
SUBMITTED TO JOURNAL OF 1

Software implementation of an Attribute-Based

Encryption scheme

Eric Zavattoni, Luis J. Dominguez Perez, Shigeo Mitsunari, Ana

H. Sánchez-Ramı́rez, Tadanori Teruya, and

Francisco Rodrı́guez-Henrı́quez, Member, IEEE

Abstract

A ciphertext-policy attribute-based encryption protocol uses bilinear pairings to provide control

access mechanisms, where the set of user’s attributes is specified by means of a linear secret sharing

scheme. In this paper we present the design of a software cryptographic library that achieves record

timings for the computation of a 126-bit security level attribute-based encryption scheme. We developed

all the required auxiliary building blocks and compared the computational weight that each of them

adds to the overall performance of this protocol. In particular, our single pairing and multi-pairing

implementations achieve state-of-the-art time performance at the 126-bit security level.

Index Terms

attribute-based-encryption, pairing-based protocols, bilinear pairings, scalar multiplication

I. INTRODUCTION

A bilinear pairing, or pairing for short, can be defined as a non-degenerate bilinear mapping,

ê : G1 × G2 → GT , where G1,G2 and GT , are finite cyclic groups of prime order r. Pairings

E. Zavattoni was a visiting fellow at CINVESTAV-IPN from the Université Claude Bernard, Lyon 1, France.

L. J. Dominguez Perez is currently with CINVESTAV-LTI Unidad Tamaulipas, Cd. Victoria, TAM, 87130 MEX.

Shigeo Mitsunari is with the Cybozu Labs, Inc., Tokyo, Japan.

A. H. Sánchez-Ramı́rez, and. F. Rodrı́guez-Henrı́quez are with the Computing Department, CINVESTAV-IPN, Mexico City,

DF, 07360 MEX email: francisco@cs.cinvestav.mx. A portion of this work was performed while F. Rodrı́guez-Henrı́quez was

visiting University of Waterloo.

Tadanori Teruya is with the Research Institute for Secure Systems, National Institute of Advanced Industrial Science and

Technology, Japan. (Part of this work was done while the author was a researcher at the University of Tsukuba)

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 2

are classified according to the structure of their underlying groups. When G1 = G2, the pairing

is said to be of Type 1. Otherwise, if G1 6= G2, and no efficient computable homomorphism to

map elements between these two groups is known, the pairing is said to be of Type 3 [22].

In 2000, Sakai-Ohgishi-Kasahara [40], and Joux [30], independently discovered constructive

cryptographic properties of bilinear pairings. Since then, several researchers have devised inge-

nious algorithmic improvements that have yielded substantial savings in pairing computations.

In the past few years alone, the speed records for computing pairings in hardware and software

platforms at or around the 128-bit security level, were broken several times [3], [53] (the current

state of the art in software implementation of pairings at this level of security, can be found

in [5]). Furthermore, the timings reported in [2], [16], [45] for computing pairings at the 192-

bit and 256-bit levels of security are reasonably fast for a wide range of protocols running on

high-end processors.

As a consequence of this continued reduction in the timing required to calculate a pairing, the

computation of the other customary cryptographic primitives included in pairing-based protocols

have acquired a renewed importance. Examples of these primitives are, fixed-point and variable-

point scalar multiplication for elliptic curves defined over finite extension fields, the mapping of

arbitrary strings to a random point in those elliptic curves, exponentiation in field extensions,

point compression, point membership in a given subgroup, among others. Moreover, as pointed

out by Scott [45] and some other authors (see for example [17]), a good number of pairing-based

protocols admit further optimizations, such as a faster pairing computation when one of its two

arguments is fixed, and a specialized computation of products of pairings.

Since the functionality and security proofs of a scheme tend to be simpler, the vast majority

of pairing-based protocols reported so far use Type 1 pairings (see [18] for a comprehensive

list). However, Type 1 pairings do not scale up well when going from medium to high security

levels. Moreover, it is usually possible to convert a Type 1 pairing-based protocol into a Type 3

pairing one, although it becomes uncertain if the security guarantees would get compromised or

not by making this change [13]. As an additional bonus, the migration to Type 3 pairings can

sometimes simplify the protocol’s complexity [38] and improve its performance [45].

As of today, a relatively small number of works have examined the complexity and overall

computational weight of non-pairing cryptographic primitives in a given protocol [11], [12],

[14], [41], [45]. In [14], the authors presented a high-level analysis of the computational

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 3

expenses associated to several pairing-based building blocks. In [12], Chatterjee et al. carefully

estimated the relatively cost of the main cryptographic building blocks of two pairing-based

aggregate signature schemes. However, the work in [12] preceded some of the important pairing

computation improvements mentioned above. For example, the authors in [12] estimated that

the cost of computing a single pairing was roughly the same as 15,000 field multiplications.

Nevertheless, the optimal ate pairing computation reported in [3] required a little more than

10,000 field multiplications. Hence, we believe that it is worthwhile to revisit the authors’

conclusions on the relative cost of the different protocol components.

Attribute-based encryption. In 2004, Sahai and Waters presented in [39] a novel encryption

scheme where an entity must possess a minimum number of attributes to be declared valid. This

concept can be applied to a class of protocols called Attribute-Based Encryption (ABE).

The idea of having a variable number of attributes as an identity comes from the need of

sharing a secret in an orderly manner. For instance, in the application of this scheme to health

record protection, a patient may be transported to a different hospital, and a different general

practitioner may need to read some, but not all, the details of the patient’s confidential health

record.
For a concrete example of this situation, let us suppose that the following set of attributes have

been defined in a hospital: “Cardiologist Hospital”, “Cardiologist Surgeon”, “Anesthesiologist”,
“Technician”, “Patient”. If the access policy of a patient’s health record is defined so that it can
only be read by anesthesiologists and technicians affiliated to the cardiologist hospital, and at
the same time the patient’s cardiologist surgeon and the patient can read it at any time, then the
following boolean expression would capture that policy:

(CardiologistSurgeon OR Patient) OR [(Anesthesiologist OR Technician) AND Cardiologist Hospital]

The medical record can also be associated with other attributes such as electrocardiogram or

surgery status report. The access to this document will only be granted to those private key

holders having enough attributes to satisfy the access policy.

The attributes that are initially described as alphanumeric strings can be uniquely mapped to

group elements by means of a special hash function that maps arbitrary strings to elements in

either the group G1 or G2. As it was described above, the access policy is specified through a

boolean formula, which is transformed to an access structure that can be implemented using a

linear secret-sharing scheme (LSSS) as described by Waters in [52].

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 4

Several implementations of different ABE protocol’s variants have been reported in [8], [41],

[45]. In [8], Bethencourt et al. implemented for the first time a Type 1 pairing version of this

protocol using a supersingular elliptic curve that provided around 70 bits of security. Scott

presented in [45] a Type 3 pairing version of the ABE scheme at the 128-, 192- and 256-bit

levels of security, where the protocol’s attributes were all defined in the group G2. Finally, the

authors of [41] reported a full implementation of the ABE protocol running over mobile device

platforms equipped with the latest models of the ARM Cortex family of processors and the

vectorized set of instructions NEON.

Our Contributions. By carefully considering practical applications and using the most efficient

known algorithms, we provide a comparison of the computational costs associated to the main

cryptographic blocks included in customary pairing-based protocols. To this end, we carefully

crafted a software library that supports several types of elliptic curve scalar multiplications

classified according to the size of the scalar, cyclic group membership of the points (either G1

or G2), and the type of the point (either fixed or variable). Using our software, single pairing

and multi-pairing computations achieve state-of-the-art time performance at the 126-bit security

level.1

Furthermore, we reformulate Waters’ attribute-based protocol from its original Type 1 setting

to a Type 3 one, where the attributes can be defined either in the group G1, or in the group

G2. We report efficient implementations of the setup, encryption, key generation, decryption and

delegation primitives of these two protocol versions.

The remainder of this paper is organized as follows. In Section II relevant mathematical

concepts and definitions used throughout this paper are given. Sections III and IV present

several implementation notes about the best methods for computing auxiliary building blocks for

pairing-based protocols and the computation of bilinear pairings in different settings, respectively.

Section V describes a Type 3 version of Water’s attribute-based encryption scheme [52]. The

computational timings achieved by our software are reported in Section VI, and conclusions are

drawn in Section VII.

1An open source code for benchmarking our software library is available at: http://sandia.cs.cinvestav.mx/Site/CPABE

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 5

II. MATHEMATICAL BACKGROUND

A. Elliptic curves: basic definitions

Let p be a prime number, and Fp a finite field of integers modulo p, with p 6= 2, 3. Then, the

Weierstrass equation y2 = x3 + ax + b over Fp defines an elliptic curve E, provided that the

constants a, b ∈ Fp are chosen such that 4a3 + 27b2 6≡ 0 mod p. The Fp-rational points E(Fp)

are defined as the set of points (x, y) ∈ Fp that satisfy the above equation, together with the

point at infinity denoted by O. It is known that E(Fp) forms an additive Abelian group with

respect to the elliptic point addition operation [51]. The j-invariant j(E) of an elliptic curve E

is given as: j(E) = −1728 4a3

4a3+27b2
. Any two non-isomorphic curves defined over an extension

field Fpm , m ∈ Z+ having the same j-invariant are called twists of each other. The number of

points in E(Fp) is denoted as #E(Fp), and the integer t = p+ 1−#E(Fp), known as the trace

of Frobenius, satisfies |t| ≤ 2
√
p.

Let r be a large prime with r | #E(Fp) and gcd(r, p) = 1. The embedding degree k is the

smallest positive integer such that r | (pk−1). We will assume that k > 1 is even, which implies

that the torsion subgroup E[r] is a proper subset of E(Fpk). For embedding degrees of the form

k = 2i3j, with i, j > 0, there exist curves Ẽ defined over Fpd , with d = k
e

and e ∈ {2, 3, 4, 6}

that are isomorphic to E(Fpk). Let P be a point in E(Fp) with prime order r (so, [r]P = O). The

cyclic subgroup of E(Fp) generated by P is denoted as, 〈P 〉 = {O, P, [2]P, [3]P, . . . , [r− 1]P}.

The elliptic curve scalar multiplication operation, or scalar multiplication for short, computes

the multiple R = [n]P , with n ∈ Zr, which corresponds to the point resulting of adding P

to itself n − 1 times. The average cost of computing [n]P by a random scalar n using the

customary double-and-add method is `D+ `
2
A, where ` is the size in bits of the subgroup, that

is to say, ` = |r| = dlog2(r)e, D is the cost of doubling a point (i.e. the operation of computing

R = 2S = S + S, with S ∈ 〈P 〉) and A is the cost of a point addition (i.e. the operation of

computing R = S + T, with S, T ∈ 〈P 〉).

Given r and P,R ∈ 〈P 〉, the Elliptic Curve Discrete Logarithm Problem (ECDLP) consists

of finding the unique integer n ∈ [0, r− 1], such that R = [n]P holds. It is widely believed that

for a sensibly-chosen elliptic curve, the complexity of solving the ECDLP needs O(
√
r) steps,

roughly equivalent to 2
`
2 bit operations [19].

In practice, since field inversion is considerably more expensive than field multiplication, it

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 6

becomes advantageous to represent points using a projective coordinate system. For example,

Jacobian projective coordinates represent an affine point P = (x, y) as the triplet (X, Y, Z),

where x = X
Z2 and y = Y

Z3 , with Z 6= 0.

B. Barreto-Naehrig elliptic curves

Barreto-Naehrig (BN) elliptic curves were presented in [6], as a family of elliptic curves with

embedding degree k = 12 defined by the equation E/Fp : y2 = x3 + b, b 6= 0, where the prime

p, the group order r = #E(Fp), and the trace of Frobenius t are parametrized as,

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1;

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1; (1)

t(x) = 6x2 + 1,

and where x ∈ Z, is an arbitrary integer, known as the BN parameter, that must be selected so

that p = p(x) and r = r(x), are both prime numbers. BN curves admit a sextic twist curve,

defined as Ẽ(Fp2) : Y 2 = X3 + b/ξ, where ξ ∈ Fp2 is neither a square nor a cube in Fp2 . Notice

that for BN curves, j(E) = 0, and that all the nonzero points in E(Fp) have prime order r.

From Eq. (1), it follows that choosing a BN parameter x of around 64-bit length such that p

and r are prime numbers, implies ` = |r| ≈ 256 bits. Consequently, the security level achieved

for such a BN curve would be of approximately 128 bits.

C. Bilinear pairings

The reduced Tate pairing on ordinary elliptic curves maps two linearly independent rational

points defined over the order-r groups G2, G1 ⊆ E(Fpk) to the group of r-th roots of unity of the

finite field Fpk . In practice the Tate pairing is computed using the iterative algorithm proposed

by Victor Miller in 1986 [33], [34] that produces a result f that belongs to the quotient group

F∗
pk
/(F∗

pk
)r. In order to obtain a unique representative useful for cryptographic purposes, a final

exponentiation step consisting of raising f to the power pk−1
r

must be performed [15], [51].

The BN-curve version of the optimal ate pairing introduced by Vercauteren in [50], is defined

as follows. Let π : (x, y) 7→ (xp, yp) be the p-th power Frobenius endomorphism. Let G1 =

{P ∈ E[r] : π(P) = P} = E(Fp)[r], be G1 is the 1-eigenspace of π acting on E[r]. Let

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 7

Ψ : Ẽ → E be the associated twisting isomorphism. Let Q̃ ∈ Ẽ(Fp2) be a point of order r; then

Q = Ψ(Q̃) 6∈ E(Fp). The group G2 = 〈Q〉 is the p-eigenspace of π acting on E[r]. Let GT

denote the order-r subgroup of F∗p12 . The optimal ate pairing studied in this paper is defined as

the non-degenerate map âopt : G2 ×G1 → GT , defined as,

âopt : G2 ×G1 −→ GT

(Q,P) 7−→
(
f6x+2,Q(P) · l[6x+2]Q,πp(Q)(P) ·

l[6x+2]Q+πp(Q),−π2
p(Q)(P)

) p12−1
r ,

where the Miller function fs,Q of length s = 6x + 2, is a normalized rational function [36] in

F̄p(E) with divisor (fs,Q) = s(Q)− ([s]Q)− (s− 1)(O), and where lQ1,Q2 is the equation of the

line corresponding to the addition of Q1 ∈ G2 with Q2 ∈ G2 evaluated at the point P ∈ G1 [51].

An efficient algorithm to compute the optimal ate pairing as described above is presented

in §IV.

III. MAIN BUILDING BLOCKS FOR PAIRING-BASED CRYPTOGRAPHY

This section presents implementation notes of some of the most common building blocks

used in pairing-based protocols including, map-to-point hash functions to the groups G1 and

G2, known-point scalar multiplication in G1 and G2, field exponentiation in GT and the signed

comb method for unknown-point scalar multiplications.

A. Hash to G1

Algorithm 1 BN-curve indifferentiable Map-to-Point function to G1 [20]

Input: a randomly chosen τ ∈ Fp
Output: P ∈ E(Fp)

1: w ←
√
−3 · τ

1+b+t2

2: x1 ← −1+
√
−3

2
− τ · w

3: x2 ← −1− x1

4: x3 ← 1 + 1/w2

5: r1, r2, r3
$← F∗p

6: α← χp(r2
1 · (x3

1 + b))

7: β ← χp(r2
2 · (x3

2 + b))

8: i← [(α− 1) · β mod 3] + 1

9: return P ← (xi, χp(r2
3 · τ) ·

√
x3
i + b)

Boneh and Franklin defined in [10] the Map-to-point hash function H2 to the group G1 as,

H2 : {0, 1}∗ → G∗1, where, as pointed out by the authors, building a direct hash function to

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 8

G∗1 is rather difficult. In the case of BN curves, one can first use a standard cryptographic hash

function to map an arbitrary string to a field element τ ∈ Fp, followed by the indifferentiable

BN hash procedure reported by Fouque & Tibouchi in [20] that is shown in Algorithm 1. Notice

that χp(a) denotes the quadratic residuosity test for an arbitrary element a ∈ Fp. If χp(a) = 1,

then the element a is said to be a quadratic residue in Fp. The computation of the Legendre

symbol can determine χp(a) at a cost similar to that of computing the greatest common divisor

of a and p [1].

Furthermore, in Algorithm 1 it is assumed that the prime p of Eq. (1) is selected so that

p ≡ 3 mod 4, which is in fact the most common choice for this parameter [37]. The cost

of Algorithm 1 includes the computation of two field inversions, three quadratic residuosity

tests, one square root, plus some few field multiplications. The selection p ≡ 3 mod 4 has the

added benefit that the square root computation of step 9 can be performed as the exponentiation

(x3
i +b)

p+1
4 , where b ∈ Fp is the BN elliptic curve constant. Notice also that the per-field constants

√
−3 and −1+

√
−3

2
, can be precomputed offline.

B. Hash to G2

In the case of BN pairings, G2 consists of a group of points of order r that belong to the twist

curve Ẽ(Fp2). Hence, the standard procedure to hash to G2, is composed of two phases: first an

arbitrary string is hashed to a random point Q ∈ Ẽ(Fp2), followed by the scalar multiplication

[c]Q, where the cofactor c is defined as, c = #Ẽ(Fp2)/r [47]. By virtue of Lagrange’s group

theorem, the point [c]Q has order r as desired.

For the first phase, one can use a procedure analogous to the one shown in Algorithm 1, except

that in this case all the arithmetic operations must be performed in the quadratic extension Fp2 ,

and the constant b should be replaced by ξ̄ = b/ξ, where ξ ∈ Fp2 was defined in section II as the

constant of the twist curve Ẽ. Once again, the square root computation of Step 9 is the single

most costly operation. Scott describes in [44] a square root procedure that has a computational

cost of just two square roots, one quadratic residue test and one field inversion over Fp and that is

recommended in [1] as the best approach when p ≡ 3 mod 4. Once a random point Q ∈ Ẽ(Fp2)

has been obtained, a scalar multiplication by the cofactor c must be performed. This last step

can be accomplished efficiently using the lattice basis reduction approach described in [21], at a

cost of one scalar multiplication [x]Q, where x is the BN parameter of Eq. (1), plus four point

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 9

additions and one point doubling.

C. Unknown-point scalar multiplication in G1

In the following, we discuss how to compute the scalar multiplication R = [n]P , with P ∈ G1,

|n| ∈ Zr and when the point P is not known in advanced. This case will be referred in the

remainder of this paper as the unknown point scalar multiplication scenario.

The customary method to speed up this operation as described in [29], reduces the Hamming

weight of the scalar n by representing it in its w-non-adjacent form (w-NAF) as, n =
∑`−1

i=0 ni2
i,

where each non-zero ni coefficient is odd, less than 2w−1, and at most one of any w consecutive

digits is non-zero, with n`−1 6= 0, where the length ` is at most one bit larger than the bit size

of the scalar n. The estimated cost of the scalar multiplication is, `D+ `
ω+1

A, plus the expense

of precomputing the multiples Pi = [i]P, for i ∈ {1, 3, . . . , 2w−1 − 1}. Roughly speaking, the

cost of the precomputation step is of about one doubling and (2w−2 − 1) point additions along

with the storage of 2w−2 points. The scalar multiplication in G1 can be further accelerated by

means of the GLV method as briefly described next.

Gallant et al. introduced in [24] a method to speed up the scalar multiplication [n]P for several

families of elliptic curves. In particular the method applies for all curves with j-invariant equal to

zero, such as the BN curves. The two-dimensional GLV method breaks the scalar n into 2 smaller

pieces n ≡ n1 + n2λ (mod r) for some λ, such that |ni| ≈ |
√
r|. In the case that there exists

an efficient endomorphism ψ(P) = [λ]P , the scalar multiplication [n]P = [n1]P + [n2]ψ(P) can

be efficiently performed by means of simultaneous exponentiation techniques that effectively

reduce the number of point doubling computations to a half. In the case of BN curves, the map

ψ : E → E is defined by, ψ : (x, y)→ (βx, y), where β ∈ Fp is an element of order three, i.e.,

β3 = 1, which implies that the computation of the point ψ(P) has a negligible cost of just one

field multiplication.

Algorithm 2 shows a procedure that performs a two-dimensional GLV scalar multiplication

using m = 2, P0 = P and P1 = ψ(P). The computational cost of Algorithm 2 is of about
`
2
D + `

w+1
A, plus the cost of the precomputation. An efficient method for obtaining a two-

dimensional decomposition of the scalar n is discussed in Appendix A.

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 10

Algorithm 2 m-dimensional w-NAF scalar multiplication for BN curves

Input: m ∈ {2, 4}, w, ni, points Pi ∈ E(Fps), 0 ≤ i ≤ m − 1,

s = m/2.

Output: Q = [n]P =
∑m−1
i=0 niPi

1: Compute [j]Pi for j ∈ {1, 3, 5, . . . 2w−1 − 1}, 0 ≤ i ≤ m− 1

2: Compute the w-NAF of each scalar ni =
∑t−1
j=0 ni,j2

j ,

0 ≤ i ≤ m− 1

3: Q←∞
4: for j = t− 1 down to 0 do

5: Q← [2]Q

6: for i = 0 to m− 1 do

7: if ni,j > 0 then

8: Q← Q+ [ni,j]Pi

9: else

10: Q← Q− [ni,j]Pi

11: end if

12: end for

13: end for

14: return Q

D. Unknown-point scalar multiplication in G2 and exponentiation in GT

Using endomorphisms with degree-four characteristic polynomials that operate in the G2 and

GT groups, the method presented by Galbraith and Scott in [23] generalizes the GLV approach

described above to a four-dimensional version.

In the case of BN curves, the homomorphism that applies for the group G2 is given as,

ψi = φπiφ−1, where πi is the p-power Frobenius map on the curve E, and φ : Ẽ(Fp2)→ E(Fp12),

and its inverse map φ−1, are the endomorphisms that permit to map a point from the twisted

elliptic curve Ẽ to E and vice versa. On the other hand, the homomorphism that applies for the

GT group is simply the Frobenius endomorphism, since p ≡ t − 1 mod r, which implies that

fp = f t−1, with f ∈ GT . For both G2 and GT groups, their homomorphisms satisfy characteristic

polynomials of degree four, thus allowing four-dimensional GLV methods of the form,

n ≡ n0 + n1λ+ n2λ
2 + n3λ

3 (mod r),

with λ = t− 1 = 6x2 and with |ni| ≈ |r|/4, for i = 0, . . . , 3.

In the case of the scalar multiplication in G2, the operation [n]Q with Q ∈ G2, n ∈ Zr
can then be accomplished as, [n]Q = [n0]Q + [n1]ψ(Q) + [n2]ψ2(Q) + [n3]ψ3(Q), where the

mapping ψi(Q) for i = 0, . . . , 3, has a negligible computational cost. Notice also that the identity

ψ(Q) = [λ]Q = [6x2]Q, holds. To perform the scalar multiplication in G2, Algorithm 2 is

invoked with input points Q,ψ(Q), ψ2(Q), ψ3(Q) ∈ G2. The cost associated to the procedure

shown in Algorithm 2 is of, `
4
D + `

w+1
A, plus the precomputation expense.

Likewise, in the case of the exponentiation in GT , the operation fn with f ∈ GT , n ∈ Zr
can then be accomplished as, fn = fn0 · fn

p
1 · fn

p2

2 · fn
p3

3 , where the Frobenius mapping fpi for

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 11

i = 0, . . . , 3, has a negligible computational cost as explained for example in [9].

Algorithm 2 can be readily adapted to perform exponentiations in GT , by receiving as input

parameters the field elements f, fp, fp
2
, fp

3 ∈ Fp12 and by substituting the point doubling

computation of step 5 by a fast Granger-Scott squaring [25], and the point addition computations

of steps 8 and 10 by field multiplications over Fp12 . Notice that the exponentiation in GT admits

almost-free field multiplicative inversions via conjugations [44]. Hence, the addition-subtraction

chains generated by the w-NAF scalar expansions of the scalars in step 2 apply just as well

to the exponentiation in this group. Leaving aside the precomputation effort, the cost of this

exponentiation is `
4
S + `

w+1
M, where M,S stand for field multiplications and squarings over

Fp12 , respectively.2

An efficient method to compute a four-dimensional decomposition of the scalar n is discussed

in Appendix A.

E. Known-point scalar multiplication

The case where one wants to compute the scalar multiplication R = [n]P , with P ∈ G1,

|n| ∈ Zr, and when the point P is known in advanced, will be referred in the remainder of

this paper as the known point scalar multiplication. In this scenario, the scalar multiplication

operation can be performed efficiently using the comb method provided that some extra memory

is available [29].

Given a window size w and a known-point P , the comb method computes the scalar multi-

plication Q = [n]P with |n| ≈ |r| = `, by first precomputing for all of the possible bit strings

(aw−1, . . . , a0) the following 2w multiples of P ,

[aw−1, . . . , a2, a1, a0]P = [aw−12(w−1)d]P + . . .+ [a222d]P + [a12d]P + [a0]P, (2)

Then, the scalar n is scanned column-wise by recoding it into d blocks each one with a bit length

of w bits, where d = `/w, and where w is the selected window size. In order to compute the

scalar multiplication, a double & add-always sequential procedure of d iterations is performed.

Each one of the d blocks, serves as an index to select the right base point multiple from the

precomputed look-up table described above.

2A faster squaring method was presented by Karabina in [31]. However, GS scalar decompositions lead to high Hamming-

weight exponents, which makes Karabina squaring computation less attractive.

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 12

In total, the comb method requires the storage of 2w points. This storage expense can be

reduced to a half by using a signed representation of the scalar n as presented by Hamburg in [28].

The signed representation of the scalar is defined as, n =
∑t−1

i=0 σi2
i mod r, with σi ∈ [−1, 1]

and t = |r|. Using the identity
∑t−1

i=0 2i = 2t − 1 one has that,

n+ 2t − 1

2
=

(
t−1∑
i=0

σi2
i +

t−1∑
i=0

2i

)
/2 =

t−1∑
i=0

σi + 1

2
2i =

t−1∑
i=0

bi2
i mod r,

where bi ∈ [0, 1], which implies that the i-th signed bit of n is given as σi = 2bi − 1. By

exploiting the symmetry of the signed multiples of the point P, this scalar representation reduces

the memory expense of the precomputation phase to the cost of storing 2w−1 points.

Algorithm 3 shows the computation of the scalar multiplication using the signed comb method.

Algorithm 3 Single table signed comb scalar multiplication

Input: Positive integer n, point P ∈ E(Fps), s ∈ {1, 2}, a window

size w, d = d|r|/we
Output: Q = [n]P

1: Precompute the signed multiples [aw−1, . . . , a1, a0]P for all

possible strings (aw−1, . . . , a0)

2: Recode the scalar n column-wise dividing it into d, w−bit blocks

`i, for i = 0, . . . , d− 1.

3: for i = d− 1 down to 0 do

4: Q← [2]Q

5: if the MSB of `i = 1 then

6: Q← Q− [`i&(2w−1 − 1)]P

7: else

8: Q← Q+ [`i]P

9: end if

10: end for

11: return Q

The estimated computational complexity of this scalar multiplication is of d(A + D), where

A is the cost of a point addition, and D is the cost of a point doubling. Algorithm 3 can also be

adapted for computing exponentiations in the GT group, using the Granger-Scott squaring, and

regular field multiplications/divisions over Fp12 .3 Alternative optimizations include the usage of

multiple tables and/or combining an m-dimensional GLV with the comb method, at the price

of adding more precomputation tables. In this work none of these additional optimizations were

considered.

In the case that the storage required by the comb scalar multiplication or exponentiation

becomes excessive, one can optionally use a wNAF recoding of the scalar/exponent with w = 7,

which obtains competitive computational timings.

3Field division of two elements a, b ∈ Fp12 , is implemented as, a/b = a · b̄, where b̄ is the conjugate of b in the field Fp12

that is seen as the quadratic extension of the field Fp6 .

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 13

IV. EFFICIENT COMPUTATION OF PAIRINGS

As was discussed in § II-C, the computation of the reduced Tate pairing consists of two main

steps: the Miller loop and the final exponentiation. In this Section, several relevant algorithmic

aspects of the computation of the Miller loop and the final exponentiation steps are briefly

reviewed. Then, a specialized procedure for the efficient computation of a product of pairings

is presented.

A. Single Pairing computation

Algorithm 4 Optimal ate pairing as computed in [3]

Input: P ∈ G1, Q ∈ G2

Output: f = aopt(Q,P)

1: f ← 1, T ← Q, s← abs(6x+ 2)

2: Write s as, s =
∑m−1
i=0 si2

i with si ∈ {−1, 0, 1}
3: for i = m− 2 down to 0 do

4: f ← f2 · lT,T (P), T ← 2T

5: if si = 1 then

6: f ← f · lT,Q(P), T ← T +Q

7: else if si = −1 then

8: f ← f · lT,−Q(P), T ← T −Q
9: end if

10: end for

11: f ← fp
6

12: R← π(Q); f ← f · l−T,R(P); T ← T +R

13: R← π2(Q); f ← f · l−T,−R(P); T ← T −R
14: f (p12−1)/r

15: return f

Algorithm 4 shows a slightly adapted version of the optimal ate pairing over BN curves

proposed in [3].

The most costly operations in the main loop of Algorithm 4 are the evaluation of the tangent

line lT,T and the doubling of the point T in step 4, as well as the evaluation of the line through

T and Q, and the computation of the point addition T +P in steps 6 and 8. Additionally, these

steps require the multiplication of the Miller variable f by the lines lT,T and lT,Q, respectively.

The final exponentiation (see step 14 in Algorithm 4), can be accomplished using the lattice

basis reduction approach described in [21] at a cost of 3 Frobenius operators, 3 exponentiations

by the BN parameter x, 12 multiplications, 3 squarings and one inversion in Fp12 .

The arithmetic operations for computing the Miller loop and the final exponentiation are

performed using field towering techniques, where the field Fp12 is represented as the tower,

Fp ⊂ Fp2 ⊂ Fp6 ⊂ Fp12 .

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 14

Furthermore, taking advantage of the sextic twist of the BN curves, it results convenient to

specify the cost of the pairing computation in terms of the number of field arithmetic operations

performed in the quadratic extension field Fp2 , being field multiplication and squaring the single

two most dominant operations.

The Montgomery multiplier procedure can compute a field multiplication over the quadratic

extension field Fp2 by performing two main steps, the integer multiplication of two 256-bit

integers (producing a 512-bit integer), denoted as mE, followed by the Montgomery reduction

from a 512-bit integer to a 256-bit integer, an operation denoted as rE .

The lazy reduction technique opportunistically exploits the homomorphic properties of modular

reduction, namely, ((a mod p)+(b mod p)) mod p = (a+b) mod p. By carefully selecting prime

numbers p with bitlength slightly less than 256 bits, lazy reduction can significantly accelerate the

field arithmetic computations. Under this condition, it was shown in [9] that field multiplication

and squaring over Fp2 can be computed at a cost of 3mE + 2rE and 2mE + 2rE , respectively.

This technique can also be applied to the other extension fields included in the field towering

described above. We refer the reader to [3] for further details of how to apply the lazy reduction

to accelerate the arithmetic operations in other field extensions.

Notice that the main loop of Algorithm 4 performs a total of |s| iterations, where s = 6x +

2. Choosing the BN parameter as x = −262 − 255 − 1 [37], implies that the signed binary

representation of s has a length of 65 bits and a Hamming weight of 5.4 Using that standard

choice for the BN parameter, the total costs of the Miller Loop and the final exponentiation can

be estimated as [35], M. L. = 6785mE + 3022rE and F. E. = 3526mE + 1932rE, respectively.5

B. Fixed argument pairing computation

If the point Q ∈ G2 is known in advance then, as was discussed in [44], a speedup can be

attained in the computation of the optimal ate pairing at the price of more storage. If the point

Q is fixed and known, the line functions of the pairing algorithm can be partially precomputed

off-line. At running time, the stored values of the lines are recovered and evaluated at the variable

4This BN parameter selection can be subject to small subgroup attacks in GT , as discussed in [46, section 8.3], where an

alternative BN parameter choice was suggested.
5An optimized version of our library that was especially tailored for the newest Intel processor Haswell, achieves the fastest

pairing computation time reported in software platforms [35].

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 15

point P . If Algorithm 4 is executed with the BN parameter choice previously mentioned, then

70 elements in Fp6 per pairing must be stored, which corresponds to 64 tangent lines that are

required at each iteration in step 4, plus 6 lines through the points T and Q that are used in

the case that si = 1, in steps 6 and 8. If more than a pairing computation is required, this

improvement can be combined with the multi-pairing setting presented next.

C. Computation of products of pairings

In many protocols, some of their computations include a product of pairings. In this case,

one can make use of the pairing bilinear property to group pairings sharing one of the input

parameters. If all the pairings share a common input point, then one can exchange the n pairing

products by n− 1 point additions and a single pairing using the identity,
n−1∏
i=0

e(Q,Pi) = e(Q,
n−1∑
i=0

Pi),

which saves a significant amount of operations, namely, n−1 pairings, and n−1 multiplications

in GT . If a product of pairings is still needed, and the previous method was already exploited,

there is still room for obtaining significant speedups. For instance, one can compute that product

by exploiting similar strategies as the ones proposed in the multi-exponentiation setting. These

techniques have already been discussed by Solinas [49], Scott [43], and Granger and Smart in

[26]. In essence, in a multi-pairing computation not only the costly final exponentiation step

can be shared, but also, one can share both the accumulator f, and the squaring computations

performed in the step 4 of Algorithm 4.

Algorithm 5 presents an explicit multi-pairing version of Algorithm 4 that computes the

product of n optimal ate pairings specialized for BN curves.

Note that during a protocol flow, most of the pairing input points are either known in advance,

or they are the result of a scalar multiplication, which for efficiency reasons are represented

in Jacobian projective coordinates. In that case, a multi-normalization, i.e. the operation of

performing the conversion from Jacobian projective to affine coordinates, of n points can be

performed efficiently using Montgomery’s simultaneous inversion trick [29] at a cost of (6n−3)

multiplications, n squarings and one inversion.

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 16

Algorithm 5 Explicit multi-pairing version of Algorithm 4

Input: P1, P2 . . . Pn ∈ G1, Q1, Q2 . . . Qn ∈ G2

Output: f =

n∏
i=1

e(Qi, Pi)

1: Write s in binary signed form, s =
∑m−1
i=0 with si ∈ {−1, 0, 1}

2: f ← 1, s← abs(6x+ 2)

3: for j = 1 to n do

4: Tj ← Qj

5: end for

6: for i = m− 2 down to 0 do

7: f ← f2

8: for j ← 1 to n do

9: f ← f · LTj ,Tj
(Pj), Tj ← 2Tj

10: if si = 1 then

11: f ← f · LTj ,Qj
(Pj), Tj ← Tj +Qj

12: else if si = −1 then

13: f ← f · LTj ,−Qj
(Pj), Tj ← Tj −Qj

14: end if

15: end for

16: end for

17: f ← fp
6

18: for j = 1 to n do

19: R← π(Qj); f ← f · L−Tj ,R(Pj); Tj ← Tj +R

20: R← π2(Qj); f ← f · L−Tj ,−R(Pj); Tj ← Tj −R
21: end for

22: f (p12−1)/r

23: return f

V. CASE STUDY: ATTRIBUTE-BASED ENCRYPTION

In an ABE protocol, a participant encrypts data that can only be decrypted by users able to

satisfy an access policy previously agreed. The access policy is specified as a boolean formula

over a set of attributes.

The boolean formula describing the access policy can be represented by an access structure

using a linear secret-sharing scheme (LSSS) [52], which in turn can be implemented efficiently

using the approach of Liu and Cao reported in [32]. The description of the Liu and Cao conversion

algorithm is presented in Appendix B, where the simple access policy mentioned in §I is used

to illustrate the process of converting a control access policy specified as a boolean formula

to an LSSS matrix. During the setup phase of the protocol, the attributes, initially specified as

arbitrary strings, are mapped to points in the group G1 or in the group G2.

An ABE scheme consists of five main primitives as described next [8],

1) Setup(κ, U). The input parameters of this primitive are the security parameter κ and the

universe of attributes U . The primitive generates a master key MK along with the domain

parameters PK.

2) Encryption(PK,M,A). This primitive takes as input the set of domain parameters PK,

the message M and the access policy A specified as a boolean formula whose operands

are a subset of the universe of attributes. Then, this primitive encrypts M as the ciphertext

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 17

CT in such a way that only those users that have the set of attributes required to satisfy

the access policy A, will be able to decrypt it. It is assumed that the ciphertext and the

access policy A must be transmitted together as a pair.

3) Key generation(MK,S). This primitive takes as input the master key MK along with a

set of attributes S. Then, this primitive generates a private key SK with the prescribed

set of attributes. Usually, this primitive is executed by a “trusted third party” that has the

crucial role of generating for each one of the participants a customized private key with

specific access privileges.

4) Decryption(PK,CT , SK). This primitive takes as input the domain parameters PK along

with the ciphertext CT and its corresponding access policy A, and the private key SK,

which contains the set of attributes S. Only in the case that the set of attributes S satisfies

the policy A, this primitive will be able to recover the message M from the ciphertext CT .

5) Delegate(SK, S̃). This primitive takes as input a private key SK with some set of attributes

S and a subset S̃ ⊂ S. It outputs a valid private key ˜SK for the subset of attributes S̃.

Converting a Type 1 pairing-based protocol into a Type 3 setting has the challenge of selecting

the groups where the pairing inputs belong in an accurate way from the security and performance

points of view. In the case of an ABE protocol, if the access policy attributes are defined in G1,

then the computation of the key generation and encryption primitives can be boosted via multi-

pairing computation. Moreover, the size of the ciphertext, which is proportional to the number

of attributes and their bit-length, would be smaller. On the other hand, the scenario where the

attributes are defined in G2 will benefit from a fast decryption algorithm.

In the following we describe the details of the ABE protocol in the G1 setting. The ABE

protocol in the G2 setting is similar and therefore its description is omitted.

A. Attribute-based encryption with variable attributes defined in G1

In this subsection, an asymmetric setting of the ABE protocol with a variable number of

attributes mapped to elements in G1, is presented. Explicit algorithms for the five main primitives

of the ABE protocol can be found in Appendix C.

1) Setup: Let us assume that a set of attributes U composed of N distinct strings, has been

previously defined. Two generating points P ∈ G1, and Q ∈ G2 are randomly selected so that

|G1| = |G2| = r, with r a large prime whose size is defined by the security parameter κ. Then,

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 18

the randomly chosen scalars α, δ ∈ Fr, are used in Algorithm 7 to compute the multiples,

Pα = [α]P and Pδ = [δ]P , along with the pairing γ = e(P,Q)α. Choose a hash function H1

which hashes an element in GT to a string of m bits.6 All the attribute strings are mapped

to points in G1 by means of a special hash function H2(·) that maps arbitrary strings to the

group elements {H1, . . .HN} belonging to G1. The public domain parameters computed by

Algorithm 7 are {P,Q, Pδ, γ}, {H1, . . .HN}, and the secret master key is {Pα}.

2) Encryption: Let us recall that the access policy A is initially specified as a boolean formula

over a subset of attributes using the AND and OR operators. Let us assume that the number of

distinct attributes in that boolean formula is u, with u ≤ N.

The first step of this primitive uses Algorithm 6 presented in Appendix B, to convert the

boolean formula describing the access policy into a LSSS matrix S ∈ Fr of size u × t, along

with a function ρ that associates rows of S to attributes in H, namely, I ⊂ {1, 2, . . . , u} is

defined as I = {i : ρ(i) ∈ H}.

Next, the encryption exponent s ∈ Fr is picked at random, along with t − 1 random secrets

yi ∈ Fr to form the column vector ū = (s, y2, . . . , yt) that is used to compute the secret share

vector λ̄ as,

λ̄ = Sū. (3)

Thereafter, a total of u secrets in Fr are randomly selected to form the vector x̄ = (x1, . . . , xu).

The message M is then hidden as as C = M ⊕ H1(γs), whereas the encryption exponent is

protected as, Cd = [s]Q. All the coefficients of the secret share vector λ̄ and the vector x are

hidden as, Ci ← [λi]Pδ − [xi]Hρ(i) and Di ← [xi]Q, for i = 1, . . . , u. Algorithm 8 performs the

procedure just described given as output the ciphertext, CT = {S, C, Cd, (C1, D1), . . . , (Cu, Du)}.

3) Key Generation: Let us denote by H the entity’s set of vH attributes. A field element

τ ∈ Fr is randomly selected to compute K = Pα+ [τ]Pδ, and L = [τ]Q. For each of the entity’s

attributes Hi ∈ H, i = 1, . . . , vH, the points Ki = [τ]Hi, are computed. Algorithm 9 performs

the procedure just described to generate the private key SK as, SK = {K,L,K1, . . . , KvH}.

4) Decryption: Algorithm 10 takes as inputs the ciphertext CT with its corresponding access

structure represented by the LSSS matrix S ∈ Fr, and the private key SK associated to a set of

attributes H. Let us suppose that S satisfies the access structure.

6In our implementation we used m = 256 bits.

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 19

As a first step, the u× t LSSS matrix S from the ciphertext CT , is reduced to a square matrix

by removing the rows and columns that are unrelated to the set of attributes H. We denote the

resulting reduced v × v matrix as S̃ ∈ Fr, with v ≤ u. Let ρ be a function that associates rows

of S̃ to attributes in H as, I = {i : ρ(i) ∈ H} with I ⊂ {1, 2, . . . , v}.

Let us recall that the secret share vector λ̄ was computed in Eq. (3) as, λ̄ = Sū. For the sake

of simplicity assume that the size of the vectors ū and λ̄ is equal to v. Then, it follows that,

S̃−1λ̄ = ū, which implies that,

Ω · λ̄ =
∑
i∈I

ωiλi = ∆ · s, (4)

where Ω = {ωi ∈ Z}i∈I is the first row of the inverse of the matrix S̃, and ∆ is the determinant of

the reduced matrix S̃ in Fr [45]. Having computed the vector Ω as defined above, Algorithm 10

recovers the plaintext M as,

M = C ⊕H1

(e(Cd,−[∆]K) · e

(
L,
∑
i∈I

[ωi]Ci

)
·
∏
i∈I

e(Di, [ωi]Kρ(i))

) 1
∆

 (5)

Notice that keeping the determinant ∆ in Eq. (4) helps us to guarantee low size constants in the

vector Ω. This allows us to compute v short scalar multiplications in G1 (as opposed to v full

scalar multiplications), with an associated penalty in Eq. (5) of only one single exponentiation

in GT .

In our experiments we have always observed that | ωi |< 20 bits. In this way, the scalar

multiplications where these constants are involved can be computed using a simple and fast 2-

NAF method, an operation that in the remainder of this paper is called short scalar multiplication.

5) Delegate: Given a set of attributes H matching a given policy, Algorithm 11 takes as

input a subset H̃ of vH̃ attributes, such that H̃ ⊆ H, and a private key SK. A private key ˜SK

that contains the set of attributes H̃ is produced as output. Notice that the delegation step is

essentially a copy of the Key Generation procedure with a different random secret τ , denoted

as τ ′.

B. Operation count

For the sake of simplicity let us assume that the number of attributes specified in the control

access policies of the setup and the encryption primitives are both equal to v. Then, Table I

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 20

summarizes the number of operations in the G1 and G2 settings associated to the three main

ABE primitives, namely, encryption, key generation and decryption.

It is noticed that for those applications where the attributes are not known in advance, both

the encryption and key generation primitives require v applications of the Map-To-Point hash

function.

Primitive
Scalar Mult. in G1 Scalar Mult. in G2 Exp. in GT Pairing

K small K small K U F U

ABE protocol with attributes defined in G1

encryption: 2v – v + 1 – 1 – – –

key generation: v + 1 – 1 – – – – –

decryption ∆ = 1 – 2v – – – – 1 v + 1

decryption ∆ 6= 1 1 2v – – – 1 1 v + 1

ABE protocol with attributes defined in G2

encryption: v + 1 – 2v – 1 – – –

key generation: 1 – v + 1 – – – – –

decryption ∆ = 1 – v – v – – v + 1 1

decryption ∆ 6= 1 – v 1 v 1 – v + 1 1

TABLE I

ABE PROTOCOL OPERATION COUNT WITH v ATTRIBUTES. K STANDS FOR KNOWN POINT/ELEMENT USING THE SIGNED

COMB EXPONENTIATION WITH A WINDOW SIZE w = 8, small STANDS FOR A SCALAR MULTIPLICATION BY A small SCALAR,

U STANDS FOR AN UNKNOWN-POINT SCALAR MULTIPLICATION, UNKNOWN-ELEMENT EXPONENTIATION, OR

UNKNOWN-POINT PAIRING, F STANDS FOR A PAIRING COMPUTATION WITH A FIXED PARAMETER.

VI. IMPLEMENTATION RESULTS

This section presents our main implementation results classified into two subsections. First

in §VI-A, the performance timings achieved by all the ABE protocol building blocks, are given.

This subsection also includes a performance comparison against recently reported works on

scalar multiplication and exponentiation in pairing groups. Then in §VI-B, the timings achieved

by our software for computing the ABE protocol in the G1 and G2 settings are presented.

All our timings were measured on an Intel Core i7-4770 equipped with the micro-architecture

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 21

Haswell running at 3.4GHz with the TurboBoost technology disabled, using a Linux kernel 3.8.0

and GCC version 4.7.3.

A. Cryptographic primitive timings

Table II shows the performance achieved by single/multi pairing computations and the im-

plementation of all the auxiliary functions as they were described in §III, which includes the

exponentiation operations in the three pairing groups, G1, G2, and GT , and the map-to-point hash

function. For each operation, its approximate cost in terms of number of field multiplications

over Fp is given.

As shown in Eq. 5, the decryption primitive of the ABE protocol studied in this paper

requires a multi-pairing computation that involves at least three pairings. Within a multi-pairing

computation, each extra pairing amounts for 483, 000 and 280, 000 clock cycles in the unknown

and fixed point scenarios, respectively (see rows three and four of Table II).

The scalar multiplications with small scalars of less than 20 bits in the groups G1 and G2

were implemented using a 2-NAF recoding at a cost of about 26, 800 and 61, 800 clock cycles,

respectively.

Additionally, Table II also reports a performance comparison of each block against the cost

of computing a scalar multiplication with a non-fixed scalar in the group G1 denoted as MG1

for short. This comparison aims to give a quick reference of the relative weight that each of

the main cryptographic blocks adds to the total computational complexity of the ABE protocol.

For example, Table II reports that one single pairing computation costs approximately 5.95

MG1 . However, any extra pairing computation in the unknown-point and known point scenarios

would cost just 2.48 and 1.44 MG1 , respectively. Similarly, one can see that the unknown point

multiplication in G2 and exponentiation in GT cost about 1.82 and 2.86 MG1 , respectively.

As shown in Table III, the performance achieved by our library for scalar multiplication and

exponentiation in pairing groups, clearly outperforms all the related results recently published.

However, it is worth to mention that the library presented in [27] utilized a random prime p to

compute all the arithmetic operations. Hence, the comparison against our specialized library is

a little unfair in that sense.

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 22

Operation w Type Operation count 103 Clock cycles op/MG1

single pairing
– U 10, 312mE + 4, 954rE 1, 162 5.95

– K 8, 598mE + 3, 652rE 980 5.03

one more pairing
– U 4, 604mE + 2, 301rE 483 2.48

– K 3, 011mE + 1, 125rE 280 1.44

G1 scalar mult.
3 U ≈ 1, 654m 195 1.00

8 K ≈ 576m 61 0.31

G2 scalar mult.
3 U ≈ 3, 036m 354 1.82

8 K ≈ 1, 472m 161 0.83

GT Exp.
3 U ≈ 5, 070m 557 2.86

8 K ≈ 2, 496m 260 1.33

Map-To-Point G1 – – ≈ 750m 72 0.37

Map-To-Point G2 – – ≈ 2, 760m 262 1.34

TABLE II

COMPUTATIONAL COSTS OF THE ABE PROTOCOL BUILDING BLOCKS. TYPE U AND TYPE K STAND FOR THE

UNKNOWN-POINT AND KNOWN-POINT SCENARIOS, RESPECTIVELY. mE , rE AND m DENOTE 256-BIT INTEGER

MULTIPLICATION, 512-BIT MONTGOMERY REDUCTION AND FIELD MULTIPLICATION OVER Fp , RESPECTIVELY. ALL THE

SCALAR MULTIPLICATIONS/EXPONENTIATIONS IN THE GROUPS G1,G2 AND GT , PROCESS THE SCALAR/EXPONENT USING

A WINDOW SIZE w AS INDICATED. FINALLY, MG1 STANDS FOR UNKNOWN SCALAR MULTIPLICATION OVER G1.

B. Protocol timings

In this subsection we report the ABE protocol implementation timings when the attributes are

defined in the groups G1 and G2, respectively. We do not include the setup primitive timings

because in most applications this primitive can be performed offline, and hence its influence in

the overall performance of the protocol is limited. Likewise, since the delegation timings are

essentially the same as the ones of key generation they are not reported either. For comparison

purposes, we include the timings reported by Scott in [45].

Table IV shows the timings obtained for the encryption, key generation and decryption primi-

tives in the G1 and G2 settings using an access policy of 6 and 20 attributes. In the G2 setting, a

substantial speedup in the decryption step is achieved at the cost of larger precomputation tables

and ciphertext sizes. The extra penalty in memory is due to the cost of storing the precomputation

of the lines for fixed-point pairing calculations. In contrast, the G1 setting is significantly more

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 23

Op Type Scott [42] Bos et al. [11] Guillevic [27] This work

Intel i5-520M Intel i7-3520 Intel Celeron Intel i7-4770

@2.4GHz @2.9GHz @2.6GHz @3.4 GHz

G1 scalar mult.
U 528 900 1, 430 192

K 168 – – 60

G2 scalar mult.
U 1, 056 1, 800 4, 966 367

K 456 – – 152

GT Exp.
U 2, 280 3, 100 13, 416 558

K 1, 032 – – 262

single pairing
U 5, 568 7, 000 13, 130 1, 162

K 5, 016 – – 980

one more pairing U 1, 800 – – 485

TABLE III

SCALAR MULTIPLICATION AND EXPONENTIATION IN PAIRING GROUPS (ALL TIMINGS ARE GIVEN IN 103 CLOCK CYCLES).

TYPE U/K, STAND FOR UNKNOWN/KNOWN POINT/ELEMENT OPERATION.

LSSS ABE Protocol

103 clock cycles

Attributes in G1 Attributes in G2 Scott’s Attributes in G2 [45]

Six attributes Twenty attributes Six attributes Twenty attributes Six attributes Twenty attributes

encryption 2, 384 7, 150 2, 921 9, 129 16, 704 23, 832

key generation 652 1, 699 1, 326 3, 994 3, 408 –

decryption (∆ = 1) 4, 606 12, 776 3, 515 9, 528 14, 832 31, 320

overall cost 7, 642 21, 625 7, 762 22, 651 31, 083 –

pairing cost 4, 378 11, 168 3, 123 7, 043 – –

Pairing cost (%) 57.3 51.6 40.2 31.1 – –

TABLE IV

PERFORMANCE OF THE ABE PROTOCOL PRIMITIVES (ALL THE TIMINGS ARE GIVEN IN 103 CLOCK CYCLES)

economical for the computation of the encryption and key generation primitives. The overall

result is that both settings achieve roughly the same performance with a 6-attribute access policy,

whereas the G1 setting is 4.6% faster than the G2 one, when using a 20-attribute access policy.

Table IV also presents the estimated CPU cycles required by Scott’s implementation of the

ABE scheme studied in this paper. It is noticed that our 6-attribute encryption, key generation

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 24

and decryption timings presented in Table IV for the G2 setting, are 5.7, 2.6 and 4.2 times faster

that those reported in [45], respectively, and significantly faster than the ones reported in [8],

where a scheme providing just 70 bits of security was reported.

VII. CONCLUSION

In this paper, we presented two variants of Waters’ attribute-based encryption protocol that

make use of Type 3 asymmetric pairings allowing a variable number of access policy attributes,

which can be defined either in the G1 or in the G2 pairing groups. Although both variants

achieve roughly the same timing performance, the G1 setting has smaller memory requirements

and produces smaller ciphertexts than the G2 setting.

Table II presents a performance comparison of several relevant cryptographic blocks against the

cost of computing a scalar multiplication with a non fixed scalar in the group G1. It is interesting

to note that after performing the first pairing in a multi-pairing operation, the computational cost

of calculating any additional pairing is roughly the same of performing one exponentiation in

the GT group. Furthermore, the computational cost of unknown point/element exponentiation in

the groups G2, and GT is about 1.8 and 2.9 times larger than the cost of one unknown point

scalar multiplication in G1, respectively. Notice also that the map-to-point mapping has a non-

negligible cost, especially when performing a mapping to G2. Hence, this operation should not

be overlooked when assessing the computational cost of a pairing-based cryptographic scheme.

As shown in Table IV our timings for the encryption, key generation and decryption primitives

when using 6 attributes defined in the group G2 are 5.7, 2.6 and 4.2 times faster that those reported

in [45], respectively.

As a general conclusion, our study shows that the cost of a single pairing is still the most

expensive primitive in a typical attribute-based protocol. However, it is noticed that the costs of

the pairing computations reported in Table IV amount for roughly 50% and 35% of the total cost

of the ABE protocol in the G1 and G2 settings, respectively. This result suggests that the extra

cryptographic blocks typically used in pairing-based protocols may contribute to more than half

of the total scheme’s computational cost.

Future work will attempt a timing-attack protected version of this protocol.

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 25

ACKNOWLEDGMENT

The authors would like to thank Alfred Menezes for his valuable comments. The first, second,

fourth and sixth authors acknowledge partial support from the Consejo Nacional de Ciencia y

Tecnologı́a project 180421.

REFERENCES

[1] G. Adj and F. Rodrı́guez-Henrı́quez. Square root computation over even extension fields. Cryptology ePrint Archive,

Report 2012/685, 2012. http://eprint.iacr.org/.

[2] D. F. Aranha, L. Fuentes-Castañeda, E. Knapp, A. Menezes, and F. Rodrı́guez-Henrı́quez. Implementing pairings at the

192-bit security level. In Pairing 2012, volume 7708 of Lecture Notes in Computer Science, pages 177–195. Springer,

2013.

[3] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López. Faster explicit formulas for computing pairings over

ordinary curves. In Advances in cryptology, EUROCRYPT’11, pages 48–68, Berlin, Heidelberg, 2011. Springer-Verlag.

[4] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):1–13, March, 1986.

[5] P. S. L. M. Barreto, P. Longa, and J. E. Ricardini. The realm of the pairings. In T. Lange, K. Lauter, and P. Lisonek,

editors, Selected Areas in Cryptography - SAC 2013, volume 8282 of Lecture Notes in Computer Science, pages 3–25.

Springer, 2014.

[6] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In B. Preneel and S. Tavares, editors,

Selected Areas in Cryptography – SAC 2005, volume 3897 of Lecture Notes in Computer Science, pages 319–331, 2006.

[7] A. Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel Institute of Technology, June,

1996.

[8] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In Proceedings of the 2007 IEEE

Symposium on Security and Privacy, SP ’07, pages 321–334, Washington, DC, USA, 2007. IEEE Computer Society.

[9] J.-L. Beuchat, J. E. González-Dı́az, S. Mitsunari, E. Okamoto, F. Rodrı́guez-Henrı́quez, and T. Teruya. High-speed software

implementation of the optimal ate pairing over Barreto-Naehrig curves. In M. Joye, A. Miyaji, and A. Otsuka, editors,

Pairing, volume 6487 of Lecture Notes in Computer Science, pages 21–39. Springer, 2010.

[10] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In J. Kilian, editor, Advances in Cryptology

CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer Berlin / Heidelberg, 2001.

[11] J. W. Bos, C. Costello, and M. Naehrig. Exponentiating in pairing groups. Cryptology ePrint Archive, Report 2013/458,

2013. To appear in SAC 2013, available at: http://eprint.iacr.org/.

[12] S. Chatterjee, D. Hankerson, E. Knapp, and A. Menezes. Comparing two pairing-based aggregate signature schemes. Des.

Codes Cryptography, 55(2-3):141–167, 2010.

[13] S. Chatterjee, D. Hankerson, and A. Menezes. On the efficiency and security of pairing-based protocols in the type 1

and type 4 settings. In M. A. Hasan and T. Helleseth, editors, Arithmetic of Finite Fields, WAIFI 2010, volume 6087 of

Lecture Notes in Computer Science, pages 114–134. Springer, 2010.

[14] L. Chen, Z. Cheng, and N. P. Smart. Identity-based key agreement protocols from pairings. Int. J. Inf. Sec., 6(4):213–241,

2007.

[15] H. Cohen and G. Frey. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, 2006.

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 26

[16] C. Costello, K. Lauter, and M. Naehrig. Attractive subfamilies of BLS curves for implementing high-security pairings. In

D. J. Bernstein and S. Chatterjee, editors, Progress in Cryptology - INDOCRYPT 2011, volume 7107 of Lecture Notes in

Computer Science, pages 320–342. Springer, 2011.

[17] C. Costello and D. Stebila. Fixed argument pairings. In M. Abdalla and P. S. L. M. Barreto, editors, Progress in Cryptology

- LATINCRYPT 2010, volume 6212 of Lecture Notes in Computer Science, pages 92–108. Springer, 2010.

[18] R. Dutta, R. Barua, and P. Sarkar. Pairing-based cryptographic protocols : A survey. Cryptology ePrint Archive, Report

2004/064, 2004. http://eprint.iacr.org/.

[19] ECRYPT II. ECRYPT II yearly report on algorithms and keysizes (2011-2012). European Network of Excellence in

Cryptology II, August 2013. available at: http://sac2013.irmacs.sfu.ca/slides/s1.pdf.

[20] P.-A. Fouque and M. Tibouchi. Indifferentiable hashing to Barreto-Naehrig curves. In A. Hevia and G. Neven, editors,

Progress in Cryptology - LATINCRYPT 2012, volume 7533 of Lecture Notes in Computer Science, pages 1–17. Springer,

2012.

[21] L. Fuentes-Castañeda, E. Knapp, and F. Rodrı́guez-Henrı́quez. Faster hashing to G2. In A. Miri and S. Vaudenay, editors,

Selected Areas in Cryptography, volume 7118 of Lecture Notes in Computer Science, pages 412–430. Springer, 2011.

[22] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete Appl. Math., 156(16):3113–3121,

Sept. 2008.

[23] S. D. Galbraith and M. Scott. Exponentiation in pairing-friendly groups using homomorphisms. In S. D. Galbraith and

K. G. Paterson, editors, Pairing-Based Cryptography – Pairing 2008, volume 5209 of Lecture Notes in Computer Science,

pages 211–224. Springer-Verlag, 2008. Pairing 2008.

[24] R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multiplication on elliptic curves with efficient endomorphisms.

In J. Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 190–200. Springer, 2001.

[25] R. Granger and M. Scott. Faster squaring in the cyclotomic subgroup of sixth degree extensions. In P. Q. Nguyen and

D. Pointcheval, editors, Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science, pages 209–223.

Springer, 2010.

[26] R. Granger and N. Smart. On computing products of pairings. Cryptology ePrint Archive, Report 2006/172, 2006.

http://eprint.iacr.org/.

[27] A. Guillevic. Comparing the pairing efficiency over composite-order and prime-order elliptic curves. In M. J. Jacobson Jr.,

M. E. Locasto, P. Mohassel, and R. Safavi-Naini, editors, Applied Cryptography and Network Security - 11th International

Conference, ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings, volume 7954 of Lecture Notes in Computer

Science, pages 357–372. Springer, 2013.

[28] M. Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint Archive, Report 2012/309, 2012. http:

//eprint.iacr.org/.

[29] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography. Springer-Verlag, 2004.

[30] A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma, editor, Algorithmic Number Theory – ANTS

IV, number 1838 in Lecture Notes in Computer Science, pages 385–394. Springer, 2000.

[31] K. Karabina. Squaring in cyclotomic subgroups. Math. Comput., 82(281), 2013.

[32] Z. Liu and Z. Cao. On efficiently transferring the linear secret-sharing scheme matrix in ciphertext-policy attribute-based

encryption, 2010.

[33] V. Miller. Short programs for functions on curves. Available at http://crypto.stanford.edu/miller, 1986.

[34] V. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology, 17(4):235–261, Sept. 2004.

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 27

[35] S. Mitsunari. A fast implementation of the optimal ate pairing over BN curve on Intel Haswell processor. Cryptology

ePrint Archive, Report 2013/362, 2013. http://eprint.iacr.org/.

[36] N. Ogura, S. Uchiyama, N. Kanayama, and E. Okamoto. A note on the pairing computation using normalized miller

functions. IEICE Transactions, 95-A(1):196–203, 2012.

[37] G. C. C. F. Pereira, M. A. Simplı́cio, Jr., M. Naehrig, and P. S. L. M. Barreto. A family of implementation-friendly BN

elliptic curves. J. of Systems and Software, 84(8):1319–1326, Aug. 2011.

[38] S. C. Ramanna, S. Chatterjee, and P. Sarkar. Variants of Waters’ dual system primitives using asymmetric pairings -

(extended abstract). In M. Fischlin, J. Buchmann, and M. Manulis, editors, Public Key Cryptography - PKC 2012, volume

7293 of Lecture Notes in Computer Science, pages 298–315. Springer, 2012.

[39] A. Sahai and B. Waters. Fuzzy identity-based encryption. In R. Cramer, editor, Advances in Cryptology – EUROCRYPT

2005, volume 3494 of Lecture Notes in Computer Science, pages 557–557. Springer Berlin / Heidelberg, 2005.

[40] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In 2000 Symposium on Cryptography and

Information Security (SCIS2000), Okinawa, Japan, pages 26–28, Jan. 2000.

[41] A. H. Sánchez and F. Rodrı́guez-Henrı́quez. NEON implementation of an attribute-based encryption scheme. In M. J.

Jacobson Jr., M. E. Locasto, P. Mohassel, and R. Safavi-Naini, editors, Applied Cryptography and Network Security -

ACNS 2013, volume 7954 of Lecture Notes in Computer Science, pages 322–338. Springer, 2013.

[42] M. Scott. Benchmark for MIRACL – Multiprecision Integer and Rational Arithmetic C/C++ Library - Certivox. http:

//certivox.org/display/EXT/Benchmarks+and+Subs. Accessed: 2013-10-15.

[43] M. Scott. Computing the Tate Pairing. In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376 of

Lecture Notes in Computer Science, pages 293–304. Springer Berlin / Heidelberg, 2005.

[44] M. Scott. Implementing cryptographic pairings. In T. Takagi, T. Okamoto, E. Okamoto, and T. Okamoto, editors, Pairing-

Based Cryptography – Pairing 2007, volume 4575 of Lecture Notes in Computer Science, pages 177–196. Springer-Verlag,

2007. Invited Talk. ftp://ftp.computing.dcu.ie/pub/resources/crypto/pairings.pdf.

[45] M. Scott. On the efficient implementation of pairing-based protocols. In L. Chen, editor, IMA Int. Conf., volume 7089 of

Lecture Notes in Computer Science, pages 296–308. Springer, 2011.

[46] M. Scott. Unbalancing pairing-based key exchange protocols. Cryptology ePrint Archive, Report 2013/688, 2013. http:

//eprint.iacr.org/.

[47] M. Scott, N. Benger, M. Charlemagne, L. Dominguez Perez, and E. Kachisa. Fast Hashing to G2 on Pairing-Friendly

Curves. In H. Shacham and B. Waters, editors, Pairing-Based Cryptography – Pairing 2009, volume 5671 of Lecture

Notes in Computer Science, pages 102–113. Springer Berlin / Heidelberg, 2009.

[48] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, Nov. 1979.

[49] J. Solinas. ID-based digital signature algorithms, 2003. http://www.cacr.math.uwaterloo.ca/conferences/2003/ecc2003/

solinas.pdf.

[50] F. Vercauteren. Optimal pairings. IEEE Transactions on Information Theory, 56(1):455–461, jan. 2010. http://www.cosic.

esat.kuleuven.be/publications/article-1039.pdf.

[51] L. C. Washington. Elliptic Curves: Number Theory and Criptograhpy. Chapman & Hall/CRC, University of Maryland,

College Park, USA, 2 edition, 2008.

[52] B. Waters. Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In

Proceedings of the 14th international conference on Practice and theory in public key cryptography conference on Public

key cryptography, PKC’11, pages 53–70, Berlin, Heidelberg, 2011. Springer-Verlag.

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 28

[53] G. X. Yao, J. Fan, R. C. C. Cheung, and I. Verbauwhede. Faster pairing coprocessor architecture. In M. Abdalla and

T. Lange, editors, Pairing-Based Cryptography - Pairing 2012 - 5th International Conference, Cologne, Germany, May

16-18, 2012, Revised Selected Papers, volume 7708 of Lecture Notes in Computer Science, pages 160–176. Springer, 2013.

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 29

APPENDIX

APPENDIX A: EFFICIENT SCALAR DECOMPOSITION FOR THE GROUPS G1,G2 AND GT

A. Scalar decomposition for G1

The two-dimensional decomposition of the scalar n for the group G1 can be accomplished

using the Galbraith-Scott method [23] as discussed next.

In the case of the GLV method, the task is to find a two-dimensional partition n0, n1, such that

n ≡ n0 + n1λ (mod r) with |n0| = |n1| ≈ |
√
r|. In the case of BN curves, λ = 36x4− 1, which

implies that, (6x2 +2x)−(2x+1)λ ≡ 0 mod r and also, −(2x+1)−(6x2 +4x+1)λ ≡ 0 mod r.

This can be used to find an optimal scalar partition as follows. Define the 2×2 matrix associated

to λ as,

B =

 6x2 + 2x, −2x− 1

−2x− 1, −6x2 − 4x− 1


We stress that B · [1, λ]T ≡ [0, 0]T mod r, holds for any BN curve [23].

The next step is to compute the 2-dimension vector v = [n, 0]B−1, an operation that implies

a division by r (since r divides the determinant of the matrix B). In order to guarantee that

the resulting coefficients of the vector v are integers, this integer division must be followed by

Babai’s rounding method [4]. Notice that the costly integer division by r can be replaced with

divisions by 2m, using the following trick. Consider the vector w′ = [2m, 0] with m ≥ dlog2 re,

then precompute the per-curve constant vector v′ = w′B−1 given as,

v′ = w′B−1 = (v′0, v
′
1) =

(⌊
−2m(6x2 + 4x+ 1)

r

⌉
,

⌊
2m(2x+ 1)

r

⌉)
.

The vector v can then be obtained as,

v =
(⌊
nv′0/2

m
⌉
,
⌊
nv′1/2

m
⌉)

,

In a final step one computes the vector [n0, n1] = [n, 0] − vB, which has the desired scalar

partition form, with |n0|, |n1| ≈
√
r.

B. Scalar decomposition for G2 scalar multiplication and GT exponentiation

Similarly to the case of G1 exponentiation, the task of decomposing the scalar n in these two

groups is achieved by solving the closest vector problem in the 4-dimension lattice defined as,

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 30

L = {z ∈ Z4 :
∑3

i=0 ziλ
i ≡ 0 (mod r)}, where λ is given as, λ = t − 1 = 6x2. The reduced

base matrix for the lattice L is then defined as, [23]

B =


x+ 1 x x −2x

2x+ 1 −x −(x+ 1) −x

2x 2x+ 1 2x+ 1 2x+ 1

x− 1 4x+ 2 −(2x− 1) x− 1

 ,

where B · [λ0, λ1, λ2, λ3]T ≡ [0, 0, 0, 0]T mod r, holds for any BN curve.
Using the same procedure described in the precedent subsection, the vector v ≈ wB−1 can

be found by precomputing the per-curve constant vector v′ = w′B−1 = [v′0, v
′
1, v
′
2, v
′
3], with

w′ = [2m, 0, 0, 0], m ≥ dlog2 re as,

v′ =

(⌊
2m(2x2 + 3x+ 1)

r

⌉
,

⌊
2m(12x3 + 8x2 + x)

r

⌉
,

⌊
2m(6x3 + 4x2 + x)

r

⌉
,

⌊
2m(−x2 − x)

r

⌉)

The vector v can then be obtained as,

v =
(⌊
kv′0/2

m
⌋
,
⌊
kv′1/2

m
⌋
,
⌊
kv′2/2

m
⌋
,
⌊
kv′3/2

m
⌋)

,

In a final step one computes the vector [n0, n1, n2, n3] = [n, 0, 0, 0]− vB, which has the desired

scalar partition form, namely, [n0, n1, n2, n3][λ0, λ1, λ2, λ3]T ≡ n mod r, with |ni| ≈ |r|/4.

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 31

APPENDIX B: LINEAR SECRET SHARING SCHEME

In [48], Shamir famously presented a threshold scheme in which given k out of n pieces of a

secret D it is easy to recover D, while having less than k pieces leaves the secret D completely

undetermined. Shamir pointed out that a practical realization of this scheme can be achieved via

polynomial interpolation. In the same vein, an attribute-based encryption scheme, first proposed

in [39], requires that an entity meets a minimal number of attributes in order to pass a given

control access policy. Formally, a (monotone) access structure is defined as follows,

Definition 1 (Monotone access structure [7], [52]). Let {P1, P2, . . . , Pn} be a set of attributes.

A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C then C ∈ A.

A monotone access structure is a monotone collection A of non-empty subsets of attributes

{P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn} \ {∅}. The sets in A are called the authorized sets of

attributes, and the sets not in A are called the unauthorized sets of attributes.

In practice, the access policy can be specified via a boolean formula seen as an expression

tree, where each internal node is a boolean logic gate “OR” or a logic boolean gate “AND”, with

associated thresholds of 1 and 2, respectively, and where the leaves represent the attributes. In this

way, any boolean formula describing a control access policy, can be transformed to a recursive

arrangement of (m, s)-gates with leaves H1, . . . ,Hm, s denoted as, (H1, . . . ,Hm, s) [32]. For

example the boolean formulasH1∧H2∧H3, H1∨H2∨H3, can be converted into (H1,H2,H3, 3),

(H1,H2,H3, 1), respectively. Similarly, the boolean formula: H1 ∧ (H2 ∨ H3), which requires

having H1, AND any of the H2 OR H3 attributes, is transformed into (H1, (H2,H3, 1), 2).

A Linear Secret-Sharing Scheme (LSSS) is an efficient mechanism to decide if the minimum

set of attributes required to grant access have been satisfied or not by the attribute boolean

formula presented by the entity.

Definition 2 (Linear secret-sharing scheme [7], [52]). A secret-sharing scheme Π over a set of

attributes P is called linear (over Fr) if the shares for each attribute form a vector over Fr,

and if there exists an u× t matrix M , called the share-generating matrix for Π, where u, t are

the number of shares and the access policy threshold, respectively. For all i ∈ {1, . . . , u}, Mi,

the ith row of M is labeled by an attribute ρ(i), where ρ is a function from {1, . . . , u} to P .

Consider the randomly chosen vector ν = (s, r2, . . . , rt)
T ∈ Ftr, where s ∈ Fr is the secret to

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 32

be shared. Then, Λ = Mν is the vector of u shares of the secret s according to Π. The share

λi = Mi · ν belongs to the attribute ρ(i).

It was proved in [7] that each LSSS has the property of lineal reconstruction that can be defined

as follows. Let S ∈ A be an authorized set, and define I ⊂ {1, 2, . . . , u} as I = {i : ρ(i) ∈ S}.

Then, there exists a constant vector Ω = (ω1, . . . , ωu) ∈ Fur such that for any valid share vector

Λ it holds that
∑

i∈I ωiλi = s, with ωi 6= 0 if i ∈ I ,

ωi = 0 otherwise.

The constant vector Ω can then be found via standard linear algebra. It is noticed that given the

LSSS security property, a constant vector Ω ∈ Fur satisfying the above conditions exists if and

only if Λ corresponds to an authorized set S.

Algorithm 6 converts a boolean access Formula F specified as a recursive arrangement of

(m, t)-gates with leaves H1, . . . ,Hm, t; into a t × u LSSS matrix M representing the access

structure corresponding to F , where the i-th row of M is labeled by the i-th attribute of F .

Algorithm 6 Construction of the LSSS matrix [32]

Input: A boolean access Formula F specified as a recursive arrange-

ment of (m, t)-gates with leaves H1, . . . ,Hm, t
Output: A u × t LSSS matrix M ∈ Fr representing the access

structure corresponding to F , where the i-th row of M is labeled

by the i-th attribute of F .

1: M ← (1), L← (F)

2: u← 1, t← 1

3: while there exist boolean formulas in L do

4: Represent L as L = (L1, L2, . . . , Lm) and M as an u × t
matrix.

5: Find the first coordinate Lz where Lz = Fz =

(Fz1 , . . . , Fzn , t) is a boolean formula

6: Extract the n children of Lz , i.e., Fz1 , Fz2 , . . . , Fzn along

with its threshold tz .

7: Insert the MSP-(n, tz) matrix on the z-th row of M , obtaining

an updated (u− 1 + n)× (t− 1 + tz) matrix.

8: L← (L1, L2, . . . , Lz−1, Fz1 , Fz2 , . . . , Fzn , Lz+1, . . . Lm)

9: u← u− 1 + n

10: t← t− 1 + tz

11: end while

12: return M

Example 1. Consider again the access structure described in §I, where the following five

attributes were described,

• A = “Patient”

• B =“Cardiologist Surgeon”

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 33

• C =“Anesthesiologist”

• D = “Technician”

• E = “Cardiologist Hospital”

Using the above definitions, the access policy was described by the following boolean function,

(A OR B) OR ((C OR D) AND E)

That boolean function can be transformed to the arrangement,

(A,B, ((C,D, 1), E, 2), 1),

Using the above formulation, Algorithm 6 will generate the following sequence,

1) M = (1) (A,B, ((C,D, 1), E, 2), 1)

2) M =


1

1

1


A

B

((C,D, 1), E, 2)

3) M =


1 0

1 0

1 1

1 2


A

B

(C,D, 1)

E

4) M =



1 0

1 0

1 1

1 1

1 2



A

B

C

D

E

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 34

APPENDIX C: MAIN PRIMITIVES FOR ATTRIBUTE-BASED ENCRYPTION WITH VARIABLE

ATTRIBUTES DEFINED IN G1

Algorithm 7 Setup with attributes defined in G1

Input: P ∈ G1 and Q ∈ G2, a set of attributes H
Output: Public Key PK(G1,G2, P,Q, Pδ, γ), {H1 . . .HN}, Mas-

ter private Key MK(Pα)

1: Choose at random : α and δ ∈ Zr
2: Pδ ← [δ]P {Scalar mult. in G1}
3: Pα ← [α]P {Scalar mult. in G1}
4: γ ← eopt(Q,P)α {single pairing, exp in GT }

5: for i← 1 to #H do

6: Generate a point Hi ∈ G1 {H2(.) application}
7: end for

8: PK ← (G1,G2, P,Q, Pδ, γ), {H1 . . .HN}
9: MK ← (Pα)

10: return PK,MK

Algorithm 8 Encryption with attributes defined in G1

Input: A message M , PK, an access structure S given as a u × t
LSSS Matrix and I ⊂ {1, 2, . . . , u} as I = {i : ρ(i) ∈ H}

Output: Ciphertext CT = {S, C, Cd, (C1, D1), . . . , (Cu, Du)}

1: Generate a random vector ū = (s, y2, . . . , yt) ∈ Zr .

2: Calculate the column vector λ̄ = Sūt

3: Generate another random vector x̄ = (x1, . . . , xu) ∈ Zr .

4: C = M ⊕H1(γs) {mult. and exp. in GT }
5: Cd = [s]Q {Scalar mult. in G2}

6: for i = 1 to u do

7: Ci ← [λi]Pδ− [xi]Hρ(i) {Scalar mult. point add in G1}

8: Di ← [xi]Q {Scalar mult. in G2}
9: end for

10: CT ← {S, C, Cd, (C1, D1), . . . , (Cu, Du)}

11: return CT

Algorithm 9 Key generation with attributes defined in G1

Input: MK and a set of user’s attributes H
Output: A private key SK = {K,L,K1, . . . ,KvH}

1: Choose at random τ ∈ Fr
2: K ← Pα + [τ]Pδ {Scalar mult., point add in G1}
3: L← [τ]Q {Scalar mult. in G2}

4: for i = 1 to vH do

5: Ki ← [τ]Hi {Scalar mult. in G1}
6: end for

7: SK ← {K,L,K1, . . . ,KvH}

8: return SK

June 2, 2014 DRAFT

SUBMITTED TO JOURNAL OF 35

Algorithm 10 Decryption with attributes defined in G1

Input: CT and its LSSS matrix S, SK and its set of attributes H
Output: Plaintext M (if the attributes in SK satisfy the ciphertext’s

policy)

1: S̃ ← Reduce the LSSS matrix S by removing the rows and

columns unrelated with the attributes in H
2: Find the determinant ∆← Det(S̃) ∈ Fr
3: Calculate the vector ω̄ as the first row of S̃−1

4: for i = 1 to v do

5: C
ωi
i ← [ωi]Ci {Scalar mult. in G1}

6: K
ωi
ρ(i)
← [ωi]Kρ(i) {Scalar mult. in G1}

7: end for

8: M = C⊕H1


e(Cd,−[∆]K) · e(L,

∑
i∈H

C
ωi
i) ·

∏
i∈H

e(Di,K
ωi
ρ(i)

)

 1
∆


{Scalar mult. in G1, Point add in G1, Mult in GT , multi-

pairing, Inversion in GT }

9: return M

Algorithm 11 Delegate with parameters in G1

Input: SK and a subset H̃ of attributes corresponding to a user

Output: A private key ˜SK = {K′, L′,K′1, . . . ,K′vH̃}

1: Choose at random : τ ′ ∈ Fr
2: K′ ← K + [τ ′]Pδ {Scalar mult., point add. in G1}
3: L′ ← L+ [τ ′]Q {Scalar mult., point add in G2}

4: for i = 1 to vH̃ do

5: K′i ← Ki + [τ ′]H̃i {Scalar mult., point add. in G1}
6: end for

7: ˜SK ← {K′, L′,K′1, . . . ,K′vH̃}

8: return ˜SK

June 2, 2014 DRAFT

