
Differential Properties of the HFE
Cryptosystem

Taylor Daniels1 and Daniel Smith-Tone1,2

1Department of Mathematics, University of Louisville,
Louisville, Kentucky, USA

2National Institute of Standards and Technology,
Gaithersburg, Maryland, USA

tsdani02@louisville.edu, daniel.smith@nist.gov

Abstract. Multivariate Public Key Cryptography (MPKC) has been
put forth as a possible post-quantum family of cryptographic schemes.
These schemes lack provable security in the reduction theoretic sense,
and so their security against yet undiscovered attacks remains uncertain.
The effectiveness of differential attacks on various field-based systems
has prompted the investigation of differential properties of multivariate
schemes to determine the extent to which they are secure from differ-
ential adversaries. Due to its role as a basis for both encryption and
signature schemes we contribute to this investigation focusing on the
HFE cryptosystem. We derive the differential symmetric and invariant
structure of the HFE central map and provide a collection of parameter
sets which make HFE provably secure against a differential adversary.

1 Introduction and Outline

Along with the discovery of polytime quantum algorithms for factoring and com-
puting discrete logarithms, see [1], came a rising interest in “quantum-resistant”
cryptographic protocols. For the last two decades this interest has blossomed
into a large international effort to develop post-quantum cryptography, a term
which elicits visions of a post-apocalyptic world where quantum computing ma-
chines reign supreme. While progress in quantum computing indicates that such
devices are not precluded by the laws of physics, it is not at all clear when
we may see large-scale quantum computing devices becoming a cryptographic
threat. Nevertheless, the potential and the uncertainty of the situation clearly
establish the need for secure post-quantum options.

One of a few reasonable candidates for security in a quantum computing
world is multivariate cryptography. We already rely heavily on the difficulty
of inverting nonlinear systems of equations in symmetric cryptography, and we
quite reasonably suspect that that security will remain in the quantum paradigm.
Multivariate Public Key Cryptography (MPKC) has the added challenge of re-
sisting quantum attack in the asymmetric setting.
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While it is difficult to be assured of a cryptosystems’s post-quantum secu-
rity in light of the continual evolution of the relatively young field of quantum
algorithms, it is reasonable to start by developing schemes which resist classical
attack and for which there is no known significant weakness in the quantum
realm. Furthermore, the establishment of security metrics provide insight which
educate us about the possibilities for attacks and the correct strategies for the
development of cryptosystems.

In this vein, some classification metrics are introduced in [2, 3] which can
be utilized to rule out certain classes of attacks. While not reduction theoretic
attacks, reducing the task of breaking the scheme to a known (or often suspected)
hard problem, these metrics can be used to prove that certain classes of attacks
fail or to illustrate specific computational challenges which an adversary must
face to effect an attack.

Many attacks on multivariate public key cryptosystems can be viewed as
differential attacks, in that they utilize some symmetric relation or some invari-
ant property of the public polynomials. These attacks have proved effective in
application to several cryptosystems. For instance, the attack on SFLASH, see
[4], is an attack utilizing differential symmetry, the attack of Kipnis and Shamir
[5] on the oil-and-vinegar scheme is actually an attack exploiting a differential
invariant, even Patarin’s initial attack on C∗ [6] can be viewed as an exploita-
tion of a trivial differential symmetry, see [3]. These attacks are evidence that
the work in [2, 3] is worthy of continuation and further development.

This task leads us to an investigation of the HFE cryptosystem, see [7], and
a characterization of its differential properties. Results similar to those of [2, 3]
will allow us to make conclusions about the differential security of HFE, and
provide some insight into the properties of some of its variants such as HFE−

and HFEv−, see [8] and [9].

To this end, we derive the differential symmetry and differential invariant
structure of HFE. Specifically, we are able to bound the probability that an
HFE primitive has a nontrivial differential structure and to provide parameter
sets for which HFE is provably secure against a differential adversary. In con-
junction with degree of regularity results such as [10, 11], these results provide
a proof of security against all known attacks of any form as well as any future
differential attack.

The paper is organized as follows. First, we recall the HFE scheme from
[7]. In the following section, we provide criteria for the nonexistence of a linear
differential symmetric relation on the private key. We next review the notion
of a differential invariant and a method of classifying differential invariants. We
continue, analyzing the differential invariant structure of HFE, deriving bounds
on probability of the existence of a nontrivial differential invariant in the general
case. Finally, we conclude, noting parameters which provide provable differential
security.
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2 HFE

The Hidden Field Equations (HFE) scheme was first presented by Patarin in [7]
as a method of avoiding his linearization equations attack on the C∗ scheme of
Matsumoto and Imai, see [6] and [12]. The basic idea of the system is to use the
butterfly construction to hide an easily invertible polynomial over an extension
field.

More specifically, let Fq be a finite field and let K be a degree n extension
of Fq. Given an easily invertible “quadratic” map f : K → K, quadratic in
the sense that f is a sum of products of pairs of Fq-linear functions of x, one
constructs a system of quadratic formulae over Fq by composing two Fq-affine
transformations T,U : K → K thusly, P = T ◦ f ◦ U , and then expressing the
composition over the base field, Fq. Explicitly any such “core” map f has the
form:

f(x) =
∑
i≤j

qi+qj<D

αi,jx
qi+qj +

∑
i

qi<D

βix
qi + γ,

with the degree bound D established to allow for easy inversion.
To encrypt given the public key P (x), one simply evaluates every public

polynomial at the plaintext vector x ∈ Fn
q ≈ K. Decryption is accomplished by

inverting each of the three private components individually. The most interesting
inversion is that of f , which is inverted via a polynomial system solver such as
the Berlekamp algorithm.

3 Linear Differential Symmetry

The discrete differential of a field map f : K→ K is given by:

Df(y, x) = f(x+ y)− f(x)− f(y) + f(0).

It is simply a normalized difference equation with variable interval. In [4], the
SFLASH signature scheme was broken by exploiting a symmetric relation of the
differential of the public key. This relation was inherited from the core map of
the scheme. Specifically, a linear differential symmetry is an equation in which
linear maps are applied to the differential in such a way that the equation is
linear in the unknown coefficients of the linear maps. We can always express the
symmetry in the following form:

Df(My, x) +Df(y,Mx) = ΛMDf(y, x), (1)

where M and ΛM are linear maps. To evaluate the potential for a differential
symmetric attack on HFE, we consider conditions for the existence of a linear
differential symmetry on the core map f of an HFE scheme.

Consider the differential of the core map:

Df(y, x) =
∑
i≤j

qi+qj<D

αi,j(y
qixq

j

+ yq
j

xq
i

). (2)
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Df is a K-bilinear form. We choose a convenient representation for K:

x 7→


x
xq

...

xq
n−1

 .
Under this representation we can express Df as the n × n symmetric matrix
with (i, j)th and (j, i)th entries αi,j for i 6= j and (i, i)th entry 2αi,i (which may
be zero depending on the characteristic of K).

Since any linear map M : K→ K can be written Mx =
∑n−1

i=0 mix
qi , under

our representation M can be expressed:

M =


m0 m1 . . . mn−1
mq

n−1 mq
0 . . . mq

n−2
...

...
. . .

...

mqn−1

1 mqn−1

2 . . . mqn−1

0

 .
In this representation, we have the formula

Df(My, x) +Df(y,Mx) = y(MTDf +DfM)x.

Consider the action of ΛM onDf . ΛMDf(y, x) =
∑n−1

k=0 λkDf(y, x)q
k

. Notice

specifically that in our representation the matrix for Dfq
k

is the same as the
matrix representing Df shifted to the right and down k units with all entries
raised to the qkth power. This shift is due to the fact that

Df(y, x)q
k

=
∑
i≤j

qi+qj<D

αqk

i,j(y
qi+k

xq
j+k

+ yq
j+k

xq
i+k

).

Specifically, the (i, j)th entry of Dfq
k

is αqk

i−k,j−k if i 6= j, and (i, i)th entry

(2αi−k,i−k)q
k

= 2αqk

i−k,i−k (0 in characteristic two).
Thus the possibility of a differential symmetry can be deduced simply by

setting the matrix MTDf + DfM equal to the matrix ΛMDf . With certain
constraints it is easy to deduce whether there exists a solution.

Theorem 1 Let f(x) be an HFE polynomial (in particular f is not a monomial
function). Suppose that f has the following properties:

1. no power of q is repeated among the exponents of f , and
2. the difference of the powers of q in each exponent is unique.

Then f has no nontrivial differential symmetry.
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Fig. 1. Graphical representation of the equation MTDf+DfM = ΛMDf for the HFE

polynomial f(x) = αi,jx
qi+qj + αr,sx

qr+qs . Horizontal and vertical lines represent
nonzero entries in MTDf + DfM while diagonal lines represent nonzero entries in
ΛMDf . Solid lines correspond to the (i, j) monomial while dotted lines correspond to
the (r, s) monomial.

Proof. First consider computing DfM . From the condition on the monomials
of f , Df has at most a single nonzero entry in any row or column. Therefore
each row of DfM is a multiple of a row in M . In particular, if αi,jx

qi+qj is a
monomial of f , then the ith row of DfM is[

αi,jm
qj

−j αi,jm
qj

1−j . . . αi,jm
qj

−1−j

]
,

and the jth row is [
αi,jm

qi

−i αi,jm
qi

1−i . . . αi,jm
qi

−1−i

]
.

Consider the ith row of MTDf+DfM . For all k not occurring as a power of q in

f , the (i, k)th entry is αi,jm
qj

k−j . Consider the (i, j)th entry of MTDf +DfM .
This quantity is the sum of the (i, j)th entry of DfM and the (j, i)th entry,

specifically αi,j(m
qi

0 +mqj

0 ). Let αr,sx
qr+qs be another monomial of f . Then the

(i, r)th entry of MTDf +DfM is αi,jm
qj

r−j +αr,sm
qs

i−s, and the (i, s)th entry is

αi,jm
qj

s−j + αr,sm
qr

i−r.

In ΛMDf , for all αi,jx
qi+qj a monomial in f , the (i + k, j + k)th entry is

equal to the (j + k, i + k)th entry and takes the value αqk

i,jλk while all other
entries are zero.

Therefore consider the elements in the ith row of the equation MTDf +
DfM = ΛMDf . For every monomial αr,sx

qr+qs in f , we have that the s−r+ith
element and the r − s + ith element of row i in ΛMDf are nonzero. All other
entries of that row are zero. Therefore, for all k not occurring as a power of q
in f or as a difference of the powers of q in an exponent of a monomial in f
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plus i, mk−j = 0. Given the condition that the differences of powers of q in the
exponents are unique, and the equations mk−t = 0 for all other t occurring as
powers of q, we obtain mi = 0 for all i 6= 0. Therefore M is a multiplication map.
But as proven in Theorem 2 in [13], if m0 6∈ Fq this implies that the polynomial
is a C∗ monomial, a contradiction. Thus M is simply multiplying by a scalar
which induces a symmetry for every map g : K → K. Thus f has no nontrivial
differential symmetry.

We note that the conditions of the above theorem are very easy to satisfy
in actual implementations, though for very small D there may be some issues
regarding a lack of entropy in the private key space. With proper selection of the
extension, however, it is unlikely that this adjustment will lead to a successful
attack based on the isomorphism of polynomials problem, see [7].

4 Differential Invariants

4.1 Setup

The discrete differential Df is a symmetric, bilinear function on Fn
q (using the

vector space representation of K), but each coordinate of Df is a symmetric,
bilinear form on K. Because of this, we may express each coordinate of Df ,
[Df(y, x)]i as

[Df(y, x)]i = yTDfix.

Maintaining our definitions of K and f , we define a “first order differential
invariant” of f .

Definition 1 Let f : K → K be a function. A differential invariant of f is a
subspace V ⊆ K with the property that there is a subspace W ⊆ K such that
dim(W ) ≤ dim(V ) and ∀A ∈ SpanFq (Dfi), AV ⊆W .

Informally speaking, a function has a differential invariant if the image of a sub-
space under all differential coordinate forms lies in a fixed subspace of dimension
no larger. This definition captures the notion of simultaneous invariants, sub-
spaces which are simultaneously invariant subspaces of Dfi for all i, and detects
when large subspaces are acted upon linearly.

If we assume the existence of a first order differential invariant V , we can
define a corresponding subspace V ⊥ as the set of all elements x ∈ K such that
the dot product 〈x,Av〉 = 0 ∀v ∈ V,∀A ∈ Span(Dfi). This is not quite the
usual definition of an orthogonal complement. V ⊥ is not the set of everything
orthogonal to V , but rather everything orthogonal to AV , which may or may
not be in V .

With our definitions of V and V ⊥, we can establish the following useful
result. Assume there is a first order differential invariant V ⊆ K, and pick a
linear projection M : K → V and another linear projection M⊥ : K → V ⊥.
Examining one of the differential coordinate-forms,

[Df(M⊥y,Mx)]i = (M⊥y)T (Dfi(Mx)) (3)
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Since M⊥y is in V ⊥, and DfiMx ∈ AV , we must then have that

[Df(M⊥y,Mx)]i = (M⊥a)T (Dfi(Mx)) = 0 (4)

The “i” in Dfi did not matter, meaning that for all i (from 1 to n), i.e. for all
coordinates of Df , the above equation is true. We can then simply say that:

∀y, x ∈ K, Df(M⊥y,Mx) = 0 or equivalently, Df(M⊥K,MK) = 0 (5)

This fact will restrict what M and M⊥ can be.

4.2 M⊥ = SMT

We can make our investigation of M,M⊥ easier by employing a small result from
linear algebra. Our idea is to express M⊥ = SMT , where S may be singular,
but T is nonsingular (or vice versa if rank(M) < rank(M⊥)). The result we use
is:

Proposition 1. If A,B are two m × n matrices, then rank(A) = rank(B) if
and only if there exist nonsingular matrices C,D, such that A = CBD.

Proof. LetA be anm×nmatrix of rank r. With row operations (P,m×m) we can
get A into row echelon form, PA. Then we can use column operations (Q,n×n)
to “zero-out” the remaining nonleading elements and permute the leading 1’s
to the first r columns. Thus PAQ is the m × n matrix with the r × r identity
matrix in the upper-left region, and zeros everywhere else. Denote this matrix
as I ′. Thus PAQ = I ′. We can also do this with B, so that P ′BQ′ = I ′ = PAQ.
Thus A = (P−1P ′)B(Q′Q−1), with P−1P ′ and Q′Q−1 nonsingular.

Without loss of generality, due to the symmetry of Df , we may assume
that rank(M⊥) ≤ rank(M). If the ranks are equal, then we may apply the
proposition and write M⊥ = SMT , with S and T nonsingular. If rank(M⊥) <
rank(M), composeM with a singular matrixX so that rank(XM) = rank(M⊥),
and then apply the result so that M⊥ = S(XM)T . Then we can express
M⊥ = S′MT , where S′ is singular. The matrix T is included to ensure that
the kernels of M,M⊥ are properly aligned. Restating our differential result (5)
in this manner, we have that if M⊥ = SMT , and M : K→ V , then

∀x, y ∈ K, Df(SMTy,MTx) = 0 (6)

4.3 Minimal Polynomial

Definition 1. We define the minimal polynomial of a subspace V ⊆ K as

MV (x) =
∏
v∈V

(x− v)
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The term “minimal polynomial” is used since this is the polynomial of minimal
degree of which every element of V is a root. We note that the equationMV (x) =
0 is an Fq-linear equation.

Suppose that V has Fq-dimension d, so that |V | = qd. Then MV (x) has
degree qd and, in keeping with our previous descriptions, must have form

xq
d

+ bd−1x
qd−1

+ · · ·+ b2x
q2 + b1x

q + b0x bi ∈ K (7)

More generally, we can characterize all functions from V to K:

Proposition 2. Let FV be the ring of all functions from the Fq-subspace V of
K to K. Then FV is isomorphic to K[x]/ 〈MV (x)〉.

Proof. The ring of all functions from K to itself is K[x]/
〈
xq

n − x
〉
. Suppose

that f, g ∈ K[x]/
〈
xq

n − x
〉

are identical on V . Then for all v ∈ V , v is a root
of (f − g)(x). Thus (x − v) is a linear factor of (f − g)(x) for all v ∈ V . Thus
MV (x)|(f − g)(x). Consequently, 〈MV (x)〉 is the ideal of functions which send
V to zero. Thus K[x]/

〈
xq

n − x,MV (x)
〉

is the ring of nontrivial functions from

V to K. Since MV (x) splits in K, MV (x)|xqn − x. To see that all functions

from V to K are polynomials note that there are (qn)q
d

functions from V (of

Fq-dimension d) to K, and |K[x]/ 〈MV (x)〉 | = (qn)q
d

.

4.4 Differential Invariant Structure of HFE

If f has non-trivial invariant V we know that ∀A ∈ Span(Dfi), dim(AV ) ≤
dim(V ). Since the dot-product is non-degenerate on K, and remembering that
V ⊥ is defined slightly differently, we can say dim(V ⊥)+dim(AV ) = n. This fact
implies that dim(V ⊥)+dim(V ) ≥ n, so either dim(V ⊥) ≥ n/2 or dim(V ) ≥ n/2,
possibly both.

If dim(V ) ≥ n/2, we maintain MT : K→ V and characterize S : V → V ⊥. If
we deduce S maps V to {0}, that is, V ⊥ = {0}, this would mean dim(AV ) = n
and consequently AV = K. If V 6= K, we contradict dim(AV ) ≤ dim(V ), and if
V = K, we contradict the non-triviality of V .

If dim(V ⊥) ≥ n/2, we take M ′T ′ : K → V ⊥ instead and characterize S′ :
V ⊥ → V . If S′ is the zero map on V ⊥, i.e. S′V ⊥ = V = {0}, then we contradict
the non-triviality of V .

Without loss of generality we assume dim(V ) ≥ n/2 because the following
analysis and results can be achieved just as easily if we have dim(V ⊥) ≥ n/2.

For notational convenience, we now fix MTx = x̂, MTy = ŷ, and MTK = V .
Starting with the core map

f(x) =
∑
i≤j

qi+qj<D

αi,jx
qi+qj +

∑
i

qi<D

βix
qi + γ,

we compute:

Df(Sŷ, x̂) =
∑
i≤j

qi+qj<D

αi,j

[
(Sŷ)q

i

x̂q
j

+ (Sŷ)q
j

x̂q
i
]
. (8)
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For practical parameters, D is far smaller than |V |, see for example [7], and so

for Df(Sŷ, x̂) = 0, every coefficient of x̂q
j

must be in 〈MV (ŷ)〉. Expanding (8)
we obtain:

D(Sŷ, x̂) =
∑
i≤j

qi+qj<D

αi,j

[
(Sŷ)

qi
x̂q

j

+ (Sŷ)
qj
x̂q

i
]

=
∑
i,j

qi+qj<D

[
(αi,j + αj,i) (Sŷ)

qi
]
x̂q

j

,
(9)

where we specifically note in the last expression that if i 6= j exactly one of αi,j

and αj,i may be nonzero. Thus for each j such that qj < D we have the following
polynomial: ∑

i:qi+qj<D

(αi,j + αj,i)(Sŷ)q
i

. (10)

The membership of the jth polynomial of the form (10) in 〈MV (ŷ)〉 provides
the relation ∑

i:qi+qj<D

(αi,j + αj,i)(Sŷ)q
i

= 0. (11)

Relation (11) has ` = blogq(D)c degrees of freedom on S as a linear action
on V . Therefore, there are d − ` Fq-linearly independent relations on S from
a single monomial of (9). For a practically chosen D, two linearly independent
relations of this form on S force S to be the zero map on V . Consequently, we
have that V ⊥ = {0}, a contradiction. Specifically, the probability that two such
given relations are independent is approximately 1 − q−n`; thus with very high
probability f has no differential invariant structure.

In particular, we provide a specific strategy for provably eliminating differ-
ential invariants.

Theorem 2 Let f be an HFE polynomial with degree bound D < qn/2. If there
is a power of q which is unique, f has no non-trivial invariant structure.

Proof. Assume by way of contradiction that f has a non-trivial differential in-
variant. Let j be the unique power of q occurring in an exponent in f . By the
above discussion it suffices to analyze membership of the jth polynomial of the
form (10) in 〈MV (ŷ)〉. Given the condition on j, this polynomial has the form
(αrj +αjr)(Sŷ)q

r

. If this polynomial is in 〈MV (ŷ)〉, then so is Sŷ, sinceMV (ŷ)
has no repeated factors, and we have SV = {0}, a contradiction.

5 IP, Degree of Regularity, Other Factors

The restrictions suggested in Theorems 1 and 2 reduce the entropy of the private
key space, which might raise concerns about vulnerability to attacks based on
a “guess-then-IP” strategy, or to direct inversion via Gröbner bases. As it turns
out, for even modest parameters these issues are not realized.
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Consider, for example, using the parameter set for HFE Challenge 2 without
the minus modification; specifically, we have q = 16, n = 36, and D = 4352 =
162 + 163. Thus K = F1636 , and our HFE map must have the form :

f(x) = α0,0x
q0+q0 + α0,1x

q0+q1 + α1,1x
q1+q1 + α0,2x

q0+q2 + α1,2x
q1+q2

+ α2,2x
q2+q2 + α0,3x

q0+q3 + α1,3x
q1+q3 + β0x

q0

+ β1x
q1 + β2x

q2 + β3x
q3 + γ

We may choose α1,2 and α0,3 to be the only non-zero α, so that no exponents
are repeated and the differences 2−1 = 1 and 3−0 = 3 are unique. By Theorems
1 and 2, f has no nontrivial differential structure, and is therefore secure against
any differential adversary. The private key space is reduced from containing q13n

HFE polynomials to only containing q7n such maps.
For weak parameters, in particular when the αi,j are chosen from the base

field, an attack based on the IP problem is presented in [14]. The symmetries
used in that method, however, are not present when both α1,2 and α0,3 are
chosen randomly from K. While we may consider the coefficient of α1,2 to be
“absorbed” by the affine map T , the effect of the remaining coefficient breaks
the symmetry. Without the commutativity of the Frobenius map with the HFE
polynomial, the parameters supplied are out of range for an IP-based attack.

Another concern is that the rank of the scheme may be so low as to make
the scheme susceptible to attack via Gröbner basis methods. However, using the
theorem from [11], we compute the degree of regularity of the adjusted scheme
to be:

(16− 1)4

2
+ 2 = 32,

based on the fact that the rank of the central map is only four. Using the formula
from [15], we obtain an estimated complexity of(

36 + 32

32

)ω

where ω = 2.3766. Thus, we estimate the complexity of directly inverting this
concrete example to be O(2153).

6 Conclusion

HFE is the oldest surviving mainstream multivariate public key cryptosystem.
For eighteen years, it has been studied, influencing cryptanalysis, symbolic com-
putation, and the development of new cryptographic schemes. As a platform
for the development of various signature schemes, HFE has excelled, utilizing
several modifiers to spawn new systems, some of which are leading candidates
for secure post-quantum signatures.

Our analysis contributes to the HFE legacy, elucidating the differential
structure inherent to the scheme. The results indicate that given practical param-
eters, HFE systems lack non-trivial differential invariant structure. Further, we
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have established that with a simple choice of parameters we can provably elimi-
nate non-trivial differential symmetric and invariant structure while maintaining
security against attacks exploiting a diminished private key space. Thus, HFE
is provably secure against a differential adversary.
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