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Abstract. In Eurocrypt 2013, Gennaro et al. proposed an efficient non-adaptive short QAP-based
NIZK argument for Circuit-SAT, where non-adaptivity means that the CRS depends on the statement
to be proven. While their argument can be made adaptive by using universal circuits, this increases the
prover computation by a logarithmic multiplicative factor. By following the QAP-based approach, we
propose an efficient product argument, and then use it together with a modified shift argument of Fauzi
et al. in the modular framework of Groth to design an adaptive short NIZK argument for Subset-Sum
and several other NP-complete languages that has the same complexity parameters as the QAP-based
non-adaptive argument, resulting in the first adaptive short NIZK arguments for NP where the prover
computation is dominated by a linear number of cryptographic operations. We also construct the most
efficient known range argument.
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1 Introduction

Motivation. A common approach to design cryptographic protocols, secure in the malicious model,
is to (i) design a protocol, secure in the semi-honest model, and (ii) accompany it with zero-
knowledge proofs [GMR85] that the every single step of the protocol is correctly followed by the
corresponding participant. More broadly, a zero-knowledge proof allows the prover to convince the
verifier that some statement holds true, without revealing any side information. By using a non-
interactive zero knowledge (NIZK) proof [BFM88], the prover can create a single proof π that some
claim is true, without leaking any information, and then forward it to many different verifiers who
can independently verify the truth of the claim without communicating with the prover. This is
important in many applications like e-voting or e-auctions, where one cannot trust the voter or the
bidder to be online every time the claim has to be verified.

Moreover, since the same proof can be transferred to and then verified by many independent
verifiers many times, it should be as short as possible. It is well-known that sublinear-length proofs
can only be computationally sound, i.e., arguments. Ideally, an argument should consist only of a
few (say) group elements. For the same reason, an argument should also be efficient to verify. On
the other hand, construction of the argument can be somewhat less efficient, since it is only done
once. Still, prover-efficiency is important, e.g., in a situation where a single server has to create
many arguments to different clients or other servers.

Due to the importance of the problem, there has been a large quantity of work on constructing
efficient zero-knowledge proofs for various tasks, including NP-complete languages. In particular,
there has been a large number of previous work on constructing interactive zero-knowledge proofs
that can be made non-interactive in the random oracle model [FS86]. However, it is well-known that
the random oracle model should only be used as a heuristic [CGH98,GK03]. The first efficient short
NIZK argument for NP (namely, for the NP-complete language Circuit-SAT) in the standard
model, i.e., in the common reference string (CRS, [BFM88]) model was proposed by Groth [Gro10].
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In particular, in adaptive NIZK arguments, the CRS does not depend on the concrete instance of
the language (e.g., the circuit in the case of Circuit-SAT) and thus allow re-use of the same CRS
to prove satisfiability of many circuits, while in the non-adaptive case the CRS can be dependent
on the instance. Since the CRS has to be generated in a secure manner and incurs additional cost,
non-adaptive arguments are not sufficient for many applications.

The modular approach of Groth [Gro10], later optimized in [Lip12,FLZ13], results in adap-
tive short NIZK arguments for Subset-Sum with n logω(1) n prover computation. Lipmaa [Lip14]
showed how to use the results of [FLZ13] to design an adaptive Circuit-SAT argument with
complexity parameters that are larger by an additional logarithmic multiplicative factor.

The most efficient known non-adaptive short NIZK arguments for NP-complete languages
by [GGPR13] (see also [PGHR13,BSCG+13]) are based on Quadratic Arithmetic Programs. There,
the prover computation is dominated by Θ(n) cryptographic operations1, where in the case
of Circuit-SAT, n is the circuit size. Other related approaches like QSP [GGPR13,Lip13] or
SSP [DFGK14] have the same asymptotic complexity, and thus for simplicity we will concentrate
on QAP. In adaptive short NIZK arguments that can obtained from non-adaptive QAP-based ar-
guments of [GGPR13] by employing universal circuits, the prover computation is dominated by
Θ(n log n) cryptographic operations. One can ask the following natural question about bridging the
gap between the non-adaptive and adaptive case:

The Main Question of the Current Paper: Is it possible to construct adaptive short NIZK
arguments for NP-complete languages where the prover computation is dominated by a linear
number of cryptographic operations?

We answer this question positively in the case of Subset-Sum and several other languages, by find-
ing a non-trivial way to combine two different approaches, the modular approach of Groth [Gro10]
and the QAP-based approach of [GGPR13].

Related Work. Adaptive arguments for NP from [Gro10] and follow-up works like [Lip12,FLZ13]
are built up in a modular way from a small number of basic arguments. Such modular arguments are
based on a product argument (given commitments to vectors a, b, c, it holds that ci = aibi; a short
product argument was first proposed in [Gro10], and optimized in [Lip12,FLZ13]), a permutation
argument (given commitments to a, b, and a public permutation, it holds that a is a coordinate-wise
permutation of b; first proposed in [Gro10], and optimized in [Lip12,Lip14]), a shift argument (given
commitments to a, b, it holds that a is a coordinate-wise shift of b; first proposed in [FLZ13]), and
possibly a small number of other arguments.

The modular approach results in adaptive NIZK arguments for NP with the communication
of Θ(1) group elements. However, known modular arguments are not very efficient for the prover.
E.g., the product and permutation arguments of [Lip12] have constant communication, linear ver-
ifier computation, and quadratic prover computation. More precisely, the prover has to execute a
quadratic number of non-cryptographic operations and a small number of Θ(r−13 (n))-wide multi-

1 In what follows, we count communication often implicitly in group elements, and verifier computation in the
number of cryptographic operations. In the case of prover computation (which is the focus of the current work),
very often the number of non-cryptographic operations and cryptographic operations differs, and thus we count
them separately. According to the usual but somewhat informal practice, non-cryptographic operations count cheap
operations (additions or multiplications) in Zp, while cryptographic operations count more expensive operations
(exponentiations or pairings) in a cryptographic group. The basic difference is that non-cryptographic operations
are significantly (usually by more than a factor of logn) more efficient than cryptographic operations
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Table 1. Comparison of some of the known adaptive short NIZK arguments for NP-complete languages. Here, n is
the number of the gates (in the case of Circuit-SAT) and the number of the integers (in the case of Subset-Sum),

and m = r−1
3 (n) = o(n22

√
2 log2 n). In the case of [Lip14], we included its combination with two different product

arguments. Light green background denotes the best known asymptotic complexity of the concrete NP-complete
language wrt. to the concrete parameter. Note that the verifier computation is almost the same in all cases.

Paper Language Commun. Prover computation Ver. comp.

non-crypt. op. crypt. op.

[Gro10] Circuit-SAT Θ(1) Θ(n2) Θ(n2) Θ(n) (crypt.)
[Lip12] Circuit-SAT Θ(1) Θ(n2) Θ(m) Θ(n) (crypt.)
[GGPR13] Circuit-SAT Θ(1) Θ(n log2 n) Θ(n logn) Θ(n logn) (non-crypt.)
[Lip14] + [Lip12] Circuit-SAT Θ(logn) Θ(m log2 n) Θ(m logn) Θ(n logn) (non-crypt.)
[Lip14] + current paper Circuit-SAT Θ(logn) Θ(n log2 n) Θ(n logn) Θ(n logn) (non-crypt.)

[FLZ13] Subset-Sum Θ(1) Θ(m logn) Θ(m) Θ(n) (crypt.)
Current paper Subset-Sum Θ(1) Θ(n logn) Θ(n) Θ(n) (crypt.)

exponentiations, where r3(N) is the size of the densest progression-free set [TV06] in [1 .. N ]. Multi-
exponentiation can be significantly sped up by using algorithms from [Str64,Pip80]. The number
of non-cryptographic operations in the prover computation in the product argument of [Lip12] can
be decreased to Θ(r−13 (n) log r−13 (n)) by using the Fast Fourier Transform, see [FLZ13].

As shown in [FLZ13], one can construct adaptive short NIZK arguments for other, including
several NP-complete, languages by using a small number of product and shift arguments. As shown
in [Lip14], by using Θ(log n) product and shift arguments, one can build a permutation argument,
and then construct a Circuit-SAT argument as in [Gro10]. Since the shift argument of [FLZ13]
is very efficient, in such arguments, all complexity parameters are strongly dominated by these
of the product argument. Hence, an important open question is to further optimize the product
argument. A more efficient product argument will result in more efficient adaptive arguments for
different NP-complete languages but also in a more efficient range argument [CLZ12,FLZ13]. The
modular framework of Groth [Gro10] of constructing complex arguments from more basic arguments
is sufficiently powerful to allow construction of efficient NIZK for many other languages — given
an efficient product argument.

Finding explicit progression-free sets with large r3 (and thus small r−13 ) function is one of the
best known hard problems in additive combinatorics [TV06] (it is listed as the first classical open
problem in [CL07]). By a recent breakthrough of Elkin [Elk11] that improved a long-standing

result of Behrend [Beh46], r−13 (n) = o(n22
√

2 log2 n). However, for any practical size of n, Elkin’s
construction is quite inefficient, and thus a better choice is to choose the progression-free set of
Erdős and Turán [ET36] with r−13 (n) ≈ nlog3 2. Explicit lower bounds on r−13 (n) [San11,Blo14]
seem to indicate that the approach of using progression-free sets has hit its limits.

Another framework for short NIZK arguments was proposed in [GGPR13]. They proposed
an efficient NIZK argument for a NP-complete language QAP (Arithmetic Program), and
then constructed an efficient reduction from QAP to more standard languages like (arithmetic)
Circuit-SAT. The verification of a QAP instance can be written as a parallel verification of several
quadratic equations between input and output bits. This can be rewritten as the verification that
(V a+ v) ◦ (Wb+w) = Y c+ y, where V , W and Y are matrices, v, w, y, a, b, c are vectors, and
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◦ denotes coordinate-wise multiplication of two vectors. Here, V , W , Y , v, w and y are public but
depend on the concrete circuit while a, b, c are secret (i.e., related to the satisfying input).

In the QAP argument of [GGPR13], one first replaces every column vector of all three matrices
with its interpolating polynomial, and then obtains a similar verification equation that involves
quadratic tests of linear equations between certain polynomials. Finally, one replaces every poly-

nomial f(X) with its short garbled version g
f(σ)
1 , where σ is a secret key and g1 is a generator

of the bilinear group. A cryptographic argument is then used to show that if a quadratic test
holds between the short garbled versions, then it also must hold between the original polynomials.
See [PGHR13,BSCG+13,Lip13,DFGK14] for various improvements.

The QAP-based approach results in non-adaptive NIZK arguments that require Θ(n log n) non-
cryptographic operations (computation of polynomial interpolation and multiplication) and Θ(n)

cryptographic operations (computation of g
f(σ)
1 from values gσ

i

1 in the CRS) by the prover. These

arguments are non-adaptive since in addition, the CRS has to contain elements of type ĝ
f(σ)
1 —

for a different generator ĝ1 — that depend on the matrices V , W and Y , and thus on the QAP
instance (circuit in the case of Circuit-SAT) satisfiability of which the prover aims to prove.

While non-adaptive arguments are sufficient in applications like verifiable computation where
the function has been fixed beforehand [GGPR13,PGHR13], they are obviously not sufficient in
many other applications, since2 the generation of every single CRS takes time Ω(n) and the storage
of every single CRS takes space Ω(n). Moreover, in most circumstances, one requires a trusted third
party (that can be emulated by using secure multi-party computation or secure hardware) to create
the CRS. Thus, it is desirable to have a single re-usable CRS that can be used to prove the truth
of many different instances, i.e., to have an adaptive argument.

The QAP-based arguments of [GGPR13] can be made adaptive by using universal cir-
cuits [Val76]. In this case, the CRS depends on the universal circuits (that can emulate all circuits of
given size n on all possible inputs) and not on the concrete input circuit itself. However, since the size
of universal circuits is Θ(n log n), it means that the prover computation in resulting adaptive NIZK
arguments is Θ(n log2 n) non-cryptographic operations and Θ(n log n) cryptographic operations.
Moreover, since Valiant’s universal circuits incur a relatively large constant c = 19 in the Θ(·) ex-
pression, a common approach [KS08,SS08] is to use universal circuits with the overhead of Θ(log2 n)
but with a smaller constant c = 1/2 in the Θ(·) expression. Then, the prover computation in the re-
sulting adaptive NIZK arguments will be Θ(n log3 n) non-cryptographic operations and Θ(n log2 n)
cryptographic operations. Nevertheless, up to now, the QAP-based approach of [GGPR13] and
provides significantly better prover computation than the modular approach of [Gro10].

Finally, we note that non-adaptive QAP-based arguments have verifier computation that is
dominated by Θ(1) cryptographic and Θ(`u) non-cryptographic operations, where `u is the length
of the public input of the circuit. This is not a problem in the non-adaptive setting where in the
case of Circuit-SAT, there is no public input at all. However, in adaptive QAP-based arguments
that are obtained by using universal circuits, `u = Θ(n log n) is equal to the length of the public
input (the description of the original circuit) to the universal circuit.

Our Contributions. We answer the previously posed “main question” positively, by using the
modular approach of [Gro10,FLZ13] together with the arguments constructed by using the approach
of [GGPR13] (for product) and of [FLZ13] (for shift). More precisely, by using techniques related

2 While [BCCT13,BSCTV14] propose methods to shorten the CRS, the incurred overhead in the prover computation
is quite large. Moreover, one will still need a trusted third party to create the CRS.
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to [GGPR13], we construct a significantly more efficient product argument than what was known
before, together with a new commitment scheme (the interpolating commitment scheme). We then
modify the shift argument of [FLZ13] to work with the interpolating commitment scheme. Finally,
by using the product-and-shift framework of [FLZ13], we propose an efficient adaptive short NIZK
argument for the NP-complete language Subset-Sum [Kar72,GJ79]. Since the new argument does
not require universal circuits, it is by factor Θ(log n) faster for the prover than the QAP-based
adaptive argument for Circuit-SAT. See Tbl. 1. We now describe our techniques and results.

New Product Argument. The new product argument follows the QAP-based blueprint of [GGPR13],
being essentially a polynomial quadratic arithmetic program (QAP) for the circuit that computes
n multiplications in parallel, with a few additional twists to achieve security in our setting.

The prover computation in the new product argument is dominated by three polynomial inter-
polations, one polynomial multiplication and one polynomial division, all over Zp (where p is the
order of the groups), and one (n + 1)-wide multi-exponentiation. The prover computation is thus
dominated by Θ(n log n) non-cryptographic operations, assuming that p satisfies a mild criterion
(the same criterion is necessary to obtain Θ(n log2 n) non-cryptographic operations in the argu-
ments of [GGPR13]), and Θ(n) cryptographic operations. Such efficiency is impossible by using the
progression-free set based approach due to the known upper bounds on r3(·) [San11,Blo14].

Derivation of the new product argument results in a new trapdoor commitment scheme for
integer vectors — the interpolating commitment scheme — that is a member of the family of
commitment schemes known since at least [GJM02]. In fact, the interpolating commitment scheme
is a very natural commitment scheme: commitment to a ∈ Znp is just a short garbled and randomized

version g
La(σ)
1 hr of the Lagrange interpolating polynomial La(X) of a for a well-chosen h.

Under the assumption that the inputs to the product argument are commitments to some
n-dimensional vectors (i.e., they belong to certain span; in the final arguments for NP-complete
languages we guarantee this by using a knowledge assumption), we show that its soundness follows
from the TSDH (Target Strong Diffie-Hellman, [PGHR13,DFGK14]) assumption. By following the
terminology of [GOS12], this means that the product argument has the property of adaptive cul-
pable soundness [GOS12], also known as co-soundness [GL07]. Previous work [Gro10,Lip12,FLZ13]
proved culpable soundness of the product argument under a presumably weaker computational
assumption (PDL, Power Discrete Logarithm [Lip12]) and an additional knowledge assumption
(PKE, Power Knowledge of Exponent [Gro10]) used to ascertain that the argument itself belongs
to a certain span. Due to that, the new product argument consists of only one group element, as
compared to two in [Gro10,Lip12,FLZ13].

New Shift Argument. We construct a variant of the shift argument of [FLZ13], secure when com-
bined with the interpolating commitment scheme. We prove that this argument satisfies culpable
soundness under the PDL assumption and an extra knowledge (PKE) assumption. The shift argu-
ment only requires the prover to perform Θ(n) cryptographic and non-cryptographic operations.

Modular Argument for Subset-Sum. Finally, we describe a simple argument, motivated by that
of [FLZ13], for the NP-complete language Subset-Sum. This argument can be seen as a short pro-
gram in the scan vector parallel computation model [Ble90] that operates on committed vectors of
length n. This short program consists of three commitments, one application of the shift argument,
and three applications of the product argument.

Thus, in the new adaptive Subset-Sum adaptive argument, the prover computation is
Θ(n log n) non-cryptographic operations (dominated by a small number of polynomial interpo-
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lations, polynomial multiplications, and polynomial divisions) and Θ(n) cryptographic operations
(dominated by a few (≈ n)-wide multi-exponentiations). Both parameters are better by a factor of
Θ(log n) when compared to the adaptive Circuit-SAT arguments in [GGPR13] and subsequent
works. In fact, the prover computation is strongly dominated by Θ(n) cryptographic operations.
The argument size is 11 group elements, and the verifier computation is dominated by 18 bilinear
pairings and two (n+1)-wide multi-exponentiations. Multi-exponentiations are only needed to once
commit to S, and thus they can be pre-computed. The CRS consists of Θ(n) group elements.

Thus, we answer the stated main question of the current paper. Importantly, the current work
seems be the first one that combines QAP-based techniques of [GGPR13] with unrelated techniques
to create an asymptotically more efficient NIZK argument.

Weaker Assumptions. Another contribution of the current paper is smaller reliance on knowl-
edge assumptions, compared to previous papers on the modular approach; this also helps to improve
on the efficiency. More precisely, the new Subset-Sum argument relies on standard versions of the
PDL, TSDH and PKE assumptions, and on a presumably stronger instance of the PKE assump-
tion needed to prove culpable soundness of the shift argument. In App. H, we design another —
slightly less efficient — version of the shift argument that uses a presumably stronger computa-
tional assumption (PCDH, [GJM02,BBG05,Gro10,GGPR13]). However, the resulting Subset-Sum
argument relies on a presumably weaker (more standard-looking) PKE assumption.

Other Applications. A major benefit of the modular approach of [Gro10] is its generality: one
can use the new basic arguments to speed up prover computation in adaptive NIZK arguments
for other languages. In particular, product argument and shift argument are suitable to prove in
zero knowledge that, given a set S = (S1, . . . , Sn) of integers possibly together with numerical
parameters (say v = (v1, . . . , vn)), there exists a subset J of [1 .. n], such that either the sum or
product of elements of S∗ = {Si : i ∈ J} satisfies some easily verifiable relation (e.g., is equal
to or lesser than some public constant s). One can also prove a conjunction of such relations, for
example by showing that the sum of the elements of S∗ is smaller than W while the sum of v(Si)
for i ∈ J is larger than K. Such NP-complete languages include Subset-Sum but also Partition,
Knapsack, Subset-Product, and Two-Processor Scheduling [GJ79].

For all such languages we can construct an adaptive short NIZK argument with the prover
computation of Θ(n log n) non-cryptographic (resp., Θ(n) cryptographic) operations. This can again
be compared to Θ(n log2 n) (resp., Θ(n log n)) when using the QAP-based approach.

We then use the new product and shift arguments to speed up the short range argument
of [CLZ12,FLZ13]. Since here the prover has a committed input, the new range argument is slightly
more complex than the Subset-Sum argument; this also makes simulation of the argument slightly
more complicated. However, differently from the Subset-Sum argument, the verifier computation
is dominated only by Θ(1) cryptographic operations. For the sake of completeness, we provide a full
description of the new range argument in App. I. Interestingly, this argument is computationally
more efficient than any of the existing short range arguments in the random oracle model. E.g.,
the prover computation in the range argument of [Lip03] is dominated by the Rabin-Shallit algo-
rithm [RS86] that takes quadratic prover computation under the Extended Riemann Hypothesis.

Fauzi et al. [FLZ13] constructed an efficient vector scan argument (given commitments to vectors
a, b, it holds that bi =

∑
j≥i aj). The vector scan parallel computation model [Ble90] (that assumes

the existence of vector scan, Hadamard sum, Hadamard product, and possibly some other parallel
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operations) is very powerful, and can be used to implement many problems efficiently. In particu-
lar, [Lip14] proposed a permutation argument based on Θ(log n) product and shift arguments. This
can be used to construct an adaptive Circuit-SAT argument that is very different from QAP-
based arguments [GGPR13]. It has the same asymptotic prover computation as [GGPR13] but
without using universal circuits, providing an interesting alternative. See Tbl. 1. We leave finding
more of such cryptographically relevant languages for a future work.

On Input Size and n. In the case of considered NP-complete languages, n is smaller than
the input length. More precisely, n is the size of the integer set and the input length — in our
arguments — is N = Θ(κn), where κ = n1/O(1) is the security parameter. This means that in
the new Subset-Sum argument the prover has to execute N1−1/O(1) cryptographic operations.
Similarly, in Circuit-SAT arguments, n is the circuit size, while the input size is N = Θ(n log n).
This means that in the QAP-based Circuit-SAT argument, the prover computation is Θ(N)
cryptographic operations.

2 Preliminaries: Security Assumptions

Recall that on input 1κ, where κ is the security parameter, a (prime-order) bilinear map gen-
erator [SOK00,Jou00,BF01] returns gk = (p,G1,G2,GT , g1, ê), where G1, G2 and GT are three
multiplicative cyclic groups of prime order p (with log p = Ω(κ)), g1 is a generator of G1, and ê is
an efficient bilinear map ê : G1 ×G2 → GT that satisfies in particular the following two properties,
where g2 is an arbitrary generator of G2: (i) ê(g1, g2) 6= 1, and (ii) ê(ga1 , g

b
2) = ê(g1, g2)

ab. Thus, if
ê(ga1 , g

b
2) = ê(gc1, g

d
2) then ab ≡ cd (mod p). Within this paper we give genbp another input, n, and

allow p (and thus also the groups) to depend on n. (The reason we handle g1 and g2 differently will
become clear later.)

The security of the commitment scheme and of the new arguments depends on the following
q-type assumptions, variants of which have been studied and used in many previous papers. The
assumptions are parameterized but non-interactive in the sense that q is related to the parameters
of the language (most generally, to the input length) and not to the number of the adversarial
queries.

We will first give informal descriptions of the underlying assumptions, followed by formal de-
scriptions. In all cases, an efficient adversary A has access to a benignly generated common reference

string that contains gk together with elements of the form g
Pj(σ,γ1,...,γm)
i , where gi is a generator of

Gi, Pj are public polynomials, and σ and γi are random secret elements of Zp. Given such an input,
the underlying assumptions state the following: PDL: it is infeasible for A to return σ, TSDH: for
a given i ∈ [1 ..m] and a given small subset S of Zp, it is infeasible for A to return r ∈ S and

ê(g1, g
γi
2 )1/(σ−r), PKE: for a given i ∈ [1 ..m], if A returns (h, ĥ) = (g1, g

γi
2 )b for some b, then she

must know a polynomial a(X) =
∑
aiX

i in the span of {Pj(X)}, such that b = a(σ).

More precisely, we assume that the adversary has access to elements of G1 and G2 that are of

shape g
f(σ)
1 or g

f(σ,γ)
2 , where gi is a generator of Gi, and σ and γ = (γ1, . . . , γm) are secret. The

values γi are knowledge elements [Dam91] and are handled differently from σ. We assume that
the formal variable X corresponds to the secret σ, and Yi corresponds to γi. However, to simplify
notation we will write (say) f ∈ Zp[X] instead of f ∈ Zp[X,Y ] in the cases where f(X,Y ) does not
depend on Y . We require that the adversary has only access to elements of G1 that are independent
of γ; however, assumptions have to take the presence of γ into account. In particular, some of the
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following assumptions take an index i ∈ [1 ..m] as one of the arguments; in such cases γi is handled
differently from the rest of γ. We assume that the value of m (basically, the number of knowledge
elements) is clear from the context; in the current paper, m ∈ [0 .. 2]. In the Subset-Sum argument
in Sect. 7, m = 2, but every polynomial depends only on at most one Yi. All known (to us) adaptive
short NIZK arguments are based on q-type assumptions about genbp.

For a set of polynomials F that have the same domain, denote g
F(a)
i := (g

f(a)
i )f∈F . Let F1 (resp.,

F2) be a set of linearly independent low-degree univariate (resp., (m+1)-variate) polynomials. Then,
genbp is (F1,F2)-PDL (Power Discrete Logarithm, [Lip12]) secure if for any n ∈ poly(κ) and any
non-uniform probabilistic polynomial-time adversary A, the following probability is negligible in κ:

Pr

[
gk = (p,G1,G2,GT , g1, ê)← genbp(1κ, n), g2 ←r G∗2, σ ←r Zp,γ = (γ1, . . . , γm)←r Zmp ,

crs← (gk; g
F1(σ)
1 , g

F2(σ,γ)
2 ) : A(crs) = σ

]
.

The following assumption is a variant of an earlier assumption from [BB04] and [PGHR13]. Let
F1 (resp., F2) be a set of linearly independent low-degree univariate (resp., (m+1)-variate) polyno-
mials. Let i ∈ [1 ..m]. Let (ω1, . . . , ωn) ∈ Znp be distinct elements. Then, genbp is (F1,F2, {ωi}ni=1, i)-
TSDH (Target Strong Diffie-Hellman, [PGHR13]) secure if for any n ∈ poly(κ) and any non-uniform
probabilistic polynomial-time adversary A, the following probability is negligible in κ:

Pr

 gk = (p,G1,G2,GT , g1, ê)← genbp(1κ, n), g2 ←r G∗2, σ ←r Zp \ {ωi}ni=1,γ ←r Zmp ,

crs←
(
gk; g

F1(σ)
1 , g

F2(σ,γ)
2

)
: A(crs) =

(
j ∈ [1 .. n], ê(g1, g

γi
2 )1/(σ−ωj)

)  .

In [BB04], the adversary must output (r, g
1/(σ−r)
1 ) for some r ∈ Zp, given access to gσ

i

1 for (say)
i ∈ [0 .. n]. A variant where the adversary has to output a target group element was introduced
in [PGHR13]. We restrict the power of the adversary by requiring r to belong to the set {ωi}. The
(F1,F2, {ωi}ni=1, i)-TSDH assumption is clearly at least as strong as the (F1,F2)-PDL assumption
for the same (F1,F2). Both PDL and TSDH are variants of the uber-assumption from [BBG05].

For algorithms A and XA, we write (y; yX)← (A||XA)(σ) if A on input σ outputs y, and XA on
the same input (including the random tape of A) outputs yX . Let F be a set of linearly independent
low-degree univariate polynomials, and G1 (resp., G2) be a set of linearly independent low-degree
univariate (resp., m-variate) polynomials. Let i ∈ [1 ..m]. Then, genbp is (F ,G1,G2, i)-PKE (Power
Knowledge of Exponent, [Gro10]) secure if for any non-uniform probabilistic polynomial-time ad-
versary A there exists a non-uniform probabilistic polynomial-time extractor XA, such that the
following probability is negligible in κ:

Pr



gk = (p,G1,G2,GT , g1, ê)← genbp(1κ, n), g2 ←r G∗2, σ ←r Zp,

γ−i = (γ1, . . . , γi−1, γi+1, . . . , γm)←r Zm−1p , aux←r

(
g
G1(σ)
1 , g

G2(σ,γ−i)
2

)
, γi ←r Zp,

crs←
(
gk; (g1, g

γi
2 )F(σ), aux

)
, (h, ĥ; (ai)

n
i=0)← (A||XA)(crs), a(X)←

n∑
i=0

aiPi(X) :

ê(h, gγi2 ) = ê(g1, ĥ) ∧ h 6= g
∑n
i=0 a(σ)

1


.

Here, ê(h, gγi2 ) = ê(g1, ĥ) guarantees that (h, ĥ) = (g1, g
γi
2 )b for some b. It is not necessary that

F (resp., Gi) is linearly independent since one can remove linearly dependent polynomials from F
(resp., Gi) without changing the assumption. Moreover, aux can be seen as the common auxiliary



Efficient Short Adaptive NIZK for NP 9

input to A and XA that is generated independently of γi; its generation it can be seen as benign
auxiliary input generation [BCPR14]. A version of the PKE assumption was first defined in [Gro10].
We use an asymmetric version from [DFGK14] but for a more general sets of polynomials.

By generalizing [BB08,Gro10,Lip12], one can show that the TSDH, PDL and PKE assump-
tions hold in the generic bilinear group model. We emphasize that as we will see in Sect. 7, in
the Subset-Sum argument of Sect. 7 most of the interesting sets F (or Fj) are equal to either
{Xi}i∈[0 .. d] or {YjXi}i∈[0 .. d] for some integer d and j ∈ [1 ..m].

3 New Trapdoor Commitment Scheme

In this section, we construct a new trapdoor commitment scheme. We first give a general construc-
tion and prove its security, and then give an instantiation of the parameters that we need in the
current paper. Precise reasoning behind the recommended parameters will become clear in Sect. 5.

A trapdoor commitment scheme is a randomized cryptographic primitive in the CRS
model [BFM88] that inputs a message and outputs a commitment. It consists of two efficient
algorithms gencom (that outputs a CRS and a trapdoor) and com (that, given a CRS, a message
and a randomizer, outputs a commitment), and must satisfy the following three security properties.
Computational binding: without access to the trapdoor, it is intractable to open a commitment
to two different messages. Perfect hiding: commitments of any two messages have the same dis-
tribution. Trapdoor: given access to the original message, the randomizer and the trapdoor, one
can open the commitment to any other message. See, e.g., [Gro10] for formal definitions. We define
the following pairing-based polynomial commitment scheme.

Definition 1 ({Pi}-Commitment Scheme). Let n = poly(κ), n > 0, be an integer. Let Pi(X) ∈
Zp[X], for i ∈ [0 .. n], be n + 1 linearly independent low-degree polynomials. First, gencom(1κ, n)
invokes the bilinear group generator to generate gk ← (p,G1,G2,GT , g1, ê), picks g2 ←r G∗2, and
then outputs the CRS (also known as the commitment key)

ck← (gk; (g
Pi(σ)
1 , g

γ1Pi(σ)
2 )ni=0) (1)

for σ ←r Zp \ {j : P0(j) = 0} and γ1 ←r Z∗p. The trapdoor is equal to (σ, γ1).

The commitment of a ∈ Znp , given a randomizer r ←r Zp, is com(ck;a; r) := (g
P0(σ)
1 , g

γ1P0(σ)
2 )r ·∏n

i=1(g
Pi(σ)
1 , g

γ1Pi(σ)
2 )ai ∈ G1 × G2. The validity of a commitment (A1, A

γ1
2 ) can be checked by

verifying that ê(A1, g
γ1P0(σ)
2 ) = ê(g

P0(σ)
1 , Aγ12 ). To open a commitment, the committer sends (a, r)

to the verifier.

The condition P0(σ) 6= 0 will be needed in Thm. 1 to get perfect hiding, and the condition γ1 6= 0
will be needed in Thm. 7 to get perfect zero knowledge.

Clearly,

logg1 A1 = loggγ12
Aγ12 = rP0(σ) +

n∑
i=1

aiPi(σ) . (2)

The second element, Aγ12 , of the commitment is known as the knowledge component [Dam91].

For a set of polynomials F ⊆ Zp[X,Y1, . . . , Ym−1], we define YmF = {Ym · f(X,Y1, . . . , Ym−1) :
f ∈ F} ⊆ Zp[X,Y1, . . . , Ym]. Let Fcom,1 = {Pi(X)}ni=0 and Fcom,2 = Y1Fcom,1 = {Y1Pi(X)}ni=0.
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Theorem 1. The {Pi}-commitment scheme is perfectly hiding. If genbp is (Fcom,1,Fcom,2)-PDL
secure, then it is computationally binding. If genbp is (Fcom,1, ∅, ∅, 1)-PKE secure, then there ex-
ists an extractor that extracts the message a and the randomizer r, given ck, the commitment
(A1, A

γ1
2 ) = com(ck;a; r) and access to the committer’s random tape.

Proof. Perfect Hiding: since P0(X) is a non-zero polynomial (this follows from linear indepen-
dence), then due to the choice of σ, rP0(σ) (and thus also logg1 A1) is uniformly random in Zp.
Therefore, (A1, A

γ1
2 ) is a uniformly random element of the multiplicative subgroup of G∗1×G∗2 gen-

erated by (g1, g
γ1
2 ), independently of the committed value. Extraction: clear from the statement.

Computational Binding: assume that the adversary outputs (a, ra) and (b, rb) with (a, ra) 6=
(b, rb), such that d(X) := (raP0(X) +

∑n
i=1 aiPi(X))−(rbP0(X) +

∑n
i=1 biPi(X)) has a root at σ. If

the adversary is successful, then d(X) ∈ Zp[X] is a non-trivial polynomial. Since the coefficients of d
are known, we can use an efficient polynomial factorization algorithm [LLL82,vHN10] to compute all
roots ri of d(X). One of these roots has to be equal to σ. One can establish which one by comparing

each (say) g
P1(ri)
1 to the element g

P1(σ)
1 given in the CRS. We note that g

P1(ri)
1 is computed from g1

(this is why we need that crs always contains g1), the coefficients of P1(X), and ri. ut

Another common methodology in such proofs is to use the Schwartz-Zippel lemma [Sch80]. However,
the Schwartz-Zippel lemma establishes binding only under a decisional assumption, while using
polynomial factorization enables us to establish binding under a computational assumption.

See App. A for some history of this commitment scheme. In the rest of this paper, we use
concrete polynomials to instantiate the commitment scheme of Def. 1.

Definition 2 (Interpolating Commitment Scheme). The interpolating commitment scheme is
a {Pi}-commitment scheme, instantiated with the polynomials P0(X) = Z(X) and Pi(X) = `i(X)
for i ∈ [1 .. n] over Zp[X], defined as follows. Assume n is a power of two, and ωi = ωi−1 for
i ∈ {1, . . . , n}, where ω is the n-th primitive root of unity modulo p (this speeds up some of the
arithmetic). Then,

– Z(X) :=
∏n
i=1(X −ωi) = Xn− 1 is the unique degree n monic polynomial, such that Z(ωi) = 0

for all i ∈ {1, . . . , n}.
– `i(X) :=

∏
j 6=i

X−ωj
ωi−ωj is the unique degree n − 1 polynomial, s.t. `i(ωi) = 1 and `i(ωj) = 0 for

j 6= i.

Here, Fcom,1 = {Z(X)} ∪ {`i(X)}ni=1.

Clearly, `i is the ith Lagrange basis polynomial, and thus La(X) =
∑n

i=1 ai`i(X) is the interpolating
(Lagrange) polynomial of a at points ωi, with La(ωi) = ai, and can thus be computed by executing
an inverse Fast Fourier Transform [GG03]. Moreover, (`i(ωj))

n
j=1 = ei and (Z(ωj))

n
j=1 = 0n.

Remark 1. Since in the case of the interpolating commitment scheme, Fcom,1 consists of n + 1
linearly independent degree-(≤ n) polynomials, it is a basis of the set of degree-(≤ n) polynomials

and thus g
Fcom,1(σ)
1 can be efficiently computed from (gσ

i

1 )ni=0 and vice versa. Hence, Fcom,1 can be
replaced with {Xi}ni=0 in all underlying assumptions. In particular, defining F∗com,1 = {Xi}ni=0 and

F∗com,1 = Y1F∗com,1 = {Y1Xi}ni=0, (Fcom,1,Fcom,2)-PDL is equivalent to (F∗com,1,F∗com,2)-PDL, and
similarly with (Fcom,1, . . . )-PKE.

In the case of the interpolating commitment scheme, since 1 ∈ span(Fcom,1), g1 ∈ gk ∩ gFcom,1

1 , and
thus one can shorten the CRS by one element. This is not true in general.
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When ωi are arbitrary, polynomial interpolation takes time Θ(n log2 n) [GG03]. This slows
down the prover computation to Θ(n log2 n) non-cryptographic operations in the new adaptive
Subset-Sum argument, and to Θ(n log3 n) in a QAP-based adaptive Circuit-SAT argument. For
the existence of the n-th primitive root of unity modulo p it suffices that (n+1) | (p−1). One can use
the Cocks-Pinch method [BSS05] to construct a corresponding pairing-friendly curve. Arithmetic
on such a curve is about 3 times slower than on curves without specific requirements on p.

It is easy to see that the polynomials Z(X) and `i(X) they satisfy the requirements of Thm. 1.
In fact, given Def. 1 and the statement of Thm. 1, this choice is very natural: `i(X) interpolate
linearly independent vectors (and thus are linearly independent; in fact, they constitute a basis), and
the choice to interpolate unit vectors is the conceptually clearest way of choosing `i(X). Another
natural choice of independent polynomials is to set Pi(X) = Xi as in [Gro10], but as known from
the previous work, that choice results in much less efficient zero knowledge arguments.

4 Preliminaries: Zero Knowledge

We refer to App. C for an informal motivation of NIZK arguments, known impossibility results,
and an explanation of why the CRS model and knowledge assumptions are needed.

An NIZK argument for a language L consists of three algorithms, gencrs, pro and ver. The
CRS generation algorithm gencrs takes as input 1κ (and possibly some other, public, language-
dependent information like the input length) and outputs the prover CRS crsp, the verifier CRS
crsv, and a trapdoor td. The distinction between crsp and crsv is not important for security, but
in many applications crsv is much shorter. The prover pro takes as an input crsp together with a
statement u and a witness w, and outputs an argument π. The verifier ver takes as an input crsv,
a statement u, and an argument π, and either accepts or rejects.

Some of the expected properties of an argument are: (i) perfect completeness (honest verifier
always accepts honest prover’s argument), (ii) perfect witness-indistinguishability (argument distri-
butions corresponding to all allowable witnesses are equal), (iii) perfect zero knowledge (there exists
an efficient simulator that can, given u, (crsp, crsv) and td, output an argument that comes from the
same distribution as the argument produced by the prover), (iv) adaptive computational soundness
(if u 6∈ L, then an arbitrary non-uniform probabilistic polynomial time prover has negligible suc-
cess in creating a satisfying argument), and (v) adaptive computational culpable soundness [GOS12]
(informally, if u 6∈ L, then an arbitrary non-uniform probabilistic polynomial time prover has neg-
ligible success in creating a satisfying argument together with a witness that u 6∈ L). An argument
is an argument of knowledge, if from an accepting argument it follows that the prover knows the
witness. For the sake of completeness, we give formal definitions in App. C.

5 Product Argument

Here and in what follows, a ◦ b denotes the Hadamard (i.e., element-wise) product of two vectors,
with (a ◦ b)i = aibi. In a product argument [Gro10], the prover aims to convince the verifier that
she knows how to open three commitments (A,Aγ1), (B,Bγ1), and (C,Cγ1) to vectors a, b and
c correspondingly (together with the used randomizers), such that a ◦ b = c. (Here, we assume
the use of a polynomial commitment scheme with knowledge secret γ1.) Thus, here we have the
language L×n = {(a, b,a ◦ b) ∈ (Znp )3}.

First, we will follow the line of thought of [GGPR13] (but using the matrix notation of [Lip13])
to derive a new product argument together with a supporting trapdoor commitment scheme; the
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latter happens to be the interpolating commitment scheme. After that, we will give a full description
of the argument together with a discussion of its security and efficiency.

Let In be the n×n identity matrix and let 1n be the n-dimensional all-one vector. Assume that
a, b, c ∈ Znp . Clearly, a ◦ b = c iff

(a>In) ◦ (b>In)− (c>In) ◦ (1>n In) = 0n . (3)

Following the terminology of [Lip13], Eq. (3) describes a (non-polynomial) quadratic arithmetic
program [GGPR13] for the arithmetic circuit C, consisting of n parallel multiplication gates, that
on given inputs a and b returns c = a ◦ b as the output. Importantly, in Eq. (3) we use the same
matrix, In, in the multiplications a>In, b>In, and c>In. Briefly, this will mean that the prover
commits to all three vectors a, b and a ◦ b by using the interpolating commitment scheme.

Next, from Eq. (3) we obtain a polynomial quadratic arithmetic program for C as in [Lip13]. (The
original approach of [GGPR13] omitted the intermediate derivation of the non-polynomial QAP.)
Fix n different values (ω1, . . . , ωn) as in Def. 2. Let `i(X) be again the ith Lagrange basis polynomial.
Clearly, Eq. (3) is equivalent to the existence of a degree 2n − 2 polynomial Q(X) := Qa,b,c(X),
such that

(i) Q(X) = A(X)B(X)−C(X), where A(X), B(X) and C(X) belong to the span of {`i(X)} (i.e.,
are degree-(n − 1) interpolating polynomials of some vectors a, b, and c, correspondingly),
and

(ii) Q(X) evaluates to 0 at all n values ωi.

In the Subset-Sum argument, we will guarantee (i) by using a knowledge assumption. We assume
its truth by now. Then, for Z(X) defined as in Def. 2, Eq. (3) is equivalent to Z(X) | Qa,b,c(X).
That is, a ◦ b = c iff there exists a degree (2n− 2)− n = n− 2 polynomial π(X), such that

π(X) · Z(X) = Qa,b,c(X) . (4)

Clearly, a honest prover can compute π(X) as π(X)← Qa,b,a◦b(X)/Z(X).

Next, we achieve zero-knowledge as in [GGPR13] (see also [BCI+13]), by introducing random-
izers ra, rb, rc ←r Zp, and defining

Qa,b,c;ra,rb,rczk (X) := (La(X) + raZ(X)) (Lb(X) + rbZ(X))− (Lc(X) + rcZ(X)) . (5)

We usually assume that the superscript of Qzk is clear from the context, and thus omit it.

Here, the new addends of type raZ(X) guarantee hiding and because of their inclusion, the
degree of Qzk(X) is 2n. On the other hand, due to the use of Z(X) in addends, Qzk(X) remains
divisible by Z(X) if and only if c = a ◦ b. Thus, a ◦ b = c if and only if

1. Qzk(X) can be expressed as Qzk(X) = A(X)B(X)− C(X) for some polynomials A(X), B(X)
and C(X) that belong to the span of Fcom,1, and

2. there exists a polynomial πzk(X), such that

πzk(X) · Z(X) = Qzk(X) . (6)

In this case (i.e., if πzk(X) exists), it has degree n, and can be computed as

πzk(X) :=Qzk(X)/Z(X) . (7)
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However, |πzk(X)| is not of sublinear in n. As common in such situations, to minimize communi-
cation, we let the prover to transfer the evaluation of πzk(X) at a random secret point σ. Since σ

is an unknown secret key, the prover cannot compute πzk(σ). Instead, he computes π× := g
πzk(σ)
1 ,

using the values gσ
i

1 (given in the CRS) and the coefficients πi of πzk(X) =
∑n

i=0 πiX
i (computed

as in Eq. (7)), as follows:

π× := g
πzk(σ)
1 ←

n∏
i=0

(gσ
i

1 )πi . (8)

Product Argument: Details. We now give a detailed description of the new product argument.
Let com be the interpolating commitment scheme. Note that com(ck; 1n; 0) = (g1, g

γ1
2 ).

CRS generation gencrs×(1κ, n): Let gk = (p,G1,G2,GT , g1, ê)← genbp(1κ) and g2 ←r G∗2. Gen-
erate (σ, γ1) ←r Z2

p with Z(σ) 6= 0 and γ1 6= 0. Set crsp = ck ← (gk; (g1, g
γ1
2 )Fcom,1(σ)). Let

crsv ← (gk; g
γ1Z(σ)
2 ), and td× ← (σ, γ1). Output (crs× = (crsp, crsv), td×).

Common inputs: inp× = (A1, A
γ1
2 , B1, B

γ1
2 , C1, C

γ1
2 ).

Proving pro×(crsp; inp×;w× = (a, ra, b, rb, c, rc)): Compute πzk(X) =
∑n

i=0 πiX
i as in Eq. (7) and

π× as in Eq. (8). Output π×.

Verification ver×(crsv; inp×;π×): Verify that ê(A1, B
γ1
2 ) = ê(g1, C

γ1
2 ) · ê(π×, gγ1Z(σ)2 ).

Inclusion of g
γ1Z(σ)
2 in the CRS is only needed to speed up the verification; one can clearly recompute

it from ck. In particular, it suffices to take crs× = (gk; ck). We note that here as in the shift argument
of Sect. 6, validity of the commitments will be verified in the Subset-Sum argument. This is since
the Subset-Sum argument uses some of the commitments in several subarguments, while it suffices
to verify the validity of every commitment only once.

Security. Like other basic arguments, the product argument cannot satisfy the standard definition
of soundness, see [Gro10,Lip12]. It can only satisfy culpable soundness. Its culpable soundness is
sufficient for the Subset-Sum argument to be sound, due to the fact that there we use additional
knowledge assumptions. Similarly, the product argument by itself is not zero-knowledge, but it is
witness-indistinguishable; this suffices for the Subset-Sum argument to be zero-knowledge.

Theorem 2. Let n = poly(κ). Let com be the interpolating commitment scheme from Def. 2. Let
F×,1 = Fcom,1, F×,2 = Fcom,2, F∗×,1 = F∗com,1, and F∗×,2 = F∗com,2. The new product argument is
perfectly complete and perfectly witness-indistinguishable. If genbp is (F∗×,1,F∗×,2, {ωi}ni=1, 1)-TSDH
secure, then this argument is adaptively computationally culpably sound.

Relying on the TSDH assumption is natural, since the soundness claim is about certain
(non)divisibility.

Proof. Completeness: follows from the discussion in the beginning of this section. Witness-
indistinguishability: since argument π× that satisfies the verification equations is unique, all
witnesses result in the same argument, and thus this argument is witness-indistinguishable.

Culpable soundness: Here, culpable soundness means that a non-uniform probabilistic
polynomial-time adversary against this argument has a negligible chance, given crs× = (crsp, crsv)←
gencrs×(1κ, n) as an input, of outputting inp× = (A1, A

γ1
2 , B1, B

γ1
2 , C1, C

γ1
2 ), an argument π×, and

a witness w× = (a, ra, b, rb, c, rc) with a, b, c ∈ Znp and ra, rb, rc ∈ Zp, such that

(i) ver×(crsv; inp×;π×) accepts,
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(ii) (A1, A
γ1
2 ) = com(ck;a; ra), (B1, B

γ1
2 ) = com(ck; b; rb), and (C1, C

γ1
2 ) = com(ck; c; rc), and

(iii) for some i ∈ [1 .. n], aibi 6= ci.
According to the previous discussion, if the argument is not sound then one of the following

has to hold: (a) one of La(X), Lb(X), Lc(X) is not in the span of {`i(X)}, or (b) Z(X) - Qzk(X),
where Qzk(X) is defined as in Eq. (5). Case (a) cannot happen because of (ii) above. We now show
that case (b) is impossible under the (F∗×,1,F∗×,2, {ωi}ni=1, 1)-TSDH assumption.

We first recall from Sect. 2 that since Fcom,1 is a basis of the set of degree ≤ n polynomials, the
(F∗×,1,F∗×,2, {ωi}ni=1, 1)-TSDH assumption is equal to the (F×,1,F×,2, {ωi}ni=1, 1)-TSDH assumption.
This means that a correctly distributed crs× = (crsp, crsv) = (gk; ck) ∈ gencrs×(1κ, n) can be
efficiently computed from an (F∗×,1,F∗×,2, {ωi}ni=1, 1)-TSDH challenge.

Assume that Asound is an adversary against culpable soundness. We now construct the next ad-
versary Atsdh against (F∗×,1,F∗×,2, {ωi}ni=1, 1)-TSDH. Given an (F∗×,1,F∗×,2, {ωi}ni=1, 1)-TSDH chal-

lenge ch = (gk, (g
f(σ)
1 )f∈F∗

×,1
, (g

γ1f(σ)
2 )f∈F∗

×,2
), Atsdh first computes and then sends crs× to Asound.

Assume Asound returns (inp×, π×, w×) such that the conditions (i–iii) hold and Z(X) - Qzk(X).
Since Z(X) - Qzk(X), then for some i ∈ [1 .. n], (X − ωi) - Qzk(X). Write Qzk(X) = q(X)(X −

ωi) + r for r ∈ Z∗p. Clearly, deg q(X) ≤ 2n − 1. Moreover, we write q(X) = q1(X)Z(X) + q2(X)

with deg qi(X) ≤ n − 1. Since the verification succeeds, ê(g1, g
γ1
2 )Qzk(σ) = ê(π×, g

γ1Z(σ)
2 ), or

ê(g1, g
γ1
2 )q(σ)(σ−ωi)+r = ê(π×, g

γ1Z(σ)
2 ), or ê(g1, g

γ1
2 )q(σ)+r/(σ−ωi) = ê(π×, g

γ1Z(σ)/(σ−ωi)
2 ), or

ê(g1, g
γ1
2 )1/(σ−ωi) = (ê(π×, g

γ1Z(σ)/(σ−ωi)
2 )/ê(g

q(σ)
1 , gγ12 ))r

−1
. (9)

Now, ê(g
q(σ)
1 , gγ12 ) = ê(g

q1(σ)
1 , g

γ1Z(σ)
2 )ê(g

q2(σ)
1 , gγ12 ), and thus it can be computed from

((gσ
i

1 )n−1i=0 , g
γ1
2 , g

γ1Z(σ)
2 ) ⊂ crs by using generic group operations. Moreover, Z(X)/(X −

ωi) = `i(X)
∏
j 6=i(ωi − ωj), and thus g

γ1Z(σ)/(σ−ωi)
2 can be computed from g

γ1`i(σ)
2 by us-

ing generic group operations. Hence, the right-hand side of Eq. (9) can be computed from

((gσ
i

1 )n−1i=0 , g
γ1
2 , g

γ1Z(σ)
2 , (g

γ1`i(σ)
2 )ni=1) (that can be computed from ch), by using generic group op-

erations. Thus, the adversary has computed (ωi, ê(g1, g
γ1
2 )1/(σ−ωi)), for ωi 6= σ, and thus broken the

(F∗×,1,F∗×,2, {ωi}ni=1, 1)-TSDH assumption. ut

Finally, in some papers like [PGHR13], one had to include elements gσ
i

1 for i ≤ 2n to the CRS for
the security reduction to TSDH to go through. The small trick of writing q(X) = q1(X)Z(X)+q2(X)
(or something similar) can also be used there to reduce the strength of the TSDH assumption.

Efficiency of Product Argument. The prover computation is dominated by the computation
of

(i) one (n + 1)-wide multi-exponentiation. By using the Pippenger’s multi-exponentiation algo-
rithm [Pip80], for large n this means approximately n+ 1 bilinear-group multiplications. For
small values of n, one can use the algorithm by Straus [Str64].

(ii) three polynomial interpolations, one polynomial multiplication, and one polynomial division
to compute the coefficients of the polynomial πzk(X). Since polynomial division can be im-
plemented as 2 polynomial multiplications (by using pre-computation and storing some extra
information in the CRS, [GG03,Lip13]), this part is dominated by two inverse FFT-s and
three polynomial multiplications. Other savings are possible, see App. B.

The verifier computation is dominated by 3 pairings. (We will count the cost of validity verifications
separately in the Subset-Sum argument.) In the special case C1 = A1, the verification equation

can be simplified to ê(A1, B
γ1
2 /g

γ1
2 ) = ê(π×, g

γ1Z(σ)
2 ), which saves one more pairing.
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Excluding gk, the prover CRS consists of 2(n+1) group elements, while the verifier CRS consists
of 1 group element. The CRS can be computed in timeΘ(n), by using an algorithm from [BSCG+13].

On Security Assumptions and Efficiency. Compared to [Gro10,Lip12,FLZ13], we use a
stronger computational assumption (TSDH, instead of PDL) to show the culpable soundness of
the argument. However, the previous papers [Gro10,Lip12,FLZ13] required π× to be accompanied
with a knowledge component πη×,2 for some secret key η, and relied on a knowledge assumption
— not needed in the new argument — to allow the adversary in the security reduction to obtain
the coefficients πi. The use of TSDH instead of PDL and an additional knowledge assumption
shortens the argument by one group element, decreases the workload of the prover twice, and the
computational complexity of the verifier from 5 to 3 pairings.

Restriction Argument. In a restriction argument [Gro10] for subset S ⊆ [1 .. n], the prover aims
to convince the verifier that (A1, A

γ1
2 ) commits to a such that ai = 0 for i 6∈ S. In the case S = ∅, we

have the zero argument [LZ13], where the prover tries to convince the verifier that (A1, A
γ1
2 ) commits

to 0n. In [Gro10], the restriction argument consists of 1 group element (the knowledge component).
Based on the new product argument, we construct a new restriction argument, eliminating again
the need for a knowledge assumption. We refer to App. D for further details.

6 Right Shift-by-z Argument

In a right shift-by-z argument [FLZ13], the prover aims to convince the verifier that for 2
commitments (A,Aγ1) and (B,Bγ1), he knows how to open them as (A,Aγ1) = com(ck;a; ra)
and (B,Bγ1) = com(ck; b; rb), such that ai = bi+z for i ∈ [1 .. n − z] and ai = 0 for
i ∈ [n − z + 1 .. n]. That is, the language Lrsftn consists of all pairs(a, b) ∈ (Znp )2, such that
(an, . . . , a1) = (0, . . . , 0, bn, . . . , b1+z).

Here, one cannot use the same methodology as in Sect. 5, since then in this argument a and b
have asymmetric roles and thus will be committed by using different commitment schemes, neither
compatible with the interpolating commitment scheme. In fact, in both resulting commitment
schemes one would use the same polynomials Pi but in a different shifted order.

An efficient right shift-by-z argument was described in [FLZ13]. We now reconstruct this argu-
ment so that it can be used together with the interpolating commitment scheme of Def. 2. There
are several reasons why this is possible. Most importantly, the right shift argument of [FLZ13]
is very efficient to start with, and its construction almost does not depend on the commitment
scheme. Indeed, the new argument needs one non-trivial modification compared to [FLZ13]: as we
will see in what follows, for the security reasons we set a certain polynomial V (X) to be equal to
Z(X), while in [FLZ13], V (X) had a different definition V (X) = Xz. We also slightly optimize the
resulting argument; in particular, the verifier has to execute one less pairing compared to [FLZ13].

Our strategy of constructing a shift argument follows the strategy of [Gro10] and follow-up
papers. We start with a fixed commitment scheme and a fixed verification equation that also
contains the argument. We write the discrete logarithm of the argument (that follows from this
equation) as a sum of two polynomials Fπ(X) and Fcon(X), each of which belongs to the span of
a set of polynomials. The first polynomial, Fπ(X), is identically zero if and only if the prover is
honest. Under the assumption that the spans of certain two polynomial sets do not intersect, this
results in an efficient shift argument that is culpably sound under a knowledge assumption.
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Following the blueprint of [FLZ13], assume that the verification equation is ê(B1π1, g
γ1V (σ)
2 ) =

ê(A1, g
γ1V (σ)2

2 ), for (A1, A
γ1
2 ) and (B1, B

γ1
2 ) being commitments to a and b (by using the {Pi}-

commitment scheme, without fixing the polynomials yet), γ1 being a knowledge secret, and V (X)

being a non-zero polynomial that we will fix later. The value (g
π(σ)
1 , g

γ2π(σ)
2 ) corresponds to the ar-

gument, where γ2 is another knowledge secret. Denote r(X) := raP0(X)V (X)−rbP0(X). Replacing
σ with a formal variable X and taking a discrete logarithm of the verification equation,

π(X) =

(
raP0(X) +

n∑
i=1

aiPi(X)

)
V (X)−

(
rbP0(X) +

n∑
i=1

biPi(X)

)

=V (X)
n∑
i=1

aiPi(X)−
n∑
i=1

biPi(X) + r(X)

=

(
n−z∑
i=1

aiPi(X) +
n∑

i=n−z+1

aiPi(X)

)
V (X)−

(
n−z∑
i=1

bi+zPi+z(X) +
z∑
i=1

biPi(X)

)
+ r(X) ,

and thus π(X) = Fπ(X) + Fcon(X), where

Fπ(X) =

(
n−z∑
i=1

(ai − bi+z)Pi(X) +

n∑
i=n−z+1

aiPi(X)

)
V (X) ,

Fcon(X) =

(
n∑

i=z+1

bi(Pi−z(X)V (X)− Pi(X))−
z∑
i=1

biPi(X)

)
+ r(X) .

Now, the prover is honest if and only if Fπ(X) = 0 if and only if π(X) = Fcon(X), i.e., π(X)
belongs to the span of Φz−rsft := {Pi−z(X)V (X) − Pi(X)}ni=z+1 ∪ {Pi(X)}zi=1 ∪ {P0(X)V (X)} ∪
{P0(X)}. We guarantee this by a knowledge assumption; for this reason we will also show that
Φz−rsft is linearly independent. As in the case of the product argument, we also need that A and B
are actually commitments of n-dimensional vectors, i.e., we only prove culpable soundness.

For the shift argument to be sound, we need that (i) {Pi(X)V (X)}ni=1 is linearly independent
(since V (X) is non-zero, this follows from the linear independence of {Pi(X)}), and (ii) Fπ(X) ∩
span(Φz−rsft) = ∅, for which it suffices that Pk(X)V (X) 6∈ span(Φz−rsft) for k ∈ [1 .. n]. Both (i)
and (ii) together guarantee that from a representation of π(X) as an element of span(Φz−rsft) it
follows that a is a shift of b.

We now show that one can use the interpolating commitment scheme of Def. 2 together with a
concrete choice of V (X).

Lemma 1. For the interpolating commitment scheme of Def. 2 and V (X) = Z(X), let

Φz−rsft := {`i−z(X)Z(X)− `i(X)}ni=z+1 ∪ {`i(X)}zi=1 ∪ {Z(X)2} ∪ {Z(X)} .

It holds that Φz−rsft is linearly independent and that `k(X)Z(X) 6∈ span(Φz−rsft) for any k ∈ [1 .. n].

Proof. We will prove the second claim; the first claim can be proven analogously (see, e.g., the
proof of Lem. 2). Assume that for some k ∈ [1 .. n], `k(X)Z(X) ∈ span(Φz−rsft). Thus, there exist
a ∈ Znp , b ∈ Znp , c ∈ Zp, and d ∈ Zp, s.t. `k(X)Z(X) =

∑n
i=z+1 ai (`i−z(X)Z(X)− `i(X)) +∑z

i=1 bi`i(X) + cZ(X)2 + dZ(X). But then the left hand side and the right hand side polynomials
must also agree at ωj , for j ∈ [1 .. n]. Therefore, due to the definition of `i(X) and Z(X), 0n =
−
∑n

i=z+1 aiei +
∑z

i=1 biei. The latter is only possible if ai = bj = 0 for all i ∈ [z + 1 .. n] and
j ∈ [1 .. z]. Since `k(X)Z(X) 6= cZ(X)2 + dZ(X) for constant c and d, this finishes the proof. ut
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Since culpable soundness of the new shift argument relies on π(X) belonging to a certain span,
similarly to [FLZ13], we will use an additional knowledge assumption. That is, for its culpable
soundness it is necessary that the adversary also outputs a witness that π(X) = Fcon(X) belongs
to the span of Φz−rsft.

Similarly to the product argument, the shift argument does not contain the polynomial π(X) =
Fcon(X) itself, but the value (g1, g

γ2
2 )π(σ) for random σ and a knowledge secret γ2 (necessary due

to the use of knowledge assumption), computed as

πrsft ← (π1, π
γ2
2 ) = (g1, g

γ2
2 )π(σ) =

n∏
i=z+1

(
(g1, g

γ2
2 )

`i−z(σ)Z(σ)−`i(σ)
)bi
·
z∏
i=1

(
(g1, g

γ2
2 )

`i(σ)
)−bi

· (10)

(
(g1, g

γ2
2 )

Z(σ)2
)ra
·
(

(g1, g
γ2
2 )

Z(σ)
)−rb

.

We are now ready to state the new right-shift-by-z argument:
CRS generation gencrsrsft(1

κ, n): Let gk = (p,G1,G2,GT , g1, ê) ← genbp(1κ), and g2 ←r G∗2.
Generate (σ, γ1, γ2) ← Z3

p with Z(σ) 6= 0 and γ1 6= 0. Set ck ← (gk; (g1, g
γ1
2 )Fcom,1(σ)) =

gencom(1κ, n). Let crsp ← (gk; ck, (g1, g
γ2
2 )Φz−rsft(σ)), crsv ← (gk; (g1, g

γ2
2 )Z(σ), g

γ2Z(σ)2

2 ). Set
tdrsft ← (σ, γ1, γ2). Return (crsrsft = (crsp, crsv), tdrsft).

Common inputs: inprsft = (A1, A
γ1
2 , B1, B

γ1
2 ).

Proving prorsft(crsp; inprsft;a, ra, b, rb): compute πrsft ← (π1, π
γ2
2 ) as in Eq. (10). Return πrsft.

Verification verrsft(crsv; inprsft;πrsft = (π1, π
γ2
2 )): check that ê(π1, g

γ2Z(σ)
2 ) = ê(g

Z(σ)
1 , πγ22 ) and

ê(g
Z(σ)
1 , Bγ2

2 π
γ2
2 ) = ê(B1π1, g

γ2Z(σ)
2 ) = ê(A1, g

γ2Z(σ)2

2 ).
Let Fz−rsft,1 = Fcom,1 ∪ Φz−rsft and Fz−rsft,2 = Fcom,2 ∪ Y2Φz−rsft. Clearly, here crsrsft =

(gk; g
Fz−rsft,1(σ)
1 , g

γ1Fcom,1(σ)
2 , g

γ2Φz−rsft(σ)
2 ) = (gk; g

Fz−rsft,1(σ)
1 , g

Fz−rsft,2(σ,γ1,γ2)
2 ). This holds since crsv can

be recomputed from crsp.

Theorem 3. Let n = poly(κ). Let com be the interpolating commitment scheme. The shift argu-
ment of the current section is perfectly complete and perfectly witness-indistinguishable. Let Φz−rsft
be as in Lem. 1. If genbp is (Fz−rsft,1,Fz−rsft,2)-PDL secure and (Φ1−rsft, ∅, ∅, 2)-PKE secure, then
the shift argument is adaptively computationally culpably sound.

The proof of this theorem is given in App. E.

Efficiency of Shift Argument. The prover computation is dominated by two (n+2)-wide multi-
exponentiations. This time, there is no need for polynomial interpolation, multiplication or division.
The communication is 2 group elements. The verifier computation is dominated by 5 pairings. Apart
from gk, the prover CRS contains 2((n + 1) + (n + 2)) = 4n + 6 group elements, and the verifier
CRS contains 3 group elements.

Simplifying the PDL Assumption. We will now show that the underlying PDL assumption
is implied by a simpler PDL assumption. We first show that if z = 1, then the assumptions are
actually equivalent. For this, note that F1−rsft,1 = Fcom,1 ∪ Φ1−rsft := {`i−1(X)Z(X)− `i(X)}ni=2 ∪
{`i(X)}ni=1 ∪ {Z(X)2} ∪ {Z(X)}. See App. F for a proof of the next lemma.

Lemma 2. Define F∗1−rsft,1 := {Xi}2ni=0 and F∗1−rsft,2 := Y1F∗1−rsft,1 = {Y1Xi}2ni=0. The

(F1−rsft,1,F1
1−rsft,2)-PDL assumption is equal to the (F∗1−rsft,1,F∗1−rsft,2)-PDL assumption.
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Corollary 1. In Thm. 3, one can replace the (F1−rsft,1,F1
1−rsft,2)-PDL assumption with the

(F∗1−rsft,1,F∗1−rsft,2)-PDL assumption.

In general, since Fz−rsft,1 consists of degree≤ 2n polynomials, (Fz−rsft,1,Fz−rsft,2)-PDL is implied
by (F∗1−rsft,1,F∗1−rsft,2)-PDL. However, Fz−rsft,1 and Fz−rsft,2 have (n+1)+(n+2)−(z+1) = 2n+2−z
elements, since |Fcom,1 ∩ Φz−rsft| = z + 1. Thus, (F(z+1)−rsft,1,F(z+1)−rsft,2)-PDL is a presumably
weaker assumption than (Fz−rsft,1,Fz−rsft,2)-PDL for any z.

7 Subset-Sum Argument

For a fixed n, the NP-complete language Subset-Sum is usually defined as the language LSubset-Sumn

of tuples (S = (S1, . . . , Sn), s) such that there exists a vector b ∈ {0, 1}n with
∑n

i=1 Sibi = s. Thus,
in a Subset-Sum argument, the prover aims to convince the verifier that he knows how to open
commitment (B1, B

γ1
2 ) to a vector b ∈ {0, 1}n, such that

∑n
i=1 Sibi = s.

Next, we show that by using the new product and shift arguments, one can design a computa-
tionally efficient adaptive short Subset-Sum NIZK argument.

Construction. To prove that (S, s) ∈ Subset-Sum, we do the following. The CRS generation
gencrsssum invokes the CRS generations of the commitment scheme, the product argument and the
shift argument, sharing the same gk and trapdoor td = (σ, γ1, γ2) between the different invocations.

The prover does the following (further explanations are given in the completeness proof):

Let b ∈ {0, 1}n be such that
∑n

i=1 Sibi = s.
Construct a product argument π1 to show that b ◦ b = b.
Let (C1, C

γ1
2 ) be a commitment to c← S ◦ b.

Construct a product argument π2 to show that c = S ◦ b.
Let (D1, D

γ1
2 ) be a commitment to d, where di =

∑
j≥i cj .

Construct a shift argument (π31, π
γ2
32) to show that d− c is a right shift-by-1 of d.

Construct a product argument π4 to show that e1 ◦ (d− se1) = 0n.
Output πssum = (B1, B

γ1
2 , C1, C

γ1
2 , D1, D

γ1
2 , π1, π2, π31, π

γ2
32 , π4).

The vector d is called either a vector scan, an all-prefix-sums or a prefix-sum of c [Ble90], and
(π31, π

γ2
32) can be thought of as a scan argument [FLZ13] that d is a correct scan of c.

After receiving πssum, the verifier checks the validity of three commitments (B1, B
γ1
2 ), (C1, C

γ1
2 )

(for this, the verifier has to also compute a commitment to S), and (D1, D
γ1
2 ), and then verifies

four basic arguments.

Let Fssum,1 = F×,1 ∪ Φ1−rsft and Fssum,2 = F×,2 ∪ Y2Φ1−rsft. Clearly, here it suffices to take

crs = (gk; g
Fssum,1(σ)
1 , g

Fssum,2(σ,γ1,γ2)
2 ). See App. G for a proof of the following theorem.

Theorem 4. Let n = poly(κ), and let com be the interpolating commitment scheme. The
new Subset-Sum argument is perfectly complete and perfectly zero-knowledge. It is adaptively
computationally sound and an argument of knowledge if genbp is (F∗×,1 = {Xi}ni=0,F∗×,2 =

{Y1Xi}ni=0, {ωi}ni=1, 1)-TSDH, (F∗1−rsft,1 = {Xi}2ni=0,F∗1−rsft,2 = {Y2Xi}2ni=0)-PDL, (F∗com,1 =

{Xi}ni=0,Fssum,1 \ Fcom,1, Y2Φ1−rsft, 1)-PKE, and (Φ1−rsft,F×,1,F×,2, 2)-PKE secure.
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Efficiency. The prover computation is dominated by three commitments and the application of
three product arguments and one shift argument, that is, by Θ(n log n) non-cryptographic op-
erations and Θ(n) cryptographic operations. The latter is dominated by 11 (≈ n)-wide multi-
exponentiations (2 in each commitment and the shift argument, and 1 in each product argument).
The argument size is constant (11 group elements), and the verifier computation is dominated by two
(n+ 1)-wide multi-exponentiations (needed to once commit to S; this can often be pre-computed)
and 18 pairings (3 pairings to verify π2, 2 pairings to verify each of the other product arguments,
5 pairings to verify the shift argument, and 6 pairings to verify the validity of 3 commitments). As
always, multi-exponentiation can be significantly sped up by using algorithms from [Str64,Pip80].

Weaker Assumptions. In the first three assumptions of Thm. 4, the first set of polynomials
(F∗×,1, F∗1−rsft, F∗com,1, resp.) is equal to {Xi}di=0 for some d. This is not the case with the fourth
assumption. In App. H, we modify the shift argument (and thus also the Subset-Sum argument)
so as to bring the fourth assumption into line. However, this results in the use of a presumably
stronger computational assumption.

8 Other Arguments

As shown in [FLZ13], arguments for other interesting languages can be constructed, given efficient
product and shift arguments. This includes NP-complete languages like Partition but also range
argument. One can plug in the interpolating commitment scheme and the new product argument
to speed up corresponding arguments. For example, the range argument in [FLZ13] consists of
product and shift arguments. In fact, it looks very similar to the new Subset-Sum argument,
except that one has additionally commit to a value a ∈ [0 .. H], use a specific sparse S = H with
Hi =

⌊
(H + 2i−1)/2i

⌋
[LAN02], and prove that a =

∑n
i=1Hibi for a committed a. Since here H

does not depend on instance, the verifier computation is Θ(1). See App. I for a full description of
the corresponding range argument, and App. J for a discussion of other NP-complete languages.

When instantiated with the interpolating commitment scheme, all such arguments will have
prover computation dominated by Θ(n log n) non-cryptographic operations and Θ(n) cryptographic
operations. Here, n is some language-dependent parameter (e.g., the size of the integer set in
Subset-Sum). It is unknown how to achieve similar efficiency by using any other techniques.

Recently, Lipmaa [Lip14] designed a permutation argument that uses Θ(log n) product and shift
arguments. By using the permutation argument of [Lip14] and the framework of [Gro10], from this
and the new arguments of the current paper one can construct an adaptive Circuit-SAT argument
with complexity parameters as stated in Tbl. 1. See [Lip14] for more discussion.
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A Commitment Scheme: History

For different special cases (e.g., P0(X) = 1 and Pi(X) = Xi for i ∈ [1 .. n]), versions of the {Pi}-
commitment scheme have been in use since at least [GJM02]. Groth [Gro10] seems to be first
who used such a commitment scheme in conjunction with a knowledge assumption. In [Lip12], the
authors considered the case of P0(X) = 1 and Pi(X) = Xλi , i ∈ [1 .. n], with λi having specific
properties, related to the concrete application. In the case of [Lip12], dependence on applications
is not bad, since the possible “application” is one of the relatively small set of arguments (e.g.,
the product argument or the permutation argument). In [FLZ13], one considered the more general
case Pi(X) = σu for suitably chosen u. In those papers, it was also required that for a commitment
(A1, A

γ1
2 ), both A1 and Aγ12 belong to the same group Gi. The choice of A1 belonging to G1 and

Aγ12 belonging to G2, as in the current paper, results in a slightly better efficiency. See [KZG10] for
yet another related commitment scheme.

Gennaro et al. [GGPR13] implicitly used the {Pi}-commitment scheme, with Pi(X) being depen-
dent on the application. In the case of [GGPR13] however, one needs to prove that an (arithmetic)
circuit C is satisfiable (or more generally that C(u) = y for public y, where u is committed to),
and the polynomials Pi(X) depend on the concrete circuit. Thus, one only gets a non-adaptive
NIZK (i.e., the CRS depends on the circuit). Adaptive soundness is achieved by using universal
circuits [Val76]; in this case the polynomials Pi(X) depend on the universal circuit. Presumably,
because of such considerations, [GGPR13] never explicitly defined a commitment scheme.
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B Product Argument: Computation of π

For the sake of simplicity, consider the case without zero knowledge, the full case is just slightly
more complicated. Recall that in this case, the prover has to compute the polynomial Qa,b,a◦b(X) =
La(X) ·Lb(X)−La◦b(X). Recall that ωj = ωj−1, where ω is the nth primitive root of unity modulo
p. Note that:

1. Computation of La(X) · Lb(X) can be performed as follows:

(a) Use inverse FFT to compute La(X) from a and Lb(X) from b.

(b) Use FFT to compute La(ωj) for j ∈ {0, . . . , 2n−1}. Since La(ωj) = aj for j ∈ {0, . . . , n−1}
is already known, some of the computation can be omitted. Denote (a,a′) = (La(ωj))2n−1j=0 .

(c) Similarly, compute Lb(ω
j), for j ∈ {n, . . . , 2n− 1}, and (b, b′).

(d) Compute (a,a′) ◦ (b, b′).

(e) Compute the polynomial La(X) · Lb(X) from (a,a′) ◦ (b, b′) by using inverse FFT.

2. Computation of La◦b(X) can be performed as follows:

(a) Reusing a ◦ b from a previous step, compute La◦b(X) by using inverse FFT.

3. Compute Qa,b,a◦b(X) by coordinate-wise subtraction.

C More on Zero Knowledge

NIZK proofs [BFM88] allow the prover to convince the verifier that an input u belongs to an NP
language L in the manner that nothing else expect the truth of the statement is revealed. NIZK
proofs for non-trivial languages do not exist without a trusted setup unless P = NP. There are two
popular approaches to deal with this. The first approach, the use of random oracle model, results
often in very efficient protocols. However, it is well known [CGH98,GK03] that some protocols that
are secure in the random oracle model are non-instantiable in the standard model, and thus the
random oracle model is a heuristic at its best.

A better approach is to construct NIZK proofs in the common reference string (CRS)
model [BFM88]. Potentially many verifiers can then later independently verify the proof, by having
access to the same CRS. In practice, one is interested in proofs where both the proof length and the
verification time are sublinear in the statement size. Sublinear (adaptive) proofs can only be com-
putationally sound, and their soundness cannot be proven under falsifiable assumptions [GW11].
(See [JR13] for a recent sublinear quasi-adaptive NIZK.) The latter means that one has to employ
knowledge assumptions [Dam91]. A computationally sound proof is also known as an argument.

Formal Definitions. Let R = {(u,w)} be an efficiently computable binary relation with
|w| = poly(|u|). Here, u is a statement, and w is a witness. Let L = {u : ∃w, (u,w) ∈ R} be
an NP-language. Let n = |u| be the input length. For fixed n, we have a relation Rn and a
language Ln. A non-interactive argument for R consists of three probabilistic polynomial-time al-
gorithms: a common reference string (CRS) generator gencrs, a prover pro, and a verifier ver. For
(crs = (crsp, crsv), td) ← gencrs(1κ, n) (where td is not accessible to anybody but the simulator),
pro(crsp;u,w) produces an argument π, and ver(crsv;u, π) outputs either 1 (accept) or 0 (reject).

Π is perfectly complete, if for all n = poly(κ), the following probability is 1:

Pr
[

((crsp, crsv), td)← gencrs(1κ, n), (u,w)← Rn : ver(crsv;u, pro(crsp;u,w)) = 1
]
.
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Π is adaptively computationally sound for L, if for all n = poly(κ) and non-uniform probabilistic
polynomial-time A, the following probability is negligible in κ:

Pr
[

((crsp, crsv), td)← gencrs(1κ, n), (u, π)← A(crsp, crsv) : u 6∈ Ln ∧ ver(crsv;u, π) = 1
]
.

Π is adaptively computationally culpably sound [GL07,GOS12] for L, if for all n = poly(κ), for

all polynomial-time decidable binary relations Rguilt = {Rguilt
n } consisting of elements from L̄ and

witnesses wguilt, and for all non-uniform probabilistic polynomial-time A, the following probability
is negligible in κ:

Pr

[
((crsp, crsv), td)← gencrs(1κ, n), (u, π, wguilt)← A(crsp, crsv) :

(u,wguilt) ∈ Rguilt
n ∧ ver(crsv;u, π) = 1

]
.

Π is perfectly witness-indistinguishable, if for all n = poly(κ), if ((crsp, crsv), td) ∈ gencrs(1κ, n)
and ((u,w0), (u,w1)) ∈ R2

n, then the distributions pro(crsp;u,w0) and pro(crsp;u,w1) are equal. Π
is perfectly zero-knowledge, if there exists a probabilistic polynomial-time simulator S, such that
for all stateful non-uniform probabilistic polynomial-time adversaries A and n = poly(κ),

Pr


((crsp, crsv), td)← gencrs(1κ, n),

(u,w)← A(crsp, crsv),

π ← pro(crsp;u,w) :

(u,w) ∈ Rn ∧ A(π) = 1

 = Pr


((crsp, crsv); td)← gencrs(1κ, n),

(u,w)← A(crsp, crsv),

π ← S(crsp, crsv;u, td) :

(u,w) ∈ Rn ∧ A(π) = 1

 .

Π is a proof of knowledge, if for all n = poly(κ) and every non-uniform probabilistic polynomial-
time A, there exists a non-uniform probabilistic polynomial-time extractor X, such that for every
auxiliary input aux ∈ {0, 1}poly(κ), the following probability is negligible in κ:

Pr

[
((crsp, crsv), td)← gencrs(1κ, n), ((u, π);w)← (A||XA)(crsp, crsv; aux) :

(u,w) 6∈ R ∧ ver(crsv;u, π) = 1

]
.

Here, the notation A||XA is defined in Sect. 2. As in the definition of PKE (see Sect. 2), we can
restrict the definition of a proof of knowledge to benign auxiliary information generators, where
aux is known to come from. For the sake of simplicity, we omit further discussion.

An argument that satisfies above requirements is known as adaptive. An argument where
the CRS can depend not only on n but also on the statement u is often called non-adaptive.
See [JR13] for a formalization of quasi-adaptive arguments. It is not surprising that non-
adaptive (or quasi-adaptive) arguments can be much more efficient than adaptive arguments,
see [GGPR13,JR13,JR14] for some examples.

D Restriction Argument

Let eS =
∑

i∈S ei. The idea is to prove that a ◦ eS = a ◦ 1n or equivalently, a ◦ (eS − 1n) = 0n.
Here, the only private input is a. Thus, in this case,

Qa,eS−1n,0n;ra,0,0zk (X) = (La(X)+raZ(X))(LeS (X)−1) = La(X)(LeS (X)−1)+raZ(X)(LeS (X)−1) .
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Thus, πzk(X) = Qzk(X)/Z(X) =
∑

i∈S ai`i(X)(LeS (X)− 1)/Z(X) + ra(LeS (X)− 1), and

π× = g
πzk(σ)
1 =

∏
i∈S

(g
`i(σ)(LeS (σ)−1)/Z(σ)
1 )ai · (gLeS (σ)−1

1 )ra .

Assuming S is known in advance (which is often the case), g
`i(σ)(LeS (σ)−1)/Z(σ)
1 and g

LeS (σ)−1
1 can

be put to the CRS. Then, one can compute π× by using |S| + 1 exponentiations. The argument
will consist of a single group element, while the verifier has to execute two pairings to check that

for (T1, T
γ1
2 ) = com(ck; eS ; 0), ê(A1, T

γ1
2 /gγ12 ) = ê(π×, g

γ1Z(σ)
2 ). Also T γ12 /gγ12 can be stored in the

CRS.
The new restriction argument has the same complexity as the restriction argument of [Gro10].

However, as in the case of the general product argument, it does not use an extra knowledge as-
sumption to derive culpable soundness of the argument but instead relies on a purely computational
assumption (TSDH).

E Proof of Thm. 3

Proof. First, assuming that (B1, B
γ2
2 ) is a correct commitment, ê(g

Z(σ)
1 , Bγ2

2 π
γ2
2 ) =

ê(g
Z(σ)
1 , Bγ2

2 )ê(g
Z(σ)
1 , πγ22 ) = ê(B1, g

γ2Z(σ)
2 )ê(g

Z(σ)
1 , πγ22 ) and thus the first part of verification equa-

tion holds if and only if ê(g1, π
γ2
2 ) = ê(π1, g

γ2
2 ). By writing the verification like that, we saved

one pairing. (Moreover, we added extra Z(σ) to exponents so that the verification equation be
computable from crsrsft.)

Completeness: follows from the derivation of the argument. Witness-indistinguishability:
since argument πrsft that satisfies the verification equations is unique, all witnesses result in the
same argument, and hence the product argument is witness-indistinguishable.

Culpable soundness: Assume that the PKE assumption holds. First, we recall that in this
case the culpable soundness means that a non-uniform probabilistic polynomial time adversary
against the shift argument of the current section has negligible chance, given crsrsft ← gencrs(1κ, n)
as an input, of outputting common input inprsft = (A1, A

γ1
2 , B1, B

γ1
2 ), an accepting argument πrsft ←

(π1, π
γ2
2 ), and a witness (a, ra, b, rb, (π

∗
f )f∈Φz−rsft

) with a, b ∈ Znp , ra, rb ∈ Zp, and π∗f ∈ Zp for
f ∈ Φz−rsft, such that

(i) verrsft(crsv; inprsft;wrsft) accepts,
(ii) (π1, π

γ2
2 ) = (g1, g

γ2
2 )π

∗(σ) where π∗(X) =
∑

f∈Φz−rsft
π∗f · f(X) (this follows from the PKE

assumption and (i)),
(iii) (A1, A

γ1
2 ) = com(ck;a; ra), (B1, B

γ1
2 ) = com(ck; b; rb), and

(iv) (an, . . . , a1) 6= (0, . . . , 0, bn, . . . , bz+1).

Assume that Asound is an adversary that outputs the common input, an accepting argument, the
witness, and the coefficients π∗f of π(X) such that (i–iv) hold. We now construct the following adver-
sary Apdl that breaks PDL. It knows all coefficients in Eq. (10), and thus has obtained coefficients
of a polynomial d(X), such that d(σ) = 0. If the prover is dishonest, then d(X) is a non-zero poly-
nomial. In this case, Apdl can use an efficient polynomial factorization algorithm [LLL82,vHN10]
to find all roots ri of d(X). One of those roots has to be σ; this can be tested by comparing say

the values g
Z(ri)Z(σ)
1 with the value g

Z(σ)2

1 given in the CRS. (Again, inclusion of an extra Z(σ) to
exponents means that we do not have to require that we can perform verification without adding
more elements to the CRS.) ut
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F Proof of Lem. 2

Proof. By Remark 1, we must show that F1−rsft,1 consists of 2n+1 linearly independent polynomials
of degree ≤ 2n. Assume that

∑n
i=2 ai(`i−1(X)Z(X)−`i(X))+

∑n
i=1 bi`i(X)+cZ(X)2+dZ(X) = 0.

Then, similarly to the proof of Lem. 1, −
∑n

i=2 aiei + b = 0n. That is, b1 = 0 and bi = ai for i > 1.
Thus,

∑n
i=2 bi`i−1(X) + cZ(X) + d = 0. Analogously, this means that b+ d1n = 0n. Since b1 = 0,

this is only possible when b1 = · · · = bn = 0 and d = 0. Thus, c = 0. Hence, F1−rsft,1 is linearly
independent. The rest is straightforward. ut

G Proof of Thm. 4

Proof. Completeness: S ∈ Subset-Sum iff there exists b ∈ {0, 1}n such that
∑n

i=1 Sibi = s. Here,
π1 proves that bi ∈ {0, 1}, π2 proves that ci = Sibi, (π31, π

γ2
32) proves that dj − cj = dj+1 for j < n

and dn − cn = 0 (and thus dn = cn, dn−1 = cn−1 + dn and in general dj =
∑n

i=j ci =
∑n−1

i=j Sibi),
and finally π4 proves that d1 = s. Thus,

∑n
i=1 Sibi = s and therefore,

∑n
i=1 Sibi = s.

Adaptive computational soundness follows, under the corresponding assumptions on
genbp, from the culpable soundness of every basic argument. First, by Lem. 2, (F∗1−rsft,1,F∗1−rsft,2)-
PDL is equal to the (F1−rsft,1,F1−rsft,2)-PDL assumption. Moreover, by a remark in Sect. 2,
(F∗×,1,F∗×,2, {ωi}ni=1, 1)-TSDH is equal to the (F×,1,F×,2, {ωi}ni=1, 1)-TSDH assumption and
(F∗com,1, . . . )-PKE is equal to the (Fcom,1, . . . )-PKE assumption.

Assume that both PKE assumptions hold and that there exists an adversary A = Asound that
breaks the soundness of the Subset-Sum argument. We construct an adversary Adl (resp., Atsdh)
that breaks the corresponding PDL (resp., TSDH) assumption on genbp as follows. First,

(i) since genbp is (F∗com,1,Fssum,1 \Fcom,1, Y2Φ1−rsft, 1)-PKE secure, there exists an extractor that
obtains b, c and d (and the used randomizers rb, rc and rd) from (B1, B

γ1
2 ), (C1, C

γ1
2 ), and

(D1, D
γ1
2 ).

(ii) From π1: due to (i), Atsdh has access to b, and hence by the TSDH assumption the culpable
soundness of the product argument, bi ∈ {0, 1}.

(iii) From π2: due to (i), Atsdh has access to b and c, and hence by the TSDH assumption and the
culpable soundness of the product argument, c = S ◦ b.

(iv) From (π31, π
γ2
32): since genbp is (Φ1−rsft,F×,2,F×,2, 2)-PKE secure, there exists an extractor

that obtains a witness (π∗f )f that the argument belongs to the correct span. Due to this,
Adl has access to all values required in Thm. 3, and hence by the (F∗1−rsft,1,F∗1−rsft,2)-PDL
assumption and the culpable soundness of the shift argument, di =

∑
j≥i cj =

∑
j≥i Sjbj for

all i.
(v) From π4: due to (i),Atsdh has access to d, and hence by the TSDH assumption and the culpable

soundness of the product argument, e1 ◦ (d− se1) = 0n and thus d1 =
∑n

i=1 Sibi = s.
Argument of knowledge: follows the above proof of soundness, since there exists an ex-

tractor that retrieves the witness (b, rb, c, rc,d, rd) that corresponds to the satisfying argument.
Perfect zero-knowledge: follows from the presence of the trapdoor (this allows the simu-

lator to open all commitments to 0n), and from the facts that 0n ◦0n = 0n and that 0n is a shift of
0n. The simulator creates (B1, B

γ1
2 ), (C1, C

γ1
2 ) and (D1, D

γ1
2 ) as random commitments to 0n, and

uses the knowledge of td (and the trapdoor property of the commitment scheme) to compute r∗e
such that com(ck; e1; 0) = com(ck; 0n; r∗e). She then simulates all four basic arguments, based on
her knowledge of the trapdoor. All product arguments are obviously correct when the committed
values are equal to 0n: 0n = 0n ◦ 0n (this takes care of π1), 0n = S ◦ 0n (this takes care of π2), 0n
is a right shift of 0n (this takes care of (π31, π

γ2
32)), and 0n ◦ (0n− s0n) = 0n (this takes care of π4).



Efficient Short Adaptive NIZK for NP 27

Finally, witness-indistinguishability of the basic arguments guarantees that the simulated argu-
ment comes from the same distribution as the real argument. This finishes the proof. ut

H On Using A Presumably Weaker Knowledge Assumptions

We will now describe a variant of the shift argument from Sect. 6 that makes it possible for
the Subset-Sum argument of Sect. 7 to rely on a presumably weaker version of the PKE as-
sumption. Namely, instead of a (Φ1−rsft, . . . )-PKE assumption, the range argument will use an
({Xi}i∈[0 .. d], . . . )-PKE assumption for some integer d = Θ(n). This weakening is based on the
ideas of [GGPR13]. As a trade-off, the computational assumption will become presumably stronger
(a CDH-type assumption instead of a DL-type assumption). Moreover, the modified shift argument
will be somewhat less efficient. We emphasize that such a weakening of the PKE assumption is
important in [GGPR13] where without it, one would have to rely on an (F , . . . )-PKE assumption
where F depends on the statement to be proven. The latter is not true in our case , where Φ1−rsft
does not depend on the concrete instance of Subset-Sum.

Modified Shift Argument. The small number of modifications, compared to the shift argument
of Sect. 6, follow the same methodology as the main security proof of [GGPR13] so we will omit a
longer explanation. The description of the modified shift argument follows:

CRS generation gencrsrsft(1
κ, n): Let gk = (p,G1,G2,GT , g1, ê) ← genbp(1κ), and pick g2 ←r

G∗2. Generate (σ, α, β, γ1, γ2) ← Z5
p with Z(σ) 6= 0 and γ1 6= 0. Set ck ← (gk; (g1, g

γ1
2 )Fcom,1(σ)).

Let d := max(2n, n + 3). Let crsp ← (gk; ck, ((g1, g
γ2
2 )σ

i
)i∈[0 .. d], g

βΦz−rsft(σ)
1 ), crsv ←

(gk; g1, (g1, g
γ2
2 )Z(σ), (g2, g

β
2 )α). Set td← (σ, α, β, γ1, γ2). Return (crs = (crsp, crsv), td).

Common inputs: inprsft = (A1, A
γ1
2 , B1, B

γ1
2 ).

Proving prorsft(crsp; inprsft;a, ra, b, rb): compute πrsft ← (g1, g
β
1 , g

γ2
2 )π(σ) = (π1, π

β
1 , π

γ2
2 ) analo-

gously to Eq. (10). Return πrsft.

Verification verrsft(crsv; inprsft;πrsft = (π1, π
β
1 , π

γ2
2 )): check that

(i) ê(π1, g
γ2
2 ) = ê(g1, π

γ2
2 ),

(ii) ê(g
Z(σ)
1 , Bγ2

2 π
γ2
2 ) = ê(B1π1, g

γ2Z(σ)
2 ) = ê(A1, g

γ2Z(σ)
2 ), and

(iii) ê(πβ1 , g
α
2 ) = ê(π1, g

βα
2 ).

To prove culpable soundness, we will use the following computational assumption, variants of
which are well-known [GJM02,BBG05,Gro10,GGPR13]. Assume that 1 < d < d∗ = poly(κ) are
two integers. Then, genbp is (d, d∗)-PCDH (Power Computational Diffie-Hellman) secure if for any
non-uniform probabilistic polynomial-time adversary A, the following probability is negligible in κ:

Pr
[
gk = (p,G1,G2,GT , g1, ê)← genbp(1κ, n), σ ← Zp : A

(
gk; (gσ

i

1 )i∈[0 .. d∗]\{d+1}

)
= gσ

d+1

1

]
.

The PCDH assumption is also a variant of the uber-assumption [BBG05]. Being a power vari-
ant of the Computational Diffie-Hellman assumption, it is (presumably) stronger than the PDL
assumption that is a power variant of the discrete logarithm assumption.

Theorem 5. Let n = poly(κ). Let com be the interpolating commitment scheme. The shift ar-
gument of the current section is perfectly complete and perfectly witness-indistinguishable. Let
Φz−rsft be as in Lem. 1. Let d = max(2n, n + 3) and d∗ = 2n + d. If genbp is (d, d∗)-PCDH
and ({Xi}i∈[0 .. d], XβΦz−rsft, {Xα, XαXβ}, 2)-PKE secure, then this argument is adaptively culpably
sound.
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Proof. Completeness: follows from the derivation of the argument. Witness-
indistinguishability: since argument πrsft that satisfies the verification equations is unique, all
witnesses result in the same argument, and hence the product argument is witness-indistinguishable.

Culpable soundness: In this case, culpable soundness together with the PKE assumption
means that a non-uniform probabilistic polynomial time adversary against the shift argument of
the current section has negligible chance, given correctly generated crs as an input, of outputting
common input inprsft = (A1, A

γ1
2 , B1, B

γ1
2 ) and an accepting argument πrsft ← (π1, π

β
1 , π

γ2
2 ) together

with a witness (a, ra, b, rb, (π
∗
i )
d
i=0) with a, b ∈ Znp , ra, rb ∈ Zp and π∗(X) =

∑d
i=0 π

∗
iX

i ∈ Zp[X],
such that

(i) (π1, π
γ2
2 ) = (g1, g

γ2
2 )π

∗(σ),
(ii) (A1, A

γ1
2 ) = com(ck;a; ra), (B1, B

γ1
2 ) = com(ck; b; rb), and

(iii) (an, . . . , a1) 6= (0, . . . , 0, bn, . . . , bz+1).

Let Asound be an adversary that with some non-negligible probability ε replies with an accepting
argument such that conditions (i–iii) hold. By previous discussion this means that π∗(X) is not in
the span of Φz−rsft. Recall that Φz−rsft consists of degree-≤ 2n polynomials. We construct the follow-
ing d-PCDH adversary Apcdh. She receives a d-PCDH challenge chpcdh = (gk; (gσ

i

1 )i∈[0 .. d∗]\{d+1})
for random σ. Let

D := {a(X) ∈ Zp[X] : deg a(X) ≤ d∧ a(X)f(X) has a zero coefficient for Xd for all f(X) ∈ Φz−rsft} .

She picks a(X)←r D randomly. Note that deg(a(X)f(X)) ≤ d+ 2n for any f(X) ∈ Φz−rsft. There
are (d+ 1)− |Φz−rsft| ≥ (n+ 3)− (n+ 2) = 1 > 0 degrees of freedom for choosing a(X). Therefore,
for a polynomial π∗(X) outside of the span of Φz−rsft, the coefficient of Xd of a(X)π∗(X) will be
random.

Next, Apcdh picks b ←r Zp, and sets β(X) ← a(X)X + b and β ← β(σ). Since a(X) ∈ D

and deg f ≤ 2n for f ∈ Φz−rsft, she can compute g
βf(σ)
1 = g

(a(σ)σ+b)f(σ)
1 from chpcdh. Now, she

picks (α, γ1, γ2) ←r Z3
p. She computes correct CRS based on already known values, and sends

it to Asound. Assume that Asound answers with (a, ra, b, rb; (π∗i )i∈[0 .. d];π1, π
β
1 , π

γ2
2 ) such that the

verification succeeds and π1 = g
π∗(σ)
1 , where π∗(X) =

∑d
i=0 π

∗
iX

i. Since b is random, β does not
reveal any information about a(X). Hence, the coefficient ofXd in a(X)π∗(X) is random. Thus, with
probability 1−1/p, the coefficient of Xd+1 in β(X)π∗(X) (a polynomial of degree ≤ 2d+1 ≤ 2n+d)
is non-zero. In this case, since Apcdh knows the coefficients of the polynomial β(X)π∗(X), she can

compute gσ
d+1

1 from πβ1 = g
βπ∗(σ)
1 and chpcdh. Thus, Apcdh can break the (d, d∗)-PCDH assumption

with probability (1− 1/p) · ε. ut

This version of the shift argument is somewhat less efficient than the one in Sect. 6. The
prover computation is dominated by three (instead of two) (n+2)-wide multi-exponentiations. The
communication is three (instead of two) group elements. The verifier computation is dominated
by 7 (instead of 5) pairings. Apart from gk, and assuming that d = 2n, the prover CRS contains
2((n+ 1) + d) + (n+ 2) = 7n+ 4 group elements, and the verifier CRS contains 5 group elements.

Modified Subset-Sum Argument. We can clearly just use this version of the shift argument
in the new Subset-Sum argument of Sect. 7. The Subset-Sum argument will remain secure but
will rely on a different set of assumptions. Note that apart from using the PCDH assumption and
a weaker PKE assumption, the assumptions of Sect. 2 have to be slightly modified to allow for a
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longer secret key. (Namely, everywhere σ has to be replaced with (σ, α, β) and thus polynomials
f(X,Y ) have to be replaced with 3-variate polynomials f(X,Xα, Xβ,Y ), where Xα corresponds

to α and Xβ corresponds to β.) We also redefine the polynomial sets as F̂1
rsft,1 := Fcom,1∪XβΦz−rsft

and F̂2
rsft,1 := Fcom,2 ∪ {Xα, XαXβ}, and define F̂ssum,1 and F̂ssum,2 as in Sect. 7 but by using the

redefined sets F̂1
rsft,1 and F̂2

rsft,1 from the current paragraph.

Theorem 6. Let n = poly(κ), and let com be the interpolating commitment scheme. Assume
that we use the shift argument of the current section. The new Subset-Sum argument is per-
fectly complete and perfectly zero-knowledge. It is (adaptively) computationally sound and an ar-
gument of knowledge if genbp is (F∗×,1,F∗×,2, {ωi}ni=1, 1)-TSDH, (d, d∗)-PCDH, (F∗com,1,Fssum,1 \
Fcom,1, Y2Φ1−rsft, 1)-PKE, and ({Xi}i∈[0 .. d],F×,1 ∪XβΦz−rsft,F×,2 ∪ {Xα, XαXβ}, 2)-PKE secure.

Clearly, the modified Subset-Sum argument will also be less efficient than the Subset-Sum ar-
gument of Sect. 7. More precisely, it increases the communication by 1 group element, the prover
computation by a factor of 1.5, and the verifier computation by 2 pairings.

I New Range Argument

In a range argument, given public range [L ..H], the prover aims to convince the verifier that he
knows how to open commitment (A1, A

γ1
2 ) to a value a ∈ [L ..H].

We first remark that instead of the range [L ..H], one can consider the range [0 .. H − L], and
then use the homomorphic properties of the commitment scheme to add L to the committed value.
Therefore, we will just assume that the range is equal to [0 .. H] for some H ≥ 1.

Assume that the common input (A1, A
γ1
2 ) is a commitment to vector a with a1 = a and ai = 0

for i > 1. Let n = blog2Hc+ 1. To prove that a ∈ [0 .. H], we do the following.

The CRS generation gencrsssum invokes the CRS generations of the commitment scheme, the
product argument and the shift argument, sharing the same gk and trapdoor td = (σ, γ1, γ2) between
the different invocations. The CRS also contains a commitment to H (defined in the argument),
needed for a later efficient verification of the argument π2.

The prover does the following (further explanations are given in the completeness proof):

Let a =
∑n

i=1Hibi for Hi =
⌊
(H + 2i−1)/2i

⌋
and bi ∈ {0, 1}.

Let (B1, B
γ1
2 ) be a commitment to b.

Construct a product argument π1 to show that b = b ◦ b.
Let (C1, C

γ1
2 ) be a commitment to c←H ◦ b.

Construct a product argument π2 to show that c = H ◦ b.
Let (D1, D

γ1
2 ) be a commitment to d, where di =

∑
j≥i ci.

Construct a shift argument (π31, π
γ2
32) to show that d− c is a right shift-by-1 of d.

Construct a product argument π4 to show that e1 ◦ (d− a) = 0n.
Output πssum = (B1, B

γ1
2 , C1, C

γ1
2 , D1, D

γ1
2 , π1, π2, π31, π

γ2
32 , π4).

After receiving πssum, the verifier checks the validity of four commitments (A1, A
γ1
2 ), (B1, B

γ1
2 ),

(C1, C
γ1
2 ) (by using a commitment to H that is given in the CRS), and (D1, D

γ1
2 ), and then verifies

four basic arguments.

Let Fssum,1 = F×,1 ∪ Φ1−rsft and Fssum,2 = F×,2 ∪ Y2Φ1−rsft. Clearly, here it suffices to take

crs = (gk; g
Fssum,1(σ)
1 , g

γ1Fcom,1(σ)
2 , g

γ2Φ1−rsft(σ)
2 ) = (gk; g

Fssum,1(σ)
1 , g

Fssum,2(σ,γ1,γ2)
2 ).
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Theorem 7. Let n = poly(κ), and let com be the interpolating commitment scheme. The new range
argument is perfectly complete and perfectly zero-knowledge. It is (adaptively) computationally sound
and an argument of knowledge if genbp is (F∗×,1 = {Xi}ni=0,F∗×,2 = {Y1Xi}ni=0, {ωi}ni=1, 1)-TSDH,

(F∗1−rsft,1 = {Xi}2ni=0,F∗1−rsft,2 = {Y2Xi}2ni=0)-PDL, (F∗com,1 = {Xi}ni=0,Fssum,1 \ Fcom,1, Y2Φ1−rsft, 1)-
PKE, and (Φ1−rsft,F×,1,F×,2, 2)-PKE secure.

Proof (Sketch). Completeness: a ∈ [0 .. H] iff a =
∑n

i=1Hibi for some bi ∈ {0, 1} [LAN02]
(see [CLs10] for a formal proof). Here, π1 proves that bi are Boolean, π2 proves that ci = Hibi,
(π31, π

γ2
32) proves that dj− cj = dj+1 for j < n and dn− cn = 0 (and thus dn = cn, dn−1 = cn−1 +dn

and in general dj =
∑n

i=j ci =
∑n−1

i=j Hibi), and finally π4 proves that a = (0, . . . , 0, a) with
d1 − a =

∑n
i=1Hibi − a = 0. Thus, a =

∑n
i=1Hibi and therefore, a ∈ [0 .. H].

Perfect zero-knowledge: follows from the presence of the trapdoor (this allows the simu-
lator to open all commitments to 0n), and from the facts that 0n ◦ 0n = 0n and that 0n is a shift
of 0n. The simulator creates (B1, B

γ1
2 ) and (C1, C

γ1
2 ) as random commitments to 0n, computes

(D1, D
γ1
2 )← (A1, A

γ1
2 ) · com(ck; 0n; r∗d) for a random r∗d, and uses the knowledge of σ (and the trap-

door property of the commitment scheme) to compute r∗e such that com(ck; e1; 0) = com(ck; 0n; r∗e).
She then simulates the basic arguments, based on her knowledge of the trapdoor. All product ar-
guments are obviously correct when the committed values are equal to 0n: 0n = 0n ◦0n (this takes
care of π1), 0n = H ◦ 0n (this takes care of π2), 0n is a right shift of 0n, and 0n ◦ 0n = 0n (this
takes care of π4).

To simulate the shift argument, the simulator sets (π31, π
γ2
32) ← (D1, (D

γ1
2 )γ2/γ1)Z(σ)−1 ·

(C1, (C
γ1
2 )γ2/γ1). (Recall that γ1 6= 0.) Clearly, the first verification succeeds. For the second verifi-

cation, note that ê((D1/C1) · π31, gγ2Z(σ)2 ) = ê(D
Z(σ)
1 , g

γ2Z(σ)
2 ) = ê(D1, g

γ2Z(σ)2

2 ). Thus (π31, π
γ2
32) is

an accepting shift argument.

Finally, witness-indistinguishability of the basic arguments guarantees that the simulated argu-
ment comes from the same distribution as the real argument. This finishes the proof.

(Adaptive) computational soundness: This part of the proof is very similar to the proof
of Thm. 4 and thus omitted. ut

Efficiency of Range Argument. The prover computation is dominated by three commitments
and the application of three product arguments and one shift argument, that is, by Θ(n log n)
non-cryptographic operations and Θ(n) cryptographic operations. The latter is dominated by 11
(≈ n)-wide multi-exponentiations (2 in each commitment and shift argument, and 1 in each prod-
uct argument). The argument size is constant (11 group elements), and the verifier computation
is dominated by 20 pairings (3 pairings to verify π2, 2 pairings to verify each of the other product
arguments, 5 pairings to verify the shift argument, and 8 pairings to verify the validity of 4 com-
mitments). In this case, since the verifier does not have to commit to H, the verifier computation
is dominated by Θ(1) cryptographic operations.

The resulting range argument is hence significantly more computation-efficient for the prover
than the previous arguments [CLZ12,FLZ13]. For example, the latter had prover computation
Θ(r−13 (n) log n). It has better communication (11 versus 31 group elements in [FLZ13]), and verifi-
cation complexity (20 versus 65 pairings in [FLZ13]). Moreover, it is also simpler: since the prover
computation is quasi-linear, we do not have to consider various trade-offs (though they are still
available) between computation and communication as in [CLZ12,FLZ13].
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J Other Suitable Numerical NP-Complete languages

In this section, we give a brief description of some other NP-complete languages for which one can
construct efficient adaptive short NIZK arguments by using the product-and-shift framework. We
define the languages by using notation that facilitates design of such arguments.

Partition [GJ79, p. 223]. Partition is the set of all vectors S = (S1, . . . , Sn), such that there
exist b ∈ {0, 1}n with

∑n
i=1 Sibi = 1

2 ·
∑n

i=1 Si. Thus, Partition is a special case of Subset-Sum
with s = 1

2 ·
∑n

i=1 Si. A Partition argument follows trivially from the Subset-Sum arguments.

Subset-Product [GJ79, p. 224]. Subset-Product is the set of all vectors (S = (S1, . . . , Sn), s),
such that there exist b ∈ {0, 1}n with

∏
i:bi=1 Sibi = s. The resulting argument is almost the same as

the Subset-Sum argument, except one step. Namely, the prover computes still a vector c = S ◦ b.
However, differently from the Subset-Sum argument of Sect. 7, the prover now lets d to be the
multiplicative scan of c with di =

∏
j≥i cj , and then proves the correctness of d by using a product

argument.

Two-Processor Scheduling (2PS for short) [GJ79, p. 65]. 2PS is the set of all vectors (S =
(S1, . . . , Sn), s), such that there exist b ∈ {0, 1}n with

∑n
i=1 Sibi ≤ s and

∑n
i=1 Si(1 − bi) ≤ s. To

construct a short NIZK argument for 2PS, we show that the scan of S ◦ b is in the range [0 .. s].
Here, we use the range argument of App. I twice. One can similarly construct an NIZK argument
for multiprocessor scheduling [GJ79, p. 65] for m processors, but the complexity of the argument
will depend linearly on m.

Knapsack [GJ79, p. 65]. Knapsack is the set of all vectors (S = (S1, . . . , Sn),V =
(V1, . . . , Vn), s, v), such that there exist b ∈ {0, 1}n with

∑n
i=1 Sibi ≤ s and

∑n
i=1 Vibi ≥ v. To

construct a short NIZK argument for Knapsack, we show that the scan of S ◦ b is in the range
[0 .. s] and the scan of V ◦ b is in the range of (say) [v .. p− 1]. Here, we use the range argument of
App. I twice.

None of the mentioned languages is strongly NP-complete [GJ78], since they can be decided by
polynomial-time algorithms given that all integers are small. Since the new arguments allow the
integers to be exponential in κ, they work in the range where the underlying languages are infeasible.
The adaptive Circuit-SAT argument of [Lip14], when combined with the basic arguments of
the current paper, is Θ(log n) times less efficient. Whether one can construct adaptive arguments
for strongly NP-complete languages without the factor Θ(log n) slow-down is an interesting open
question.
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