), and
Θ(n logn) [resp., Θ(n)] prover’s computational complexity (in non-cryptographic [resp., cryptographic]
operations). The latter can be compared to n logω(1) n in the most efficient published short adaptive
non-interactive range argument, or Θ(n log2 n) [resp., Θ(n logn)] that is achievable when following
QAP-based framework from Eurocrypt 2013. Here, n is the logarithm of the range length. The new
product argument can be used to construct efficient adaptive NIZK arguments for many other languages,
including several that are NP-complete like Subset-Sum. Importantly, for all such languages, new
adaptive arguments achieve better prover’s computation than the QAP-based framework.

Keywords: CRS, NIZK, range proof, interpolation, product argument, quadratic arithmetic program

1 Introduction

A common approach to design a cryptographic protocol, secure in the malicious model, is to (i) design a
protocol, secure in the semihonest model under the assumption that the committed or encrypted inputs are
valid, and (ii) accompany it with a zero-knowledge proof [GMR85] that the inputs are indeed valid. Such
an approach is common say in homomorphic e-voting [CGS97,DJ01], where the vote tally is only correct
when every voter encrypted the number of a valid candidate. In particular, in many such applications it
often suffices to prove — possibly for many inputs — that an input belongs to some publicly fixed range
[L ..H] = {L,L+ 1, . . . ,H − 1, H}. That is, to use a range proof.

To understand important considerations that have to be taken into account when constructing range
proofs, recall that by using a non-interactive zero knowledge (NIZK) proof [BFM88], the prover can create
a short proof π that some claim is true, without revealing any side information. Since the proof is non-
interactive, the same proof π can be forwarded to many different verifiers who can independently verify the
truth of the claim. The latter property is important in many applications like e-voting or e-auctions, where
one cannot trust the voter (resp., the bidder) to be online every time the claim has to be verified.

Moreover, since the same proof can be transferred to and then verified by many independent verifiers
many times, it should be as short as possible. It is well-known that sublinear-length proofs can only be
computationally sound, that is, arguments. Ideally, an argument should consist only of a few (say) group
elements. By the same reason, an argument should also be efficient to verify. On the other hand, the con-
struction of the argument can be somewhat less efficient, since it is only done once. Still, prover-efficiency is
important, for example in a situation where a single server has to create many arguments to different clients.
All the mentioned considerations play an important role in the case of range proofs.

Related Work. Due to the importance of the problem, there has been a large quantity of work on range
proofs, some of which use quite unexpected ideas from other branches of mathematics. In particular, there
has been a large number of previous work on constructing interactive range proofs that can be made non-
interactive in the random oracle model [FS86]. However, it is well-known that the random oracle model should

only be used as a heuristic [CGH98,GK03]. Moreover, known range proofs in the random oracle model have
either suboptimal communication (e.g., linear in the bitlength n of the range, with n := blog2(H − L)c+ 1)
or rather high computational complexity (e.g., in [Lip03], the communication is Θ(1) but the prover has to
execute the randomized Rabin-Shallit algorithm [RS86] that takes quadratic time assuming the Extended
Riemann Hypothesis). On the other hand, [Gro11] achieved Θ(n log2 n) prover’s computation but with
Θ(n1/3) communication. See [Bou00,LAN02,DGS02,Gro04,CCs08,CLs10] for just some more related work.

There are only a few short NIZK range arguments in the standard model, that is, in the common
reference string (CRS, [BFM88]) model. First, [RKP09] proposed a range argument with communication of
Θ(n/ log n) group elements. However since a group element is at least Θ(log n) bits, the communication is not
a sublinear number of bits. The first range argument in the standard model with constant communication was
proposed in [CLZ12] and then made more efficient in [FLZ13]. More precisely, by following the pioneering
work of Groth [Gro10], the range arguments from [CLZ12,FLZ13] are built up in a modular way from a
small number of basic arguments. E.g., the range argument of [FLZ13] is based on a product argument
(given commitments to vectors a, b, c, it holds that ci = aibi; a short product argument was first proposed
in [Gro10], and optimized in [Lip12,FLZ13]), a shift argument (given commitments to a, b, it holds that
a is a coordinate-shift of b; first proposed in [FLZ13]), and a small number of other arguments. As shown
in [FLZ13], the same basic arguments can be used to construct NIZK arguments for other languages, including
several NP-complete languages.

Interestingly, existing short range arguments in the standard model are quite efficient. For example, the
product argument of [Lip12] and thus also the range argument of [CLZ12] has constant communication,
constant verifier’s computation, and quadratic prover’s computation. In what follows, we count computation
often implicitly in group elements, and verifier’s computation in the number of cryptographic operations.
However, in the case case of prover’s computation (which is the least efficient part of the argument), usually
the number of non-cryptographic operations and cryptographic operations differs.

Therefore, more precisely, the prover has to execute a quadratic number of non-cryptographic opera-
tions and a small number of Θ(r−13 (n))-wide multi-exponentiations, where r3(N) is the size of the densest
progression-free set [TV06] in [1 .. N]. Multi-exponentiation can be significantly sped up by using algorithms
by Straus [Str64] and Pippenger [Pip80]. The number of non-cryptographic operations in the prover’s compu-
tation in the product argument of [Lip12] (and thus also in the range argument of [CLZ12]) can be decreased
to Θ(r−13 (n) log r−13 (n)) by using the Fast Fourier Transform, see [FLZ13].

Finding explicit progression-free sets with the large r3 (and thus the small r−13) function is probably one
of the best known classical hard problems in additive combinatorics (it is listed as the first classical open
problem in [CL07]). By a recent breakthrough result of Elkin [Elk11] that improved a long-standing result of

Behrend [Beh46], r−13 (n) = o(n22
√

2 log2 n). However, for any practical size of n, Elkin’s construction is quite
inefficient, and in practice a better choice is to choose the progression-free set of Erdős and Turán [ET36] with
r−13 (n) = nlog3 2. In either case, the range argument of [CLZ12,FLZ13] has still better prover’s computational
complexity than the (random-oracle model) argument of [Lip03].

The prover’s computational complexity of the range argument of [FLZ13] is strongly dominated by that
of the product argument; in fact, the prover’s computation in the rest of the range argument is linear
in n. Hence, an important open question is to optimize the product argument of [Gro10,Lip12,FLZ13]. A
more efficient product argument would result in a more efficient range argument, but also to more effi-
cient arguments for many other languages. Such languages include NP-complete languages Set-Partition,
Decision-Knapsack and Subset-Sum [FLZ13] and (although we leave it as an open question) possibly also
Circuit-SAT or even verifiable computation [GGP10,GGPR13]. The modular framework of Groth [Gro10]
of constructing complex arguments from more basic arguments is sufficiently powerful to allow construction
of efficient NIZK for many other languages — given an efficient product argument.

Our Contribution. One way to improve on the product argument of [FLZ13] is to construct a progression-
free set that improves upon that of Elkin [Elk11]. However, since this is a well-known hard problem in ad-
ditive combinatorics, we will instead avoid the use of progression-free sets, and use a different methodology
due to [GGPR13]. The resulting new product argument requires prover’s computation of Θ(n log n) (versus

2

Θ(r−13 (n) log r−13 (n)) in [FLZ13]) non-cryptographic operations andΘ(n) (versusΘ(r−13 (n)) in [FLZ13]) cryp-
tographic operations. This also results in faster arguments for other languages that use the shift-and-product
framework of [FLZ13], like Subset-Sum. Such efficiency would be impossible by using the progression-free set
based approach due to the known upper bounds on r3(N) [San11,Blo14]. Moreover, the new adaptive argu-
ments are asymptotically faster than the quadratic arithmetic program (QAP) based solutions of [GGPR13]
(even when taking into accounts later improvements, proposed in [PGHR13,BSCG+13,Lip13]) for the same
languages. A detailed comparison to direct QAP-based solutions is given in Sect. 7.

Nevertheless, the new product argument follows the QAP-based blueprint of [GGPR13]. The product
argument is essentially a polynomial quadratic arithmetic program (QAP) for the circuit that computes
n multiplications in parallel, with additional elements to guarantee security in our setting. The prover’s
computation in the new product argument is dominated by three polynomial interpolations, one polynomial
multiplication and one polynomial division, all over Zp, and two n-wide multi-exponentiations. This takes
total time Θ(n log n), assuming that p satisfies a mild criterion.

The derivation of the new product argument automatically results in a new (homomorphic) trapdoor
commitment scheme1 — the interpolating commitment scheme — that is a variant of known commitment
schemes known since at least [GJM02] (see [Gro10,KZG10,Lip12,FLZ13] for various generalizations). Its
security proof is a modification of the security proofs of the latter. In fact, the interpolating commitment
scheme is a very natural commitment scheme: commitment to a vector a is basically a short garbled version
of the Lagrange interpolating polynomial La(X) of this vector, where La(X) can be computed by using
inverse Fast Fourier Transform [CT65]. Thus, there are certain parallels between the new product argument
and the well-known FFT-based multiplication algorithm.

We then construct a variant of the shift argument of [FLZ13] that is secure when combined with the
interpolating commitment scheme; it has only one non-trivial change compared to [FLZ13]. We also show
that the restriction argument of [Gro10] can be modified to work with the interpolating commitment scheme.

Based on the new trapdoor commitment scheme, the new product argument, the new shift argument,
and the restriction argument, we describe a version of the range argument from [CLZ12,FLZ13]. The new
range argument can be seen as a short program in the scan vector parallel computation model [Ble90] that
operates on committed vectors of length n. The steps of this short program consist of one application of the
restriction argument and of the shift argument, and two applications of the new product argument.

To emphasize that the new range argument is conceptually simple, we will next give its full description;
it can be compared with the much more complicated argument of [CLZ12]. In particular, due to the efficient
prover’s computation, we do not have to consider various trade-offs, presented in [CLZ12] (though they are
still available), but can propose one instantiation of the range argument that fares well in all parameters.

As usually, we assume that L = 0 and thus we need to construct a range argument that a ∈ [0 .. H].
(This is possible, since from a ∈ [0 .. H] it follows that a + L ∈ [L ..H + L].) Let n = blog2Hc + 1 be the
bit-length of H. We first reinterpret the commitment to a ∈ [0 .. H] as a commitment to the n-dimensional
vector (0, . . . , 0, a). We rely on a result from [LAN02] (formally proven in [CLs10]) that a ∈ [0 .. H] iff
a =

∑n
i=1Hibi, where Hi are publicly known constants and bi ∈ {0, 1}. We commit to b, and use the new

product argument to show that bi ∈ {0, 1}. We commit to c, where ci = Hibi, and use the product argument
to prove that c was computed correctly. We compute a commitment to d, where di =

∑
j≥i cj , and use the

shift argument to show that this was done correctly. We finally use a restriction argument from [Gro10] to
show that a = d1, that is, a =

∑n
j=1 cj =

∑n
j=1Hjbj ∈ [0 .. H]. The security of the range argument follows

from the security of the basic arguments and related knowledge assumptions.

In the new range argument, the prover’s computation is Θ(n log n) non-cryptographic operations (dom-
inated by six polynomial interpolations, two polynomial multiplications and two polynomial divisions) and
Θ(n) cryptographic operations (dominated by a small number of n-wide multi-exponentiations). Both pa-
rameters are significantly improved when compared to [FLZ13], and arguably (almost) optimal. In fact,

1 It is not uncommon to propose range proofs, or NIZK arguments in general, based on non-standard commitment
schemes. One example is the range proof of [Lip03] that is based on the integer commitment scheme of Damg̊ard
and Fujisaki [DF02]. Similarly, the arguments of [Gro10,Lip12,FLZ13] used tailored commitment schemes.

3

the prover’s computation is strongly dominated by Θ(n) cryptographic operations.2 The argument size is
18 group elements, and the verifier’s computation is dominated by 32 bilinear pairings. The CRS consists
of Θ(n) group elements. In addition, [CLZ12] proposed several variants of their range argument that offer
various trade-offs between the computational and communication complexity. The same trade-offs can be
used here, but the resulting range arguments are obviously more efficient. See [CLZ12] for more information.

Other Applications. A major benefit of the modular approach of [Gro10] is its generality: one can use the
new product argument to speed up the prover’s computation in NIZK arguments for other languages, in-
cluding several NP-complete languages [FLZ13]. All such applications can be easily modified to use the inter-
polating commitment scheme, after that they require prover’s computation of Θ(n log n) non-cryptographic
operations. This can be compared to Θ(n log2 n) when using the QAP-based approach directly. Similar
speed-up is achieved in the case of cryptographic operations.

More generally, Fauzi et al [FLZ13] constructed an efficient vector scan argument. The vector scan parallel
computation model [Ble90] (that assumes the existence of vector scan, Hadamard sum, Hadamard product,
and possibly some other parallel operations) is very flexible and powerful, and can be used to implement
many problems efficiently. Constructing efficient arguments for other cryptographically relevant languages
in this model is an interesting direction of future work. In particular, we leave it as an open problem to
construct a similarly efficient argument for Circuit-SAT (and thus also for verifiable computation). For
this it suffices to design an efficient permutation argument; see App. F for discussion.

2 New Trapdoor Commitment Scheme

In this section, we construct the new trapdoor commitment scheme. We first give a general construction and
prove its security, and then give an instantiation of the parameters that we need in the current paper. The
precise reasoning behind the parameters will become clear in Sect. 4.

Trapdoor commitment scheme is a randomized cryptographic primitive in the CRS model [BFM88] that
takes a message and outputs its commitment. It consists of two efficient algorithms gencom (that outputs a
CRS and a trapdoor) and com (that, given the CRS, a message and a randomizer, outputs a commitment),
and must satisfy the following three security properties. Computational binding: without access to the
trapdoor, it is intractable to open the same commitment to two different messages. Perfect hiding: commit-
ments of any two messages have the same distribution. Trapdoor: given an access to the original message,
the randomizer and the trapdoor, one can open a commitment to (say) 0 to an arbitrary message. See,
e.g., [Gro10] for formal definitions.

We define the following pairing-based polynomial (trapdoor) commitment scheme. Recall that on in-
put 1κ, where κ is the security parameter, the bilinear map generator [SOK00,Jou00,BF01] returns
(p,G1,G2,GT , ê, g1, g2), where G1, G2 and GT are three multiplicative cyclic groups of prime order p, gz is a
generator of Gz for z ∈ {1, 2}, and ê is an efficient bilinear map ê : G1×G2 → GT that satisfies in particular
the following two properties: (i) ê(g1, g2) 6= 1, and (ii) ê(ga1 , g

b
2) = ê(g1, g2)ab. Thus, if ê(ga1 , g

b
2) = ê(gc1, g

d
2)

then ab = cd mod p.

Definition 1 ({Pi}-Commitment Scheme). Let n = poly(κ), n > 0, be an integer, and let z ∈ {1, 2}.
Let Pi(X) ∈ Zp[X], for i ∈ {0, 1, . . . , n}, be distinct linearly independent low-degree polynomials. The {Pi}-
commitment scheme is parametrized by (z, n, {Pi}ni=0). First, gencom(1κ, n) invokes the bilinear group gen-
erator to generate gk← (p,G1,G2,GT , ê, g1, g2), and outputs the CRS

ck← (gk; (gPi(σ)z , gαPi(σ)z)ni=0) (1)

2 Some speed-ups might still be possible, since cryptographic operations are executed with Ω(logn)-bit operands.
E.g., in [CCs08,RKP09,CLs10], the prover’s computation is Θ(n/ logn) cryptographic operations, but the argument
size is also Θ(n/ logn) group elements and thus the argument is not short. We leave combining techniques from
their argument with the ones from the current paper an interesting open question.

4

for uniform and random α←r Zp and σ ←r Zp \ {x : P0(x) = 0}. The trapdoor is equal to (σ, α).
Second, the commitment com(ck;a; r) of a ∈ Znp , given a fresh randomizer r ←r Zp, is equal to

(g
P0(σ)
z , g

αP0(σ)
z)r ·

∏n
i=1(g

Pi(σ)
z , g

αPi(σ)
z)ai ∈ G2

z. The validity of a commitment (A,Aα) can be checked by

verifying that ê(A, g
αP0(σ)
2) = ê(Aα, g

P0(σ)
2) (if z = 1) or ê(g

αP0(σ)
1 , A) = ê(g

P0(σ)
1 , Aα) (if z = 2). To open a

commitment, the committer sends (a, r) to the verifier.

Since a commitment consists of two group elements, for a commitment (A,Aα), let us denote com(ck;a; r) =
(com1(ck;a; r), com2(ck;a; r)). Clearly,

loggz A = rP0(σ) +

n∑
i=1

aiPi(σ) . (2)

The second element, Aα, of the commitment is known as the knowledge component [Dam91].
The security of the {Pi}-commitment scheme (and thus also of the arguments of the current pa-

per) depends on the following q-type assumptions, variants of which have been studied and used in
say [GJM02,DL08,Gro10,CLZ12,Lip12,BCI+13,FLZ13]. All known (to us) adaptive short NIZK arguments
are based on q-type assumptions about genbp. Informally (see App. A for formal definitions that in par-
ticular give syntactic restrictions to gen), let gen be an efficient algorithm that on input (1κ, n) generates
a CRS crs and a trapdoor (σ, . . . , α, . . .). Let gen-DL be the computational assumption that given crs out-
put by gen(1κ, n), it is difficult to compute σ. The gen-DL assumption is a variant of the uber-assumption
from [BBG05]. It is possible that it could be simplified, but we leave it as an open problem. See [CM14]. Let
(gen, {Pi}, α)-KE be the knowledge assumption [Dam91] that a committer who has created a valid commit-
ment (A,Aα) in Gz, given ck ← gen(1κ, n) (but not the trapdoor) as input, must know coefficients ai such
that loggz A =

∑
aiPi(σ). The following theorem together with its security proof is standard.

Theorem 1. Let z ∈ {1, 2}. Let Φcom = {Pi}ni=0, where Pi are as in Def. 1. The {Pi}-commitment scheme is
perfectly hiding. It is computationally binding when genbp is gencom-DL secure. If genbp is (gencom, {Pi}, α)-
KE secure, then there exists an extractor that extracts the message a and the randomizer r, given ck, the
commitment (A,Aα) = com(ck;a; r) and access to the committer’s random tape.

Proof. Perfect Hiding: since P0(X) is a non-zero polynomial (this follows from linear independence), then
due to the choice of σ, rP0(σ) (and thus also loggz A) is uniformly random in Zp. Therefore, (A,Aα) is a
uniformly random element of the multiplicative subgroup of G2

z generated by (gz, g
α
z), independently of the

committed value. Extraction: clear from the statement.
Computational Binding: assume that the adversary outputs (a, ra) and (b, rb) with (a, ra) 6= (b, rb),

such that d(X) := (raP0(X) +
∑n
i=1 aiPi(X))− (rbP0(X) +

∑n
i=1 biPi(X)) has a root at σ. If the adversary

is successful, then d(X) ∈ Zp[X] is a non-trivial polynomial. Since the coefficients of d are known, we can
use an efficient polynomial factorization algorithm [LLL82,vHN10] to compute all roots xi of d(X). One of

these roots has to be equal to σ (one can establish which one by comparing each (say) g
P0(xi)
z to the element

g
P0(σ)
z given in the CRS).3 ut

See App. B for some history of this commitment scheme. In the rest of this paper, we use concrete
polynomials to instantiate the commitment scheme of Def. 1.

Definition 2 (Interpolating Commitment Scheme). The interpolating commitment scheme is the {Pi}-
commitment scheme, instantiated with polynomials P0(X) = Z(X) and Pi(X) = `i(X) for i ∈ {1, . . . , n}
over Zp[X], that are defined as follows. Assume n is a power of two, and ωi = ωi−1 for i ∈ {1, . . . , n}, where
ω is the n-th primitive root of unity modulo p (this speeds up some of the arithmetic). Then,

3 Another common methodology in such proofs is to use the Schwartz-Zippel lemma [Sch80]. However, the Schwartz-
Zippel lemma establishes the security only under a decisional assumption, while using polynomial factorization
enables us to establish the security under a computational assumption.

5

– Z(X) :=
∏n
i=1(X−ωi) is the unique degree n monic polynomial, such that Z(ωi) = 0 for all i ∈ {1, . . . , n}.

If ωi = ωi−1, then Z(X) = Xn − 1.

– `i(X) :=
∏
j 6=i

X−ωj
ωi−ωj is the unique degree n− 1 polynomial, s.t. `i(ωi) = 1 and `i(ωj) = 0 for j 6= i.

Thus also Φcom = {Z(X)} ∪ {`i(X)}ni=1.

Note that `i is the ith Lagrange basis polynomial. In particular, La(X) =
∑n
i=1 ai`i(X) is the interpolating

(Lagrange) polynomial of a at points ωi, La(ωi) = ai, and can thus be computed by executing inverse Fast
Fourier Transform [GG03]. Moreover, (`i(ωj))

n
j=1 = ei and (Z(ωj))

n
j=1 = 0n.

In the case when ωi are arbitrary, polynomial interpolation can be done in time Θ(n log2 n) [GG03].
This slows down the prover’s computation to Θ(n log2 n) non-cryptographic operations in the new range
argument, and to Θ(n log3 n) in a QAP-based argument. Note that for the existence of the n-th primitive
root of unity modulo p it suffices that (n+1) | (p−1). One can then use the Cocks-Pinch method to construct
a corresponding pairing-friendly curve. Arithmetic on such a curve is about 3 times slower than on curves
without specific requirements on p.

This precise choice of the polynomials Z(X) and `i(X) will be motivated later, in Sect. 4. It is easy to see
that they satisfy the requirements of Thm. 1. In fact, given Def. 1 and the statement of Thm. 1, this choice
is very natural: `i(X) interpolate linearly independent vectors (and thus are linearly independent), and the
choice to interpolate unit vectors is the conceptually clearest way of choosing `i(X). Another natural choice
of independent polynomials is to set Pi(X) = Xi as in [Gro10], but as known from the previous work, that
choice results in much less efficient arguments.

3 Preliminaries: Zero Knowledge

We refer to App. D for an informal motivation of NIZK arguments, known impossibility results, and expla-
nation of why the CRS model and knowledge assumptions are needed.

An NIZK argument for a language L consists of three algorithms, gencrs, prove and ver. The CRS gener-
ation algorithm gencrs takes as input 1κ (and possibly some other, public, language-dependent information)
and outputs the prover’s CRS crsp, the verifier’s CRS crsv, and the trapdoor td. (The distinction between
crsp and crsv is not important for security, but in many applications crsv is much shorter.) The prover prove
takes as an input crsp together with a statement x and a witness w, and outputs an argument π. The verifier
ver takes as an input crsv together with a statement x and an argument π, and either accepts or rejects.

Some of the expected properties of an argument are: (i) perfect completeness (the honest verifier always
accepts the honest prover), (ii) perfect witness-indistinguishability (the distributions of the arguments corre-
sponding to any two allowable witnesses are the same), (iii) perfect zero knowledge (there exists an efficient
simulator that can, given x, crsp and td, output an argument that comes from the same distribution as the
argument produced by the prover), and (iv) computational soundness (if x 6∈ L, then an arbitrary nonuni-
form probabilistic polynomial time prover has only a negligible success in creating a satisfying argument).
An argument is an argument of knowledge, if from an accepting argument it follows that the prover knows
the witness. For the sake of completeness, we give formal definitions in App. D.

4 Hadamard Product Argument

Here and in what follows, a ◦ b denotes the Hadamard (element-wise) multiplication of two vectors, with
(a ◦ b)i = aibi. In an product argument [Gro10], the prover aims to convince the verifier that she knows how
to open three commitments A, B, and C to vectors a, b and c correspondingly, such that a ◦ b = c. We first
follow the line of thought of [GGPR13] (but using the matrix notation of [Lip13]) to derive the new product
argument together with the supporting trapdoor commitment scheme. After that, we give a full description
of the argument together with a discussion of its security and efficiency.

The underlying commitment scheme will be the interpolating commitment scheme. Quick intuition be-
hind this is that the commitment scheme stores a garbled version of the interpolating polynomial La of

6

the input vector a. The polynomial La can be computed in Θ(n log n) non-cryptographic operations, and
garbling takes Θ(n) cryptographic operations. Since multiplication of two vectors, given their interpolat-
ing polynomials, can be done pointwise in time Θ(n), we can in Θ(n log n) time compute the polynomial
Qa,b,c(X) = La(X)Lb(X) − Lc(X)L1n(X), and from Qa,b,c(X) we can compute the actual argument in
Θ(n) cryptographic operations. Given this interpretation, we could have omitted several steps in the next
derivation, but we omitted not to do it for the sake of clarity.

Let In be the n× n identity matrix and let 1n be the n-dimensional all-one vector. Clearly, a ◦ b = c iff

(a>In) ◦ (b>In) = (c>In) ◦ (1>n In) , (3)

which in turn holds if and only if

(
∑

aiei) ◦ (
∑

biei) = (
∑

ciei) ◦ (
∑

ei) . (4)

Following the terminology of [Lip13], Eq. (4) describes a (non-polynomial) quadratic arithmetic pro-
gram [GGPR13] for the arithmetic circuit C, consisting of n parallel multiplication gates, that on given
inputs a and b returns c as the output. Importantly, in Eq. (3) we use the same matrix, In, in the matrix-
vector products a>In, b>In, and c>In. At the end, this will mean that we can commit to three vectors a,
b and c by using the {Pi}-commitment scheme with the same parameters as in Def. 2.

Next, from Eq. (4) we obtain a polynomial quadratic arithmetic program for C as in [Lip13]. Fix n different
values (ω1, . . . , ωn) as in Def. 2. Now, let `i(X) be again the ith Lagrange basis polynomial, as in Def. 2.
Clearly, due to the definition of `i(X) (and recalling that Lx(X) =

∑
xi`i(X)), Eq. (4) is equivalent to the

requirement that the degree n− 2 polynomial

Qa,b,c(X) := La(X)Lb(X)− Lc(X) · L1n(X)

evaluates to 0 at all n values ωi. Thus, for Z(X) defined as in Def. 2, Eq. (4) is equivalent to Z(X) | Qa,b,c(X).
That is, there exists a degree (2n− 2)− n = n− 2 polynomial π(X), such that

π(X) · Z(X) = Qa,b,c(X) . (5)

Since c = a ◦ b, π(X) can be computed as π(X)← Qa,b,a◦b(X)/Z(X).
Finally, we achieve zero-knowledge as in [GGPR13] (see also [BCI+13]), by introducing randomizers

ra, rb, rc ←r Zp, and defining

Qa,b,czk (X) := (La(X) + raZ(X)) (Lb(X) + rbZ(X))− (Lc(X) + rcZ(X)) · L1n(X) .

Here, the added elements of type raZ(X) guarantee hiding. On the other hand, due to the use of Z(X) in

addends, since Z(ωi) = 0, Qa,b,czk (X) remains divisible by Z(X) if and only if c = a ◦ b.
Thus, a ◦ b = c if and only if there exists a polynomial πzk(X) such that

πzk(X) · Z(X) = Qa,b,czk (X) . (6)

Here, the degree n− 2 polynomial πzk(X) can be computed as

πzk(X) :=Qa,b,a◦bzk (X)/Z(X) . (7)

Moreover, πzk(X) does not reveal any information about the witness.
However, πzk(X) is not of sublinear length in n. As common in situations like that, to minimize

communication, we instead transfer the evaluation of πzk(X) at a random secret point σ. In particular,

g
Qa,b,c
zk (σ)

1 := (com1(ck;a; ra) · com1(ck; b; rb)) / (com1(ck; c; rc) · com1(ck; 1; 0)), where we use the interpolat-
ing commitment scheme from Def. 2 with correctly defined ck.

However, since σ is an unknown secret element, the prover cannot compute πzk(σ). Instead, he computes

g
πzk(σ)
1 , using the values gσ

i

1 (given in the CRS) and the coefficients πi of πzk(X) =
∑n−2
i=0 πiX

i (computed
according to Eq. (7)), together with its knowledge component (here, β is another secret key), as follows:

(π, πβ) := (g1, g
β
1)πzk(σ) ←

n−2∏
i=0

(gσ
i

1 , g
βσi

1)πi . (8)

7

Hadamard Product Argument: Details. The now give a detailed description of the new product argu-
ment. Note that we partition the CRS into the prover’s CRS crsp and the verifier’s CRS crsv. This is not
important for the security (both parties may get access to both CRS-s), but since crsp is significantly shorter,
it may result in some gain of efficiency in practice.

CRS generation gencrs×(1κ, n): Let (p,G1,G2,GT , ê, g1, g2) ← genbp(1κ). Let com be the interpo-
lating commitment scheme from Def. 2. Generate (σ, α, β) ←r Z3

p with Z(σ) 6= 0. Set ckz ←
(gk; g

f(σ)
z , g

αf(σ)
z)f∈{Z,`1,...,`n} for z ∈ {1, 2}. Set E ← com1(ck2; 1n; 0) =

∏n
i=1(g

`i(σ)
2 , g

α`i(σ)
2). Finally,

set crsp ← (ck1, ck2, (g
f(σ)
1 , g

βf(σ)
1)f∈{X0,...,Xn−2}), crsv ← (gk; g

Z(σ)
2 , gβ2 , E), and td ← (σ, α, β). Output

(crs = (crsp, crsv), td).
Proving prove×(crsp; (A,Aα, B,Bα, C, Cα;w× = (a, ra, b, rb, c, rc)): Compute π× ← (π, πβ) as by Eq. (8).

Output π×.
Verification ver×(crsv;A,A

α, B,Bα, C, Cα;π×): Verify that (i) ê(π, gβ2) = ê(πβ , g2), and (ii) ê(A,B) =

ê(C,E) · ê(π, gZ(σ)
2).

Security. Like any of the other basic arguments, the product argument cannot be sound by the standard
definition of soundness, see [Gro10,Lip12] for a detailed explanation. It can only satisfy a weaker notion of
soundness, which basically states that if there exists an adversary that creates all the elements that include the
knowledge component (that is, all such inputs and the argument itself), then one can construct an extractor
that extracts the witness (in this case, w×). This weaker version of soundness is however sufficient for (say) the
range argument to be sound, due to the fact that there we use additional knowledge assumptions. Similarly,
the product argument by itself is not zero-knowledge, but it is witness-indistinguishable; this suffices for
(say) the range argument to be zero-knowledge.

Theorem 2. Let n = poly(κ). Let com be the interpolating commitment scheme from Def. 2. Assume that
the inputs are valid commitments.
1. The new product argument is perfectly complete and perfectly witness-indistinguishable.
2. (Weak soundness:) If genbp is gencrs×-DL secure, then a non-uniform probabilistic polynomial-time

adversary against the new product argument has negligible chance, given crs← gencrs(1κ, n) as an input,
of outputting inp× = (A,Aα, B,Bα, C, Cα) and an accepting argument π× = (π, πβ) together with a
witness w× = (a, ra, b, rb, c, rc,π

′ = (π′i)
n−2
i=0), such that

(i) a, b, c ∈ Znp , ra, rb, rc ∈ Zp, and π′ ∈ Zn−1p ,
(ii) (A,Aα) = com(ck1;a; ra), (B,Bα) = com(ck2; b; rb), and (C,Cα) = com(ck1; c; rc),

(iii) logg1 π = loggβ1
πβ =

∑n−2
i=0 π

′
iσ
i, and

(iv) for some i ∈ [1 .. n], aibi 6= ci.

Proof. Completeness: follows from the derivation of the argument in the beginning of this section.
Witness-indistinguishability: since argument π× that satisfies the verification equations is unique, all
witnesses result in the same argument, and therefore the product argument is witness-indistinguishable.

Weaker version of soundness. Assume that A is an adversary that can break the last statement of
the theorem. We construct an adversaryAdl against the gencrs×-DL assumption. Let (crs, td)← gencrs(1κ, n).
The adversary Adl receives crs as her input, and her task is to output σ. She sends crs to A.

Assume that A returns (inp×, π×, w×) such that the conditions in the theorem statement hold, and
ver×(crs; inp×;π×) accepts. Here, inp× = (A,Aα, B,Bα, C, Cα) and w× = (a, ra, b, rb, c, rc,π

′).

If A is successful, then Adl has recovered all the coefficients of the polynomial Qa,b,czk (X) and also all
the coefficients of the polynomial πzk(X). Moreover, due to the discussion in the beginning of this section,

Qa,b,czk (X) evaluates to 0 at all n values ωi (that is, Z(X) | Qa,b,czk (X)) if and only if a ◦ b = c. Since A was

successful, it must be the case that d(X) := π(X) · Z(X)−Qa,b,czk (X) is a non-trivial polynomial, for which
Adl knows all the coefficients.

Since the last verification equation holds, it means that d(σ) = 0. The adversary can now apply an
efficient polynomial factorization algorithm in Zp[X] [LLL82,vHN10] to find all roots xi of d(X). One of the

8

roots has to be equal to σ; Adl can find the correct root by comparing g
`j(σ)
2 for some j, given in the CRS,

with all values g
`j(xi)
2 . The adversary has thus violated the gencrs×-DL assumption. ut

Efficiency. The prover’s computation is dominated by the computation of (i) two multi-exponentiations of
width n − 1. By using the Pippenger’s multi-exponentiation algorithm [Pip80], this means asymptotically
approximately 2(n− 1) multiplications in a bilinear group. For small values of n, one can use the algorithm
by Straus [Str64]. (ii) three polynomial interpolations, one polynomial multiplication (since L1(X) = 1, one
multiplication can be omitted) and one polynomial division to compute the coefficients of the polynomial
πzk(X). Since polynomial division can be implemented as two polynomial multiplications (by using pre-
computation and storing some extra information in the CRS, [GG03,Lip13]), this part is dominated by two
inverse FFT-s and three polynomial multiplications. Other savings are possible, see App. C.

The verifier’s computation is dominated by 5 pairings. Excluding gk, the prover’s CRS consists of 4n
group elements, while the verifier’s CRS consists of only 3 group elements. The CRS can be computed in
linear time, by using the algorithm proposed in [BSCG+13].

5 On Other Basic Arguments

In the new range argument we will be relying on the product argument of Sect. 4 but also on two other
arguments, the shift argument from [FLZ13] and the restriction argument from [Gro10]. We will rederive the
shift argument (for the interpolating commitment scheme) and briefly describe the restriction argument. See
the original papers for more details.

5.1 Right Shift-by-ξ Argument

In a right shift-by-ξ argument [FLZ13], the prover aims to convince the verifier that for two commitments
A and B, he knows how to open them as A = com(ck;a; ra) and B = com(ck; b; rb), such that ai = bi+ξ for
i ∈ [1 .. n− ξ] and ai = 0 for i ∈ [n− ξ + 1 .. n]. That is, (an, . . . , a1) = (0, . . . , 0, bn, . . . , b1+ξ).

An efficient right shift-by-ξ argument was described in [FLZ13]. We now reconstruct the right shift
argument of [FLZ13] so that it can be used together with the interpolating commitment scheme of Def. 2.
While we only need the case ξ = 1, the general case is as easy to handle as the special case.

There are several reasons why one can design an efficient right shift argument that works together
with the interpolating commitment scheme. Most importantly, the right shift argument of [FLZ13] is very
efficient to start with, and the construction of the argument of [FLZ13] almost does not depend on the
concrete commitment scheme. We mention that the argument needs one non-trivial modification compared
to [FLZ13]: as we see in what follows, for the security reasons we set a certain polynomial ζ(X) to be equal
to Z(X), while in [FLZ13], ζ(X) had a different definition ζ(X) = Xξ.

Our strategy of constructing the shift argument follows the strategies of [Gro10] and follow-up papers. We
start with a fixed commitment scheme and a fixed verification equation that also contains the argument. We
write the discrete logarithm of the argument (that follows from this equation) as a sum of two polynomials
F (X) and πhonest(X), each of which belongs to the span of a set of polynomials. The second polynomial,
πhonest(X), is identically zero if and only if the prover is honest. Under the assumption that the spans of
two polynomial sets do not intersect, this results in the right shift argument.

Generalizing [FLZ13], assume that the verification equation is ê(B · gπ(σ)1 , g2) =? ê(A, g
ζ(σ)
2), for A and B

being commitments to a and b (by using the {Pi}-commitment scheme, without fixing the polynomials yet),

and ζ(X) being a polynomial that we will fix later. The value g
π(σ)
1 corresponds to the argument. Denote

R(X) := raP0(X)ζ(X)− rbP0(X). Replacing σ with a formal variable X and taking a discrete logarithm of

9

the verification equation,

π(X) =
(
raP0(X) +

∑
aiPi(X)

)
ζ(X)−

(
rbP0(X) +

∑
biPi(X)

)
=
∑

aiPi(X)ζ(X)−
∑

biPi(X) +R(X)

=

n−ξ∑
i=1

aiPi(X)ζ(X) +

n∑
i=n−ξ+1

aiPi(X)ζ(X)

−(n−ξ∑
i=1

bi+ξPi+ξ(X) +

ξ∑
i=1

biPi(X)

)
+R(X)

=F (X) + πhonest(X) ,

where

F (X) =

n−ξ∑
i=1

(ai − bi+ξ)Pi(X)ζ(X) +

n∑
i=n−ξ+1

aiPi(X)ζ(X)

 ,

πhonest(X) =

(
n−ξ∑
i=1

bi+ξ(Pi(X)ζ(X)− Pi+ξ(X))−
ξ∑
i=1

biPi(X)

)
+R(X) .

Now, if the prover is honest, then F (X) = 0, and thus π(X) = πhonest(X) belongs to the span of Φξrsft :=

{Pi(X)ζ(X)−Pi+ξ(X)}n−ξi=1 ∪{Pi}
ξ
i=1∪{P0(X)ζ(X)}∪{P0(X)}. For the argument to be sound, we need that

Pi(X), i ≥ 1, are all linearly independent, and that F (X) 6∈ span(Φξrsft), that is, Pk(X)ζ(X) 6∈ span(Φξrsft),

for k ∈ [1 .. n]. (This guarantees that from a representation of π(X) as an element of span(Φξrsft) it follows
that a is a shift of b.)

We now show that one can use the interpolating commitment scheme of Def. 2 together with a concrete
choice ζ(X).

Lemma 1. For the interpolating commitment scheme of Def. 2 and ζ(X) = Z(X), let

Φξrsft := {`i(X)Z(X)− `i+ξ(X)}n−ξi=1 ∪ {`i(X)}ξi=1 ∪ {Z(X)2} ∪ {Z(X)} .

It holds that `k(X)Z(X) 6∈ span(Φξrsft) for any k ∈ [1 .. n].

Proof. Assume that for some k ∈ [1 .. n], `k(X)Z(X) ∈ span(Φξrsft). First, Z(X)2 is the only polynomial of
degree ≥ 2(n + 1) and therefore can be “removed” from the span. Thus, there exit integers ai, bi and ci,

such that `k(X)Z(X) = aZ(X) +
∑n−ξ
i=1 bi (`i(X)Z(X)− `i+ξ(X)) +

∑ξ
i=1 ci`i(X). But then the left hand

side and the right hand side polynomials must also agree on points ωi, for i ∈ [1 .. n]. Therefore, due to the

definition of the olynomials `i and Z, 0 = −
∑n−ξ
i=1 biei+ξ +

∑ξ
i=1 ciei =

∑ξ
i=1 ciei +

∑n
i=ξ+1 bi−ξei. The

latter is only possible if bi = ci = 0. Since `k(X)Z(X) 6= aZ(X) for constant a, this finishes the proof. ut

As in the case of the product argument, the argument will not contain the polynomial π(X) itself, but

the value (g
π(σ)
1 , g

γπ(σ)
1) for random σ and a knowledge secret γ, computed as

(g
π(σ)
1 , g

γπ(σ)
1) =

n−ξ∏
i=1

(
g
`i(σ)Z(σ)−`i+ξ(σ)
1 , g

γ(`i(σ)Z(σ)−`i+ξ(σ))
1

)bi+ξ
·
ξ∏
i=1

(
g
`i(σ)
1 , g

γ`i(σ)
1

)−bi
· (9)

(
g
Z(σ)2

1 , g
γZ(σ)2

1

)ra (
g
Z(σ)
1 , g

γZ(σ)
1

)−rb
.

We are now ready to state the full right-shift-by-ξ argument:

CRS generation gencrsrsft(1
κ, n): Let (p,G1,G2,GT , ê, g1, g2) ← genbp(1κ). Generate (σ, α, γ) ← Z3

p with

Z(σ) 6= 0. Set ck1 ← (g
f(σ)
1 , g

αf(σ)
1)f∈{Z,`1,...,`n}. Let crsp ← (gk; g

f(σ)
1 , g

γf(σ)
1)f∈Φξrsft

) (this contains ck1),

crsv ← (gk; g
Z(σ)
2). Set td← (σ, α, γ). Return ((crsp, crsv), td).

10

Proving proversft(crsp;A,A
α, B,Bα;a, ra, b, rb): compute πrsft ← (π, πγ) as in Eq. (9). Return πrsft.

Verification verrsft(crsv;A,A
α, B,Bα;πrsft = (π, πγ)): check that (i) ê(g

Z(σ)
1 , πγ) = ê(g

γZ(σ)
1 , π) ((π, πγ) is

valid), and (ii) ê(B · π, g2) = ê(A, g
Z(σ)
2).

Theorem 3. Let n = poly(κ). Let com be the commitment scheme from Def. 2. Assume that the inputs are
valid commitments.

1. The shift argument of [FLZ13] is perfectly complete and perfectly witness-indistinguishable.

2. (Weak soundness:) Let Φξrsft be as in Lem. 1. If genbp is gencrsrsft-DL secure, then a non-uniform
probabilistic polynomial time adversary against the shift argument of the current section has negligible
chance, given crs ← gencrs(1κ, n) as an input, of outputting inprsft ← (A,Aα, B,Bα) and an accepting
argument (π, πγ) together with a witness wrsft ← (a, ra, b, rb, (f

∗
ϕ)ϕ∈Φξrsft

), such that

(i) a, b ∈ Znp , ra, rb ∈ Zp, f∗ϕ ∈ Zp for ϕ ∈ Φξrsft,
(ii) (A,Aα) = com(ck;a; ra), (B,Bα) = com(ck; b; rb),

(iii) logg2 π = loggβ2
πγ =

∑
ϕ∈Φξrsft

f∗ϕ · ϕ(σ), and

(iv) (an, . . . , a1) 6= (0, . . . , 0, bn, . . . , bξ+1).

(See App. E for a proof sketch.)

Efficiency. The prover’s computation is dominated by two (n + 1)-wide multi-exponentiations. Note that
this time there is no need for polynomial interpolation, multiplication or division. The communication is 2
group elements. The verifier’s computation is dominated by 4 pairings.

5.2 Restriction Argument

In a restriction argument [Gro10], the prover aims to convince the verifier that some entries of the committed
vector a are equal to 0. That is, for a publicly known index set I ⊆ [1 .. n], it follows from i ∈ I that ai = 0.
Groth proposed a simple restriction argument in [Gro10]. Assume one uses the {Pi}-commitment scheme,
where {Pi} satisfy the requirements of Thm. 1 (e.g., they come from Def. 2), and that z ∈ {1, 2}. The
basic idea behind this argument is that for a secret knowledge element δ ←r Zp (that is specific to the
restriction algorithm), only the values (gz, g

δ
z)
Pi(σ), where i ∈ {0} ∪ I, are available as a part of the CRS.

The knowledge component Aδ of the commitment to a, (A,Aδ)← (g
P0(σ)
z , g

δP0(σ)
z)r ·

∏n
i=1(g

Pi(σ)
z , g

δPi(σ)
z)ai

is then essentially equal to its own restriction argument (a single (n + 1)-wide multi-exponentiation, and 1
group element). The verification consists of checking that (A,Aδ) is a valid commitment (2 pairings).

We note that the restriction argument can be implemented using a product argument, but the described
direct implementation is more efficient. As a drawback, inclusion of a direct restriction argument means
putting more elements to the CRS of the (say) range argument.

6 Range Argument

In a range argument, given public range [L ..H], the prover aims to convince the verifier that he knows how
to open the commitment A to a value a ∈ [L ..H]. Next, we show that by using the new product argument,
one can design a range argument with a significantly better prover’s computation than it was known before.
The new range argument is similar to one version of the range argument of [CLZ12,FLZ13], but it is simpler
due to the use of the new product argument. We first remark that instead of the range [L ..H], one can
consider the range [0 .. H −L], and then use the homomorphic properties of the commitment scheme to add
L to the committed value. Therefore, we will just assume that the range is equal to [0 .. H] for some H ≥ 1.

11

Construction. Assume that the common input (A,Aα) is a commitment to the vector a with a0 = a and
ai = 0 for i > 0. To prove that a ∈ [0 .. H] for some H and n = blog2Hc+ 1, we do the following.

The CRS generation gencrsrange invokes the CRS generations of the commitment scheme, the two re-
striction arguments, the product argument and the shift argument, sharing the same gk and trapdoor
td = (σ, α, β, γ, δ1, δ2) between the different invocations.

The prover does the following (further explanations are given after the argument itself):

Construct another commitment (A1, A
α
1) of a in group G1.

Construct a restriction argument πδ11 (knowledge component of A/A1) that A/A1 commits to 0.
Let a =

∑n
i=1Hibi for Hi =

⌊
(H + 2i−1)/(2i)

⌋
and bi ∈ {0, 1}.

For z ∈ {1, 2}, let (Bz, B
α
z) be a commitment to b in group Gz.

Construct a product argument (π2, π
β
2) to show that b = b ◦ b.

Let (C,Cα) be a commitment to c in group G1, where ci = Hibi.

Construct a product argument (π3, π
β
3) to show that c = H ◦ b.

Let (D,Dα) be a commitment to d in group G1, where di =
∑
j≥i ci.

Construct a shift argument (π4, π
γ
4) to show that d− c is a right shift of d

Construct a restriction argument πδ25 to show that (A1/D,A
α
1 /D

α) commits to f with f1 = 0.

Output πrange = (A1, A
α
1 , B1, B

α
1 , B2, B

α
2 , C, C

α, D,Dα, πδ11 , π2, π
β
2 , π3, π

β
3 , π4, π

γ
4 , π

δ2
5).

After receiving πrange, the verifier checks the validity of six commitments (A,Aα), (A1, A
α
1), (B1, B

α
1),

(B2, B
α
2), (C,Cα), and (D,Dα), verifies that ê(B1, g2) = ê(g1, B2), and then verifies the five arguments.

The vector d is called either a vector scan, an all-prefix-sums or a prefix-sum of c [Ble90], and π4 can
be thought of a scan argument [FLZ13] that d is a correct scan of c. Moreover, [CLZ12] also considered the
case where a was encrypted by the BBS cryptosystem [BBS04], and gave an NIZK argument that the same
value of a has been encrypted and been committed to. If needed, we can use the same additional argument
to establish that an encrypted value belongs to a certain range.

We will now give the security claim, listing precisely all used KE assumptions. It is easy to see that all
used assumptions satisfy the syntactic requirements given in App. A.

Theorem 4. Let n = poly(κ), and let com be the interpolating commitment scheme from Def. 2. Let
Φrest1 = {Z(X)} and Φrest2 = ({Z(X)} ∪ {`i(X)}ni=2). The new range argument is perfectly complete,
computationally sound, and perfectly zero-knowledge. It is computationally sound and an argument of knowl-
edge if genbp satisfies the following assumptions: the gencrsrange-DL assumption, the (gencrsrange, Φrest1 , δ1),
(gencrsrange, Φcom, α), (gencrsrange, {Xi}ni=1, β), (gencrsrange, Φ

1
rsft, γ), and (gencrsrange, Φrest2 , δ2) KE assump-

tions in G1 and (gencrsrange, Φcom, α)-KE assumption in G2.

Proof (Sketch). Completeness: note that a ∈ [0 .. H] iff a =
∑n
i=1Hibi for some bi ∈ {0, 1} [LAN02]

(see [CLs10] for a formal proof). Here, π2 proves that bi are Boolean, π3 proves that ci = Hibi, π4 proves
that dj − cj = dj+1 for j < n and dn − cn = 0 (and thus dn = cn, dn−1 = cn−1 + dn and in general

dj =
∑n
i=j ci =

∑n−1
i=j Hibi), and finally π5 proves that a − d1 = a −

∑n
i=1Hibi = 0. Thus, a =

∑n
i=1Hibi

and therefore, a ∈ [0 .. H].
Computational soundness follows, under the corresponding DL and KE assumptions on genbp, from

the weak soundness of every basic argument. First, note that if genbp is gencrsrange-DL secure, then also the
gen∗-DL assumption holds for gen∗ being any of the constituent CRS generations (e.g., for gen∗ = gencrs×).
Therefore, from the gencrsrange-DL assumption it follows that every subargument is weakly sound.

In the proof of soundness (that follows the idea of the proof from [CLZ12]), assume that the corresponding
KE assumptions hold and that there exists an adversary A that breaks the soundness of the range argument.
One then construct an adversary Adl that breaks the corresponding gen∗-DL assumption on genbp as follows.
First of all, by the completeness of the range argument, the adversary A must have broken one of the basic
arguments. Say this argument is π3 (the other cases are analogous). By the knowledge assumptions on genbp
(in this case, (gencrsrange, Φcom, α)-KE and (gencrsrange, {Xi}ni=0, β)-KE in G1 and (gencrsrange, Φcom, α)-KE in
G2), Adl can obtain all committed values touched in this argument (in this case, c and b) together with the
representation of the discrete logarithm of the basic argument as a linear function of type

∑n
i=0 πiX

i. But

12

then it follows from the weak soundness of the product argument that Adl has broken gencrsrange-DL security
of genbp.

Let gencrsresti be the CRS generation function that corresponds to the ith restriction argument (i.e., to
either π1 when i = 1, or to π5 when i = 2). Then,

(i) since genbp is (gencrsrange, Φcom, α)-KE secure in G1 and G2, there exists an extractor that obtains a1,
b, c and d (and the used randomizers ra1 , rb, rc and rd) from the commitments (A1, A

α
1), (B,Bα),

(C,Cα), and (D,Dα).
(ii) since genbp is (gencrsrange, Φrest1 , δ1)-KE secure in G1, there exists an extractor that obtains a′ = a−a1

(and the used randomizers) from the argument π1. Thus, Adl has access to all values required in (a
slight modification of) Thm. 1, and hence by the gencrsrest1-DL assumption, a = a1.

(iii) since genbp is (gencrsrange, {Xi}ni=0, β)-KE secure in G1, there exists an extractor that obtains a linear

representation π2 =
∑n
i=0 πiX

i from the argument (π2, π
β
2). Thus, Adl has access to all values required

in Thm. 2, and hence by the gencrs×-DL assumption, bi ∈ {0, 1}.
(iv) since genbp is (gencrsrange, {Xi}ni=0, β)-KE secure in G1, there exists an extractor that obtains a linear

representation π3 =
∑n
i=0 πiX

i from the argument (π3, π
β
3). Thus, Adl has access to all values required

in Thm. 2, and hence by the gencrs×-DL assumption, c = H ◦ b.
(v) since genbp is (gencrsrange, Φ

1
rsft, γ)-KE secure in G1, there exists an extractor that obtains both c and

d (and the used randomizers) from the argument (π4, π
γ
4). Thus, Adl has access to all values required

in Thm. 3, and hence by the gencrsrsft-DL assumption, di =
∑
j≥i cj =

∑
j≥iHjbj .

(vi) since genbp is (gencrsrange, Φrest2 , δ2)-KE secure in G1, there exists an extractor that obtains f = a−d
(and the used randomizers) from the argument π5. Thus, Adl has access to all values required in (a
slight modification of) Thm. 1, and hence by the gencrsrest2 -DL assumption, f1 = 0 and thus a1 = d1.

Argument of knowledge: follows the above proof of soundness.

Perfect zero-knowledge: follows from the presence of the trapdoor. The simulator basically creates
(A1, A

α
1), (B,Bα), (C,Cα), (D,Dα) as commitments to 0, except that in the first argument she computes

(A1, A
α
1) ← (A,Aα) · com(ck1; 0; r) for a random r. She then simulates the basic arguments, based on her

knowledge of the trapdoor. All five arguments are obviously correct when the committed values are equal to
0: a− a = 0 (this takes care of π1), 0 = 0 ◦ 0 (this takes care of π2), 0 = H ◦ 0 (this takes care of π3), 0 is
a right shift of 0 (this takes care of π4), and 0 = 0 (this takes care of π5). ut

The commitment (A1, A
α
1) and the restriction argument πδ11 are only necessary to achieve simulatability in

the case A is a part of the common input (by following an idea from [FLZ14]). It can ommitted when the
prover actually creates (A,Aα). However, this step adds some additional flexibility to the proof: for example,
one can instead of (A,Aα) using an encryption of a and then use a somewhat less efficient argument that A
encrypts to the same values as A1 decrypts to, see [CLZ12].

Efficiency. The prover’s computation is dominated by the application of two product arguments. Thus,
the prover’s computational complexity is dominated by Θ(n log n) non-cryptographic operations and Θ(n)
cryptographic operations. The argument size is constant (18 group elements), and the verifier’s computational
complexity is dominated by 32 pairings (5 pairings in either product argument, 4 pairings in the shift
argument, 2 pairing in either restriction argument, 2 pairings to verify that B1 and B2 commit to the same
element, and 12 pairings to verify the validity of 6 commitments).

The resulting range argument is hence significantly more computationally efficient than the previous ar-
guments [CLZ12,FLZ13]. In fact, it has also better communication (18 versus 31 group elements in [FLZ13]),
and verification complexity (32 versus 65 pairings in [FLZ13]). Moreover, it is also simpler: since the prover’s
computation is quasilinear, we do not have to consider various trade-offs between computation and commu-
nication as in [CLZ12,FLZ13]. (These trade-offs are still available, if needed.)

13

7 Comparison to Direct QAP-Based Argument

We will now give a brief comparison with a possible direct QAP-based range argument. The QAP-based
range argument that we outline next will be more efficient than the previous published range arguments but
not as efficient than the range argument of the current paper.

Recall that one can use the techniques of [GGPR13] to construct an adaptive NIZK argument to show
that a circuit C that, given (secret) input a, outputs publicly known value (say 1). To use these techniques,
we can first design an arithmetic circuit that outputs 1 iff the input is in the range (since this circuit needs to
execute an integer comparison, it will have size Θ(n)), and then use the conversions of [GGPR13,BCI+13] to
design an NIZK range argument with very short argument (7 group elements). However, the direct construct
results in an non-adaptive argument. This means in particular, that — by using the terminology of the
current paper — the inputs will be committed by the {Pi}-commitment scheme, where the choice of the
polynomials Pi depends on the concrete circuit (in the case of range argument, on H). Such a dependence
is undesirable in many applications, since it means that a separate CRS has to be regenerated by a trusted
party for every particular application . In the case of range arguments, this means that a separate CRS has
to be created for every particular H; e.g., in e-voting CRS can only generated after the number of candidates
is known.

Thus, in many applications it is highly desirable to have an a priori fixed commitment scheme that is
known to all participants and does not depend on the concrete application. As mentioned in [GGPR13],
the dependence on the concrete circuit can be avoided by using universal circuits [Val76] that take the
original circuit as one of its inputs; this results in an adaptive NIZK argument. Valiant’s universal circuit
has size Θ(n log n), where n is the original circuit size. However, this means that the polynomials Pi depend
on the construction of the universal circuit, which is not desirable for efficiency and compatibility reasons.
(Constructions based on universal circuits rarely get implemented; this is partially due to the huge constants
involved in the O(n log n) expression. E.g. [KS08,SS08] have implemented asymptotically less efficient but
in-practice better universal circuits.) Moreover, composing the range argument with some other arguments
can become problematic due to possible incompatibilities between the underlying commitment schemes.

The new interpolating commitment scheme of the current paper depends on the arithmetic circuit for
the Hadamard product. This makes it easier to compose it with other NIZK arguments that are constructed
by using the vector scan model. In particular, the CRS can be generated once, and then used in many
different NIZK arguments. Finally, the new range argument does not depend on universal circuits, and is
thus more efficient — by a factor of Θ(log n) — than a direct application of the QAP-based techniques
of [GGPR13]. The latter would namely require prover’s computation of Θ(n log2 n) non-cryptographic and
Θ(n log n) cryptographic operations.

Importantly, the current work seems be the first application where the QAP-based techniques
of [GGPR13] are combined with unrelated techniques to create a more efficient NIZK argument.

8 Application: Other Arguments

One can use the new basic arguments to also design a number of other arguments by using different tech-
niques. We discuss Circuit-SAT in App. F.

Product and Shift Framework. As shown in [FLZ13], arguments for other interesting languages can be
constructed, given efficient arguments for Hadamard product and shift. This includes NP-complete languages
like Subset-Sum, Decision-Knapsack and Set-Partition. One can plug in the interpolating commit-
ment scheme and the new product argument to speed up corresponding arguments. For example, also the
Subset-Sum argument in [FLZ13] consists of product, shift, and restriction argument. Interestingly, when
instantiated with the interpolating commitment scheme, all such arguments will have prover’s computation
dominated by Θ(n log n) non-cryptographic operations and Θ(n) cryptographic operations, where n is an
argument-dependent parameter. Here, n is some language-dependent parameter (e.g., the size of the big set
in Subset-Sum). It is unknown how to achieve similar efficiency by using any other techniques.

14

Acknowledgements. We would like to thank Paulo Barreto for useful comments. The author was supported
by the Estonian Research Council, and European Union through the European Regional Development Fund.

References

Ano14. Anonymized. Efficient NIZK Arguments via Parallel Verification of Benes Networks. Under submission,
2014.

BBG05. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical Identity Based Encryption with Constant
Size Ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 440–456,
Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short Group Signatures. In Matthew K. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55, Santa Barbara, USA, August 15–19, 2004.
Springer, Heidelberg.

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct Non-
interactive Arguments via Linear Interactive Proofs. In Amit Sahai, editor, TCC 2013, volume 7785
of LNCS, pages 315–333, Tokyo, Japan, March 3–6, 2013. Springer, Heidelberg.

Beh46. Felix A. Behrend. On the Sets of Integers Which Contain No Three in Arithmetic Progression. Proceedings
of the National Academy of Sciences, 32(12):331–332, December 1946.

BF01. Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pairing. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229, Santa Barbara, USA, August 19–23, 2001.
Springer, Heidelberg.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-Interactive Zero-Knowledge and Its Applications.
In STOC 1988, pages 103–112, Chicago, Illinois, USA, May 2–4, 1988. ACM Press.

BG92. Mihir Bellare and Oded Goldreich. On Defining Proofs of Knowledge. In Ernest F. Brickell, editor,
CRYPTO 1992, volume 740 of LNCS, pages 390–420, Santa Barbara, California, USA, August 16–20,
1992. Springer, Heidelberg, 1993.

Ble90. Guy Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990.
Blo14. Thomas F. Bloom. A Quantitative Improvement for Roth’s Theorem on Arithmetic Progressions. Tech-

nical Report arXiv:1405.5800, arXiv.org, May 22 2014. Available at http://arxiv.org/abs/1405.5800.
Bou00. Fabrice Boudot. Efficient Proofs That a Committed Number Lies in an Interval. In Bart Preneel, editor,

EUROCRYPT 2000, volume 1807 of LNCS, pages 431–444, Bruges, Belgium, May 14–18, 2000. Springer,
Heidelberg.

BSCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C:
Verifying Program Executions Succinctly and in Zero Knowledge. In Ran Canetti and Juan Garay, editors,
CRYPTO (2) 2013, volume 8043 of LNCS, pages 90–108, Santa Barbara, California, USA, August 18–22,
2013. Springer, Heidelberg.

CCs08. Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient Protocols for Set Membership and Range
Proofs. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 234–252, Melbourne,
Australia, December 7–11, 2008. Springer, Heidelberg.

CGH98. Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodology, Revisited. In Jef-
frey Scott Vitter, editor, STOC 1998, pages 209–218, Dallas, Texas, USA, May 23–26, 1998.

CGS97. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and Optimally Efficient Multi-
Authority Election Scheme. In Walter Fumy, editor, EUROCRYPT 1997, volume 1233 of LNCS, pages
103–118, Konstanz, Germany, 11–15 May 1997. Springer, Heidelberg.

CL07. Ernie S. Croot and Vsevolod F. Lev. Open Problems in Additive Combinatorics, volume 43 of CRM
Proc. Lecture Notes, pages 207–233. Amer. Math. Soc., 2007. Updated version (2011) available at
http://people.math.gatech.edu/~ecroot/E2S-01-11.pdf.

CLs10. Rafik Chaabouni, Helger Lipmaa, and abhi shelat. Additive Combinatorics and Discrete Logarithm Based
Range Protocols. In Ron Steinfeld and Philip Hawkes, editors, ACISP 2010, volume 6168 of LNCS, pages
336–351, Sydney, Australia, July 5–7, 2010. Springer, Heidelberg.

CLZ12. Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang. A Non-Interactive Range Proof with Constant
Communication. In Angelos Keromytis, editor, FC 2012, volume 7397 of LNCS, pages 179–199, Bonaire,
The Netherlands, February 27–March 2, 2012. Springer, Heidelberg.

CM14. Melissa Chase and Sarah Meiklejohn. Déjà Q: Using Dual Systems to Revisit q-Type Assumptions. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
622–639, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg.

15

http://arxiv.org/abs/1405.5800
http://people.math.gatech.edu/~ecroot/E2S-01-11.pdf

CT65. James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation of Complex Fourier
Series. Mathematics of Computation, 19:297–301, 1965.

Dam91. Ivan Damg̊ard. Towards Practical Public Key Systems Secure against Chosen Ciphertext Attacks. In
Joan Feigenbaum, editor, CRYPTO 1991, volume 576 of LNCS, pages 445–456, Santa Barbara, California,
USA, August 11–15, 1991. Springer, Heidelberg, 1992.

DF02. Ivan Damg̊ard and Eiichiro Fujisaki. An Integer Commitment Scheme Based on Groups with Hidden
Order. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 125–142, Queenstown,
New Zealand, December 1–5, 2002. Springer, Heidelberg.

DGS02. Ivan Damg̊ard, Jens Groth, and Gorm Salomonsen. The Theory and Implementation of an Electronic
Voting System, pages 77–99. Kluwer Academic Publishers, 2002.

DJ01. Ivan Damg̊ard and Mads Jurik. A Generalisation, a Simplification and Some Applications of Paillier’s
Probabilistic Public-Key System. In Kwangjo Kim, editor, PKC 2001, volume 1992 of LNCS, pages
119–136, Cheju Island, Korea, February 13–15, 2001. Springer, Heidelberg.

DL08. Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP Proofs from an Extractability Assumption. In
Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, editors, Computability in Europe, CIE
2008, volume 5028 of LNCS, pages 175–185, Athens, Greece, June 15–20, 2008. Springer, Heidelberg.

Elk11. Michael Elkin. An Improved Construction of Progression-Free Sets. Israel J. of Math., 184:93–128, 2011.

ET36. Paul Erdős and Paul Turán. On Some Sequences of Integers. J. London Math. Soc., 11(4):261–263, 1936.

FLZ13. Prastudy Fauzi, Helger Lipmaa, and Bingsheng Zhang. Efficient Modular NIZK Arguments from Shift
and Product. In Michel Abdalla, Cristina Nita-Rotaru, and Ricardo Dahab, editors, CANS 2013, volume
8257 of LNCS, pages 92–121, Paraty, Brazil, November 20–22, 2013. Springer, Heidelberg.

FLZ14. Prastudy Fauzi, Helger Lipmaa, and Bingsheng Zhang. Efficient Non-Interactive Zero Knowledge Argu-
ments for Set Operations. In Nicolas Christin and Rei Safavi-Naini, editors, FC 2014, volume ? of LNCS,
pages ?–?, Bridgetown, Barbados, March 3–7, 2014. Springer, Heidelberg.

FS86. Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature
Problems. In Andrew M. Odlyzko, editor, CRYPTO 1986, volume 263 of LNCS, pages 186–194, Santa
Barbara, California, USA, 11–15 August 1986. Springer, Heidelberg, 1987.

GG03. Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge University Press,
2 edition, July 3, 2003.

GGP10. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-Interactive Verifiable Computing: Outsourcing
Computation to Untrusted Workers. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
465–482, Santa Barbara, California, USA, August 15–19, 2010. Springer, Heidelberg.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic Span Programs and
NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645, Athens, Greece, April 26–30, 2013. Springer, Heidelberg.

GJM02. Philippe Golle, Stanislaw Jarecki, and Ilya Mironov. Cryptographic Primitives Enforcing Communica-
tion and Storage Complexity. In Matt Blaze, editor, FC 2002, volume 2357 of LNCS, pages 120–135,
Southhampton Beach, Bermuda, March 11–14, 2002. Springer, Heidelberg.

GK03. Shafi Goldwasser and Yael Tauman Kalai. On the (In)security of the Fiat-Shamir Paradigm. In FOCS
2003, pages 102–113, Cambridge, MA, USA, October 11–14, 2003. IEEE, IEEE Computer Society Press.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive Proof-
Systems. In Robert Sedgewick, editor, STOC 1985, pages 291–304, Providence, Rhode Island, USA,
May 6–8, 1985. ACM Press.

Gro04. Jens Groth. Honest Verifier Zero-Knowledge Arguments Applied. PhD thesis, University of Århus,
Denmark, October 2004.

Gro10. Jens Groth. Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340, Singapore, December 5–9, 2010. Springer,
Heidelberg.

Gro11. Jens Groth. Efficient Zero-Knowledge Arguments from Two-Tiered Homomorphic Commitments. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 431–448,
Seoul, South Korea, December 4–8, 2011. Springer, Heidelberg.

GW11. Craig Gentry and Daniel Wichs. Separating Succinct Non-Interactive Arguments from All Falsifiable
Assumptions. In Salil Vadhan, editor, STOC 2011, pages 99–108, San Jose, California, USA, June 6–8,
2011. ACM Press.

Jou00. Antoine Joux. A One-Round Protocol for Tripartite Diffie-Hellman. In Wieb Bosma, editor, ANTS 2000,
volume 1838 of LNCS, pages 385–394, Leiden, The Netherlands, 2–7 June 2000. Springer, Heidelberg.

16

JR13a. Charanjit Jutla and Arnab Roy. Switching Lemma for Bilinear Tests and Constant-size NIZK Proofs for
Linear Subspaces. Technical Report 2013/670, International Association for Cryptologic Research, 2013.
Available at http://eprint.iacr.org/2013/670, last accessed version from 17 Feb 2014.

JR13b. Charanjit S. Jutla and Arnab Roy. Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013 (1), volume 8269 of LNCS, pages 1–20, Bangalore,
India, December 1–5, 2013. Springer, Heidelberg.

KS08. Vladimir Kolesnikov and Thomas Schneider. A Practical Universal Circuit Construction and Secure
Evaluation of Private Functions. In Gene Tsudik, editor, FC 2008, volume 5143 of LNCS, pages 83–97,
Cozumel, Mexico, January 28–31, 2008. Springer, Heidelberg.

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-Size Commitments to Polynomials and
Their Applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194,
Singapore, December 5–9, 2010. Springer, Heidelberg.

LAN02. Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey Auctions without Threshold Trust. In
Matt Blaze, editor, FC 2002, volume 2357 of LNCS, pages 87–101, Southhampton Beach, Bermuda,
March 11–14, 2002. Springer, Heidelberg.

Lip03. Helger Lipmaa. On Diophantine Complexity and Statistical Zero-Knowledge Arguments. In Chi Sung
Laih, editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 398–415, Taipei, Taiwan, November 30–
December 4, 2003. Springer, Heidelberg.

Lip12. Helger Lipmaa. Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-Knowledge Ar-
guments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 169–189, Taormina, Italy,
March 18–21, 2012. Springer, Heidelberg.

Lip13. Helger Lipmaa. Succinct Non-Interactive Zero Knowledge Arguments from Span Programs and Linear
Error-Correcting Codes. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013 (1), volume 8269
of LNCS, pages 41–60, Bangalore, India, December 1–5, 2013. Springer, Heidelberg.

LLL82. Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and Laszlo Lovász. Factoring Polynomials with Rational
Coefficients. Mathematische Annalen, 261:513–534, 1982.

PGHR13. Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly Practical Verifiable
Computation. In IEEE Symposium on Security and Privacy, pages 238–252, San Francisco, CA, USA,
May 19–22, 2013. IEEE Computer Society.

Pip80. Nicholas Pippenger. On the Evaluation of Powers and Monomials. SIAM J. Comput., 9(2):230–250, 1980.
RKP09. Alfredo Rial, Markulf Kohlweiss, and Bart Preneel. Universally Composable Adaptive Priced Oblivious

Transfer. In Hovav Shacham and Brent Waters, editors, Pairing 2009, volume 5671 of LNCS, pages
231–247, Palo Alto, CA, USA, August 12–14, 2009. Springer, Heidelberg.

RS86. Michael O. Rabin and Jeffrey O. Shallit. Randomized Algorithms in Number Theory. Communications
in Pure and Applied Mathematics, 39:239–256, 1986.

San11. Tom Sanders. On Roth’s Theorem on Progressions. Ann. of Math., 174(1):619–636, July 2011.
Sch80. Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. Journal of

the ACM, 27(4):701–717, 1980.
SOK00. Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems Based on Pairing. In SCIS 2000,

Okinawa, Japan, 2000.
SS08. Ahmad-Reza Sadeghi and Thomas Schneider. Generalized Universal Circuits for Secure Evaluation of

Private Functions with Application to Data Classification. In Pil Joong Lee and Jung Hee Cheon,
editors, ICISC 2008, volume 5461 of LNCS, pages 336–353, Seoul, Korea, December 3–5, 2008. Springer,
Heidelberg.

Str64. Ernst G. Straus. Addition Chains of Vectors. American Mathematical Monthly, 70:806–808, 1964.
TV06. Terrence Tao and Van Vu. Additive Combinatorics. Cambridge Studies in Advanced Mathematics.

Cambridge University Press, 2006.
Val76. Leslie G. Valiant. Universal Circuits (Preliminary Report). In STOC 1976, pages 196–203, Hershey,

Pennsylvania, USA, May 3–5, 1976. ACM.
vHN10. Mark van Hoeij and Andrew Novocin. Gradual Sub-lattice Reduction and a New Complexity for Factoring

Polynomials. In Alejandro López-Ortiz, editor, LATIN 2010, volume 6034 of LNCS, pages 539–553,
Oaxaca, Mexico, April 19–23, 2010. Springer, Heidelberg.

A Security Assumptions

Some of the predecessor papers have gone into great details in writing down the precise security assumptions,
see for example [CLZ12,FLZ13]. We feel that this would sidetrack the reader from understanding the con-

17

http://eprint.iacr.org/2013/670

structions, and have therefore opted to use the following simpler (more general) versions of the assumptions.
From those, one can easily recover more precise versions.

Let gen be an algorithm that on inputs (1κ, n) returns (crs, td). In particular, crs includes an output of a
bilinear group generator genbp. This bilinear group generator genbp is gen-DL (discrete logarithm) secure if
for any non-interactive probabilistic polynomial-time adversary A, the following probability is negligible in
κ:

Pr
[

(crs, td = (σ, . . .))← gen(1κ, n) : A(crs) = σ
]
.

In our applications, gen has several restrictions. First of all, td = (σ, α1, . . . , αm). Second, the only

elements of crs that depend on σ have form g
fj(σ)
z or g

αifj(σ)
z for publicly known argument-dependent poly-

nomials fj . In such cases, gen-DL is a variant of the power symmetric discrete logarithm assumptions,
studied in say [GJM02,Gro10,Lip12,CLZ12]. All such assumptions are a variation of the uber-assumption
from [BBG05].

For algorithms A and XA, we write (y; yX) ← (A||XA)(σ) if A on input σ outputs y, and XA on the
same input (including the random tape of A) outputs yX .

Let Φ = {Pi}ni=0 be a tuple of polynomials. Similarly, genbp is (gen, Φ, α)-KE (knowledge of exponent)
secure in group Gz if for any non-interactive probabilistic polynomial-time A there exists an non-interactive
probabilistic polynomial-time extractor XA, such that the following probability is negligible in κ:

Pr

[
(crs, td = (σ, . . . , α, . . .))← gen(1κ, n),

(
c, ĉ; (ai)i∈[0,n]

)
← (A||XA)(crs) : ĉ = cα ∧ c 6=

n∏
i=0

gaiPi(σ)z

]
.

Again, to relate this assumption to earlier assumptions like the PKE assumptions in [Gro10,Lip12,CLZ12],
we have to introduce several syntactic requirements on gen. More precisely, let (crs, td = (σ, . . . , α, . . .) ←
gen(1κ, n). We need that crs contains (gxz , g

αx
z) only when x = f(σ) for f ∈ Φ. Moreover, there is no other

element of crs that depends on α.
When the required syntactic requirements are fulfilled (in the applications we have this is clearly the case),

then by generalizing [Gro10,Lip12], one can show that both the gen-DL and (gen, {Pi}, α)-KE assumptions
hold in the generic group model.

B Commitment Scheme: History

For different special cases (e.g., P0(X) = 1 and Pi(X) = Xi for i ∈ [1 .. n]), versions of the {Pi}-commitment
scheme have been in use since at least [GJM02]. In [Lip12], the authors considered the case of P0(X) = 1 and
Pi(X) = Xλi , i ∈ [1 .. n], for general λi with λi having specific properties, related to the concrete application.
In the case of [Lip12], dependence on applications is not bad, since the possible “application” is one of the
relatively small set of operations (e.g., the product argument or the permutation argument). In [FLZ13], one
considered the more general case Pi(X) = σu for suitably chosen u.

Gentry et al [GGPR13] implicitly used the {Pi}-commitment scheme, with Pi(X) being dependent on the
application. In the case of [GGPR13] however, one needs to prove that an (arithmetic) circuit C is satisfiable
(or more generally that C(x) = y for public y, where x is committed to), and the polynomials Pi(X) depend
on the concrete circuit. Thus, one only gets a non-adaptive NIZK (i.e., the CRS depends on the circuit).
Adaptive soundness is achieved by using universal circuits [Val76]; in this case the polynomials Pi(X) depend
on the construction of the universal circuit.

C Product Argument: Computation of π

For the sake of simplicity, consider the case without zero knowledge, the full case is just slightly more
complicated. Recall that in this case, the prover has to compute the polynomial π(X) = La(X) · Lb(X) −
La◦b(X)L1(X). Recall that ωj = ωj−1. We note that:
1. Computation of La(X) · Lb(X) can be performed as follows:

18

(a) Use inverse FFT to compute La(X) from a and Lb(X) from b.
(b) Use FFT to compute La(ωj) for j ∈ {0, . . . , 2n − 1}. Since La(ωj) = aj for j ∈ {0, . . . , n − 1} is

already known, some of the computation can be omitted. Denote (a,a′) = (La(ωj))2n−1j=0 .

(c) Similarly, compute Lb(ω
j), for j ∈ {n, . . . , 2n− 1}, and (b, b′).

(d) Compute (a,a′) ◦ (b, b′).
(e) Compute the polynomial La(X) · Lb(X) from (a,a′) ◦ (b, b′) by using inverse FFT.

2. Computation of La◦b(X)L1(X) can be performed as follows:
(a) Reusing a ◦ b from a previous step, compute La◦b(X) by using inverse FFT.
(b) L1(X) = 1, so one polynomial multiplication can be omitted, and we are done.

3. Compute π(X) by coordinate-wise subtraction.

D More on Zero Knowledge

History/Motivations. NIZK proofs [BFM88] allow the prover to convince the verifier that an input x
belongs to an NP language L in the manner that nothing else expect the truth of the statement is revealed.
NIZK proofs for non-trivial languages do not exist without trusted setups unless P = NP. There are two
popular approaches to deal with this. The first approach, the use of random oracle model, results often in
very efficient protocols. It is well known [CGH98,GK03] that some protocols that are secure in the random
oracle model are non-instantiable in the standard model, and thus the random oracle model is a heuristic at
its best.

A better approach is to construct NIZK proofs in the common reference string (CRS) model [BFM88].
Many verifiers can then later independently verify the proof, by having access to the same CRS. The proof
has to be complete, sound and satisfy the zero-knowledge property. In practice, one is interested in proofs
where both the proof length and the verification time are sublinear in the statement size. Sublinear (adap-
tive) proofs can only be computationally sound, and their soundness cannot be proven under falsifiable
assumptions [GW11]. (See [JR13b] for recent sublinear quasi-adaptive NIZK.) The latter means that one has
to employ knowledge assumptions [Dam91]. A computationally sound proof is also known as an argument.

Formal Definitions. Let R = {(C,w)} be an efficiently computable binary relation with |w| = poly(|C|).
Here, C is a statement, and w is a witness. Let L = {C : ∃w, (C,w) ∈ R} be an NP-language. Let n = |C|
be the input length. For fixed n, we have a relation Rn and a language Ln. A non-interactive argument for R
consists of three probablistic polynomial-time algorithms: a common reference string (CRS) generator gencrs,
a prover prove, and a verifier ver. For (crsp, crsv)← gencrs(1κ, n), prove(crsp;C,w) produces an argument π,
and ver(crsv;C, π) outputs either 1 (accept) or 0 (reject).

Π is perfectly complete, if for all n = poly(κ),

Pr[(crsp, crsv)← gencrs(1κ, n), (C,w)← Rn : ver(crsv;C, prove(crsp;C,w)) = 1] = 1 .

Π is computationally sound, if for all n = poly(κ) and non-uniform probablistic polynomial-time A,

Pr[(crsp, crsv)← gencrs(1κ, n), (C, π)← A(crsp, crsv) : C 6∈ L ∧ ver(crsv;C, π) = 1] = negl(κ) .

Π is perfectly witness-indistinguishable, if for all n = poly(κ), if (crsp, crsv) ∈ gencrs(1κ, n) and
((C,w0), (C,w1)) ∈ R2

n, then the distributions prove(crsp;C,w0) and prove(crsp;C,w1) are equal. Π is per-
fectly zero-knowledge, if there exists a probablistic polynomial-time simulator S = (S1,S2), such that for
all stateful non-uniform probablistic polynomial-time adversaries A and n = poly(κ) (with tdπ being the
simulation trapdoor),

Pr


(crsp, crsv)← gencrs(1κ, n),

(C,w)← A(crsp, crsv),

π ← prove(crsp;C,w) :

(C,w) ∈ Rn ∧ A(π) = 1

 = Pr


(crsp, crsv; tdπ)← S1(1κ, n),

(C,w)← A(crsp, crsv),

π ← S2(crsp, crsv;C, tdπ) :

(C,w) ∈ Rn ∧ A(π) = 1

 .

19

For a formal definition of an argument of knowledge, see [BG92].
An argument that satisfies above requirements is known as adaptive. An argument where the CRS can

depend not only on n but also on the statement C is often called non-adaptive. See [JR13b] for a formalization
of quasi-adaptive arguments. It is not surprising that non-adaptive (or quasi-adaptive) arguments are often
much more efficient than adaptive arguments, see [GGPR13,JR13b,JR13a].

E Proof of Thm. 3

Proof. Completeness: follows from the derivation of the argument. Witness-indistinguishability: since
argument πrsft that satisfies the verification equations is unique, all witnesses result in the same argument,
and hence the product argument is witness-indistinguishable.

(Weak) soundness: since the proof is very similar to the one in [FLZ13], we only sketch it. Assume that
the adversary outputs the inputs, the witness and the coefficients of π(X). We now construct the following
extractor. It knows all coefficients in the Eq. (9), and thus has obtained coefficients of a polynomial d(X),
such that d(σ) = 0. If the prover was dishonest, then d(X) is a non-zero polynomial. In this case the extractor
can use a polynomial factorization algorithm to find all roots xi of d(X). One of those roots has to be σ;

this can be tested by comparing (say) the values g
Z(xi)
2 with the value g

Z(σ)
2 given in the CRS. ut

F Open Problem: Circuit-SAT And Verifiable Computation

The prover’s computational complexity of the Circuit-SAT argument of [Gro10,Lip12] is domi-
nated by the prover’s computational complexity of the product argument (quadratic in [Gro10,Lip12],
Θ(r−13 (n) log r−13 (n)) in [FLZ13]) and the permutation argument (quadratic in [Gro10]). We proposed a prod-
uct argument with prover’s computation Θ(n log n). Can one similarly improve the permutation argument? If
so, one would automatically have an adaptive NIZK argument for Circuit-SAT, but also adaptive verifiable
computation [GGP10], both with prover’s computation Θ(n log n) instead of Θ(n log2 n) in [GGPR13].

We have been informed by a partial process in the later question [Ano14], where the authors construct
a permutation argument by using Θ(log n) invocations of the product argument and the shift argument by
using techniques related to Beneš networks. Combining ideas from [Ano14] and the current paper results
in an adaptive Circuit-SAT argument (and adaptive verifiable computation) with prover’s computation
Θ(n log2 n) but with somewhat suboptimal communication Θ(log n).

We leave constructing a more efficient permutation argument as an interesting problem.

20

	Almost Optimal Short Adaptive Non-Interactive Zero Knowledge

