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Zero-Knowledge SNARKs

Abstract. Zk-SNARKs (succinct non-interactive zero-knowledge argu-
ments of knowledge) are needed in many applications. Unfortunately,
all previous zk-SNARKs for interesting languages are either inefficient
for prover, or are non-adaptive and based on an commitment scheme
that does depend both on the prover’s input and on the language, i.e.,
they are not commit-and-prove (CaP) SNARKs. We propose a proof-
friendly extractable commitment scheme, and use it to construct prover-
efficient adaptive CaP succinct zk-SNARKs for different languages, that
can all reuse committed data. In new zk-SNARKs, the prover computa-
tion is dominated by a linear number of cryptographic operations. We
use batch-verification to decrease the verifier’s computation.
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1 Introduction

Recently, there has been a significant surge of activity in studying succinct non-
interactive non-interactive zero knowledge (NIZK) arguments of knowledge (also
known as zk-SNARKs) [5–7,9,19,21,26,28,36,37,40]. The prover of a zk-SNARK
outputs a short (ideally, a small number of group elements) argument π that is
used to convince many different verifiers in the truth of the same claim without
leaking any side information. The verifiers can verify independently the cor-
rectness of π, without communicating with the prover. The argument must be
efficiently verifiable. Constructing the argument can be less efficient, since it is
only done once. Still, prover-efficiency is important, e.g., in a situation where a
single server has to create many arguments to different clients or other servers.

Many known zk-SNARKs are non-adaptive, meaning that the common ref-
erence string, CRS, can depend on the concrete instance of the language (e.g.,
the circuit in the case of Circuit-SAT). In an adaptive zk-SNARK, the CRS
is independent on the instance and thus can be reused many times. This dis-
tinction is important, since generation and distribution of the CRS must be
done securely. The most efficient known non-adaptive zk-SNARKs for NP-
complete languages from [26] are based on either Quadratic Arithmetic Programs
(QAP, for arithmetic Circuit-SAT) or Quadratic Span Programs (QSP, for
Boolean Circuit-SAT). There, the prover computation is dominated by Θ(n)
cryptographic operations (see App. A for a clarification on cryptographic/non-
cryptographic operations), where n is the number of the gates. QAP, QSP [26,37]
and other related approaches like SSP [21] have the same asymptotic complexity.

QSP-based Circuit-SAT SNARK can be made adaptive by using univer-
sal circuits [47]. Then, the CRS depends on the construction of universal circuit
and not on the concrete input circuit itself. However, since the size of a universal
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circuit is Θ(n log n), the prover computation in resulting adaptive zk-SNARKs
is Θ(n log2 n) non-cryptographic operations and Θ(n log n) cryptographic oper-
ations. (In the case of QAP-based arithmetic Circuit-SAT SNARK, one has to
use universal arithmetic circuits [44] that have an even larger size Θ(r4n), where
r is the degree of the polynomial computed by the arithmetic circuit. Thus, we
will mostly give a comparison to the QSP-based approach.)

Since Valiant’s universal circuits incur a large constant c = 19 in the Θ(·)
expression, a common approach [34,45] is to use universal circuits with the over-
head of Θ(log2 n) but with a smaller constant c = 1/2 in Θ(·). The prover com-
putation in the resulting adaptive zk-SNARKs is Θ(n log3 n) non-cryptographic
operations and Θ(n log2 n) cryptographic operations.1

Another important drawback of the QSP/QAP-based SNARKs is that they
use a circuit-dependent commitment scheme. To use the same input data in
multiple sub-SNARKs, one needs to construct a single large circuit that imple-
ments all sub-SNARKs, making the SNARK and the resulting new commitment
scheme more complicated.2 In particular, these SNARKs are not commit-and-
prove (CaP [16, 33]) SNARKs. We recall that in CaP SNARKs, a commitment
scheme C is fixed first, and the statement consists of commitments of the witness
using C; see Sect. 2. Hence, a CaP commitment scheme is instance-independent.
In addition, one would like the commitment scheme to be language-independent,
enabling one to first commit to the data and only then to decide in what appli-
cations (e.g., verifiable computation of a later fixed function) to use it.

See Tbl. 1 for a brief comparison of the efficiency of proposed adaptive zk-
SNARKs for NP-complete languages. Subset-Sum is here brought as an ex-
ample of a wider family of languages; it can be replaced everywhere say with

Partition or Knapsack, see Sect. 8. Here, N = r−13 (n) = o(n22
√

2 log2 n),
where r3(n) is the density of the largest progression-free set in {1, . . . , n}. Ac-
cording to the current knowledge, r−13 (n) is comparable to (or only slightly
smaller than) n2 for n < 212; this makes all known CaP SNARKs [23, 28, 36]
arguably impractical unless n is really small. In all cases, the verifier’s computa-
tion is dominated by either Θ(n) cryptographic or Θ(n log n) non-cryptographic
operations (with the verifier’s online computation usually being Θ(1)), and the
communication consists of a small constant number of group elements.3 Given
all above, it is natural to ask the following question:

1 Recently, [19] proposed an independent methodology to improve the prover’s com-
putational complexity in QAP-based arguments. However, [19] does not spell out
their achieved prover’s computational complexity. Hence, while we make use of some
of their unrelated techniques (e.g., proof boot-strapping), we are unable to give a
complete comparison between the current work and [19]. We hope that a good com-
parison can be given in a future work.

2 Again, this seems to have been addressed by Geppetto, [19], however, it is not clear
from [19] how the actual commitment scheme relates to the circuit

3 We emphasize that Circuit-SAT is not our focus; the lines corresponding to
Circuit-SAT are provided only for the sake of comparison. One can use proof
boot-strapping [19] to decrease the length of the resulting Circuit-SAT argument
from Θ(logn), as stated in [38], to Θ(1); we omit further discussion.
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Table 1. Prover-efficiency of known adaptive zk-SNARKs for NP-complete languages.
Here, n is the number of the gates (in the case of Circuit-SAT) and the number of
the integers (in the case of Subset-Sum). Green background denotes the best known
asymptotic complexity of the concrete NP-complete language w.r.t. to the concrete
parameter. The solutions marked with * use proof bootstrapping from [19]

Paper Language Prover computation |CRS|

non-crypt. op. crypt. op.

Not CaP-s

QAP, QSP ( [21,26,37] ) Circuit-SAT Θ(n log2 n) Θ(n logn) Θ(n)

CaP-s

Gro10 ( [28]) Circuit-SAT Θ(n2) Θ(n2) Θ(n2)
Lip12 ( [36]) Circuit-SAT Θ(n2) Θ(N) Θ(N)
Lip14 + Lip12 ( [36,38])* Circuit-SAT Θ(N log2 n) Θ(N logn) Θ(N logn)
Lip14 + current paper ( [38])* Circuit-SAT Θ(n log2 n) Θ(n logn) Θ(n logn)
FLZ13 ( [23]) Subset-Sum Θ(N logn) Θ(N) Θ(N)
Current paper Subset-Sum Θ(n logn) Θ(n) Θ(n)

The Main Question of This Paper: Is it possible to construct adaptive CaP
zk-SNARKs for NP-complete languages where the prover computation is
dominated by a linear number of cryptographic operations?

Our Contributions. We answer the “main question” positively by improving
on Groth’s modular approach [28]. Using the modular approach allows us to
modularize the security analysis, first proving the security of underlying build-
ing blocks (the product and the shift SNARKs), and then composing them to
construct master SNARKs for even NP-complete languages. The security of mas-
ter SNARKs follows easily from the security of the basic SNARKs. We also use
batch verification to speed up verification of almost all known SNARKs.

All new SNARKs use the same commitment scheme, the interpolating com-
mitment scheme. Hence, one can reuse their input data to construct CaP zk-
SNARKs for different unrelated languages, chosen only after the commitment
was done. Thus, one can first commit to some data, and only later decide in which
application and to what end to use it. Importantly, by using CaP zk-SNARKs,
one can guarantee that all such applications use exactly the same data.

The resulting SNARKs are not only commit-and-prove, but also very effi-
cient, and often more efficient than any previously known SNARKs. The new
CaP SNARKs have prover-computation dominated by Θ(n) cryptographic op-
erations, with the constant in Θ(·) being reasonably small. Importantly, we pro-
pose the most efficient known succinct range SNARK. Since the resulting zk-
SNARKs are sufficiently different from QAP-based zk-SNARKs, we hope that
our methodology by itself is of independent interest. Up to the current paper,
Groth’s modular approach has resulted in significantly less efficient zk-SNARKs
than the QSP/QAP-based approach.



4 Anonymous submission, PKC 2016

In Sect. 3, we construct a new natural extractable trapdoor commitment
scheme (the interpolating commitment scheme). Here, commitment to a ∈ Znp ,

where n is a power of 2, is a short garbled and randomized version g
La(χ)
1 (gχ

n−1
1 )r

of the Lagrange interpolating polynomial La(X) of a, for a random secret key
χ, together with a knowledge component. This commitment scheme is arguably
a very natural one, and in particular its design is not influenced by the desire to
tailor it to one concrete application. Nevertheless, as we will see, using it improves
the efficiency of many constructions while allowing to reuse many existing results.

The new CaP zk-SNARKs are based on the interpolating commitment
scheme and two CaP witness-indistinguishable SNARKs: a product SNARK
(given commitments to vectors a, b, c, it holds that ci = aibi; see [23, 28, 36]),
and a shift SNARK (given commitments to a, b, it holds that a is a coordinate-
wise shift of b; see [23]). One can construct an adaptive Circuit-SAT CaP
zk-SNARK from Θ(log n) product and shift SNARKs [28, 38], or adaptive CaP
zk-SNARKs for NP-complete languages like Subset-Sum (and a similar CaP
range SNARK) by using a constant number of product and shift SNARKs [23].

In Sect. 4, we propose a CaP product SNARK, that is an argument of
knowledge under a computational and a knowledge (needed solely to achieve
extractability of the commitment scheme) assumption. Its prover computation
is dominated by Θ(n log n) non-cryptographic and Θ(n) cryptographic opera-
tions. This can be compared to r−13 (n) non-cryptographic operations in [23].
The speed-up is mainly due to the use of the interpolating commitment scheme.

In Sect. 5, we propose a variant of the CaP shift SNARK of [23], secure
when combined with the interpolating commitment scheme. We prove that this
SNARK is an adaptive argument of knowledge under a computational and a
knowledge assumption. It only requires the prover to performΘ(n) cryptographic
and non-cryptographic operations.

Product and shift SNARKs are already very powerful by itself. E.g., a prover
can commit to her input vector a. Then, after agreeing with the verifier on
a concrete application, she can commit to a different yet related input vector
(that say consists of certain permuted subset of a’s coefficients), and then use
the basic SNARKs to prove that this was done correctly. Here, she may use the
permutation SNARK [38] that consists of O(log n) product and shift SNARKs.
Finally, she can use another, application-specific, SNARK (e.g., a range SNARK)
to prove that the new committed input vector has been correctly formed.

In Sect. 6, we describe a modular adaptive CaP zk-SNARK, motivated
by [23], for the NP-complete language, Subset-Sum. (Subset-Sum was chosen
by us mainly due to the simplicity of the SNARK; the rest of the paper considers
more applications.) This SNARK consists of three commitments, one application
of the shift SNARK, and three applications of the product SNARK. It is a zk-
SNARK given that the commitment scheme, the shift SNARK, and the product
SNARK are secure. Its prover computation is strongly dominated by Θ(n) cryp-
tographic operations, where n is the instance size, the number of integers. More
precisely, the prover has to perform only nine (≈ n)-wide multi-exponentiations,
which makes the SNARK efficient not only asymptotically (to compare, the size
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of Valiant’s arithmetic circuit has constant 19, and this constant has to be mul-
tiplied by the overhead of non-adaptive QSP/QAP/SSP-based solutions). Thus,
we answer positively to the stated main question of the current paper. More-
over, the prover computation is highly parallelizable, while the online verifier
computation is dominated by 17 pairings (this number will be decreased later).

In Sect. 7, we propose a new CaP range zk-SNARK that the committed value
belongs to a range [L ..H]. This SNARK looks very similar to the Subset-Sum
SNARK, but with the integer set S of the Subset-Sum language depend-
ing solely on the range length. Since here the prover has a committed input,
the simulation of the range SNARK is slightly more complicated than of the
Subset-Sum SNARK. Its prover-computation is similarly dominated by Θ(n)
cryptographic operations, where this time n := dlog2(H − L)e. Differently from
the Subset-Sum SNARK, the verifier computation is dominated only by Θ(1)
cryptographic operations, more precisely, by 19 pairings (also this number will
be decreased later). Importantly, this SNARK is computationally more efficient
than any of the existing succinct range SNARKs either in the standard model
(i.e., randomoracle-less) or in the random oracle model. E.g., the prover compu-
tation in [35] is Θ(n2) under the Extended Riemann Hypothesis, and the prover
computation in [23] is Θ(r−3(n) log r−3(n)). It is also significantly simpler than
the range SNARKs of [18,23], mostly since we do not have to consider different
trade-offs between computation and communication.

In Sect. 8, we outline how to use the new basic SNARKs to construct ef-
ficient zk-SNARKs for several other NP-complete languages like Boolean and
arithmetic Circuit-SAT, Two-Processor Scheduling, Subset-Product,
Partition, and Knapsack [24]. Tbl. 1 includes the complexity of Subset-Sum
and Circuit-SAT, the complexity of most other SNARKs is similar to that
of Subset-Sum zk-SNARK. It is an interesting open problem why some NP-
complete languages like Subset-Sum have more efficient zk-SNARKs in the
modular approach (equivalently, why their verification can be performed more
efficiently in the parallel machine model that consists of Hadamard product and
shift) than languages like Circuit-SAT.

In Sect. 9, we show that by using batch-verification [4], one can decrease the
verifier’s computation of all presented SNARKs. In particular, one can decrease
the verifier’s computation in the new Range SNARK from 19 pairings to 8 pair-
ings, one 4-way multi-exponentiation in G1, two 3-way multi-exponentiations in
G1, one 2-way multi-exponentiation in G1, three exponentiations in G1, and one
3-way multi-exponentiation in G2.. Since one exponentiation is much cheaper
than one pairing [15] and one m-way multi-exponentiation is much cheaper than
m exponentiations [42,46], this results in a significant win for the verifier. A sim-
ilar technique can be used to also speed up other SNARKs; a good example here
is the Circuit-SAT argument from [38] that uses Θ(log n) product and shift
arguments. To compare, in Pinocchio [40] and Geppetto [19], the verifier has to
execute 11 pairings; however, batch-verification can also be used to decrease this
to 8 pairings and a small number of (multi-)exponentiations.
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Finally, all resulting SNARKs work on data that has been committed to by
using the interpolating commitment scheme. This means that one can repeatedly
reuse committed data to compose different zk-SNARKs (e.g., to show that we
know a satisfying input to a circuit, where the first coefficient belongs to a certain
range). This is not possible with the known QSP/QAP-based zk-SNARKs where
one would have to construct a single circuit of possibly considerable size, say n′.
Moreover, in the QSP/QAP-based SNARKs, one has to commit to the vector,
the length of which is equal to the total length of the input and witness (e.g.,
n′ is the number of wires in the case of Circuit-SAT). By using a modular
solution, one can instead execute several zk-SNARKs with smaller values of the
input and witness size; this can make the SNARK more prover-efficient since the
number of non-cryptographic operations is superlinear. This emphasizes another
benefit of the modular approach: one can choose the value n, the length of the
vectors, accordingly to the desired tradeoff, so that larger n results in faster
verifier computation, while smaller n results in faster prover computation. We
are not aware of such a tradeoff in the case of the QSP/QAP-based approach.

We provide some additional discussion (about the relation between n and
then input length, and about possible QSP/QAP-based solutions) in Sect. 10.

2 Preliminaries

By default, all vectors have dimension n. Let a ◦ b denote the Hadamard (i.e.,
element-wise) product of two vectors, with (a ◦ b)i = aibi. We say that a is
a shift-right-by-z of b, a = b � z, iff (an, . . . , a1) = (0, . . . , 0, bn, . . . , b1+z).
For a tuple of polynomials F ⊆ Zp[X,Y1, . . . , Ym−1], define YmF = (Ym ·
f(X,Y1, . . . , Ym−1))f∈F ⊆ Zp[X,Y1, . . . , Ym]. For a tuple of polynomials F that
have the same domain, denote hF(a) := (hf(a))f∈F . For a group G, let G∗ be the
set of its invertible elements. Since the direct product G1 × · · · ×Gm of groups
is also a group, we use notation like (g1, g2)c = (gc1, g

c
2) ∈ G1 × G2 without

prior definition. Let κ be the security parameter. We denote f(κ) ≈κ g(κ) if
|f(κ)− g(κ)| is negligible in κ.

On input 1κ, a bilinear map generator BP returns gk = (p,G1,G2,GT , ê),
where G1, G2 and GT are three multiplicative cyclic groups of prime order p (with
log p = Ω(κ)), and ê is an efficient bilinear map ê : G1 ×G2 → GT that satisfies
in particular the following two properties, where g1 (resp., g2) is an arbitrary
generator of G1 (resp., G2): (i) ê(g1, g2) 6= 1, and (ii) ê(ga1 , g

b
2) = ê(g1, g2)ab.

Thus, if ê(ga1 , g
b
2) = ê(gc1, g

d
2) then ab ≡ cd (mod p). We also give BP another

input, n (intuitively, the input length), and allow p to depend on n. We assume
that all algorithms that handle group elements verify by default that their inputs
belong to corresponding groups and reject if they do not. In the case of many
practically relevant pairings, arithmetic in (say) G1 is considerably cheaper than
in G2; hence, we count separately exponentiations in both groups.

For κ = 128, the current recommendation is to use an optimal (asymmetric)
Ate pairing [30] over Barreto-Naehrig curves [3, 41]. In that case, at security
level of κ = 128, an element of G1/G2/GT can be represented in respectively
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256/512/3072 bits. To speed up interpolation, we will additionally need the exis-
tence of the n-th, where n is a power of 2, primitive root of unity modulo p (under
this condition, one can interpolate in time Θ(n log n), otherwise, interpolation
takes time Θ(n log2 n), [25]). For this, it suffices that (n+1) | (p−1) (recall that p
is the elliptic curve group order). Fortunately, given κ and a practically relevant
value of n, one can easily find a Barreto-Naehrig curve such that (n+1) | (p−1)
holds; such an observation was made also in [7]. For example, if κ = 128 and
n = 210, one can use Alg. 1 of [3] to find an elliptic curve group of prime or-
der N(x0) over a finite field of prime order P (−x0) for x0 = 1753449050, where
P (x) = 36x4+36x3+24x2+6x+1, T (x) = 6x2+1, and N(x) = P (x)+1−T (x).
One can then use the curve E : y2 = x3 + 6.

In proof bootstrapping [19], one needs an additional elliptic curve group Ẽ
over a finite field of order N(x0) (see [19] for additional details). Such elliptic
curve group can be found by using the Cocks-Pinch method [10]; note that Ẽ
has somewhat less efficient arithmetic than E.

The security of the new commitment scheme and of the new SNARKs de-
pends on the following q-type assumptions, variants of which have been used in
many previous papers. The assumptions are parameterized but non-interactive
in the sense that q is related to the parameters of the language (most generally,
to the input length) and not to the number of the adversarial queries. All known
(to us) adaptive zk-SNARKs are based on q-type assumptions about BP.

Let d(n) ∈ poly(n) be a function. Then, BP is

– d(n)-PDL (Power Discrete Logarithm, [36]) secure if for any n ∈ poly(κ)
and any non-uniform probabilistic polynomial-time (NUPPT) adversary A,

Pr

[
gk← BP(1κ, n), (g1, g2, χ)←r G∗1 ×G∗2 × Zp :

A(gk; ((g1, g2)χ
i

)
d(n)
i=0 ) = χ

]
≈κ 0 .

– n-TSDH (Target Strong Diffie-Hellman, [13, 40]) secure if for any n ∈
poly(κ) and any NUPPT adversary A,

Pr

[
gk← BP(1κ, n), (g1, g2, χ)←r G∗1 ×G∗2 × Zp :

A(gk; ((g1, g2)χ
i

)ni=0) = (r, ê(g1, g2)1/(χ−r))

]
≈κ 0 .

For algorithms A and XA, we write (y; y′) ← (A||XA)(χ) if A on input χ
outputs y, and XA on the same input (including the random tape of A) out-
puts y′ [1]. We will need knowledge assumptions w.r.t. several knowledge se-
crets γi. Let m be the number of different knowledge secrets in any concrete
SNARK. Let F = (Pi)

n
i=0 be a tuple of univariate polynomials, and G1 (resp.,

G2) be a tuple of univariate (resp., m-variate) polynomials. Let i ∈ [1 ..m]. Then,
BP is (F ,G1,G2, i)-PKE (Power Knowledge of Exponent, [28]) secure if for any
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NUPPT adversary A there exists an NUPPT extractor XA, such that

Pr


gk← BP(1κ, n), (g1, g2, χ,γ)←r G∗1 ×G∗2 × Zp × Zmp ,

γ−i ← (γ1, . . . , γi−1, γi+1, . . . , γm), aux← (g
G1(χ)
1 , g

G2(χ,γ−i)
2 ),

(h1, h2; (ai)
n
i=0)← (A||XA)(gk; (g1, g

γi
2 )F(χ), aux) :

ê(h1, g
γi
2 ) = ê(g1, h2) ∧ h1 6= g

∑n
i=0 aiPi(χ)

1

 ≈κ 0 .

Here, aux can be seen as the common auxiliary input to A and XA that is
generated by using benign auxiliary input generation [8]. If F = (Xi)di=0 for
some d = d(n), then we replace the first argument in (F , . . . )-PKE with d. If
m = 1, then we omit the last argument i in (F , . . . , i)-PKE. While knowledge
assumptions are non-falsifiable, we recall that non-falsifiable assumptions are
needed to design succincts SNARKs for interesting languages [27].

By generalizing [14, 28, 36], one can show that the TSDH, PDL, and PKE
assumptions hold in the generic bilinear group model.

Within this paper, m ≤ 2, and hence we denote γ1 just be γ, and γ2 by δ.

Commitment Schemes. An extractable trapdoor commitment scheme in the
CRS model [12] consists of two efficient algorithms Gcom (that outputs a CRS ck
and a trapdoor) and C (that, given ck, a message m and a randomizer r, outputs
a commitment Cck(m; r)), and must satisfy the following security properties.

Computational binding: without access to the trapdoor, it is intractable to
open a commitment to two different messages.

Trapdoor: given access to the original message, the randomizer and the trap-
door, one can open the commitment to any other message.

Perfect hiding: commitments of any two messages have the same distribution.
Extractability: given access to the CRS, the commitment, and the random

coins of the committer, one can open the commitment to the committed
message.

See, e.g., [28] for formal definitions. In the context of the current paper, the
message is a vector from Znp . We denote the randomizer space by R.

Commit-And-Prove SNARKs. Let R = {(u,w)} be an efficiently verifiable
relation with |w| = poly(|u|). Here, u is a statement, and w is a witness. Let
L = {u : ∃w, (u,w) ∈ R} be an NP-language. Let n = |u| be the input length.
For fixed n, we have a relation Rn and a language Ln.

Following [16,33], we will define commit-and-prove (CaP) argument systems.
Intuitively, a CaP non-interactive zero knowledge argument system for R al-
lows to create a common reference string (CRS) crs, commit to some values wi
(say, ui = Cck(wi; ri), where ck is a part of crs), and then prove that a sub-

set u := (uij , wij , rij )
`m(n)
j=1 (for publicly known indices ij) satisfies that uij is a

commitment of wij with randomizer rij , and that (wij ) ∈ R.

Differently from most of the previous work (but see also [19]), our CaP argu-
ment systems will use computationally binding trapdoor commitment schemes.
This means that without their openings, commitments ui = Cck(ai; ri) them-
selves do not define a valid relation, since ui can be a commitment to any a′i,
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given a suitable r′i. Rather, we define a new relation

Rck :={(u,w, r) : (∀i, ui = Cck(wi; ri)) ∧w ∈ R} ,

and construct argument systems for Rck.
Within this subsubsection, we let vectors u, w, and r be of dimension `m(n)

for some polynomial `m(n). However, we allow committed messages wi them-
selves to be vectors of dimension n. Thus, `m(n) is usually very small. In some
argument systems (like the Subset-Sum SNARK in Sect. 6), also the argument
will include some commitments. In such cases, technically speaking, w and r are
of higher dimension than u. To simplify notation, we will ignore this issue.

A commit-and-prove non-interactive zero-knowledge argument system [16,33]
Π for R consists of an (R-independent) trapdoor commitment scheme Γ =
(Gcom,C) and of a non-interactive zero-knowledge argument system (G,P,V),
that are combined as follows:
– the CRS generator G (that, in particular, invokes (ck, tdC) ← Gcom(1κ, n))

outputs (crs = (crsp, crsv), td) ← G(1κ, n), where both crsp and crsv include
ck, and td includes tdC.

– the prover P produces an argument π, π ← P(crsp;u;w, r), where presum-
ably ui = Cck(wi; ri).

– the verifier V, V(crsv;u, π), outputs either 1 (accept) or 0 (reject).
Now, Π is perfectly complete, if for all n = poly(κ),

Pr [(crs, td)← G(1κ, n), (u,w, r)← Rck,n : V(crsv;u,P(crsp;u,w, r)) = 1] = 1 .

Since Γ is computationally binding and trapdoor (and hence ui can be com-
mitments to any messages), soundness of the CaP argument systems only makes
sense together with the argument of knowledge property. (Another possibility
is to define and prove culpable soundness [29], but the argument of knowledge
property is more standard.)

Let b(X) be a non-negative polynomial. Π is a (b-bounded-auxiliary-input [8])
argument of knowledge for R, if for all n = poly(κ) and every NUPPT A,
there exists an NUPPT extractor XA, such that for every auxiliary input
aux ∈ {0, 1}b(κ),

Pr

[
(crs, td)← G(1κ, n), ((u, π);w, r)← (A||XA)(crs; aux) :

(u,w, r) 6∈ Rck,n ∧ V(crsv;u, π) = 1

]
≈κ 0 .

See [8] for a motivation behind bounded auxiliary input. As in the definition
of PKE, we can restrict the definition of a argument of knowledge to benign
auxiliary information generators, where aux is known to come from; we omit
further discussion.

Π is perfectly witness-indistinguishable, if for all n = poly(κ), it holds that
if (crs, td) ∈ G(1κ, n) and ((u;w, r), (u;w′, r′)) ∈ R2

ck,n with ri, r
′
i ←r R, then

the distributions P(crsp;u;w, r) and P(crsp;u;w′, r′) are equal. Note that a
witness-indistinguishable argument system does not have to have a trapdoor.
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Π is perfectly composable zero-knowledge, if there exists a probabilistic poly-
time simulator S, s.t. for all stateful NUPPT adversaries A and n = poly(κ),

Pr


(crs, td)← G(1κ, n),

(u,w, r)← A(crs),

π ← P(crsp;u;w, r) :

(u,w, r) ∈ Rck,n ∧ A(π) = 1

 = Pr


(crs, td)← G(1κ, n),

(u,w, r)← A(crs),

π ← S(crs;u, td) :

(u,w, r) ∈ Rck,n ∧ A(π) = 1

 .

Here, the prover and the simulator use the same CRS, and thus we have same-
string zero knowledge [22]. Same-string statistical zero knowledge allows to use
the same CRS an unbounded number of times [22].

An argument system that satisfies above requirements is known as adaptive.
An argument system where the CRS depends on the statement is often called
non-adaptive. It is not surprising that non-adaptive SNARKs can be much more
efficient than adaptive SNARKs; see [31,32] for some examples.

A non-interactive argument system is succinct if the output length of P and
the running time of V are polylogarithmic in the P’s input length (and polynomial
in the security parameter). A succinct non-interactive argument of knowledge is
usually called SNARK. A zero-knowledge SNARK is abbreviated to zk-SNARK.

3 New Extractable Trapdoor Commitment Scheme

We now define a new extractable trapdoor commitment scheme. It uses the fol-
lowing polynomials. Assume n is a power of two, and let ω be the n-th primitive
root of unity modulo p. Then,
– Z(X) :=

∏n
i=1(X−ωi−1) = Xn−1 is the unique degree n monic polynomial,

such that Z(ωi−1) = 0 for all i ∈ [1 .. n].
– `i(X) :=

∏
j 6=i((X−ωj−1)/(ωi−1−ωj−1)), the ith Lagrange basis polynomial,

is the unique degree n−1 polynomial, such that `i(ω
i−1) = 1 and `i(ω

j−1) =
0 for j 6= i.

Clearly,

La(X) =

n∑
i=1

ai`i(X)

is the interpolating polynomial of a at points ωi−1, with La(ωi−1) = ai, and can
thus be computed by executing an inverse Fast Fourier Transform. Moreover,
(`i(ω

j−1))nj=1 = ei and (Z(ωj−1))nj=1 = 0n. Thus, Z(X) and (`i(X))ni=1 are
n+ 1 linearly independent degree ≤ n polynomials, and hence

FC := (Z(X), (`i(X))ni=1)

is a basis of such polynomials. Clearly, Z−1(0) = {j : Z(j) = 0} = {ωi−1}ni=1.

Definition 1 (Interpolating Commitment Scheme). Let n = poly(κ), n >
0, be a power of two. First, Gcom(1κ, n) sets gk ← BP(1κ, n), picks g1 ←r G∗1,
g2 ←r G∗2, and then outputs the CRS

ck← (gk; (g
f(χ)
1 , g

γf(χ)
2 )f∈FC

)
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for χ←r Zp \ Z−1(0) and γ ←r Z∗p. The trapdoor is equal to χ.

The commitment of a ∈ Znp , given a randomizer r ←r Zp, is

Cck(a; r) :=(g
Z(χ)
1 , g

γZ(χ)
2 )r ·

n∏
i=1

(g
`i(χ)
1 , g

γ`i(χ)
2 )ai ∈ G1 ×G2 , i.e.,

Cck(a; r) :=(g1, g
γ
2 )r(χ

n−1)+La(χ) .

The validity of a commitment (A1, A
γ
2) is checked by verifying that

ê(A1, g
γZ(χ)
2 ) = ê(g

Z(χ)
1 , Aγ2). To open a commitment, the committer sends (a, r)

to the verifier.

The condition Z(χ) 6= 0 is needed in Thm. 1 to get perfect hiding and the
trapdoor property. The condition γ 6= 0 is only needed in Thm. 5 to get perfect
zero knowledge. Also, (a function of) γ is a part of the trapdoor in the range
SNARK of Sect. 7.

Clearly, logg1 A1 = loggγ2 A
γ
2 = rZ(χ) +

∑n
i=1 ai`i(χ). The second element,

Aγ2 , of the commitment is known as the knowledge component [20].

Theorem 1. The interpolating commitment scheme is perfectly hiding and trap-
door. If BP is n-PDL secure, then it is computationally binding. If BP is (n, ∅, ∅)-
PKE secure, then it is extractable.

Proof. Perfect Hiding: since Z(χ) 6= 0, then rZ(χ) (and thus also logg1 A1)
is uniformly random in Zp. Hence, (A1, A

γ
2) is a uniformly random element of

the multiplicative subgroup 〈(g1, gγ2 )〉 ⊂ G∗1×G∗2 generated by (g1, g
γ
2 ), indepen-

dently of the committed value. Extractability: clear from the statement.

Computational Binding: assume that there exists an adversary AC that
outputs (a, ra) and (b, rb) with (a, ra) 6= (b, rb), s.t. the polynomial d(X) :=
(raZ(X) +

∑n
i=1 ai`i(X))− (rbZ(X) +

∑n
i=1 bi`i(X)) has a root at χ.

Construct now the following adversary Apdl that breaks the PDL assumption.
Given an n-PDL challenge, since FC consists of degree ≤ n polynomials, Apdl
can compute a valid ck from (a distribution that is statistically close to) the
correct distribution. He sends ck to AC. If AC is successful, then d(X) ∈ Zp[X]
is a non-trivial degree-≤ n polynomial. Since the coefficients of d are known,
Apdl can use an efficient polynomial factorization algorithm to compute all roots
ri of d(X). One of these roots has to be equal to χ. Apdl can establish which

one by comparing each (say) g
`1(ri)
1 to the element g

`1(χ)
1 given in the CRS.

Clearly, g
`1(ri)
1 is computed from g1 (which can be computed, given the CRS,

since 1 ∈ span(FC)), the coefficients of `1(X), and ri. Apdl has the same success
probability as AC, while her running time is dominated by that of AC plus the
time to factor a degree-≤ n polynomial.

Trapdoor: given χ, a, r, a∗, and c = Cck(a; r), we compute r∗ such that
(r∗− r)Z(χ) +

∑n
i=1(a∗i − ai)`i(χ) = 0. This is possible since Z(χ) 6= 0. Clearly,

c = Cck(a
∗; r∗). ut
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Thm. 1 also holds when instead of Z(X) and `i(X) one uses any n+1 linearly
independent low-degree polynomials (say) P0(X) and Pi(X). Given the state-
ment of Thm. 1, this choice of the concrete polynomials is very natural: `i(X)
interpolate linearly independent vectors (and thus are linearly independent; in
fact, they constitute a basis), and the choice to interpolate unit vectors is the
conceptually clearest way of choosing Pi(X). Another natural choice of indepen-
dent polynomials is to set Pi(X) = Xi as in [28], but that choice has resulted in
much less efficient (CaP) SNARKs.

In Sect. 9 we show how to use batch-verification techniques to speed up
simultaneous validity verification of many commitments.

4 New Product SNARK

Assume the use of the interpolating commitment scheme. In a CaP product
SNARK [28], the prover aims to convince the verifier that she knows how to
open three commitments (A,Aγ), (B,Bγ), and (C,Cγ) to vectors a, b and c
(together with the used randomizers), such that a ◦ b = c. Thus,

R×ck,n :=


(u×, w×, r×) : u× = ((A1, A

γ
2), (B1, B

γ
2 ), (C1, C

γ
2 ))∧

w× = (a, b, c) ∧ r× = (ra, rb, rc) ∧ (A1, A
γ
2) = Cck(a; ra)∧

(B1, B
γ
2 ) = Cck(b; rb) ∧ (C1, C

γ
2 ) = Cck(c; rc) ∧ a ◦ b = c

 .

Next, we propose an efficient CaP product SNARK. For this, we need Lem. 1.

Lemma 1. Let A(X), B(X) and C(X) be polynomials with A(ωi−1) = ai,
B(ωi−1) = bi and C(ωi−1) = ci. Let Q(X) = A(X)B(X) − C(X). Assume
that (i) A(X), B(X) and C(X) belong to the span of (`i(X)), and (ii) there
exists a degree n−2 polynomial π(X), s.t. π(X) = Q(X)/Z(X). Then a◦b = c.

Proof. From (i) it follows that A(X) = La(X), B(X) = Lb(X), and C(X) =
Lc(X), and thus Q(ωi−1) = aibi − ci for all i ∈ [1 .. n]. But (ii) iff Z(X) | Q(X),
which holds iff Q(X) evaluates to 0 at all n values ωi−1. Thus, a◦b = c. Finally,
if (i) holds then degQ(X) = 2n− 2 and thus deg π(X) = n− 2. ut

If privacy and succinctness are not needed, one can think of the product ar-
gument being equal to π(X). We achieve privacy by picking ra, rb, rc ←r Zp, and
defining Qwi(X) := (La(X) + raZ(X)) (Lb(X) + rbZ(X))−(Lc(X) + rcZ(X)).
Here, the new addends of type raZ(X) guarantee hiding. On the other hand,
Qwi(X) remains divisible by Z(X) iff c = a ◦ b. Thus, a ◦ b = c iff

(i’) Qwi(X) can be expressed as Qwi(X) = A(X)B(X)−C(X) for some poly-
nomials A(X), B(X) and C(X) that belong to the span of FC, and

(ii’) there exists a polynomial πwi(X), such that

πwi(X) = Qwi(X)/Z(X) . (1)

The degree of Qwi(X) is 2n, thus, if πwi(X) exists, then it has degree n.
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However, |πwi(X)| is not sublinear in n. To minimize communication, we let
the prover transfer a “garbled” evaluation of πwi(X) at a random secret point χ.

More precisely, the prover computes π× := g
πwi(χ)
1 , using the values gχ

i

1 (given
in the CRS) and the coefficients πi of πwi(X) =

∑n
i=0 πiX

i, as follows:

π× := g
πwi(χ)
1 ←

n∏
i=0

(gχ
i

1 )πi . (2)

Similarly, instead of (say) La(X) + raZ(X), the verifier has the succinct inter-
polating commitment Cck(a; ra) = (g1, g

γ
2 )La(χ)+raZ(χ) of a.

We now give a full description of the new product SNARK Π×, given the in-
terpolating commitment scheme (Gcom,C) and the following tuple of algorithms,
(G×,P×,V×). Note that Cck(1n; 0) = (g1, g

γ
2 ).

CRS generation G×(1κ, n): Let gk← BP(1κ), (g1, g2, χ, γ)←r G∗1 ×G∗2 × Z2
p

with Z(χ) 6= 0 and γ 6= 0. Let crsp = ck ← (gk; (g1, g
γ
2 )FC(χ)) and crsv ←

(gk; g
γZ(χ)
2 ). Output crs× = (crsp, crsv).

Common input: u× = ((A1, A
γ
2), (B1, B

γ
2 ), (C1, C

γ
2 )).

Proving P×(crsp;u×;w× = (a, b, c), r× = (ra, rb, rc)): Compute πwi(X) =∑n
i=0 πiX

i as in Eq. (1) and π× as in Eq. (2). Output π×.

Verification V×(crsv;u×;π×): accept if ê(A1, B
γ
2 ) = ê(g1, C

γ
2 ) · ê(π×, gγZ(χ)

2 ).

Since one can recompute it from ck, inclusion of g
γZ(χ)
2 in the CRS is only needed

to speed up the verification. Here as in the shift SNARK of Sect. 5, validity of
the commitments will be verified in the master SNARK. This is since the master
SNARKs use some of the commitments in several sub-SNARKs, while it suffices
to verify the validity of every commitment only once.

To obtain an argument of knowledge, we use knowledge assumptions in all
following proofs. This SNARK is not zero-knowledge since the possible simulator
gets three commitments as inputs but not their openings; to create an accept-
ing argument the simulator must at least know how to open the commitment
(A1B1/C1, A

γ
2B

γ
2 /C

γ
2 ) to a◦b−c. It is witness-indistinguishable, and this suffices

for the Subset-Sum and other master SNARKs to be zero-knowledge.

Theorem 2. Π× is perfectly complete and witness-indistinguishable. If the in-
put consists of valid commitments, and BP is n-TSDH and (n, ∅, ∅)-PKE secure,
then Π× is an (Θ(n)-bounded-auxiliary-input) adaptive argument of knowledge.

Proof. Perfect completeness: follows from the discussion in the beginning
of this section. Perfect witness-indistinguishability: since the argument
π× that satisfies the verification equations is unique, all witnesses result in the
same argument, and thus this argument is witness-indistinguishable.

Argument of knowledge: Assume that Aaok is an adversary that, given
crs×, returns (u×, π) such that V×(crsv;u×, π) = 1. Assume that the PKE as-
sumption holds, and let XA be the extractor thatreturns openings of the com-
mitments in u×, i.e., (a, ra), (b, rb), and (c, rc). We now claim that XA is also
the extractor needed to achieve the argument of knowledge property.
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Assume that this is not the case. We now construct the next adversary
Atsdh against n-TSDH. Given an n-TSDH challenge ch = (gk, ((g1, g2)χ

i

)ni=0),
Atsdh first generates γ ←r Z∗p, and then computes (this is possible since
FC consists of degree ≤ n polynomials) and sends crs× to Aaok. Assume
(Aaok||XA)(crs×) returns ((u× = ((A1, A

γ
2), (B1, B

γ
2 ), (C1, C

γ
2 )), π), (w× =

(a, b, c), r× = (ra, rb, rC))), s.t. ui = Cck(wi; ri) but (u×, w×, r×) 6∈ R×ck,n. Since
the openings are correct, a◦b 6= c but π is accepting. According to Lem. 1, thus
Z(X) - Qwi(X).

Since Z(X) - Qwi(X), then for some i ∈ [1 .. n], (X − ωi−1) - Qwi(X). Write
Qwi(X) = q(X)(X−ωi−1)+r for r ∈ Z∗p. Clearly, deg q(X) ≤ 2n−1. Moreover,
we write q(X) = q1(X)Z(X) + q2(X) with deg qi(X) ≤ n − 1. Since the ver-

ification succeeds, ê(g1, g
γ
2 )Qwi(χ) = ê(π×, g

γZ(χ)
2 ), or ê(g1, g

γ
2 )q(χ)(χ−ω

i−1)+r =

ê(π×, g
γZ(χ)
2 ), or ê(g1, g

γ
2 )q(χ)+r/(χ−ω

i−1) = ê(π×, g
γZ(χ)/(χ−ωi−1)
2 ), or

ê(g1, g
γ
2 )1/(χ−ω

i−1) = (ê(π×, g
γZ(χ)/(χ−ωi−1)
2 )/ê(g

q(χ)
1 , gγ2 ))r

−1

.

Now, ê(g
q(χ)
1 , gγ2 ) = ê(g

q1(χ)
1 , g

γZ(χ)
2 )ê(g

q2(χ)
1 , gγ2 ), and thus it can be efficiently

computed from ((gχ
i

1 )n−1i=0 , g
γ
2 , g

γZ(χ)
2 ) ⊂ crs. Moreover, Z(X)/(X − ωi−1) =

`i(X) ·
∏
j 6=i(ω

i−1 − ωj−1), and thus g
γZ(χ)/(χ−ωi−1)
2 can be computed from

g
γ`i(χ)
2 by using generic group operations. Hence, ê(g1, g

γ
2 )1/(χ−ω

i−1) can be

computed from ((gχ
i

1 )n−1i=0 , g
γ
2 , g

γZ(χ)
2 , (g

γ`i(χ)
2 )ni=1) (that can be computed from

ch), by using generic group operations. Thus, the adversary has computed
(r = ωi−1, ê(g1, g

γ
2 )1/(χ−r)), for r 6= χ. Since Atsdh knows γ 6= 0, he can finally

compute (r, ê(g1, g2)1/(χ−r)), and thus break the n-TSDH assumption.
Hence, the argument of knowledge property follows. ut

We remark that the product SNARK (but not the shift SNARK of Sect. 5)
can be seen as a QAP-based SNARK [26], namely for the relation a◦b−c. (Con-
structing a QAP-based shift SNARK is possible, but results in using different
polynomials and thus in a different commitment scheme.)
Efficiency. The prover computation is dominated by the computation of

(i) one (n + 1)-wide multi-exponentiation in G1. By using the Pippenger’s
multi-exponentiation algorithm for large n this means approximately n+ 1
bilinear-group multiplications, see [42]. For small values of n, one can use
the algorithm by Straus [46]; then one has to execute Θ(n/ log n) bilinear-
group exponentiations.

(ii) three polynomial interpolations, one polynomial multiplication, and one
polynomial division to compute the coefficients of the polynomial πwi(X).
Since polynomial division can be implemented as 2 polynomial multipli-
cations (by using pre-computation and storing some extra information in
the CRS, [25, 37]), this part is dominated by two inverse FFT-s and three
polynomial multiplications. Other savings are possible.

The verifier computation is dominated by 3 pairings. (We will count the cost
of validity verifications separately in the master SNARKs.) In the special case
C1 = A1 (e.g., in the Boolean SNARK, where we need to prove that a ◦ a = a,
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or in the restriction SNARK [28], where we need to prove that a ◦ b = a
for a public Boolean vector b), the verification equation can be simplified to

ê(A1, B
γ
2 /g

γ
2 ) = ê(π×, g

γZ(χ)
2 ), which saves one more pairing. In Sect. 9, we will

describe a batch-verification technique that allows to speed up simultaneous
verification of several product SNARKs.

Excluding gk, the prover CRS together with ck consists of 2(n + 1) group
elements, while the verifier CRS consists of 1 group element. The CRS can be
computed in time Θ(n), by using an algorithm from [5].

5 New Shift SNARK

In a shift-right-by-z SNARK [23] (shift SNARK, for short), the prover aims to
convince the verifier that for 2 commitments (A,Aγ) and (B,Bγ), he knows how
to open them as (A,Aγ) = Cck(a; ra) and (B,Bγ) = Cck(b; rb), s.t. a = b � z.
I.e., ai = bi+z for i ∈ [1 .. n− z] and ai = 0 for i ∈ [n− z + 1 .. n]. Thus,

Rrsft
ck,n :=


(u×, w×, r×) : u× = ((A1, A

γ
2), (B1, B

γ
2 )) ∧ w× = (a, b)∧

r× = (ra, rb) ∧ (A1, A
γ
2) = Cck(a; ra)∧

(B1, B
γ
2 ) = Cck(b; rb) ∧ (a = b� z)

 .

An efficient shift SNARK was described in [23]. We now reconstruct this
SNARK so that it can be used together with the interpolating commitment
scheme. We can do it since the shift SNARK of [23] does almost not depend
on the commitment scheme. We also slightly optimize the resulting SNARK; in
particular, the verifier has to execute one less pairing compared to [23].

Our strategy of constructing a shift SNARK follows the strategy of [28, 36].
We start with a concrete verification equation that also contains the argument
π1. We write the discrete logarithm of π1 (that follows from this equation) as
Fπ(χ) + Fcon(χ), where χ is a secret key, and Fπ(X) and Fcon(X) are two
polynomials. The first polynomial, Fπ(X), is identically zero iff the prover is
honest. Since the spans of certain two polynomial sets do not intersect, this
results in an efficient adaptive shift SNARK that is an argument of knowledge
under (two) PKE assumptions.

Now, for a non-zero polynomial Z∗(X) to be defined later, consider the verifi-

cation equation ê(A1, g
γZ∗(χ)
2 )/ê(B1π1, g

γ
2 ) = 1 (due to the properties of pairing,

this is equivalent to verifying that π1 = A
Z∗(χ)
1 /B1), with (A1, A

γ
2) and (B1, B

γ
2 )

being interpolating commitments to a and b, and π1 = g
π(χ)
1 for some polyno-

mial π(X). Denote r(X) := (raZ
∗(X) − rb)Z(X). Taking a discrete logarithm

of the verification equation, we get that

π(X) = (raZ(X) +
∑n
i=1 ai`i(X))Z∗(X)− (rbZ(X) +

∑n
i=1 bi`i(X))

=Z∗(X)
∑n
i=1 ai`i(X)−

∑n
i=1 bi`i(X) + r(X)

=
(∑n−z

i=1 ai`i(X) +
∑n
i=n−z+1 ai`i(X)

)
Z∗(X) + r(X)−(∑n−z

i=1 bi+z`i+z(X) +
∑z
i=1 bi`i(X)

)
.
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Hence, π(X) = Fπ(X) + Fcon(X), where

Fπ(X) =
(∑n−z

i=1 (ai − bi+z)`i(X) +
∑n
i=n−z+1 ai`i(X)

)
· Z∗(X) ,

Fcon(X) =
(∑n

i=z+1 bi(`i−z(X)Z∗(X)− `i(X))−
∑z
i=1 bi`i(X)

)
+ r(X) .

Clearly, the prover is honest iff Fπ(X) = 0, which holds iff π(X) = Fcon(X),
i.e., π(X) belongs to the span of

Fz−rsft := (`i−z(X)Z∗(X)− `i(X))ni=z+1, (`i(X))zi=1, Z(X)Z∗(X), Z(X)) .

For the shift SNARK to be an argument of knowledge, we need that
(i) (`i(X)Z∗(X))ni=1 is linearly independent, and
(ii) Fπ(X) ∩ span(Fz−rsft) = ∅.

Together, (i) and (ii) guarantee that from π(X) ∈ span(Fz−rsft) it follows that
a is a shift of b.

We guarantee that π(X) ∈ span(Fz−rsft) by a knowledge assumption
(w.r.t. another knowledge secret δ); for this we will also show that Fz−rsft
is linearly independent. As in the case of the product SNARK, we also need
that (A1, A

γ
2) and (B1, B

γ
2 ) are actually commitments of n-dimensional vectors

(w.r.t. γ), i.e., we rely on two PKE assumptions.
Denote Fπ := {`i(X)Z∗(X)}ni=1. For a certain choice of Z∗(X), both (i) and

(ii) follow from the next lemma.

Lemma 2. Let Z∗(X) = Z(X)2. Then Fπ ∪ Fz−rsft is linearly independent.

Proof. Assume that there exist a ∈ Znp , b ∈ Znp , c ∈ Zp, and d ∈
Zp, s.t. f(X) :=

∑n
i=1 ai`i(X)Z∗(X) +

∑n
i=z+1 bi (`i−z(X)Z∗(X)− `i(X)) −∑z

i=1 bi`i(X) + cZ(X)Z∗(X) + dZ(X) = 0. But then also f(ωj−1) = 0, for
j ∈ [1 .. n]. Thus, due to the definition of `i(X) and Z(X),

∑z
i=1 biei = 0n which

is only possible if bi = 0 for all j ∈ [1 .. n]. Thus also f ′(X) := f(X)/Z(X) =∑n
i=1 ai`i(X)Z∗(X)/Z(X) + cZ∗(X) + d = 0. But then also f ′(ωj−1) = 0 for

j ∈ [1 .. n]. Hence, cZ∗(ωj−1) + d = d = 0. Finally, f ′′(X) := f(X)/Z∗(X) =∑n
i=1 ai`i(X)+cZ(X) = 0, and from f ′′(ωj−1) = 0 for j ∈ [1 .. n], we get a = 0n.

Thus also c = 0. This finishes the proof. ut

Since the argument of knowledge property of the new shift SNARK relies on
π(X) belonging to a certain span, similarly to [23], we will use an additional
knowledge assumption. That is, it is necessary that there exists an extractor
that outputs a witness that π(X) = Fcon(X) belongs to the span of Fz−rsft.

Similarly to the product SNARK, the shift SNARK does not contain π(X) =
Fcon(X), but the value πrsft = (g1, g

δ
2)π(χ) for random χ and δ (necessary due to

the use of the second PKE assumption), computed as

πrsft ←(π1, π
δ
2) = (g1, g

δ
2)π(χ)

=
∏n
i=z+1((g1, g

δ
2)`i−z(χ)Z

∗(χ)−`i(χ))bi ·
∏z
i=1((g1, g

δ
2)`i(χ))−bi · (3)

((g1, g
δ
2)Z(χ)Z∗(χ))ra · ((g1, gδ2)Z(χ))−rb .
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We are now ready to state the new shift-right-by-z SNARK Πrsft. It consists
of the interpolating commitment scheme and of the following three algorithms:
CRS generation Grsft(1

κ, n): Let Z∗(X) = Z(X)2. Let gk ← BP(1κ),
(g1, g2, χ, γ, δ) ← G∗1 × G∗2 × Z3

p, s.t. Z(χ) 6= 0, γ 6= 0.

Set ck ← (gk; (g1, g
γ
2 )FC(χ)), crsp ← (gk; (g1, g

δ
2)Fz−rsft(χ)), crsv ←

(gk; (g1, g
δ
2)Z(χ), g

δZ(χ)Z∗(χ)
2 ). Return crsrsft = (ck, crsp, crsv).

Common input: ursft = ((A1, A
γ
2), (B1, B

γ
2 )).

Proving Prsft(crsp;ursft;wrsft = (a, b), rrsft = (ra, rb)): return πrsft ← (π1, π
δ
2)

from Eq. (3).

Verification Vrsft(crsv;ursft;πrsft = (π1, π
δ
2)): accept if ê(π1, g

δZ(χ)
2 ) =

ê(g
Z(χ)
1 , πδ2) and ê(B1π1, g

δZ(χ)
2 ) = ê(A1, g

δZ(χ)Z∗(χ)
2 ).

Since crsv can be recomputed from ck∪ crsp, then clearly it suffices to take CRS

to be crsrsft = (gk; g
FC(χ)∪Fz−rsft(χ)
1 , g

γFC(χ)∪δFz−rsft(χ)
2 ).

Theorem 3. Let Z∗(X) = Z(X)2, y = deg(Z(X)Z∗(X)) = 3n. Πrsft

is perfectly complete and witness-indistinguishable. If the input consists of
valid commitments, and BP is y-PDL, (n,Fz−rsft, Y2Fz−rsft, 1)-PKE, and
(Fz−rsft,FC, Y1FC, 2)-PKE secure, then Πrsft is an (Θ(n)-bounded-auxiliary-
input) adaptive argument of knowledge.

Proof. Perfect completeness: follows from the derivation of the SNARK.
Note that we added extra Z(χ) to exponents so that the verification equation be
computable from crsrsft. Perfect witness-indistinguishability: since argu-
ment πrsft that satisfies the verification equations is unique, all witnesses result
in the same argument, and hence the shift SNARK is witness-indistinguishable.

Argument of knowledge: Assume that Aaok is an adversary sucuh that
Aaok(crsrsft) outputs, with all but a negligible probability, the input ursft =
((A1, A

γ
2), (B1, B

γ
2 )) and an accepting argument πrsft ← (π1, π

δ
2), s.t. a 6= b� z.

Observe that Aaok gets no auxiliary input.
We now construct the following adversary Apdl that breaks PDL. It gets as an

input an y-PDL challenge ch = (gk, ((g1, g2)χ
i

)yi=0). He chooses random γ 6= 0,
δ, and then computes the CRS crsrsft of the shift SNARK (this is possible since
all involved polynomials are of degree ≤ deg(Z(X)Z∗(X)) = y). Now,
(a) from the (n,Fz−rsft, Y2Fz−rsft, 1)-PKE assumption it follows that there ex-

ists an extractor that, given access to Aaok’s secret coins and input crsrsft,
returns (wrsft = (a, b), rrsft = (ra, rb)) such that (A1, A

γ
2) = Cck(a; ra), and

(B1, B
γ
2 ) = Cck(b; rb), and

(b) from the (Fz−rsft,FC, Y1FC, 2)-PKE assumption it follows that there exists
an extractor that, given access to Aaok’s secret coins and input crsrsft, returns
a polynomial π∗(X), such that πrsft = (π1, π

δ
2) = (g1, g

δ
2)π

∗(χ) where π∗(X) =∑
f∈Fz−rsft

π∗f · f(X).
Then, given Aaok and those two extractors, we can construct another adver-

sary A∗aok that, given access to Aaok’s secret coins and input, can — with all
but a negligible probability — output ursft, an accepting statement πrsft, and an
extended witness w∗rsft = (a, b, ra, rb, π

∗(X)).
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Thus, Apdl forwards crsrsft to A∗aok, who returns ursft, an accepting argument
πrsft, and w∗rsft. Thus, Apdl has obtained all coefficients of π∗(X), such that π1 =

g
π∗(χ)
1 . Since ê(B1π1, g

δZ(χ)
2 ) = ê(A1, g

δZ(χ)Z∗(χ)
2 ), π∗(χ) = Fπ(χ) + Fcon(χ).

Since π∗(X) ∈ span(Fz−rsft), we have by preceding discussion that π∗(X) =
Fcon(X) and thus π∗(χ) = Fcon(χ) and hence Fπ(χ) = 0. Since Aaok succeeded
in cheating, Fπ(X) is a non-zero polynomial with Fπ(χ) = 0. But Apdl can use
an efficient polynomial factorization algorithm to find all roots ri of Fπ(X).
One of those roots has to be χ; this can be tested by comparing say the values

g
Z(ri)Z

∗(χ)
1 with the value g

Z(χ)Z∗(χ)
1 given in the CRS. The claim follows. ut

The prover computation is dominated by two (n+2)-wide multi-exponentiations
(one in G1 and one in G2); there is no need for polynomial interpolation, mul-
tiplication or division. The communication is 2 group elements. The verifier
computation is dominated by 4 pairings. In Sect. 9, we will describe a batch-
verification technique that allows to speed up simultaneous verification of several
shift SNARKs. Apart from gk, the prover CRS and the ck together contain 4n+6
group elements, and the verifier CRS contains 3 group elements.

A shift-left-by-z (necessary in [38] to construct a permutation SNARK)
SNARK can be constructed similarly. A rotation-left/right-by-z SNARK (one
committed vector is a rotation of another committed vector) requires only small
modifications, see [23])

6 New Subset-Sum SNARK

For fixed n and p = nω(1), the NP-complete language Subset-Sum over Zp
is defined as the language LSubset-Sum

n of tuples (S = (S1, . . . , Sn), s), with
Si, s ∈ Zp, such that there exists a vector b ∈ {0, 1}n with

∑n
i=1 Sibi = s in

Zp. Subset-Sum can be solved in pseudo-polynomial time O(pn) by using dy-
namic programming [43]; however, for p = nω(1). In the current paper, since
n = κo(1) and p = 2O(κ)), pn is not polynomial in the input size n log2 p.

In a Subset-Sum SNARK, the prover aims to convince the verifier that
he knows how to open commitment (B1, B

γ
2 ) to a vector b ∈ {0, 1}n, such that∑n

i=1 Sibi = s. Next, we show that by using the new product and shift SNARKs,
one can design a prover-efficient adaptive Subset-Sum zk-SNARK Πssum. We
emphasize that Subset-Sum is just one of the languages for which we can con-
struct an efficient zk-SNARK; Sect. 7 and Sect. 8 have more examples.

First, we again use the interpolating commitment scheme. The CRS gener-
ation Gssum invokes CRS generations of the commitment scheme, the product
SNARK and the shift SNARK, sharing the same gk, g1, g2, γ, and trapdoor
td = χ between the different invocations. (Since here the argument must be zero
knowledge, it needs a trapdoor.) Thus, crsssum = crsrsft for z = 1.

The prover’s actions are depicted by Fig. 1 (a precise explanation of this
SNARK will be given in the concise completeness proof in Thm. 4). This
SNARK, even without taking into account the differences in the product and
shift SNARKs, is both simpler and moth efficient than the Subset-Sum SNARK
presented in [23] where one say needed an additional step of proving that b 6= 0n.
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Let b ∈ {0, 1}n be such that
∑n
i=1 Sibi = s.

Let (B1, B
γ
2 ) be a commitment to b.

Construct an argument π1 to show that b ◦ b = b.
Let (C1, C

γ
2 ) be a commitment to c← S ◦ b.

Construct an argument π2 to show that c = S ◦ b.
Let (D1, D

γ
2 ) be a commitment to d, where di =

∑
j≥i cj .

Construct an argument (π31, π
δ
32) to show that d = (d− c)� 1.

Construct an argument π4 to show that e1 ◦ (d− se1) = 0n.
Output πssum = (B1, B

γ
2 , C1, C

γ
2 , D1, D

γ
2 , π1, π2, π31, π

δ
32, π4).

Fig. 1. The new Subset-Sum SNARK Πssum (prover’s operations)

We remark that the vector d, with di =
∑
j≥i cj , is called either a vector

scan, an all-prefix-sums, or a prefix-sum of c [11], and (π31, π
δ
32) can be thought

of as a scan SNARK [23] that d is a correct scan of c.

After receiving πssum, the verifier computes S′1 ←
∏
i(g

`i(χ)
1 )Si as the first

half of a commitment to S, and then performs the following verifications:

– Three commitment validations: ê(B1, g
γ
2 ) = ê(g1, B

γ
2 ), ê(C1, g

γ
2 ) = ê(g1, C

γ
2 ),

ê(D1, g
γ
2 ) = ê(g1, D

γ
2 ).

– Three product argument verifications: ê(B1/g1, B
γ
2 ) = ê(π1, g

γZ(χ)
2 ),

ê(S′1, B
γ
2 ) = ê(g1, C

γ
2 ) · ê(π2, gγZ(χ)

2 ), ê(g
`1(χ)
1 , Dγ

2/(g
γ`1(χ)
2 )s) = ê(π4, g

γZ(χ)
2 ).

– One shift argument verification, consisting of two equality tests:

ê(π31, g
δZ(χ)
2 ) = ê(g

Z(χ)
1 , πδ32), ê(D1/C1π31, g

δZ(χ)
2 ) = ê(D1, g

δZ(χ)Z∗(χ)
2 ).

Theorem 4. Πssum is perfectly complete and perfectly composable zero-
knowledge. It is an (Θ(n)-bounded-auxiliary-input) adaptive argument of knowl-
edge if BP satisfies n-TSDH and the same assumptions as in Thm. 3 (for z = 1).

Proof. Completeness: S ∈ Subset-Sum iff there exists b ∈ {0, 1}n such that∑n
i=1 Sibi = s. Here, π1 proves that bi ∈ {0, 1}, π2 proves that ci = Sibi,

(π31, π
δ
32) proves that dj − cj = dj+1 for j < n and dn − cn = 0 (and thus

dn = cn, dn−1 = cn−1 + dn and in general dj =
∑n
i=j ci =

∑n−1
i=j Sibi), and

finally π4 proves that d1 = s. Thus,
∑n
i=1 Sibi = s. Thus, if the prover and

verifier are honest then all arguments are accepted.

Argument of knowledge: follows, under the corresponding assumptions
on BP, from the argument of knowledge property of every basic SNARK. Assume
that both PKE assumptions hold and that there exists an adversary A = Aaok
that breaks argument of knowledge property of Πssum. We construct an adversary
Adl (resp., Atsdh) that breaks the PDL (resp., TSDH) assumption as follows:

(a) since BP is (n,F1−rsft, Y2F1−rsft, 1)-PKE secure, there exists an extractor that
obtains b, c and d (and the used randomizers rb, rc and rd) from (B1, B

γ
2 ),

(C1, C
γ
2 ), and (D1, D

γ
2 ).

(b) From π1: due to (a), Atsdh has access to b, and hence by the TSDH assump-
tion and since the product SNARK is an argument of knowledge, bi ∈ {0, 1}.
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(c) From π2: due to (a), Atsdh has access to b and c, and hence by the TSDH
assumption and since the product SNARK is an argument of knowledge,
c = S ◦ b.

(d) From (π31, π
δ
32): since BP is (F1−rsft, Y1FC, Y1FC, 2)-PKE secure, there exists

an extractor that obtains a witness (π∗f )f that the argument belongs to the
correct span. Due to this, Adl has access to all values required in Thm. 3, and
hence by the 3n-PDL assumption and since the shift SNARK is an argument
of knowledge, di =

∑
j≥i cj =

∑
j≥i Sjbj for all i.

(e) From π4: due to (a), Atsdh has access to d, and hence by the TSDH as-
sumption and since the product SNARK is an argument of knowledge,
e1 ◦ (d− se1) = 0n and thus d1 =

∑n
i=1 Sibi = s.

Hence, this argument system is a bounded-auxiliary-input argument of knowl-
edge.

We note that this argument uses the extractors in the security proofs of
Thm. 2 and Thm. 3, giving both times to the adversary an auxiliary input (the
part of crsssum that is not crs× or crsrsft) of length Θ(n).

Perfect composable zero-knowledge: follows from the presence of the
trapdoor (this allows the simulator to open all commitments to 0n), and from
the facts that 0n ◦ 0n = 0n and that 0n is a shift of 0n. The simulator cre-
ates (B1, B

γ
2 ), (C1, C

γ
2 ) and (D1, D

γ
2 ) as random commitments to 0n, and uses

the knowledge of td (and the trapdoor property of the commitment scheme) to
compute r∗e such that Cck(e1; 0) = Cck(0n; r∗e). She then simulates all four basic
arguments, based on her knowledge of the trapdoor. All product arguments are
obviously correct when the committed values are equal to 0n: 0n = 0n ◦0n (this
takes care of π1), 0n = S ◦ 0n (this takes care of π2), 0n is a right shift of 0n
(this takes care of (π31, π

δ
32)), and 0n ◦ (0n − s0n) = 0n (this takes care of π4).

It is composable zero-knowledge, because it is same-string zero knowledge.
Witness-indistinguishability of the basic SNARKs guarantees that the simu-

lated argument comes from the same distribution as the real argument. ut

Efficiency. The prover computation is dominated by three commitments and
the application of 3 product SNARKs and 1 shift SNARK, i.e., by Θ(n log n)
non-cryptographic operations and Θ(n) cryptographic operations. The latter
is dominated by nine (≈ n)-wide multi-exponentiations (2 in commitments to
c and d and in the shift argument, and 1 in each product argument), 7 in
G1 and 4 in G2. The argument size is constant (11 group elements), and the
verifier computation is dominated by offline computation of two (n + 1)-wide
multi-exponentiations (needed to once commit to S) and online computation
of 17 pairings (3 pairings to verify π2, 2 pairings to verify each of the other
product arguments, 4 pairings to verify the shift argument, and 6 pairings to
verify the validity of 3 commitments). In Sect. 9, we will describe a batch-
verification technique that allows to speed up on-line part of the verification
of the Subset-Sum SNARK.

As always, multi-exponentiation can be sped up by using algorithms from [42,
46]; it can also be highly parallelized, potentially resulting in very fast parallel
implementations of the zk-SNARK.
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1 Let a =
∑n
i=1 Sibi for bi ∈ {0, 1}.

Let (B1, B
γ
2 ) be a commitment to b.

Construct a product argument π1 to show that b = b ◦ b.
Let (C1, C

γ
2 ) be a commitment to c← S ◦ b.

Construct a product argument π2 to show that c = S ◦ b.
Let (D1, D

γ
2 ) be a commitment to d, where di =

∑
j≥i ci.

Construct a shift argument (π31, π
δ
32) to show that d = (d− c)� 1.

2 Construct a product argument π4 to show that e1 ◦ (d− a) = 0n.

Output πrng = (B1, B
γ
2 , C1, C

γ
2 , D1, D

γ
2 , π1, π2, π31, π

δ
32, π4).

Fig. 2. The new range argument Πrng

7 New Range SNARK

In a range SNARK, given public range [L ..H], the prover aims to convince the
verifier that he knows how to open commitment (A1, A

γ
2) to a value a ∈ [L ..H].

That is, that the common input (A1, A
γ
2) is a commitment to vector a with

a1 = a and ai = 0 for i > 1.
We first remark that instead of the range [L ..H], one can consider the range

[0 .. H−L], and then use the homomorphic properties of the commitment scheme
to add L to the committed value. Hence, we will just assume that the range is
equal to [0 .. H] for some H ≥ 1. Moreover, the efficiency of the following SNARK
depends on the range length.

The new range SNARK Πrng is very similar to Πssum, except that one has
to additionally commit to a value a ∈ [0 .. H], use a specific sparse S with
Si =

⌊
(H + 2i−1)/2i

⌋
[17, 39], and prove that a =

∑n
i=1 Sibi for the committed

a. Since S = (Si)
n
i=1 does not depend on the instance (i.e., on a), the verifier

computation is Θ(1). On the other hand, since the commitment to a is given as
an input to the prover (and not created by prover as part of the argument), Πrng

has a more complex simulation strategy, with one more element in the trapdoor.
Let n = blog2Hc + 1. Define Si =

⌊
(H + 2i−1)/2i

⌋
for i ∈ [1 .. n] and S =

(Si). We again use the interpolating commitment scheme. To prove that a ∈
[0 .. H], we do the following.

The CRS generation Grng invokes the CRS generations of the commitment
scheme, the product SNARK and the shift SNARK, sharing the same gk and
trapdoor td = (χ, δ/γ) between the different invocations. In this case, the trap-
door has to include δ/γ (which is well defined, since γ 6= 0) since the simulator
does not know how to open (A1, A

γ
2); see the proof of Thm. 5 for more details.

We note that the trapdoor only has to contain δ/γ, and not γ and δ separately.

The CRS also contains the first half of a commitment S′1 ←
∏

(g
`i(χ)
1 )Si to S,

needed for a later efficient verification of the argument π2. Clearly, the CRS can
be computed efficiently from crsrsft (for z = 1).

The prover’s actions on input (A1, A
γ
2) are depicted by Fig. 2 (further ex-

planations are given in the concise completeness proof in Thm.5). The only
differences, compared to the prover computation of Πssum, are the computation
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of bi on step 1, and of π4 on step 2. After receiving πrng, the verifier performs
the following checks:
– Four commitment validations: ê(A1, g

γ
2 ) = ê(g1, A

γ
2), ê(B1, g

γ
2 ) = ê(g1, B

γ
2 ),

ê(C1, g
γ
2 ) = ê(g1, C

γ
2 ), ê(D1, g

γ
2 ) = ê(g1, D

γ
2 ).

– Three product argument verifications: ê(B1/g1, B
γ
2 ) = ê(π1, g

γZ(χ)
2 ),

ê(S′1, B
γ
2 ) = ê(g1, C

γ
2 ) · ê(π2, gγZ(χ)

2 ), ê(g
`1(χ)
1 , Dγ

2/A
γ
2) = ê(π4, g

γZ(χ)
2 ).

– One shift argument verification, consisting of two equality tests:

ê(π31, g
δZ(χ)
2 ) = ê(g

Z(χ)
1 , πδ32), ê(D1/C1π31, g

δZ(χ)
2 ) = ê(D1, g

δZ(χ)Z∗(χ)
2 ).

Theorem 5. Πrng is perfectly complete and composable zero-knowledge. If BP
satisfies n-TSDH and the assumptions of Thm. 3, then Πrng is an adaptive
(Θ(n)-bounded-auxiliary-input) argument of knowledge.

Proof (Sketch). Completeness: a ∈ [0 .. H] iff a =
∑n
i=1 Sibi for some bi ∈

{0, 1} [39] (see [17] for a formal proof). Here, π1 proves that bi are Boolean, π2
proves that ci = Sibi, (π31, π

δ
32) proves that dj−cj = dj+1 for j < n and dn−cn =

0 (and thus dn = cn, dn−1 = cn−1+dn and in general dj =
∑n
i=j ci =

∑n−1
i=j Sibi),

and finally π4 proves that a = (0, . . . , 0, a) with d1 − a =
∑n
i=1 Sibi − a = 0.

Thus, a =
∑n
i=1 Sibi and therefore, a ∈ [0 .. H].

Perfect composable zero-knowledge: follows from the presence of the
trapdoor (this allows the simulator to open all commitments to 0n), and from the
facts that 0n◦0n = 0n and that 0n is a shift of 0n. The simulator creates (B1, B

γ
2 )

and (C1, C
γ
2 ) as random commitments to 0n, computes (D1, D

γ
2 ) ← (A1, A

γ
2) ·

Cck(0n; r∗d) for a random r∗d, and uses the knowledge of χ (and the trapdoor
property of the commitment scheme) to compute r∗e such that Cck(e1; 0) =
Cck(0n; r∗e). She then simulates the basic arguments, based on her knowledge of
χ. All product arguments are correct when the committed values are equal to
0n: 0n = 0n ◦ 0n (this takes care of π1), 0n = S ◦ 0n (this takes care of π2), 0n
is a right shift of 0n, and 0n ◦ 0n = 0n (this takes care of π4).

To simulate the shift argument, the simulator uses the knowledge of δ/γ
to set (π31, π

δ
32) ← (D1, (D

γ
2 )δ/γ)Z(χ)−1 · (C1, (C

γ
2 )δ/γ). Clearly, the first veri-

fication of the shift argument succeeds. For the second verification, note that

ê((D1/C1) · π31, gδZ(χ)
2 ) = ê(D

Z(χ)
1 , g

δZ(χ)
2 ) = ê(D1, g

δZ(χ)Z∗(χ)
2 ). Thus (π31, π

δ
32)

is an accepting shift argument.
Witness-indistinguishability of the basic SNARKs guarantees that the simu-

lated argument comes from the same distribution as the real argument. Finally,
this SNARK is composable zero-knowledge, because it is same-string zero knowl-
edge. This finishes the proof.

Argument of knowledge: This part of the proof is very similar to the
proof of Thm. 4 and thus omitted. ut

The prover computation is dominated by three commitments and the appli-
cation of three product arguments and one shift argument, that is, by Θ(n log n)
non-cryptographic operations and Θ(n) cryptographic operations. The latter is
dominated by nine (≈ n)-wide multi-exponentiations (2 in commitments to c
and d and in the shift argument, and 1 in each product argument), seven in
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G1 and four in G2. The argument size is constant (11 group elements), and
the verifier computation is dominated by 19 pairings (3 pairings to verify π2, 2
pairings to verify each of the other product arguments, 4 pairings to verify the
shift argument, and 8 pairings to verify the validity of 4 commitments). In this
case, since the verifier does not have to commit to S, the verifier computation
is dominated by Θ(1) cryptographic operations.

The new range SNARK is significantly more computation-efficient for the
prover than the previous range SNARKs [18, 23] that have prover computation
Θ(r−13 (n) log n). Πrng has better communication (11 versus 31 group elements
in [23]), and verification complexity (19 versus 65 pairings in [23]). Moreover,
Πrng is also simpler: since the prover computation is quasi-linear, we do not have
to consider various trade-offs (though they are still available) between compu-
tation and communication as in [18, 23]. In Sect. 9, we will show that by using
batch verification, one can further speed up verification of the Range SNARK.

8 Other SNARKs

As shown in [23], SNARKs for other interesting languages can be constructed,
given efficient product and shift SNARKs. This includes NP-complete lan-
guages like Partition. One can plug in the interpolating commitment scheme
and the new product SNARK to speed up corresponding SNARKs. Most of
such SNARKs will have prover computation dominated by Θ(n log n) non-
cryptographic operations and Θ(n) cryptographic operations. Here, n is a
language-dependent parameter (e.g., the size of the integer set in Subset-Sum).
It is unknown how to achieve similar efficiency by using any other techniques.
On the other hand, resulting Circuit-SAT and arithmetic Circuit-SAT ar-
guments are slower by a factor of Θ(log n).

In what follows, we give a brief description of some other NP-complete lan-
guages for which one can construct efficient adaptive zk-SNARKs by using the
product-and-shift framework. We define the languages by using notation that
facilitates design of such SNARKs.
Partition [24, p. 223]. Partition is the set of all vectors S = (S1, . . . , Sn),
such that there exist b ∈ {0, 1}n with

∑n
i=1 Sibi = 1

2 ·
∑n
i=1 Si. Thus, Partition

is a special case of Subset-Sum with s = 1
2 ·
∑n
i=1 Si. A Partition SNARK

follows trivially from Πssum.
Subset-Product [24, p. 224]. Subset-Product is the set of all vectors (S =
(S1, . . . , Sn), s), such that there exist b ∈ {0, 1}n with

∏
i:bi=1 Sibi = s. The

resulting SNARK is almost the same as Πssum, except one step. Namely, the
prover computes still a vector c = S ◦ b. However, differently from Πssum of
Sect. 6, the prover now lets d to be the multiplicative scan of c with di =

∏
j≥i cj ,

and then proves the correctness of d by using a product SNARK.
Two-Processor Scheduling (2PS for short) [24, p. 65]. 2PS is the set of all
vectors (S = (S1, . . . , Sn), s), such that there exist b ∈ {0, 1}n with

∑n
i=1 Sibi ≤

s and
∑n
i=1 Si(1− bi) ≤ s. To construct a zk-SNARK for 2PS, we show that the

scan of S◦b is in the range [0 .. s]. Here, we use the range SNARK of Sect. 7 twice.
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One can similarly construct a zk-SNARK for multiprocessor scheduling [24, p. 65]
for m processors, but the complexity of the SNARK will depend linearly on m.

Knapsack [24, p. 65]. Knapsack is the set of vectors (S = (S1, . . . , Sn),V =
(V1, . . . , Vn), s, v), such that there exist b ∈ {0, 1}n with

∑n
i=1 Sibi ≤ s and∑n

i=1 Vibi ≥ v. To construct a zk-SNARK for Knapsack, we show that the
scan of S ◦ b is in the range [0 .. s] and the scan of V ◦ b is in the range of (say)
[v .. p− 1]. Here, we use the range SNARK of Sect. 7 twice.

Circuit-SAT. Recently, Lipmaa [38] used Beneš network to construct a per-
mutation SNARK out of Θ(log n) product and shift SNARKs, and then Groth’s
Circuit-SAT zk-SNARK [28] to construct a Circuit-SAT out of a small con-
stant number of product and permutation SNARKs. By using the new product
and shift SNARKs of the current paper together with proof bootstrapping [6,19],
one can construct an adaptive Circuit-SAT zk-SNARK with complexity pa-
rameters as stated in Tbl. 1. Without proof bootstrapping, the communication
will be Θ(log n) group elements. (In the case of [38], Tbl. 1 includes its combi-
nation with two different product SNARKs.)

Arithmetic Circuit-SAT. Arithmetic Circuit-SAT is the set of all circuits C,
such that for some secret input vector x and public output vector y, C(x) = y.
One can construct a zk-SNARK for arithmetic Circuit-SAT by using the same
ideas as in the case of Boolean Circuit-SAT, see [28]. Here, we just outline the
differences compared to the Boolean Circuit-SAT zk-SNARK in [28]. First,
in the case of arithmetic Circuit-SAT, there is no need to verify that x is
Boolean. Second, the output of the circuit can be equal to any y (not just 0).
Third, the step that verifies that all gates are correctly executed is somewhat
more complicated. In the case of Boolean Circuit-SAT, one can assume that
each gate is a NAND gate, and thus one just must verify that x ◦ y = 1 − z,
where x is the vector of left inputs to all gates, y is the vector of right inputs,
and z is the vector of outputs. In the case of arithmetic Circuit-SAT, one has
to check that z = m ◦ (x+ y) + (1−m) ◦ (x ◦ y), where mi = 1 iff the ith gate
is the addition gate and mi = 0 otherwise.

9 Batch Verification

In many known applications (however, up to now SNARK has not been one of
them, one can speed up the verification process by applying batch verification [4].
As already mentioned, [19] proposed proof bootstrapping to shorten the argu-
ments and improve verification time, however, proof bootstrapping only results
in the efficient provided by QAP [26]. Batch verification enables us to improve
verification time even further.

One of the known batch verification techniques is based on the following idea:
instead of testing P equalities Xi = Yi for i ∈ [1 .. P ] (in a cyclic group of order
p), the verifier generates random values τi ← Zp for i ∈ [1 .. P−1], and then tests

whether
∏P−1
i=1 Xτi

i ·XP =
∏P−1
i=1 Y τii · YP . Clearly, if the latter holds, then with

probability 1− 1/p over the choice of (τi)
P−1
i=1 , Xi = Yi holds for each i ∈ [1 .. P ].



Prover-Efficient Commit-And-Prove Zero-Knowledge SNARKs 25

Importantly, if Xi and Yi have a suitable structure, such a simple batch
verification can save a significant amount of computation. For example, if
Xi = ê(Ui, V ) for some Ui and V where V does not depend on i, then the

computation of
∏P−1
i=1 Xτi

i ·XP = ê(
∏P−1
i=1 Uτii · UP , V ) is dominated by just us-

ing a single pairing and one (P−1)-wide multi-exponentiation. We will next give
some examples how to use batch-verification together with the new SNARKs.

Batched Commitment Validity Verification. Assume that the verifier is
given commitments (Ai1, A

γ
i2), i ∈ [1 .. P ], and she has to verify that all of them

are valid. In a naive verification, she checks that ê(Ai1, g
γ
2 ) = ê(g1, A

γ
i2) for

i ∈ [1 .. P ], and thus computes 2P bilinear pairings. In a batched version, she

checks that
∏P
i=1 ê(Ai1, g

γ
2 )τi =

∏P
i=1 ê(g1, A

γ
i2)τi , for τi ← Zq (and τP = 1).

This can be simplified to

ê(
∏P
i=1A

τi
i1, g

γ
2 ) = ê(g1,

∏P
i=1A

γτi
i2 ) ,

where again τP = 1. Thus, the verifier has to compute 2 pairings, one (P − 1)-
wide multi-exponentiation in G1, and one (P − 1)-wide multi-exponentiation in
G2.

Batched Product Argument Verification. Assume that the verifier is given
P product arguments πi, each for some triple ((Ai1, A

γ
i2), (Bi1, B

γ
i2), (Ci1, C

γ
i2))

of commitments. In a naive verification, she checks that ê(Ai1, B
γ
i2) = ê(g1, C

γ
i2) ·

ê(πi, g
γZ(σ)
2 ) for i ∈ [1 .. P ], and thus computes 3P bilinear pairings. In a batched

version, she checks that
∏P
i=1 ê(Ai1, B

γ
i2)τi =

∏P
i=1(ê(g1, C

γ
i2) · ê(πi, gγZ(σ)

2 ))τi ,
for τi ← Zq (and τP = 1), which can be simplified to

∏P
i=1 ê(Ai1, B

γ
i2)τi = ê(g1,

∏P
i=1 C

γτi
i2 ) · ê(

∏P
i=1 π

τi
i , g

γZ(σ)
2 ) ,

where again τP = 1. Hence, the verifier only has to compute P + 2 pairings, one
P -wide multi-exponentiation in G1, one (P − 1)-wide multi-exponentiation in
G2, and one (P − 1)-wide multi-exponentiation in GT .

In the special case where the values Ai1 are all equal to some A1, the verifi-
cation can be simplified to

ê(A1,
∏P
i=1B

γτi
i2 ) = ê(g1,

∏P
i=1 C

γτi
i2 ) · ê(

∏P
i=1 π

τi
i , g

γZ(σ)
2 ) ,

where again τP = 1. In this case, the verifier only has to compute 3 pair-
ings, one (P − 1)-wide multi-exponentiation in G1 and two (P − 1)-wide multi-
exponentiations in G2. The case where all values Bγi2 are equal is dual.

Batched Shift Argument Verification. Assume that the verifier is given
P shift arguments πi = (πi1, π

δ
i2), each for a pair ((Ai1, A

γ
i2), (Bi1, B

γ
i2)

of commitments. In a naive verification, she checks that ê(πi1, g
δZ(χ)
2 ) =

ê(g
Z(χ)
1 , πδi2) and ê(Bi1πi1, g

δZ(χ)
2 ) = ê(Ai1, g

δZ(χ)Z∗(χ)
2 ) for i ∈ [1 .. P ],

and thus computes 4P pairings. In a batched version, she checks

that
∏P
i=1 ê(πi1, g

δZ(χ)
2 )τi

∏2P
i=P+1 ê(Bi1πi1, g

δZ(χ)
2 )τi =

∏P
i=1 ê(g

Z(χ)
1 , πδi2)τi ·
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∏2P
i=P+1 ê(Ai1, g

δZ(χ)Z∗(χ)
2 )τi , for τi ← Zq (and τP = 1), which simplifies to

ê(

P∏
i=1

πτii1 ·
2P∏

i=P+1

(Bi1πi1)τi , g
δZ(χ)
2 ) = ê(g

Z(χ)
1 ,

P∏
i=1

πδτii2 )·ê(
2P∏

i=P+1

Aτii1, g
δZ(χ)Z∗(χ)
2 ) ,

where again τP = 1. Hence, the verifier only has to compute 3 pairings, one
(P −1)-wide and one (2P −1)-wide multi-exponentiation in G1, and one P -wide
multi-exponentiation in G2.
Batched Subset-Sum SNARK. We now show how to speed up the online
part of the verification of the Subset-Sum SNARK from Sect. 6. In the batch-
verification, the verifier generates new random values τi ← Zq for i ∈ [1 .. 8]
except that τ6 = τ8 ← 1, and then checks that

ê(Bτ11 C
τ2
1 D

τ3
1 , g

γ
2 )·ê((B1/g1)τ4(S′1)τ5 , Bγ2 ) · ê((g`1(χ)1 )τ6 , Dγ

2/(g
γ`1(χ)
2 )s)·

= ê(g1, B
γτ1
2 C

γ(τ2+τ5)
2 Dγτ3

2 ) · ê(πτ41 π
τ5
2 π

τ6
4 , g

γZ(χ)
2 ) ,

ê(πτ731(D1/C1π31)τ8 ,g
δZ(χ)
2 ) = ê((g

Z(χ)
1 )τ7 , πδ32) · ê(Dτ8

1 , g
δZ(χ)Z∗(χ)
2 ) .

Hence, the verifier only requires 8 pairings, two 3-way multi-exponentiations in
G1, two 2-way multi-exponentiations in G1, three exponentiations in G1, one
3-way multi-exponentiation in G2, and one exponentiation in G2.
Batched Range SNARK. We now speed up the verification of the Range
SNARK from Sect. 7. In the batch-verification, the verifier generates new random
values τi ← Zq for i ∈ [0 .. 8] except that τ6 = τ8 ← 1, and then checks that

ê(Aτ01 B
τ1
1 C

τ2
1 D

τ3
1 , g

γ
2 )·ê(g−τ11 (B1/g1)τ4(S′1)τ5 , Bγ2 ) · ê((g`1(χ)1 )τ6 , Dγ

2/A
γ
2)

= ê(g1, A
γτ0
2 C

γ(τ2+τ5)
2 Dγτ3

2 ) · ê(πτ41 π
τ5
2 π

τ6
4 , g

γZ(χ)
2 ) ,

ê(πτ731(D1/C1π31)τ8 ,g
δZ(χ)
2 ) = ê((g

Z(χ)
1 )τ7 , πδ32) · ê(Dτ8

1 , g
δZ(χ)Z∗(χ)
2 ) .

Since τ6 = τ8 = 1, the verifier only requires 8 pairings, one 4-way multi-
exponentiation in G1, two 3-way multi-exponentiations in G1, one 2-way multi-
exponentiation in G1, three exponentiations in G1, and one 3-way multi-
exponentiation in G2.
Barreto-Naehrig Curves. We use exponentiation speed records from [15] and
pairing speed records from [2] for Barreto-Naehrig curves. According to Tbl. 4
in [15], a pairing, exponentiation in G1, exponentiation in G2, and exponentiation
in GT take respectively 7.0, 0.9, 1.8, and 3.1 millions of clock cycles on the Core
i7-3520M CPU. We also assume that one P -way multi-exponentiation in a group
can be computed in the time of P/ log2 P exponentiations in the same group.

Taken millions of clock cycles as the basic unit, in a non-batched Subset-Sum
argument the verifier’s online computation is dominated by 17·7.0+1·0.9 = 119.9
units. In the batched variant, the verifier’s online computation is dominated by
8·7.0+(2 · (3/ log2 3) + 2 · (2/ log2 2) + 3)·0.9+(1·3/ log2 3+1)·1.8 = 70.9 units.
Hence, in this case this simple batching technique results in an approximately
1.7 times speed-up.
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Similarly, in a non-batched RANGE argument the verifier’s computation is
dominated by 19 · 7.0 = 133.0 units. In the batched variant, the verifier’s online
computation is dominated by 8 · 7.0 + (1 · 4/ log2 4 + 2 · 3/ log2 3 + 2/ log2 2 +
3) ∗ 0.9 + (1 · 3/ log2 3) · 1.8 = 69.1 units. Hence, in this case this simple batching
technique results in an approximately 1.9 times speed-up.
Other SNARKs. The described batch-verification can also be used with other
SNARKs of the current and preceding papers. For example, in Pinocchio [40]
the verifier executes 11 pairings. Batch-verification reduces this number to 8
pairings and a small number of exponentiations; this means that the verifier of
the new Subset-Sum and Range SNARKs is essentially as fast as the verifier of
Pinocchio. Batch-verification is especially effective in the cases when P is large.
It can also be used as an additional step after proof boot-strapping [6].

10 Additional Discussion

On Input Size and n. When using Groth’s modular approach, n is the dimen-
sion of the vectors, and every coefficient is an element of Zp. Hence, it is to be
expected that n is smaller than the input size. In the case of Subset-Sum, n
is the number of the integers in the base set, and the input size is N = Θ(κn)
bits, where κ is the security parameter. Hence, in the Subset-Sum zk-SNARK,
the prover executes Θ(N/κ) cryptographic operations; since n = κO(1), this
is sublinear in the input size. For example, if κ = n1/c, then the prover ex-
ecutes Θ(N1/(c+1)) cryptographic operations. In the case of the range proof
n ≈ log2(H − L), which can be significantly smaller than the input length
N = dlog2 Le+ n.

To compare, in Boolean (resp., arithmetic) Circuit-SAT zk-SNARKs (see,
e.g. [21, 26, 28, 36, 37]), n is the number of the gates, while the input size is
N = Θ(n log n) (resp., N = Θ(n log n · κ)) bits. Thus, in the QSP-based adap-
tive Boolean Circuit-SAT zk-SNARK, the prover computation is Θ(N) crypto-
graphic operations. (As before, adaptive arithmetic Circuit-SAT zk-SNARK is
less efficient due to less efficient known universal arithmetic circuits.) According
to this comparison, one of the main results of the current paper is the first adap-
tive zk-SNARK for an NP-complete language where the prover computation is
dominated by O(N/κ) cryptographic operations.
On Possible QAP-Based Solutions. While there might exist QAP-based
adaptive zk-SNARKs for NP-complete languages with similar prover-complexity,
we are not aware of any previous research on this topic. Even if such zk-SNARKs
were constructed in the future, the modular approach has advantages that we
already emphasized, like reliance on an instance (and language) independent
commitment scheme or the need to commit to shorter vectors.

For example, one can construct a QAP to implement the relation c = d(a ◦
b) + (1 − d)(a � z), where d ∈ {0, 1}. However, this would result in a QAP
Cd = Ada ◦ Bdb, where the matrices Ad and Bd depend on d and moreover,
Ad 6= Bd. This means that one would have to commit to a, b, and c by using
different commitment schemes. One runs into additional complications when the
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same vector are used instead of a, b, or b, with different values of d, in different
instantiations of this relation. While such complications are probably solvable,
they result in a less intuitive and less efficient commitment scheme than proposed
in the current paper.

In particular, while [19] proposes a QAP-based CaP zk-SNARK, it is very
different from the zk-SNARKs of the current paper. Intuitively, by using sophis-
ticated techniques, they combine QAP-s of small circuits together with commit-
ments to shared data (i.e., input and wire values) to obtain a QAP of a large
circuit. Unfortunately, [19] does neither specify the achieved prover’s computa-
tional complexity or the used commitment scheme. Due to the lack of space, we
leave precise comparison to a future work.
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A On Cryptographic and Non-Cryptographic Operations

We count communication often implicitly in group elements, and verifier com-
putation in the number of cryptographic operations. In the case of prover com-
putation (which is the focus of the current work), very often the number of
non-cryptographic operations and cryptographic operations differs, and thus we
count them separately. According to the usual but somewhat informal practice,
non-cryptographic operations count cheap operations (additions or multiplica-
tions) in Zp, while cryptographic operations count more expensive operations
(exponentiations or pairings) in a cryptographic group. The basic difference is
that non-cryptographic operations are significantly (usually by more than a fac-
tor of logn) more efficient than cryptographic operations.
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