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Abstract. We show how the cofactorization step, a compute-intensive part of the relation
collection phase of the number field sieve (NFS), can be farmed out to a graphics processing
unit. Our implementation on a GTX 580 GPU, which is integrated with a state-of-the-art NFS
implementation, can serve as a cryptanalytic co-processor for several Intel i7-3770K quad-core
CPUs simultaneously. This allows those processors to focus on the memory-intensive sieving and
results in more useful NFS-relations found in less time.
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1 Introduction

Today, the asymptotically fastest publicly known integer factorization method is the number
field sieve (NFS, [46, 30]). It has been used to set several integer factorization records, most
recently a 768-bit RSA modulus as described in [27]. In the first of its two main steps, pairs of
integers called relations are collected. This is done by iterating a two-stage approach: sieving
to collect a large batch of promising pairs, followed by the identification of the relatively few
relations among them. Sieving requires a lot of memory and is commonly done on CPUs.
The follow-up stage requires little memory and can be parallelized in multiple ways. It may
therefore be cost-effective to offload this follow-up stage to a coprocessor. Most previous work
in this direction focussed on offloading the elliptic curve integer factoring (ECM, [31]), which
is only part of this follow-up stage. For graphics processing units (GPUs) this is considered
in [7, 5, 10] and for reconfigurable hardware such as field-programmable gate arrays in [53,
45, 17, 14, 19, 32, 58]. To allow the CPUs to keep sieving, thus optimally using their memory,
in this paper the possibility is explored to offload the entire follow-up stage to GPUs. We
describe our approach, with a focus on modular and elliptic curve arithmetic, to do so on the
many-core, memory-constrained GPU platform. Our results demonstrate that GPUs can be
used as an efficient high-throughput co-processor for this application.

Our design strategy exploits the inherent task parallelism of the stage that follows the
actual sieving, namely the fact that collected pairs can be processed independently in parallel.
Because the integers involved are relatively small (at most 384 bits for our target number), we
have chosen not to parallelize the integer arithmetic, thereby avoiding performance penalties
due to inter-thread synchronization while maximizing the compute-to-memory-access ratio
[5]. We use a single thread to process a single pair from the input batch, aiming to maximize
the number of pairs processed per second. Because this requires a large number of registers per
thread and potentially reduces the GPU utilization, we use integer arithmetic algorithms that
minimize register usage and apply native multiply-and-add instructions wherever possible.

For each pair the follow-up stage consists of checking if two integer values, obtained by
evaluating two bivariate integer polynomials at the point determined by the pair, are both
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smooth, i.e., divisible by primes up to certain bounds. This is done sequentially: a first kernel
filters the pairs for which the first polynomial value is smooth, once enough pairs have been
collected a second kernel does the same for the second polynomial value, and pairs that pass
both filters correspond to relations. Each kernel first computes the relevant polynomial value
and then subjects it to a sequence of occasional compositeness tests and factorization attempts
aimed at finding small factors.

We have determined good parameters for two different approaches: to find as many rela-
tions as possible (≈ 99% in a batch) and a faster one to find most relations (≈ 95% in a batch).
The effectiveness of these approaches is demonstrated by integrating the GPU software with
state-of-the-art NFS software [16] tuned for the factorization of the 768-bit modulus from [27].
A single GTX 580 GPU can serve between 3 and 10 Intel i7-3770K quad-core CPUs.

Cryptologic applications of GPUs have been considered before: symmetric cryptography
in [33, 20, 56, 21, 44, 11, 18], asymmetric cryptography in [39, 54, 22] for RSA and in [54, 1, 9]
for ECC, and enhancing symmetric [8] and asymmetric [7, 5, 6, 10] cryptanalysis.

Our source code will be made available.

2 Preliminaries

The Number Field Sieve. For details on how NFS works, see [30, 50]. Its major steps are
polynomial selection, relation collection, and the matrix step. For this paper, an operational
description of relation collection for numbers in the current range of interest suffices. For those
numbers relation collection is responsible for about 90% of the computational effort.

Here we call an integer B-smooth if there is no prime-power larger than B that divides
it (elsewhere such numbers are called B-powersmooth). Relation collection uses smoothness
bounds Br, Ba ∈ Z>0 and polynomials fr(X), fa(X) ∈ Z[X] such that fr is of degree one, fa
is irreducible of (small) degree d > 1, and fr and fa have a common root modulo the number
to be factored. The polynomials fr and fa are commonly referred to as the rational and the
algebraic polynomial, respectively. A relation is a pair of coprime integers (a, b) with b > 0
such that bfr(a/b) is Br-smooth and bdfa(a/b) is Ba-smooth.

Relations are determined by successively processing relatively large special primes until
sufficiently many relations have been found. A special prime q defines an index-q sublattice
in Z2 of pairs (a, b) such that q divides bfr(a/b)b

dfa(a/b). Sieving in the sublattice results
in a collection of pairs for which bfr(a/b) and bdfa(a/b) have relatively many small factors.
To identify the relations, for all collected pairs the values bfr(a/b) and bdfa(a/b) are further
inspected. This can be done by first simultaneously resieving the bfr(a/b)-values to remove
their small factors, then doing the same for the bdfa(a/b)-values, after which any cofactors are
dealt with on a pair-by-pair basis. Alternatively, cofactoring can be preceded by a pair-by-pair
search for the small factors in bfr(a/b) and bdfa(a/b), thus simplifying the sieving step. The
latter approach is adopted here, to offload as much as possible from the regular CPU cores,
including the calculation of the relevant bfr(a/b)- and bdfa(a/b)-values. The steps involved in
this extended (and thus somewhat misnomered) cofactoring are described in Section 3.

Montgomery arithmetic. For arithmetic modulo a fixed odd modulus m Montgomery
arithmetic [35] may be used because it avoids trials during the divisions and allows simple
coding. Let r be the machine radix (here r = 232), let k ∈ Z>0 be minimal such that
rk > m, and let µ = −m−1 mod r. The Montgomery representation of an integer x ∈ Z/mZ
is defined as x̃ = xrk mod m. Given Montgomery representations x̃, ỹ of x, y ∈ Z/mZ, it



follows that t̃ such that t = (x ± y) mod m is calculated as t̃ = (x̃ ± ỹ) mod m, and that
s̃ such that s = xy mod m satisfies s̃ = x̃ỹr−k mod m. This Montgomery product s̃ can be
computed by first calculating the ordinary integer product u = x̃ỹ, and by next performing
Montgomery reduction: modulo m divide u by rk by replacing k times in succession u by
(u+[((u mod r)µ) mod r]m)/r, then s̃ = u−m if u ≥ m and s̃ = u otherwise. If 0 ≤ x̃, ỹ < m,
then the same bound hold for s̃.

Jebelean’s exact division. If n is known to be an integer multiple of an odd integer p, the
quotient n

p can be computed using an iteration very similar to Montgomery reduction: let

µ = −p−1 mod r, then v = ((n mod r)(r−µ)) mod r equals the least significant radix-r block
n
p mod r of n

p , after which n is replaced by (n − vp)/r and the other radix-r blocks of n
p are

iteratively computed in the same way. This is known as Jebelean’s exact division method [24].

3 Cofactoring Steps

This section lists the steps used to identify the relations among a collection of pairs of integers
(a, b) that results from NFS sieving for one or more special primes. See [26] for related previous
work. The notation is as in Section 2.

For all collected pairs (a, b) the values bfr(a/b) and bdfa(a/b) can be calculated by observ-
ing that bkf(a/b) =

∑k
i=0 fia

ibk−i for f(X) =
∑k

i=0 fiX
i ∈ Z[X]. The value z = bkf(a/b) is

trivially calculated in k(k−1) multiplications by initializing z as 0, and by replacing, for i = 0,
1, . . ., k in succession, z by z + fia

ibk−i, or, at the cost of an additional memory location,
in 3k − 1 multiplications by initializing z = f0 and t = a and by replacing, for i = 1, 2, . . .,
k in succession, z by zb + fit and, if i < k, t by ta. Even with the most naive approach (as
opposed to asymptotically faster methods), this is a negligible part of the overall calculation.
The resulting values need to be tested for smoothness, with bound Br for the bfr(a/b)-values
and bound Ba for the bdfa(a/b)-values.

For all pairs (a, b) both bfr(a/b) and bdfa(a/b) have relatively many small factors (because
the pairs are collected during NFS sieving). After shifting out all factors of two, other very
small factors may be found using trial division, somewhat larger ones by Pollard p − 1 [47],
and the largest ones using ECM [31]. These three methods are further described below. In our
experiment (cf. 5.2) it turned out to be best to skip trial division for bfr(a/b) and let Pollard
p − 1 and ECM take care of the very small factors as well. Based on the findings reported
in [28] or their GPU-incompatibility, other integer factorization methods like Pollard rho [48]
or quadratic sieve [49] are not considered. It is occasionally useful to make sure that remaining
cofactors are composite. An appropriate compositeness test is therefore described first.

Compositeness test. Let m− 1 = 2tu for t ∈ Z≥0 and odd u ∈ Z. If for some a ∈ (Z/mZ)∗

it is the case that au 6≡ 1 mod m and au2
i 6≡ −1 mod m for 0 ≤ i < t, then m is composite

and a is a witness to m’s compositeness. As shown in [34, 51], for composite m more than
75% of the integers in {1, 2, . . . ,m− 1} are witnesses to m’s compositeness.

This test is used as follows to process an m-value that is found as an as yet unfactored part
of a polynomial value bfr(a/b) or bdfa(a/b). If 2 is a witness to m’s compositeness, then m is
subjected to further factoring attempts; if not, the polynomial value is declared fully factored
and the corresponding pair (a, b) is cast aside if m > Br for m | bfr(a/b) or m > Ba for
m | bdfa(a/b). This carries the risk that a non-prime factor may appear in a supposedly fully
factored polynomial value, or that a pair (a, b) is wrongly discarded. With a small probability
to occur, either type of failure is of no concern in our cryptanalytic context.



Trial division. Given an odd integer n, all its prime factors up to some small trial division
bound are removed using trial division. For each small odd prime p (possibly tabulated, if
memory is available) first π = (−p)−1 mod r is calculated (per thread, at negligible overhead),
with r = 232 as in Section 2. Next, n is tested for divisibility by p: with u initialized as n and k
the least integer such that u < rk, the integer u is modulo p divided by rk (using Montgomery
reduction, with p and π in the roles of m and µ, respectively). If the resulting 32-bit value u
satisfies u mod p ≡ 0, then n is divisible by p and the divisibility test is repeated with n
replaced by n

p (computed using Jebelean’s method).

Pollard p − 1. The prime factors p of n for which p − 1 is B1-smooth can be found at a
cost of O(B1) multiplications modulo n by means of “stage 1” of Pollard’s p− 1 method [47]:
with t = ak mod n, for some a 6= ±1 mod n, a 6= 0 mod n and k the product of all prime
powers ≤ B1, the product of all such p divides gcd(t − 1, n). In practice the value a = 2 is
used for efficiency reasons. If the order modulo n of t is at most B2, for some bound B2 > B1,
this can be exploited in “stage 2” [36], thereby allowing in p− 1 one additional prime factor
between B1 and B2. Naively, gcd(t` − 1, n) could be computed for all primes ` in (B1, B2].
A much faster but memory-consuming method uses the fast Fourier transform (cf. [38]). On
GPUs a baby-step giant-step approach is more suitable and is used here. It follows from the
description below and the optimizations described in [36].

Elliptic Curve Method. Stage 1 of Pollard’s p−1 method uses O(B1) multiplications mod-
ulo n to find prime factors p of n for which the groups (Z/pZ)∗ have B1-smooth order. Thus, p
can be found in time mostly linear in the largest prime factor of p−1. The elliptic curve method
(ECM) for integer factorization [31] works analogously but replaces the fixed group (Z/pZ)∗

of order p − 1 by a number of groups with orders behaving like random integers close to p:
given one such group with B1-smooth order, p can be found in O(B1) multiplications and
additions modulo n. Trading off the number of groups attempted and the smoothness bound,
finding p can heuristically be argued to take exp((

√
2 + o(1))(

√
log p log log p)) elementary

operations modulo n, where p→∞.

Like Pollard’s p − 1 method, each ECM attempt operates on a group element and the
product k of all prime powers ≤ B1, mimics the “ mod p” operations by doing them “ mod n”,
and hopes to run into the identity element mod p but not modn, if not in stage 1 then in
stage 2. Where Pollard’s method is based on arithmetic in the group of integers modulo the
composite multiple n of p, ECM is based on arithmetic with “points” belonging to groups
associated with elliptic curves over prime fields, mimicking those operations by doing them
modulo the composite multiple n of those primes. Because the operations may not be well-
defined, they may fail, thereby revealing a factor of n.

The current best approach to implement ECM, as used here, is “a = −1” twisted Edwards
curves (based on [15, 4, 23, 3]) with extended twisted Edwards coordinates (improving on
Montgomery curves [36] and methods from [57]). Below points are represented as pairs of
projective points ((x : z), (y : t)) for x, z, y, t ∈ Z/nZ, with zero point ((0 : 1), (1 : 1)).
Applying the additively written “group operation” requires a total of eight multiplications
and squarings in Z/nZ. With initial point P the point kP can thus be calculated in O(B1)
multiplications in Z/nZ, after which the gcd of n and the x-coordinate of kP is computed.
Because the same k is often used, good addition-subtraction chains can be prepared (cf. [10]):
for B1 = 256, the point kP can be computed in 1400 multiplications and 1444 squarings
modulo n. Due to the significant memory reduction this approach is particularly efficient for
memory constrained devices like GPUs. We also select curves for which 16 divides the group



order, further enhancing the success probability of ECM (cf. [2, Thm. 3.4 and 3.6] and [3]).
More specifically we use “a = −1” twisted Edwards curve (E : −x2 + y2 = 1 + dx2y2) over Q
with d = −((g − 1/g)/2)4 such that d(d+ 1) 6= 0 and g ∈ Q \ {±1, 0}.

Related work on stage 1 of ECM for cofactoring on constrained devices can be found in [53,
45, 17, 14, 19, 32, 58, 7, 5, 10]. Unlike these publications, the GPU-implementation presented
here includes stage 2 of ECM, as it significantly improves the performance of ECM.

ECM Stage 2 on GPUs. The fastest known methods to implement stage 2 of ECM are
FFT-based [12, 36, 37] and rather memory-hungry, which may explain why earlier constrained
device ECM-cofactoring work did not consider stage 2. These methods are also incompatible
with the memory restrictions of current GPUs. Below a baby-step giant-step approach [52] to
stage 2 is described that is suitable for GPUs. Let Q = kP be as above. Similar to the naive
approach to stage 2 of Pollard’s p− 1 method, the points `Q for the primes ` in (B1, B2] can
be computed and be compared to the zero point modulo a prime dividing p but not modulo n.
The latter amounts to computing the gcd of n and the product of the x-coordinates of the
points `Q. With N primes `, computing all points requires about 8N multiplications in Z/nZ,
assuming a few precomputed small even multiples of Q. Balancing the computational efforts
of the two stages with B1 = 256 as above, leads to B2 = 2803 (and N = 354).

The baby-step giant step approach from [36] speeds up the calculation at the cost of more
memory, while also exploiting that for Edwards curves and any point P it is the case that

y(P )

t(P )
=
y(−P )

t(−P )
, (1)

with y(P ) and t(P ) the y- and t-coordinate, respectively, of P .

For a giant-step value w < B1, any ` as above can be written as vw ± u where u ∈
U =

{
u ∈ Z : 1 ≤ u ≤ w

2 , gcd(u,w) = 1
}

, and v ∈ V =
{
v ∈ Z :

⌈
B1
w −

1
2

⌉
≤ v ≤

⌊
B2
w + 1

2

⌋}
.

Comparing (vw − u)Q to the zero point modulo p but not modulo n amounts to
checking if gcd(t(uQ)y(vwQ) − t(vwQ)y(uQ), n) 6= 1. Because of (1), this compares
(vw + u)Q to the zero point as well. Hence, computation of gcd(m,n) for m =∏

v∈V
∏

u∈U (t(uQ)y(vwQ)− t(vwQ)y(uQ)) suffices to check if Q has prime order in (B1, B2].

Optimal parameters balance the costs of the preparation of the ϕ(w)
2 tabulated baby-step val-

ues (y(uQ) : t(uQ)) (where ϕ is Euler’s totient function) and on the fly computation of the
giant-step values (y(vwQ) : t(vwQ)). Suboptimal, smaller w-values may be used to reduce
storage requirements. For instance, the choice w = 2 · 3 · 5 · 7 and B2 = 7770 leads to 24
tabulated values and a total of 2904 multiplications and squarings modulo n, which matches
the computational effort of stage 1 with B1 = 256. Although gcd(u,w) = 1 already avoids
easy composites, the product can be restricted to those u, v for which one of vw± u is prime
if storage for about B2−B1

w × ϕ(w)
2 bits is available. With w and tabulated baby-step values

as above, this increases B2 to 8925 for a similar computational effort, but requires about 125
bytes of storage. A more substantial improvement is to define

yv =
( ∏

ṽ∈V−{v}

t(ṽwQ)
)( ∏

ũ∈U
t(ũQ)

)
y(vwQ) and yu =

( ∏
ũ∈U−{u}

t(ũQ)
)( ∏

ṽ∈V
t(ṽwQ)

)
y(uQ),

and to replace m by
∏

v∈V
∏

u∈U (yv − yu). This saves 2|V ||U | of the 3|V ||U | multiplications
in the calculation of m at a cost that is linear in |U |+ |V | to tabulate the yv and yu values.
For instance, it allows usage of B2 = 16 384 at an effort of 3368 modular multiplications.



4 GPU Implementation Details

In this section we outline our approach to implement the algorithms from Section 3 with a
focus on the many-core GPU architecture. We used a quad-core Intel i7-3770K CPU running
at 3.5 GHz with 16 GB of memory and an NVIDIA GeForce GTX 580 GPU, with 512 CUDA
cores running at 1544 MHz and 1.5 GB of global memory, as further described below.

4.1 Compute unified device architecture

We focus on the GeForce x-series families for x ∈ {8, 9, 100, 200, 400, 500, 600, 700}, of the
NVIDIA GPU architecture with the compute unified device architecture (CUDA) [41]. Our
NVIDIA GeForce GTX 580 GPU belongs to the GeForce 400- and 500-series ([40]) of the
Fermi architecture family. These GPUs support 32× 32→ 32-bit multiplication instructions,
for both the least and most significant 32 bits of the result.

Each GPU contains a number of streaming multiprocessors (SMs), with each SM consist-
ing of multiple scalar processor cores (SP). On a Fermi architecture GPU there are typically
about 16 SMs and 32 SPs per SM, but numbers vary per model. C for CUDA is an extension
to the C language that employs the single-instruction multiple-thread (SIMT) model of mas-
sively parallel programming. The programmer defines kernel functions, which are compiled
for and executed in parallel on the SPs such that each light-weight thread executes the same
instructions but on its own data. A number of threads is grouped into a thread block which is
scheduled on a single SM, the threads of which time-share the SPs.

Threads inside a thread block are executed in groups of 32 called warps. On Fermi ar-
chitecture GPUs each SM has two warp schedulers and two instruction dispatch units. This
means that two instructions, from separate warps, can be scheduled and dispatched at the
same time. Switching between warps, filling the pipeline as much as possible, a high through-
put rate can be sustained. The distinct possibilities of a conditional branch are executed
serially by the threads inside a warp, with threads active only when their branch is executed.
Multiple execution paths within a warp are thus best avoided.

Threads in the same block can communicate via on-chip shared memory and may syn-
chronize their execution using barriers (a synchronization method which makes threads wait
until all reach a certain point). There is a large but relatively slow amount of global memory
that is accessible to all threads. Fermi architecture GPUs have an L1-cache for each SM, and
a unified L2-cache together with fast constant (read-only) memory initialized by the CPU.

4.2 Modular arithmetic on GPUs

We used the parallel thread execution (PTX) instruction set and inline assembly wherever
possible to simplify (cf. carry-handling) and speed-up (cf. multiply-and-add) our code; Table 7
in the Appendix lists the arithmetic assembly routines used. “Warp divergent” code was
reduced to a minimum by converting most branches into straight line code to avoid different
execution paths within a warp: branch-free code that executes both branches and uses a bit-
mask to select the correct value was often found to be more efficient than “if-else” statements.

Practical performance. Our decision not to use parallel integer arithmetic dictates the use
of algorithms with minimal register usage. For Montgomery multiplication, the most critical
operation, we therefore preferred the plain interleaved schoolbook method to Karatsuba [25];
Algorithm 6 in the Appendix gives the CUDA pseudo-code for moduli of at least 96 bits.



Table 1. Benchmark results for the NVIDIA GTX 580 GPU for number of Montgomery multiplications per
second and ECM trials per second for various modulus sizes. The Montgomery multiplication throughput
reported in [29] was scaled as explained in the text. The estimated peak throughput based on an instruction
count is also included together with the total number of dispatched threads. ECM used bounds B1 = 256 and
B2 = 16384 (for a total of 2844 + 3368 = 6212 Montgomery multiplications per trial).

Leboeuf [29] this work
Montgomery multiplications ECM (8192 threads for all sizes)

moduli measured measured peak #threads trials Montgomery multiplications
bitsize (scaled, millions) (millions) (thousands) measured (millions)

96 10119 10135 16384 1078 6697
128 2799 5805 5813 16384 674 4187
160 2261 3760 3764 16384 453 2814
192 1837 2631 2635 16384 309 1920
224 1507 1943 1947 15360 243 1510
256 1212 1493 1497 10240 180 1118
320 828 962 964 10240 107 665
384 600 671 672 9216 86 534

Table 1 compares our results both with the state-of-the-art implementation from [29]
benchmarked on an NVIDIA GTX 480 card (480 cores, 1401Mhz) and with the ideal peak
throughput attainable on our GTX 580 GPU. Compared to [29] our throughput is up to twice
better, especially for smaller (128-bit) moduli, even after the figures from [29] are scaled by
a factor of 512

480 ·
1544
1401 to account for our larger number of cores (512) and higher frequency

(1544 MHz). For 32`-bit moduli, with ` ∈ [3, 12] (i.e. moduli ranging from 96 to 384 bits),
we counted the total number of multiplication and multiply-and-add instructions required by
Algorithm 6 (including all calls to the auxiliary algorithms in the Appendix). The throughput
of those instructions on our GPU is 0.5 per clock cycle per core, whereas the throughput
of the addition instructions is 1 per clock cycle per core. Since we use fewer addition than
multiplication instructions, our throughput count considers only the latter. Thus, our estimate
for the Montgomery multiplication peak throughput is obtained as 1544·106·16·32

2m(`) where m(`) =

`(4` + 1) is the number of multiplication instructions performed by Algorithm 6. In our
benchmarks we transfer to the GPU two (distinct) operands and a modulus for each thread,
and then compute one million modular multiplications using Algorithm 6 (using each output
as one of the next inputs) before transferring the results back to the CPU. Our throughput
turns out to be very close to the peak value.

4.3 Elliptic curve arithmetic on GPUs

When running stage 1 of ECM on memory constrained devices like GPUs, the large number of
precomputed points required for windowing methods cannot be stored in fast memory. Thus,
one is forced to settle for a (much) smaller window size, thereby reducing the advantage
of using twisted Edwards curves. For example, in [7] windowing is not used at all because,
citing [7], “Besides the base point, we cannot cache any other points”. Memory is also a
problem in [5], where the faster curve arithmetic from Hisil et al. [23] is not used since this
requires storing a fourth coordinate per point. These concerns were the motivation behind [10],
the approach we adopted for stage 1 of ECM (as indicated in Section 3). For stage 2 we use the
baby-step giant-step approach, optimized as described at the end of Section 3 for B2 ≤ 32768.
Using bounds that balance the number of stage 1 and 2 multiplications does not necessarily



balance the GPU running time of the two stages (this varies with the modulus size), but it is
a good starting point for further optimization.

Table 1 lists the resulting performance figures, in terms of thousands of trials per second
for various modulus sizes. Two jobs each consisting of 8192 threads were launched simultane-
ously, with each job per thread doing an ECM trial with the bounds as indicated, and with
at the start a unique modulus per thread transferred to the GPU. The relatively high register
usage of ECM reduces the number of threads that can be launched per SM before running
out of registers. Nevertheless, and despite its large number of modular additions and sub-
tractions, ECM manages to sustain a high Montgomery multiplication throughput. Except
for the comparison to the work reported in [29], we have not been able to put our results in
further perspective because we did not have access to other multiplication or ECM results or
implementations in a comparable context.

5 Cofactorization on GPUs

This section describes our GPU approach to cofactoring, i.e., recognizing among the pairs
(a, b) resulting from NFS sieving those pairs for which bfr(a/b) is Br-smooth and bdfa(a/b) is
Ba-smooth. Approaches common on regular cores (resieving followed by sequential processing
of the remaining candidates) allow pair-by-pair optimization with respect to the highest overall
yield or yield per second while exploiting the available memory, but are incompatible with
the memory and SIMT restrictions of current GPUs.

5.1 Cofactorization overview

Given our application, where throughput is important but latency almost irrelevant, it is a
natural choice to process each pair in a single thread, eliminating the need for inter-thread
communication, minimizing synchronization overhead, and allowing the scheduler to maximize
pipelining by interleaving instructions from different warps. On the negative side, the large
memory footprint per thread reduces the number of simultaneously active threads per SM.

The cofactorization stage is split into two GPU kernel functions that receive pairs (a, b)
as input: the rational kernel outputs pairs for which bfr(a/b) is Br-smooth to the algebraic
kernel that outputs those pairs for which bdfa(a/b) is Ba-smooth as well. The two kernels
have the same code structure: all that distinguishes them is that the algebraic one usually
has to handle larger values and a higher degree polynomial. To make our implementation
flexible with respect to the polynomial selection, the maximum size of the polynomial values
is a kernel parameter that is fixed at compile time and that can easily be changed together
with the polynomial degree and coefficient size and the size of the inputs.

Kernel structure. Given a pair (a, b), a kernel-thread first evaluates the relevant polynomial,
storing the odd part n of the resulting value along with identifying information i as a pair
(i, n); if applicable the special prime is removed from n. The value n is then updated in the
following sequence of steps, with all parameters set at run-time using a configuration file. First
trial division may be applied up to a small bound. The resulting pairs (i, n) are regrouped
depending on their radix-232 sizes. The cost of the resulting inter-thread communication and
synchronization is outweighed by the advantage of being able to run size-specific versions of
the other steps. All threads in a warp then grab a pair (i, n) of the same size and each thread
attempts to factor its n-value using Pollard’s p − 1 method or ECM. If the resulting n is
at most the smoothness bound, the kernel outputs the ith pair (a, b). If n’s compositeness



Table 2. Time in seconds to process a single special prime on all cores of a quad-core Intel i7-3770K CPU.

large number of pairs relations sieving cofactoring total % of time spent relations
primes after sieving found time time time on cofactoring per second

3 ≈ 5 · 105 125 25.6 4.0 29.6 13.5 4.22
4 ≈ 106 137 25.9 6.1 32.0 19.1 4.28

Table 3. Parameters choices for cofactoring. Later ECM attempts use larger bounds in the specified ranges.

desired
algorithm

rational kernel algebraic kernel
yield attempts B1 B2 attempts B1 B2

95%
Pollard p− 1 1 [256, 2048] [8192, 16384] 1 [256, 4096] [16384, 32768]

ECM [5, 10] 256 [4096, 8192] 10 [256, 512] [4096, 32768]

99%
Pollard p− 1 1 [1024, 4096] [8192, 32768] 1 [256, 2048] [8192, 16384]

ECM [10, 12] [256, 512] [4096, 32768] [10, 20] [256, 512] [4096, 32768]

cannot be established or if n is larger than some user-defined threshold, the ith pair (a, b) is
discarded. Pairs (i, n) with small enough composite n are regrouped and reprocessed.

This approach treats every pair (i, n) in the same group in the same way, which makes
it attractive for GPUs. However, unnecessary computations may be performed: for instance,
if a factoring attempt fails, compositeness does not need to be reascertained. Avoiding this
requires divergent code which, as it turned out, degrades the performance. Also, factoring
attempts may chance upon a factor larger than the smoothness bound, an event that goes by
unnoticed as only the unfactored part is reported back. We have verified that the CPU easily
discards such mishaps at negligible overhead.

Interaction between CPU and GPU. The CPU uses two programs to interact with the
GPU. The first one adds batches of (a, b) pairs produced by the siever (which may be running
on the CPU too) to a FIFO buffer and keeps track of special primes. The second program
controls the GPU by iterating the following steps (where the roles of the kernels may be
reversed and the batch sizes depend on the GPU memory constraints and the kernel):

1. copy a batch from the FIFO buffer to the GPU;

2. launch the rational kernel on the GPU;

3. store the pairs output by the rational kernel in an intermediate buffer;

4. if the intermediate buffer does not contain enough pairs, return to Step 1;

5. copy a batch from the intermediate buffer to the GPU;

6. launch the algebraic kernel on the GPU (providing it with the proper special primes);

7. store the pairs output by the algebraic kernel in a file and return to Step 1.

Exploiting the GPU memory hierarchy. GPU performance strongly depends on where
intermediate values are stored. We use constant memory for fixed data precomputed by the
CPU and accessed by all threads at the same time: primes for trial division, polynomial
coefficients, and baby-step giant-step table-indices for the second stages of factoring attempts.
To lower register pressure, the fast shared memory per SM acts as a “user-defined cache” for
the values most frequently accessed, such as the moduli n to be factored and the values
−n−1 mod 232. The slower but much larger global memory stores the batch of (a, b) pairs
along with their current n-values. To reduce memory overhead, the n-values are moved back
and forth to shared memory after regrouping.
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Fig. 1. Rational kernel cofactoring run times as a function of the Pollard p− 1 bounds with desired yield 95%.

Table 4. Approximate timings in seconds of cofactoring steps to process approximately 50 million (a, b) pairs,
measured using the CUDA clock64 instruction. The wall clock time (measured with the unix time utility)
includes the kernel launch overhead the CPU/GPU memory transfer and all CPU book-keeping operations.

number of desired
kernel

polynomial trial Pollard
ECM regrouping total

wall
large primes yield evaluation division p− 1 clock

3
95%

rational 0.05 - 56.42 149.49 5.97 211.94
263

algebraic 0.10 0.36 6.21 39.05 0.44 46.16

99%
rational 0.05 - 79.19 213.15 7.75 300.16

367
algebraic 0.10 0.36 10.84 48.93 0.68 60.91

4
95%

rational 0.06 - 57.50 122.66 7.22 187.45
324

algebraic 0.18 0.88 15.75 110.75 1.11 128.68

99%
rational 0.06 - 57.48 158.49 8.53 224.57

479
algebraic 0.18 0.89 27.47 212.47 1.79 242.80

5.2 Parameter selection

For our experiments we applied the CPU NFS siever from [16] (obviously, with multi-threading
enabled) to produce relations for the 768-bit number from [27]. Except for the special prime,
three so-called large primes (i.e., primes not used for sieving but bounded by the applicable
smoothness bound) are allowed in the rational polynomial value, whereas on the algebraic side
the number of large primes is limited to three or four. Table 2 lists typical figures obtained
when processing a single special prime in either setting; the percentages are indicative for
NFS factorizations in general. The relatively small amount of time spent by the CPU on
cofactoring suggests various ways to select optimal GPU parameters. One approach is aiming
for as many relations per second as possible. Another approach is to aim for a certain fixed
percentage of the relations among the pairs produced by NFS sieving, and then to select
parameters that minimize the GPU time (thus maximizing the number of CPUs that can
be served by a GPU). Although in general a fixed percentage cannot be ascertained, it can
be done for experimental runs covering a fixed set of special prime ranges, and the resulting
parameters can be used for production runs covering all special primes. Here we report on this
latter approach in two settings: aiming for all (denoted by “99%”) or for 95% of all relations.



Experiments. For a fixed set of special prime ranges and both large prime settings we deter-
mined all (a, b) pairs generated by NFS sieving and counted all relations resulting from those
(a, b) pairs. Next, we processed the (a, b) pairs for either setting using our GPU cofactoring
program, while widely varying all possible choices and aiming for 95% or 99% of all relations.
This led to the observations below. Although other input numbers (than our 768-bit modulus)
may lead to other choices our results are indicative for generic large composites.

We found that the rational kernel should be executed first, that it is best to skip trial
division in the rational kernel, and that a small trial division bound (say, 200) in the algebraic
kernel leads to a slight speed-up compared to not using algebraic trial division. For all other
steps the two kernels behave similarly, though with somewhat different parameters that also
depend on the desired yield (but not on the large prime setting). The details are listed in
Table 3. Not shown there are the discarding thresholds that slightly decrease with the number
of ECM attempts. Actual run times of the cofactoring steps are given in Table 4. Rational
batches contain 3.5 times more pairs than algebraic ones (because the algebraic kernel has to
handle larger values). For 3 large primes the rational kernel is called 5 times more often than
the algebraic one, for 4 large primes 2.2 times more often.

Varying the bounds of the Pollard p − 1 factoring attempt on the rational side within
reasonable ranges does not noticeably affect the yield because almost all missed prime factors
are found by the subsequent ECM attempts. However, early removal of small primes may
reduce the sizes, thus reducing the ECM run time and, if not too much time is spent on
Pollard p − 1, also the overall run time. This is depicted in Figure 1. Note that in record
breaking ECM work the number of trials is much larger; however, according to [55] the
empirically determined numbers reported in Table 3 are in the theoretically optimal range.

5.3 Performance results

Table 5 summarizes the results when the same special prime as in Table 2 is processed, but
now with GPU-assistance. The figures clearly show that farming out cofactoring to a GPU is
advantageous from an overall run time point of view and that, depending on the yield desired,
a single GPU can keep up with multiple quad-core CPUs. Remarkably, more relations may
be found given the same collection of (a, b) pairs: with an adequate number of GPUs each
special prime can be processed faster and produces more relations. Based on more extensive
experiments the overall performance gain measured in “relations per second” found with and
without GPU assistance is 27% in the 3 large primes case and 50% in the 4 large primes case
(cf. Table 6).

Including equipment and power expenses in the analysis is much harder, as illustrated
by (unrelated) experiments in [43]. Relative power and purchase costs vary constantly, and
the power consumption of a GPU running CUDA applications depends on the configuration

Table 5. GPU cofactoring for a single special prime. The number of quad-core CPUs that can be served by a
single GPU is given in the second to last column.

large number of pairs desired
seconds

CPU/GPU relations
primes after sieving yield ratio found

3 ≈ 5 · 105 95% 2.6 9.8 132
99% 3.7 6.9 136

4 ≈ 106 95% 6.5 4.0 159
99% 9.6 2.7 165



Table 6. Processing multiple special primes with desired yield 99%.

large special number of pairs
setting

total relations relations
primes primes after sieving seconds found per second

3 100 ≈ 5 · 107 CPU only 2961 12523 4.23
CPU and GPU 2564 13761 5.37

4 50 ≈ 5 · 107 CPU only 1602 6855 4.28
CPU and GPU 1300 8302 6.39

and the operations performed [13]. For instance, global memory accesses account for a large
fraction of the power consumption and the effect on the power consumption of arithmetic
instructions depends more on their throughput than on their type. We have not carried out
actual power consumption measurements comparing the settings from Table 6.

6 Conclusion

It was shown that modern GPUs can be used to accelerate a compute-intensive part of the
relation collection step of the number field sieve integer factorization method. Strategies were
outlined to perform the entire cofactorization stage on a GPU. Integration with state-of-the-
art lattice siever software indicates that a performance gain of up to 50% can be expected for
the relation collection step of factorization of numbers in the current range of interest, if a
single GPU can assist a regular multi-core CPU. Because relation collection for such numbers
is responsible for about 90% of the total factoring effort the overall gain may be close to 45%;
we have no experience with other sizes yet.

It is a subject of further research if a speed-up can be obtained using other types of graphic
cards (to which we did not have access). In particular it would be interesting to explore if and
how lower-end CUDA enabled GPUs can still be used for the present application and if the
larger memory of more recent cards such as the GeForce GTX 780 Ti or GeForec GTX Titan
can be exploited. Given our results we consider it unlikely that it would be advantageous to
combine multiple GPUs using NVIDIA’s scalable link interface.
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Appendix

Let r = 232.

Table 7. Pseudo-code notation for CUDA PTX assembly instructions [42] used in our implementation. Func-
tion parameters are 32-bit unsigned integers and the suffixes are analogous to the actual CUDA PTX suffixes.
We denote by f the single-bit carry flag set by instructions with suffix “.cc”.

Pseudo-code notation Operation Carry flag effect

addc(c, a, b) c← a+ b+ f mod r
addc.cc(c, a, b) c← a+ b+ f mod r f ← b(a+ b+ f)/rc

subc(c, a, b) c← a− b− f mod r
subc.cc(c, a, b) c← a− b− f mod r f ← b(a− b− f)/rc
mul.lo(c, a, b) c← a · b mod r
mul.hi(c, a, b) c← b(a · b)/rc

mad.lo.cc(d, a, b, c) d← a · b+ c mod r f ← b((a · b) mod r + c)/rc
madc.lo.cc(d, a, b, c) d← a · b+ c+ f mod r f ← b((a · b) mod r + c+ f)/rc
mad.hi.cc(d, a, b, c) d← (b(a · b)/rc+ c) mod r f ← b(b(a · b)/rc+ c)/rc

madc.hi.cc(d, a, b, c) d← (b(a · b)/rc+ c+ f) mod r f ← b(b(a · b)/rc+ c+ f)/rc

Algorithm 1 Mul(Z, x, Y )

Input: Integers x and Y =
∑n−1

i=0 Yir
i such that 0 ≤ x, Yi < r for 0 ≤ i < n.

Output: Z = x · Y =
∑n

i=0 Zir
i.

mul.lo(Z0, x, Y0)
mul.hi(Z1, x, Y0)
mad.lo.cc(Z1, x, Y1, Z1)
mul.hi(Z2, x, Y1)
for i = 2 to n− 2 do

madc.lo.cc(Zi, x, Yi, Zi)
mul.hi(Zi+1, x, Yi)

madc.lo.cc(Zn−1, x, Yn−1, Zn−1)
madc.hi(Zn, x, Yn−1, 0)
return Z (=

∑n
i=0 Zir

i)

Algorithm 2 Sub(Z, Y )

Input: Integers Z =
∑n

i=0 Zir
i and Y =

∑n−1
j=0 Yjr

j such that 0 ≤ Zi, Yj < r for 0 ≤ i ≤ n, 0 ≤ j < n, and
0 ≤ Z < 2Y .

Output: If Z ≥ Y then Z = Z − Y =
∑n

i=0 Zir
i with Zn = 0. Otherwise Z = rn+1 − (Y − Z) mod rn+1 =∑n

i=0 Zir
i with Zn = r − 1.

sub.cc(Z0, Z0, Y0)
for i = 1 to n− 1 do

subc.cc(Zi, Zi, Yi)
subc(Zn, Zn, 0)
return Z (=

∑n
i=0 Zir

i)



Algorithm 3 PredicateAdd(Z, Y, p) (where a∧b computes the bitwise logical AND operation
on each pair of corresponding bits in a and b)

Input: Integers Z =
∑n−1

i=0 Zir
i, Y =

∑n−1
i=0 Yir

i, and p ∈ {0, r − 1} such that 0 ≤ Zi, Yi < r for 0 ≤ i < n,
and 0 ≤ Z < rn.

Output: Z = Z + 0 if p = 0 and Z = Z + Y if p = r − 1.
add.cc(Z0, Z0, Y0 ∧ p)
for i = 1 to n− 2 do

addc.cc(Zi, Zi, Yi ∧ p)
addc(Zn−1, Zn−1, Yn−1 ∧ p)
return Z (=

∑n−1
i=0 Zir

i)

Algorithm 4 MulAddShift(Z, x, Y, c)

Input: Integers Z =
∑n

i=0 Zir
i, Y =

∑n−1
j=0 Yjr

j , x and c such that 0 ≤ x, Zi, Yj < r for 0 ≤ i ≤ n, 0 ≤ j < n
and c ∈ {0, 1}.

Output: Z = b(Z + x · Y + crn+1)/rc =
∑n

i=0 Zir
i

mad.lo.cc(Z0, x, Y0, Z0)
for i = 1 to n− 1 do

madc.lo.cc(Zi, x, Yi, Zi)
addc(Zn, Zn, 0)
mad.hi.cc(Z0, x, Y0, Z1)
for i = 2 to n do

madc.hi.cc(Zi−1, x, Yi−1, Zi)
addc(Zn, c, 0)
return Z (=

∑n
i=0 Zir

i)

Algorithm 5 MulAdd(Z, c, x, Y )

Input: Integers Z =
∑n

i=0 Zir
i, Y =

∑n−1
j=0 Yjr

j , and x such that 0 ≤ x, Zi, Yj < r for 0 ≤ i ≤ n, 0 ≤ j < n,
and 0 ≤ Z < 2rn.

Output: Z = (Z + x · Y ) mod rn+1 =
∑n

i=0 Zir
i, c = b(Z + x · Y )/rn+1c (c ∈ {0, 1}).

mad.lo.cc(Z0, x, Y0, Z0)
for i = 1 to n− 1 do

madc.lo.cc(Zi, x, Yi, Zi)
addc(Zn, Zn, 0)
mad.hi.cc(Z1, x, Y0, Z1)
for i = 2 to n− 1 do

madc.hi.cc(Zi, x, Yi−1, Zi)
c← Zn

madc.hi.cc(Zn, x, Yn−1, Zn)
c← (c > Zn) // c ∈ {0, 1}
return Z (=

∑n
i=0 Zir

i)

Algorithm 6 Radix-232 interleaved Montgomery multiplication (we assume n > 2).

Input: Integers A,B,M, µ such that A =
∑n−1

i=0 Air
i with 0 ≤ Ai < r, 0 ≤ B < M < rn, and µ =

(−M−1) mod r.
Output: Integer C = A·B

r

n
mod M =

∑n−1
i=0 Cir

i with 0 ≤ Ci < r and 0 ≤ C < M .
1: Mul(C,A0, B)
2: mul.lo(q, C0, µ)
3: MulAddShift(C, q,M)
4: for i = 1 to n− 1 do
5: MulAdd(C, c,Ai, B) // c is a temporary unsigned integer variable
6: mul.lo(q, C0, µ)
7: MulAddShift(C, q,M, c)
8: Sub(C,M)
9: PredicateAdd(C,M,Cn) // Cn ∈ {0, r − 1}


