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Abstract. An extended permutation is a function f : {1, . . . ,m} →
{1, . . . , n}, used to map an n-element vector a to an m-element vector
b by bi = af(i). An oblivious extended permutation allows this map-
ping to be done while preserving the privacy of a, b and f in a secure
multiparty computation protocol. Oblivious extended permutations have
several uses, with private function evaluation (PFE) being the theoreti-
cally most prominent one.
In this paper, we propose a new technique for oblivious evaluation of
extended permutations. Our construction is at least as efficient as the
existing techniques, conceptually simpler, and has wider applicability.
Our technique allows the party providing the description of f to be ab-
sent during the computation phase of the protocol. Moreover, that party
does not even have to exist — we show how to compute the private rep-
resentation of f from private data that may itself be computed from the
inputs of parties. In other words, our oblivious extended permutations
can be freely composed with other privacy-preserving operations in a
multiparty computation.
Keywords: Secure multiparty computation, Private function evaluation,
Extended permutations

1 Introduction

In Secure Multiparty Computation (SMC), k parties compute (y1, . . . , yk) =
f(x1, . . . , xk), with the party Pi providing the input xi and learning no more
than the output yi. Private Function Evaluation (PFE) is a special case of SMC,
where the function f is also private, and its description, typically in the form
of a circuit, is provided as input by one of the parties. One will thus obtain
a solution for PFE, if one designs an SMC system for a universal function f .
In SMC systems, f is usually represented as a Boolean or arithmetic circuit.
Universal circuits are large (compared to circuits they can execute), hence this
approach has not been practical so far.

Recently, Mohassel and Sadeghian [36] have split the task of oblivious circuit
evaluation into two parts — obliviously evaluating the gates, and hiding the
topology of the circuit in a manner that allows the outputs of the gates to be
passed to the inputs of next gates. They introduce oblivious extended permuta-
tions (OEP) for the second subtask. Their approach increases the performance
of PFE over the state of the art by a couple of orders of magnitude, making the
private execution of small circuits a realistic proposition.
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SMC techniques have seen significant maturation in last years, with the ap-
pearance of several frameworks [1,2,5,9,14,21,34] that allow the private compu-
tation of certain tasks with practically relevant sizes. There has been a number
of successful applications of these frameworks [3, 7, 8, 26, 30]. A common tenet
of all existing and in-progress applications is their client-server nature, where
the participating entities are partitioned into input parties providing the private
inputs to a SMC system, computing parties that execute the SMC protocols for
computing the function f , and output parties that receive the results of the com-
putation [4]. Depending on the application, these sets of parties may intersect or
even coincide, but such partitioning is nevertheless supported by the used SMC
platforms. This flexibility is certainly required in practice, as the active partic-
ipation of all input parties in all stages of computation is unwanted both for
efficiency (if the number of inputs parties is large), as well as organizational (if
the input parties do not have the ability to execute complex protocols) reasons.

Mohassel’s and Sadeghian’s OEP construction does not fit into the model
with input, computing and output parties. In their construction, the party pro-
viding the description of the private function must participate in the computa-
tion, i.e. it must be both an input and a computing party.

In this paper, we propose a multiparty OEP construction that allows the ex-
tended permutation to be input to the private computation by a non-computing
input party. Even more, our construction allows oblivious extended permutations
to be constructed during the computation from other private values, thereby
removing the need to treat them in any special manner. In fact, all our con-
structions will be presented in the Arithmetic Black Box (ABB) model, mak-
ing their use in larger applications straightforward, and also greatly simplifying
the security proofs. Our construction is conceptually simpler than [36], and, if
the number of computing parties is small, also potentially more efficient (even
though a fair comparison is difficult due to different operational profiles). We
have implemented our proposed construction and provide benchmarking results.

Our algorithms for constructing an OEP during the execution of a private
computation alternate between sorting the matrices along various columns, and
computing new columns from the existing ones in parallel manner. These tech-
niques may be of independent interest, as they can be used for various other tasks,
including the privacy-preserving grouping and aggregate computation protocols
in oblivious databases.

This paper has the following structure. We review the related work in Sec. 2
and give the necessary preliminaries, including the ABB model, in Sec. 3. We
will continue in the standard fashion, presenting the desired ideal functional-
ity for OEPs in Sec. 4, followed by the description of the actual protocol set
(together with security proofs) in Sec. 5, with the most complicated protocol
appearing in Sec. 6. Afterwards, we will focus on optimizations specific for a
particular ABB implementation, namely the additive secret sharing as employed
by Sharemind [6]. We describe the additional functionality offered by this ABB
in Sec. 7 and show how it can be used to speed up certain OEP protocols in
Sec. 8. In Sec. 9 we present the benchmarking results of our implementation of

2



the OEP protocol; according to our knowledge, this is the first such implemen-
tation. In Sec. 10, we discuss some further research directions opened up by our
OEP construction.

2 Related Work

A number of existing OEP constructions are based on switching networks em-
ploying 2 × 2 switches that may either pass their inputs unmodified, swap the
inputs, or copy one input to both outputs. The network is commonly obtained
from Waksman’s construction [38]; it is evaluated with SMC techniques. Such
constructions appear in [22, 27, 36]. In [35], the construction of [36] is amended
to give it security against malicious adversaries. All such constructions require
one of the computing parties to know the extended permutation.

An OEP can also be constructed, using homomorphic encryption [22, Sec. 5.3.2].
This construction has better asymptotic complexity than the ones based on
switching networks, but it requires many public-key operations. Again, one com-
puting party has to know the extended permutation.

A very simple construction for shuffling (permuting) the elements of a vector
is given by Laur et al. [31]. Hamada et al. [19, 20] have used this construction
to give fast sorting algorithms. Our constructions are also based on this form of
shuffling protocols.

OEPs can be used for purposes other than PFE. Guanciale et al. [18] have ap-
plied them in the minimization of finite automata obtained through the product
construction.

3 Preliminaries

Universal composability (UC) [10] is a standard theoretical framework for stating
and proving security of cryptographic constructions. In this framework, a proto-
col π is defined secure if it is as secure as some ideal functionality F embodying
the desired functional and non-functional properties of π in an abstract manner.
A functionality F1 is at least as secure as F2, if for every user of these function-
alities, and every adversary of F1, there is an adversary of F2, such that the user
cannot see the difference in interacting with F1 or F2. UC framework derives its
usefulness from the composability of the “at least as secure as” relation.

Arithmetic black box. For SMC, the standard ideal functionality is the Arithmetic
Black Box (ABB) FABB [13]. It provides an interface for users P1, . . . , Pk, up
to t of which may be corrupted, to perform computations without revealing
intermediate values. Here t depends on the protocol set πABB implementing FABB.
The functionality FABB is given in Fig. 1. Depending on the implementation
πABB, the adversary and/or certain coalitions of users may also be able to stop
the execution of FABB. We won’t define the behaviour of FABB in exceptional
situations (e.g. undefined variables), because their occurrence can be detected
from public information.
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Internal state: a finite map S from variable names to values (initially empty)
Exposed commands:

Input data. On input (input, v, x) from some Pi and (input, v) from all other parties,
add {v 7→ x} to S.

Classify. On input (classify, v, x) from all parties, add {v 7→ x} to S.
Compute. On input (compute,⊗, v1, v2, v3) from all parties, look up x1 = S(v1) and

x2 = S(v2), and add {v3 7→ x1 ⊗ x2} to S.
Declassify. On input (declassify, v) from all parties, answer with S(v) to all parties..

When receiving any command except input, the whole command, as well as its answer
is also sent to the adversary. For input-commands, (input, v) is sent to the adversary.
Some of the parties may be controlled by the adversary; for simplicity, the corrup-
tions are static. For any command (c, . . .) listed above, FABB accepts the command
(masqi, c, . . .) from the adversary, for a corrupted party Pi. Such commands are pro-
cessed as commands (c, . . .) from Pi.

Fig. 1: The ideal functionality FABB

The interface of FABB does not correspond well to the partitioning of parties
into input, computing, and output parties. Still, it can be modeled by precisely
defining, which parties are needed to execute different commands, and which
parties receive the results.

The values FABB operates on are elements of some algebraic structure de-
pending on πABB, typically some finite field or ring. The operations ⊗ supported
by FABB also depend on the actual protocols that are available. Many protocol
sets πABB for SMC have been proposed [12,15–17,24,37,39], several of them also
providing security against malicious adversaries. All sets support at least the
addition and multiplication of values stored in S. Based on them, one can imple-
ment a rich set of arithmetic and relational operations [11], enjoying the same
security properties. The protocols we present in this paper need to compare the
values in S, and we assume that “equals” and “less than” operations are available
in FABB.

For a variable name v, it is customary to denote its value, as stored in S, by
JvK. Also, in the description of algorithms executed together with FABB, notation
JwK = ⊗(JuK, JvK) denotes the calling of (compute,⊗, u, v, w) on FABB.

Shuffling. An oblivious shuffle, introduced by Laur et al. [31] allows to permute
the elements of a private array of length m according to a private permutation
σ ∈ Sm. The functionality and security of oblivious shuffle can be likewise pre-
sented through the notion of ABB. Let the variable names be partitioned into
two — names for scalars, and shuffles. In Fig. 1, each variable name refers to a
scalar. In Fig. 2 we list the shuffling-related commands of the ABB. Here u, v
denote scalar variables, and s denotes shuffle variables.

For ABB implementations based on secret sharing, Laur et al. [31] introduce
the following construction. Let Γ ⊆ 2{1,...,k} be the (monotonic) access structure:
A set of parties A ⊆ {1, . . . , k} is allowed to successfully recombine the shares
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Input a shuffle. On input (input, s, σ) from some Pi and (input, s,m) from all other
parties, if σ ∈ Sm then add {s 7→ σ} to S.

Classify a shuffle. On input (classify, s, σ) from all parties, add {s 7→ σ} to S.
Make a random shuffle. On input (rand shuffle, s,m) from all parties, pick σ ∈R Sm

and add {s 7→ σ} to S.
Compose private and public shuffle. On input (compose left, s1, s2, τ) from all

parties, look up σ = S(s2) and add {s1 7→ τ ◦ σ} to S. On input
(compose right, s1, s2, τ) do the same, but add {s1 7→ σ ◦ τ} to S.

Apply a shuffle. On input (apply, u1, . . . , um; v1, . . . , vm; s) from all parties, look up
σ = S(s) and xi = S(vi) for all i ∈ {1, . . . ,m}. Add {ui 7→ xσ(i)} to S for all i.

Compose shuffles in parallel. On input (compose parallel, s1, s2, s3) from all par-
ties, look up σ1 = S(s1) and σ2 = S(s2). Let σi operate on mi elements. Let
m3 = m1 + m2 and define σ3 ∈ Sm3 by σ3(x) = σ1(x), if x ≤ m1, and
σ3(x) = σ2(x−m1) +m1, if x > m1. Add {s3 7→ σ3} to S.

Invert a shuffle On input (invert, s1, s2) from all parties, look up σ = S(s1) and add
{s2 7→ σ−1} to S.

Similarly to Fig. 1, all commands are also sent to the adversary, except for input, where
only (input, s,m) is sent. Also, (masqi, . . .) commands are accepted from the adversary.

Fig. 2: Shuffle-related operations in FABB

if A ∈ Γ . A shuffle σ ∈ Sm is represented as JσK = (JσK1, . . . , JσKl), where
JσKi ∈ Sm are random permutations subject to JσK1 ◦ · · · ◦ JσKl = σ. Each JσKi
is known by all parties in some set Ai ∈ Γ . The number l and the sets Ai must
be chosen so, that for each Ā ⊆ {1, . . . , k}, Ā 6∈ Γ , there exists some i, such that
Ā ∩ Ai = ∅. In the shuffling protocol, the values x1, . . . , xm are shuffled using
JσK1, . . . , JσKl (sequentially). Before shuffling with JσKi, the current values are
shared among the parties in Ai only.

In general, l is exponential in k and t, but the protocol is very practical if k
and t are small. For k = 3 and t = 1 (in which case Γ = {{1, 2}, {1, 3}, {2, 3}})
we have l = 3, with each party knowing two permutations.

It is straightforward to securely implement other operations in Fig. 2, based
on the protocol of Laur et al. [31]. Note that inverting a shuffle also inverts
the sequence of the party sets Ai applying the consecutive permutations in JσK.
Laur et al. also show how to make the protocols secure against malicious ad-
versaries. Alternatively, recent proposals for making passively secure protocols
verifiable [23,28] are readily applicable to described shuffling protocols.

Oblivious shuffles are instrumental for fast sorting algorithms on private val-
ues [20]. To sort a vector JuK = (Ju1K, . . . , JumK), where all values are known to
be different, one may generate a random shuffle JσK and apply it on JuK. After-
wards, the elements of JuK are randomly ordered and their comparison results
may be declassified. In this way expensive, data-oblivious sorting methods [25]
do not have to be employed. Sorting, in turn, can be used to transform a vector
of values (Jv1K, . . . , JvmK) to a shuffle JσK, such that σ(i) = vi, provided that
the private values are a permutation of (1, . . . ,m). See Alg. 1. The algorithm
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Algorithm 1: Vector2Shuffle, From a vector of private values to private
shuffle

Data: Vector of values (Jv1K, . . . , JvmK), with {v1, . . . , vm} = {1, . . . ,m}
Result: A shuffle JσK, such that σ(i) = vi
JsK← rand shuffle(m)
(Ju1K, . . . , JumK)← apply(Jv1K, . . . , JvmK; JsK)
Sort (Ju1K, . . . , JumK), using declassify(J·K ≤ J·K) as the comparison function
Let τ ∈ Sm be the sorting permutation, i.e. uτ(i) = i.
return invert(JsK ◦ τ)

Sort. On input (sort, u1
1, . . . , u

l
1; . . . ;u1

m, . . . , u
l
m; s), look up the values xji = S(uji ) for

all i ∈ {1, . . . ,m} and j ∈ {1, . . . , l}. Find σ ∈ Sm, such that
– for all 1 ≤ i ≤ j ≤ n: (x1σ(i), . . . , u

l
σ(i)) ≤ (u1

σ(j), . . . , u
l
σ(j)), where the ordering

of tuples is defined lexicographically;
– for all 1 ≤ i < j ≤ n: if (x1i , . . . , u

l
i) = (u1

j , . . . , u
l
j), then σ(i) < σ(j), i.e. the

sorting is stable.
Add {s 7→ σ} to S and forward the sort-command to the adversary.

Fig. 3: Sorting in FABB

is secure because the only values output by FABB during its execution are the
results of comparisons; these may be made public by the security arguments for
sorting algorithms. It is easy to verify that Alg. 1 is also correct.

As sorting turns out to be a useful operation in our protocols, we opt to make
it a part of FABB. See Fig. 3 for the exact specification. For ease of use, we let
our sorting functionality to not actually sort its input, but to output a private
shuffle that would sort the input if applied to it. The protocol for computing
such a shuffle in πABB is identical to Alg. 1, except for the omission of the last
inversion.

4 Ideal functionality

The notion of extended permutation (EP) was introduced in [36] for encoding the
topology of arithmetic or Boolean circuits. Mathematically, an EP φ from an n-
element set to an m-element set is just a function from {1, . . . ,m} to {1, . . . , n}.
Applying φ to a sequence (x1, . . . , xn) produces a sequence (y1, . . . , ym), such
that yi = xφ(i) for each i. Similarly to shuffles, we want to apply EPs in an
oblivious manner, such that the values to which φ is applied, as well as φ itself
remain private.

Let Fn,m denote the set of all mappings from {1, . . . ,m} to {1, . . . , n}. Our
intended ideal functionality for an ABB with EPs is given in Fig. 4. The func-
tionality maps variables to either private values, private shuffles or private EPs,
and allows operations on them. Let the variable names be partitioned into three
— names for scalars, shuffles, and EPs. In Fig. 4, u, v denote scalar variables,
while f denotes EP variables.
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Include the state S and commands of FABB in Fig. 1 and Fig. 2.
Additional commands are given below.

Input an EP. On input (input, f, φ) from some Pi and (input, f, n,m) from all other
parties, if φ ∈ Fn,m then add {f 7→ φ} to S.

Classify an EP. On input (classify, f, φ) from all parties, add {f 7→ φ} to S.
Apply an EP. On input (apply, u1, . . . , um; v1, . . . , vn; f) from all parties, look up φ =

S(f) and xi = S(vi). Add {uj 7→ xf(j)} to S for all j ∈ {1, . . . ,m}. The mapping
φ must be an element of Fn,m.

Convert a vector to an EP. On input (convert, u1, . . . , um, n, f) from all parties,
look up xi = S(ui) for all i ∈ {1, . . . ,m}. If 1 ≤ xi ≤ n holds for all i, let φ ∈ Fn,m
be defined by φ(i) = xi and add {f 7→ φ} to S. Otherwise, the behaviour of FOEP

is undefined.

The commands are sent to the adversary, and accepted from the adversary similarly
to Fig. 1 and Fig. 2.

Fig. 4: The ideal functionality FOEP

5 Real functionality

Our representation of oblivious extended permutations is based on the following
simple result.

Theorem 1. For any m,n ∈ N there exist `n,m = (1 + o(1))m lnm and gn,m :
{1, . . . , `n,m} → {1, . . . , n}, such that for any function φ ∈ Fn,m, there exist
σ ∈ Sn and τ ∈ S`n,m

, such that φ(x) = (σ ◦ gn,m ◦ τ)(x) for all x ∈ {1, . . . ,m}.

Proof. Define `n,m by

`0,m = 0

`n,m = `n−1,m + bm/nc .

Then `n,m = (1 + o(1))m lnm [32]. Define gn,m by

gn,m(x) = k ⇔ `k−1,m < x ≤ `k,m .

Let φ ∈ Fn,m be given. For each y ∈ {1, . . . , n}, let φ−1(y) = {x |φ(x) = y}.
Let the permutation σ ∈ Sn be such, that |φ−1(σ(i))| ≥ |φ−1(σ(i+ 1))| for all i.
Note that |φ−1(σ(i))| ≤ bm/ic.

Let Di = {`i−1,m+1, . . . , `i,m}. Note that |Di| = bm/ic and gn,m(Di) = {i}.
Let the permutation τ ∈ S`n,m

be defined so, that for all i ∈ {1, . . . , n}, we have
τ(φ−1(σ(i))) ⊆ Di. Such permutation τ exists, because |φ−1(σ(i))| ≤ |Di| and
different sets Di are disjoint.

For each x ∈ {1, . . . ,m}, we now have τ(x) ∈ Dσ−1(φ(x)), implying gn,m(τ(x)) =
σ−1(φ(x)) or σ(gn,m(τ(x))) = φ(x). ut

We see that σ sorts the elements of {1, . . . , n} according to their number of
preimages with respect to φ. The mapping gn,m creates a sufficient number of
copies of each element. These copies are brought to their correct places by τ .
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There are machines M1, . . . ,Mk executing the protocols on behalf of the parties
P1, . . . , Pk participating in the protocol. These machines have access to the function-
ality FABB.
There is a public function f 7→ (sf , tf ) mapping variable names for EPs to pairs of
variable names for shuffles. We assume that these variable names for shuffles are not
used outside this protocol set.
A machine Mi responds to the various commands as follows.

Commands for FABB. When receiving a command for FABB from the environment,
Mi forwards it to FABB and gives back the result.

Input an EP. On input (input, f, φ), the machine Mi constructs the shuffles σ and τ
corresponding to φ according to the proof of Thm. 1. It will then send commands
(input, sf , σ) and (input, tf , τ) to FABB.

Input an EP. On input (input, f, n,m), the machine Mi sends commands
(input, sf , n) and (input, tf , `n,m) to FABB.

Classify an EP. On input (classify, f, φ), the machine Mi constructs the shuffles σ
and τ corresponding to φ according to the proof of Thm. 1. Any indeterminacys
in the proof are solved in the same, public manner by all parties. Machine Mi will
then send the commands (classify, sf , σ) and (classify, tf , τ) to FABB.

Apply an EP. On input (apply, u1, . . . , um; v1, . . . , vn; f), machine Mi will pick `n,m
new variable names w1, . . . , w`n,m (for scalars). After that, it will
1. send (apply, w1, . . . , wn; v1, . . . , vn; sf ) to FABB;
2. copy w1, . . . , wn to w1, . . . , w`n,m according to gn,m, i.e. wi after copying will

be equal to wgn,m(i) before copying (note that this is an operation of FABB);
3. send (apply, u1, . . . , um, wm+1, . . . , w`n,m ;w1, . . . , w`n,m ; tf ) to FABB.

Fig. 5: The protocol set πOEP (partially)

Theorem 1 immediately suggests the private encoding for an OEP φ. In our
implementation πOEP for FOEP, we will store them as pairs of private shuffles
(σ, τ), defined as in the proof of Thm. 1. Fig. 5 depicts the protocol set πOEP

(except for the convert-protocol, which is given in Sec. 6), defined in the FABB-
hybrid model.

Theorem 2. The protocol set πOEP, as depicted in Fig. 5, is at least as secure
as FOEP without convert-commands.

Proof. We have to show a simulator S that can translate between the messages
at the adversarial interface of FOEP and the messages at the adversarial interface
of πOEP. The simulator S has no long-term state and works as follows:

– On an input (c, . . .) from FOEP that corresponds to a command for FABB,
the simulator forwards this input to the adversary.

– On input (input, f, n,m) from FOEP, the simulator forwards the commands
(input, sf , n) and (input, tf , `n,m) to the adversary.

– On input (classify, f, φ) from FOEP, the simulator computes the permutations
σ and τ according to the proof of Theorem. 1, and forwards (classify, sf , σ)
and (classify, tf , τ) to the adversary.
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– On input (apply, u1, . . . , um; v1, . . . , vn; f) from FOEP, the simulator forwards
the commands for applying sf , copying the variables and applying tf to the
adversary. The commands are the same as in Fig. 5.

– On input (masqi, c, . . .) from the adversary to FABB, the simulator S forwards
that command to FOEP, unless the command is part of an adversarial party’s
activity in the protocols of πOEP. These are recognized through the inclusion
of variable names sf and tf .

– On input (masqi, input, sf , n) from the adversary, followed by (masqi, input, tf , `n,m):
send (masqi, input, f, n,m) to FOEP.

– On input (masqi, c, sf , σ) from the adversary, followed by (masqi, c, tf , τ),
where c is either input or classify: the simulator constructs φ = σ ◦ gn,m ◦
τ (where n,m are found from the descriptions of σ and τ), and sends
(masqi, c, f, φ) to FOEP.

– On input (masqi, apply, w1, . . . , wn; v1, . . . , vn; sf ) from the adversary, fol-
lowed by the requests to copy the variables wj according to gn,m and the
input (masqi, apply, u1, . . . , um, wm+1, . . . , w`n,m

;w1, . . . , w`n,m
; tf ): send

(masqi, apply, u1, . . . , um; v1, . . . , vn; f) to the adversary.

Quite clearly, this simulator provides the necessary translation. Actually, the
only non-trivial part of this simulator is the construction of φ from σ and τ
provided by the adversary. Fortunately, there exists a φ for any σ and τ (of correct
types). Hence πOEP is secure even against active adversaries (if the protocol set
implementing FABB is secure against such adversaries). ut

The provided simulator S is valid for any attacks by the adversary. It can
cope with active attacks and with dishonest majority. Hence FOEP provides the
same security guarantees as FABB.

6 Converting a private vector to an OEP

Suppose we are given the numbers m,n, and a vector (Jv1K, . . . , JvmK), such that
1 ≤ vi ≤ n for all i. We want to construct JφK, such that φ ∈ Fn,m and φ(i) = vi
for all i. For this, we have to construct private shuffles JσK and JτK of correct
size, such that φ = σ ◦ gn,m ◦ τ . As we show below, the functionality provided
by FABB is sufficient for this construction. However, the construction is more
complex than what we have seen before.

Partially specified shuffles. The following subtask occurs in the construction of
both σ and τ . Let a vector (Jv1K, . . . , JvnK) be given, such that vi ∈ {0, 1, . . . , n}
and for each j ∈ {1, . . . , n} there exists at most one i, such that vi = j. Construct
JσK, where σ ∈ Sn and ∀i ∈ {1, . . . , n} : vi > 0⇒ σ(i) = vi.

We cannot directly apply Alg. 1 to obtain the shuffle, because this algorithm
assumes that the input vector is a permutation of {1, . . . , n}. In particular, the
correctness of Alg. 1 hinges on the sorted vector being equal to (1, . . . , n).

Will we hence first fill the zeroes in the vector v1, . . . , vn with the missing
numbers. We use Alg. 2 for that, making the call FillBlanks(1, n; Jv1K, . . . , JvnK).
After that, we can apply Alg. 1 and obtain a suitable JσK.
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Algorithm 2: FillBlanks, filling the blank squares of a shuffle

Data: Bounds L,H ∈ N
Data: JvLK, JvL+1K, . . . , JvHK, where vi ∈ {0, L, . . . , H}, and for each

j ∈ {L, . . . ,H}, there is at most one i, such that vi = j
Result: JuLK, JuL+1K, . . . , JuHK, where {uL, . . . , uH} = {L, . . . ,H} and

vi > 0⇒ ui = vi
1 if L = H then
2 return JLK

3 M ← b(L+H)/2c
4 JξK← sort(JvLK; JvL+1K; . . . ; JvHK) ; // Fig. 3

5 (Jv′LK, . . . , Jv′HK)← apply(JvLK, . . . , JvHK; JξK)
6 foreach i ∈ {1, . . . , H −M} do
7 JbiK← Jv′M+iK ≤M
8 (Jv′L+i−1K, Jv′M+iK)← JbiK ? (Jv′M+iK, Jv′L+i−1K) : (Jv′L+i−1K, Jv′M+iK)

9 (Jv′LK, . . . , Jv′M K)← FillBlanks(L,M ; Jv′LK, . . . , Jv′M K)
10 (Jv′M+1K, . . . , Jv′HK)← FillBlanks(M + 1, H; Jv′M+1K, . . . , Jv′HK)
11 foreach i ∈ {1, . . . , H −M} do
12 (Jv′L+i−1K, Jv′M+iK)← JbiK ? (Jv′M+iK, Jv′L+i−1K) : (Jv′L+i−1K, Jv′M+iK)

13 (JuLK, . . . , JuHK)← apply(Jv′LK, . . . , Jv′HK; invert(JξK))
14 return (JuLK, . . . , JuHK)

In Alg. 2, we have used a few conventions that have appeared elsewhere in the
specifications of privacy-preserving algorithms. In line 7, the variable JbiK will
store either 1 or 0, depending on whether the comparison returns true. The line 8
contains an instance of the binary choice operator JbK?JxK :JyK. Its result is equal
to JxK if b = 1, and JyK if b = 0. It is typically computed as JbK · (JxK− JyK) + JyK.
In lines 8 and 12 we are actually using pairs of values in place of JxK and JyK.
Hence the effect of these lines is to swap Jv′L+i−1K and Jv′M+iK if bi = 1, and
otherwise leave them as is.

A number of operations in Alg. 2 can be performed in parallelized fashion. We
use the convention that foreach-statements indicate vectorized computations.
In addition to that, the recursive calls in lines 9 and 10 are executed in parallel.

Clearly, Alg. 2 is secure — it does not declassify any values. Also, it does not
input any values from a particular party, hence there are no issues in making
sure that these values are valid. Alg. 2 invokes a number of commands of FABB in
order to transform a private vector to a different private vector. The adversary’s
view of Alg. 2 consists of the sequence of the names of these commands. This
sequence can be derived from L, H, and the names of the variables input to
Alg. 2.

Due to the need to preserve the privacy of JviK, Alg. 2 is quite non-trivial,
working in the divide-and-conquer fashion. The main case starts in line 3, and
the lines 3–8 are used to rearrange the elements of vL, . . . , vH so, that vL, . . . , vM
only contain elements in {0, L, . . . ,M}, and vM+1, . . . , vH only contain elements
in {0,M + 1, . . . ,H}. We record ξ and b1, . . . , bH−M that are sufficient to undo
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this rearrangement later. Through recursive calls in lines 9 and 10, we fill in the
zeroes among v′L, . . . , v

′
H with missing numbers. Finally, in lines 11–13 we undo

the rearrangement we introduced at the beginning.
Assuming that the complexity of sorting is O(n log n), the overall complexity

of FillBlanks is O(n log2 n). We could actually simplify the algorithm somewhat
— in line 10, the vector that is the argument to the recursive call is already
sorted, hence there is no need to sort it again in line 4. This does not reduce
the asymptotic complexity, though, as the FillBlanks-call in line 9 still needs to
sort its argument vector. In Sec. 7 we show that for certain implementations of
the ABB, this vector (which is just a private rotation away from being sorted)
can also be sorted more efficiently, bringing the overall complexity of FillBlanks
down to O(n log n), the same as Alg. 1.

Finding vector representations of JσK and JτK. With the help of Alg. 2, we are
now ready to present the computation of JσK and JτK, such that φ = σ ◦gn,m ◦ τ .
Algorithm 3 depicts this computation. In the description of this algorithm, we
will heavily use the notation JvK for vectors with private components (but note
that the length of the vector is public). Alg. 3 is secure for the same reasons as
Alg. 2.

The algorithm to convert the vector Jv(1)K = (Jv(1)1 K, . . . , Jv(1)m K) to the private
shuffles JσK, JτK has the following components:

– Counting, how many times each value x ∈ {1, . . . , n} occurs among v1, . . . , vm.
We first sort the vector v(1), giving the vector v(1′). In this vector, the dif-
ferent values x occur in continuous segments. Vector v(2′) marks the start
of each segment and v(3′) additionally records the positions, where different
segments start. Sorting according to v(3′) (a stable sort according to v(2′)

would have had the same effect) brings the start positions together and their
differences, recorded in v(4′′) are the counts of the values x (the lengths of
the segments).

– Computing the vector representing σ, to be used as the argument to Vector2Shuffle.
As we sort the vectors in non-decreasing order, the counts end up in the last
n elements of v(4′′). We want to sort them in non-increasing order, hence we
collect their negations in the vector u(2). We apply the sorting permutation
to the actual values, whose counts were in u(2). We collect the actual val-
ues in u(1), but we must be careful, because not all n values are necessary
there. Fortunately, in vector v(2

′′), there is exactly one “1” for each possi-
ble value. Thus we obtain zeroes instead of missing values and can use the
FillBlanks-algorithm to fill them out.

– Computing the vector representing τ−1. This vector must have the values
`i−1,m + 1, `i−1,m + 2, . . . in the positions where the original vector Jv(1)K
had the i-th most often occurring values among {1, . . . , n}. We intend to
compute this vector through prefix summation; this takes place in lines 24–
25. While doing this prefix summation, we assume that v(1) is sorted, we
undo the sorting afterwards. In lines 18–23 we set up the vector v(5′) that
serves as the argument to prefix summation. We know that in the middle of
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Algorithm 3: From a vector of private values to an OEP

Data: m,n ∈ N
Data: Jv(1)K = (Jv(1)1 K, . . . , Jv(1)m K), where 1 ≤ v(1)i ≤ n
Result: JσK, JτK, such that (σ ◦ gn,m ◦ τ)(i) = vi for all i ∈ {1, . . . ,m}

1 Jξ1K← sort(Jv(1)K)
2 Jv(1′)K← apply(Jv(1)K; Jξ1K)

3 Jv(2
′)

1 K← 1

4 foreach i ∈ {2, . . . ,m} do Jv(2
′)

i K← 1− (Jv(1
′)

i K ?
= Jv(1

′)
i−1K)

5 foreach i ∈ {1, . . . ,m} do Jv(3
′)

i K← i · Jv(2
′)

i K
6 Jξ2K← sort(Jv(3′)K)
7 Jv(1′′)K← apply(Jv(1′)K; Jξ2K)
8 Jv(2′′)K← apply(Jv(2′)K; Jξ2K)
9 Jv(3′′)K← apply(Jv(3′)K; Jξ2K)

10 foreach i ∈ {1, . . . ,m− 1} do Jv(4
′′)

i K← Jv(2
′′)

i K ? (Jv(3
′′)

i+1 K− Jv(3
′′)

i K) : 0

11 Jv(4
′′)

m K← m+ 1− Jv(3
′′)

m K
12 foreach i ∈ {1, . . . , n} do

13 Ju(1)
i K← m− n+ i > 0 ∧ Jv(2

′′)
m−n+iK ? Jv(1

′′)
m−n+iK : 0

14 Ju(2)
i K← m− n+ i > 0 ?−Jv(4

′′)
m−n+iK : 0

15 Jξ3K← sort(Ju(2)K)
16 Ju(1′)K← apply(Ju(1)K; Jξ3K)
17 JσK← Vector2Shuffle(FillBlanks(1, n; Ju(1′)K))

18 foreach i ∈ {1, . . . , n} do Ju(3′)
i K← `i−1,m + 1

19 Ju(3)K← apply(Ju(3′)K; invert(Jξ3K))
20 foreach i ∈ {1, . . . ,m} do
21 ji ← i−m+ n

22 Jv(5
′′)

i K←


1, if i ≤ 0 ∨ ¬Jv(2

′′)
i K

Ju(3)
ji

K, if Jv(2
′′)

i K ∧ ¬Jv(2
′′)

i−1 K
Ju(3)
ji

K− Ju(3)
ji−1K + Ju(2)

ji−1K + 1, if Jv(2
′′)

i−1 K

23 Jv(5′)K← apply(Jv(5′′)K; invert(Jξ2K))

24 Jv(6
′)

1 K← Jv(5
′)

1 K

25 for i = 2 to m do Jv(6
′)

i K← Jv(6
′)

i−1K + Jv(5
′)

i K
26 Jv(6)K← apply(Jv(6′)K; invert(Jξ1K))
27 foreach i ∈ {m+ 1, . . . , `n,m} do Jv(6)i K← 0

28 JτK← invert(Vector2Shuffle(FillBlanks(1, `n,m; Jv(6)K)))
29 return JσK, JτK
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continuous segments of v(1′), the values in v(5′) have to be“1”. At the border
from i-th most to i′-th most occurring value, however, there should be jumps
from the segment [`i−1,m + 1, . . . , `i,m] to [`i′−1,m + 1, . . . , `i′,m]. The length
of these jumps depends on i, i′, and on the length of the ending segment.
These lengths of jumps are computed in line 22 (clearly, the expression there
can be converted into a sequence of “? :”-operations). Different cases in this
line correspond to the middle of continuous segments, the start of the first
segment, and to the starts of following segments, respectively. The vector
u(2) contains the negations of the lengths of the continuous segments.

The running time of Alg. 3 is dominated by the call to FillBlanks in line 28.
As the size of its argument is O(m logm), the running time of the algorithm is
O(m log3m).

Alg. 3 is used in the protocol set πOEP for converting a private vector to an
OEP.

7 Specific operations with shuffles

In Sec. 5 we showed how the operations with extended permutations, defined in
Sec. 4, can be implemented on top of the ABB defined in Sec. 3. The resulting
implementation will have the same security guarantees as the used ABB, which
can be implemented using several different protocol sets. Parts of the OEP imple-
mentation, however, can be more efficient if the ABB supports more operations
with shuffles. In the following, we will present these operations, as well as their
implementations on top of the ABB of Sharemind [6], based on additive sharing
over ZN by three parties, providing security against one semi-honest party.

Unfortunately, we have to expose an implementation artifact through the
interface of FABB. Namely, we let the shuffles stored in S belong to two different
sorts (this notion is unrelated to “sorting”), which we denote with “0” and “1”.
Except for inversion, the shuffles of both sorts behave identically to each other. In
particular, the result of applying them is the same. The operations for inputing,
classifying and making a random shuffle (Fig. 2), as well as sorting (Fig. 3)
receive an extra public argument, denoting the sort of the resulting shuffle. The
result of the inversion operation will have the sort different from the argument.

Let “s
b7→ σ” denote that the variable s is assigned to the shuffle σ of sort b.

During the execution, the sorts of all shuffles stored in FABB can be deduced
from public information.

The extra operations are depicted in Fig. 6. The permutation rotmx ∈ Sm is
defined by rotmx (i) ≡ i + x (mod m). The operation mkrotation is another one
taking the sort of the result as an argument. The compose operation and its
interplay with inversion is the reason for introducing the sorts. The existence of
the composition protocol depends on the order of parties performing the shuffles
in JσK = (JσK1, JσK2, JσK3).

We show how operations in Fig. 6 can be implemented in an ABB based on
additive sharing among three parties. In this case, JvK = (JvK1, JvK2, JvK3), where
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Convert a value to a rotation. On input (mkrotationb, v, s,m) from all parties,

look up x = S(v) and add {s b7→ rotmx } to S.
Compose private shuffles. On input (compose, s1, s2, s3) from all parties, where s1

and s2 have the same sort b, look up σ1 = S(s1) and σ2 = S(s2). Add {s3
b7→ σ1◦σ2}

to S.

Fig. 6: More shuffle-related operations in FABB

Algorithm 4: Making a rotation

Data: A private value JvK
Data: A public value m and a bit b
Result: Private shuffle Jrotv,mK of sort b
Jv′K′ ← change modulus(JvK,m)
Party Pi sends Jv′K′i to Pi+1

Parties P1+2b and P2 define JσK1 ← rotmJv′K′
1+b

Parties P1 and P3 define JσK2 ← rotmJv′K′3
Parties P2 and P3−2b define JσK3 ← rotmJv′K′

2−b

return JσK

v ∈ ZN , JvK1+JvK2+JvK3 ≡ v (mod N) for some fixed modulus N , and party Pi
knows JvKi. In the implementation of Sharemind, the modulus N is a power of
two, making the set of values isomorphic to (logN)-bit unsigned integers. There
exist protocols to increase or decrease the bitwidth of these values [6, Sec. 7].
Essentially the same protocols can be used for arbitrary changes of the modulus
N . I.e. given N , M , and a sharing JvK over ZN , there is a protocol for the
operation Jv′K′ = change modulus(JvK,M), where Jv′K′ = (Jv′K′1, Jv′K′2, Jv′K′3), and
Jv′K′1 + Jv′K′2 + Jv′K′3 ≡ v (mod M). These protocols are secure against one semi-
honest adversary. The protocols are made composable by resharing [6, Alg. 1]
their outputs.

Rotation. In Sharemind, a private shuffle of sort b is stored as JσK = (JσK1, JσK2, JσK3)
with JσK1 ◦ JσK2 ◦ JσK3 = σ. Here the party P1+2b knows JσK1 and JσK2, party
P2 knows JσK1 and JσK3, and party P3−2b knows JσK2 and JσK3. A protocol for
converting a value JvK to a private rotation JσK is given in Alg. 4. All indices of
parties are given modulo 3.

Algorithm 4 is correct due to the equality rotmx ◦ rotmy = rotm(x+y) mod m. It is

also secure against one semi-honest party, as the shares of Jv′K′ are three random
elements of Zm, subject to their sum being equal to v′. Each party learns two
of those shares; these carry no information about v′, even if combined with the
party’s view in the modulus change protocol (due to composability).

Composition. The protocol for composing two shared shuffles of sort 0 is given
in Alg. 5. For sort 1, change the roles of P1 and P3.
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Algorithm 5: Composing private shuffles of sort 0

Data: Private shuffles JσK and JτK of sort 0, where σ, τ ∈ Sm
Result: Private shuffle JξK of sort 0, such that ξ = σ ◦ τ
Party P2 randomly chooses ρ1, ρ3 ∈ Sm, such that ρ1 ◦ ρ3 = JσK3 ◦ JτK1
Parties P1 and P3 agree on randomly chosen π1, π3 ∈ Sm
Party P2 sends ρ1 to P1 and ρ3 to P3

Party P1 computes JξK1 ← JσK1 ◦ JσK2 ◦ ρ1 ◦ π1 and sends it to P2

Party P3 computes JξK3 ← π3 ◦ ρ3 ◦ JτK2 ◦ JτK3 and sends it to P2

Parties P1 and P3 compute JξK2 ← π−1
1 ◦ π−1

3

return JξK

Algorithm 6: Composing private shuffles generically

Data: Private shuffles Jσ1K, . . . , JσkK, where σi ∈ Sm
Result: Private shuffle JξK, such that ξ = σ1 ◦ · · · ◦ σk
foreach i ∈ {1, . . . ,m} do JviK← classify(i)
for i = 1 to k do (Jv1K, . . . , JvmK)← apply(Jv1K, . . . , JvmK; JσiK)
return Vector2Shuffle(Jv1K, . . . , JvmK) // Alg. 1

The correctness of Alg. 5 is straightforward to verify. It is also obvious that it
is secure against one semi-honest party: each party only receives random elements
of Sm. Indeed, party P1 [resp. P3] receives the permutation ρ1 [resp. ρ3]. Alone,
this is a random permutation, carrying no information about JσK3 ◦ JτK1. Party
P2 receives two permutations, JφK1 and JφK3. They are both masked with random
permutations π1 and π3, hence being random themselves.

For completeness, we show that private shuffles can be composed also by
using just the operations of FABB in Fig. 1 and Fig. 2. The resulting protocol,
shown in Alg. 6, is, however, significantly slower than Alg. 5 due to the need to
sort a vector of length m.

8 Speeding up the conversion to OEP

Using the operations in Fig. 6, and assuming the complexities of their implemen-
tations to be the same as in Sharemind’s set of protocols (constant for mkrotation,
linear for composition), we can construct a version of the FillBlanks-algorithm
that works in time O(m logm) for a vector of length m. In fact, as Alg. 3 only
uses FillBlanks in composition with Vector2Shuffle, we will present a faster ver-
sion of their composition, converting a vector representing a permutation with
blank spots into a private shuffle.

The algorithm is presented as Alg. 7, with subroutines in Alg. 8 and Alg. 9.
We see that structurally, they are similar to Alg. 2, but as certain arrays are
almost sorted, we use more efficient methods to actually sort them.

Algorithms 7–9 compute certain permutations of their input vector, but in-
stead of undoing these permutations later (like Alg. 2), they record these per-
mutations and use them as parts of their return values.
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Algorithm 7: VectorWithBlanks2Shuffle, From a vector of private values
(with blank cells) to private shuffle

Data: b ∈ {0, 1}, denoting the sort of the resulting shuffle
Data: Jv1K, . . . , JvmK, where vi ∈ {0, 1, . . . ,m}, and for each j ∈ {1, . . . ,m},

there is at most one i, such that vi = j
Result: A shuffle JσK, such that vi > 0⇒ σ(i) = vi

1 if m = 1 then
2 return J{1 7→ 1}K
3 JξK← sort1−b(Jv1K; . . . ; JvmK)
4 (Ju1K, . . . , JumK)← apply(Jv1K; . . . ; JvmK; JξK)
5 JτK← VectorWithBlanks2Shufflebsort(1,m; Ju1K, . . . , JumK)
6 return JτK ◦ invert(JξK)

Algorithm 8: VectorWithBlanks2Shufflesort, a subroutine of
VectorWithBlanks2Shuffle

Data: b ∈ {0, 1}, denoting the sort of the resulting shuffle
Data: Bounds L,H ∈ N
Data: Sorted vector JvLK, JvL+1K, . . . , JvHK, where vi ∈ {0, L, . . . , H}, and for

each j ∈ {L, . . . ,H}, there is at most one i, such that vi = j
Result: A shuffle JσK, where σ ∈ SH−L+1 and vi > 0⇒ σ(i−L+ 1) = vi−L+ 1

1 if L = H then
2 return J{1 7→ 1}K
3 M ← b(L+H)/2c
4 foreach i ∈ {1, . . . , H −M} do
5 JbiK← JvM+iK ≤M
6 JχiK← mkrotation1−b(JbiK, 2)

7 χH−M+1 ← H − L is even ? {1 7→ 1} : {�}
8 JτK← µH−L+1 ◦ (Jχ1K‖ · · · ‖JχH−M K‖χH−M+1) ◦ µ−1

H−L+1

9 (Jv′LK, . . . , Jv′HK)← apply(JvLK, . . . , JvHK; JτK)
10 Jσ1K← VectorWithBlanks2Shufflebrotate(L,M ; Jv′LK, . . . , Jv′M K)
11 Jσ2K← VectorWithBlanks2Shufflebsort(M + 1, H; Jv′M+1K, . . . , Jv′HK)
12 return (Jσ1K‖Jσ2K) ◦ invert(JχK)

In Alg. 8, let µn ∈ Sn be the permutation satisfying

µn(2i+ 1) = i+ 1

µn(2i) = dn/2e+ i

for all valid values of i. Also, let ‖ denote the parallel composition of shuffles.
This operation exists according to Fig. 2. In all algorithms, we let {1 7→ 1}
denote the only element of S1 and {�} denote the only element of S0.

We see that the complexity of Alg. 7, except for the call to Alg. 8, isO(m logm),
due to the need to sort the input vector. The complexities of both Alg. 8 and
Alg. 9, except for the recursive calls, are O(m), as this is the complexity of apply-
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Algorithm 9: VectorWithBlanks2Shufflerotate, a subroutine of
VectorWithBlanks2Shuffle

Data: b ∈ {0, 1}, denoting the sort of the resulting shuffle
Data: Bounds L,H ∈ N
Data: An almost sorted vector (requires a single rotation to be sorted)

JvLK, JvL+1K, . . . , JvHK, where vi ∈ {0, L, . . . , H}, and for each
j ∈ {L, . . . ,H}, there is at most one i, such that vi = j

Result: A shuffle JσK, where σ ∈ SH−L+1 and vi > 0⇒ σ(i−L+ 1) = vi−L+ 1
1 if L = H then
2 return J{1 7→ 1}K
3 foreach i ∈ {1, . . . , H − L} do JbiK← JvL+i−1K > Jvl+1K
4 JcK←

∑H−L
i=1 i · JbiK

5 JξK← mkrotation1−b(JcK, H − L+ 1)
6 (JuLK, . . . , JuHK)← apply(JvLK; . . . ; JvHK; JξK)
7 JτK← VectorWithBlanks2Shufflebsort(L,H; JuLK, . . . , JuHK)
8 return JτK ◦ invert(JξK)

ing the shuffles they’ve computed, as well as the complexity of composing private
shuffles. There are O(logm) levels of recursive calls, hence the total complexity
of Alg. 7 is O(m logm).

If we use Alg. 7 as a subroutine of Alg. 3, instead of the composition of Alg. 1
and 2, we obtain an algorithm to convert a vector of private values of length m
into an OEP with O(m log2m) work.

9 Benchmarks

The asymptotic complexity of our OEP protocol (both communication and com-
putation) is O(m logm) for an extended permutation f ∈ Fn,m (assuming that
m is at least O(n)) and for a constant number of parties. The asymptotic com-
plexity of converting a vector of indices to an OEP is O(m log3m) in general
and O(m log2m) with optimizations offered by Sharemind.

We have implemented protocols in Fig. 5 on top of the Sharemind secure
multiparty computation framework, and tested their performance. In perfor-
mance testing, we kept in mind the scenario of private function evaluation. For a
circuit with I inputs, K binary gates and O outputs, the topology of the circuit
is represented by an extended permutation in FI+K,2K+O.

Our Sharemind cluster consists of three computers with 48 GB of RAM and
a 12-core 3 GHz CPU with Hyper Threading running Linux (kernel v.3.2.0-3-
amd64), connected by an Ethernet local area network with link speed of 1 Gbps.
On this cluster, we have benchmarked the execution time of the OEP application
protocol for extended permutations in F200+K,2K+100 (for various values of K),
simulating the oblivious evaluation of a circuit with 200 inputs and 100 outputs.
The permutations were applied to 32-bit values. The running times are presented
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K/106 running time

0.1 0.5
1 6
5 35
7 49
8 58

Table 1. Execution times for applying an OEP from (K + 200) inputs to (2K + 100)
outputs (times in seconds)

in Table 1. The running time t(K) (in seconds) is very well approximated by
4.54 · 10−7 ·K lnK.

10 Discussion

We have proposed a new, efficient construction for oblivious extended permu-
tations, that is fully integrable with secure multiparty computation protocols
for other operations. Practically usable private function evaluation is a possible
application of our techniques, if combined with private evaluation of the gates in
circuits. Recent advances in private function evaluation may make it a practical
tool for certain subtasks in secure multiparty computation, e.g. for handling the
branching on private values. Currently, such branchings are handled through the
execution of both branches, followed by an oblivious choice [33].

It is reasonable to assume that any application of PFE will still attempt to
use as much information that can be publicly deduced about the computed func-
tion. Flexibility of PFE techniques is necessary, in order to absorb all available
information. The oblivious extended permutations proposed in this paper allow
a much greater multitude of potential usage scenarios than [36]. It is possible to
evaluate a function without anyone knowing, which function is being evaluated.
This allows us to obliviously select the representation of a private function and
then evaluate it, enabling branching on private values. In this case, we still need
to construct private representations of both branches, but this computation can
be moved to the offline phase. The actual selection of the privately executed
branch can be very efficient [29].
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