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Abstract

A function f is extractable if it is possible to algorithmically “extract,” from any adversarial program
that outputs a value y in the image of f, a preimage of y. When combined with hardness properties
such as one-wayness or collision-resistance, extractability has proven to be a powerful tool. However, so
far, extractability has not been explicitly shown. Instead, it has only been considered as a non-standard
knowledge assumption on certain functions.

We make two headways in the study of the existence of extractable one-way functions (EOWFs). On
the negative side, we show that if there exist indistinguishability obfuscators for a certain class of circuits
then there do not exist EOWFs where extraction works for any adversarial program with auxiliary-input
of unbounded polynomial length.

On the positive side, for adversarial programs with bounded auxiliary-input (and unbounded poly-
nomial running time), we give the first construction of EOWFs with an explicit extraction procedure,
based on relatively standard assumptions (e.g., sub-exponential hardness of Learning with Errors). We
then use these functions to construct the first 2-message zero-knowledge arguments and 3-message zero-
knowledge arguments of knowledge, against the same class of adversarial verifiers, from essentially the
same assumptions.
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1 Introduction

The ability to argue about what adversarial programs “know” in the context of a given interaction is central
to modern cryptography. A primary facet of such argumentation is the ability to efficiently “extract” knowl-
edge from the adversarial program. Establishing this ability is often a crucial step in security analysis of
cryptographic protocols and schemes.

Cryptographic proofs of knowledge are an obvious example for the use of knowledge extraction. In
fact, here ‘knowledge’ is defined by way of existence of an efficient extraction procedure. The ability to
extract values from the adversary is also useful for asserting secrecy properties by simulating the adversary’s
view of an execution of a given protocol, as in the case of zero-knowledge or multi-party computation
[GMR&9,IGMWS&7/|]. A quintessential example here is the Feige-Lapidot-Shamir paradigm [FLS99|]. Other
contexts are mentioned within.

How is knowledge extracted? Traditionally, the basic technique for extracting knowledge from an adver-
sary is to run it on multiple related inputs to deduce what it “knows” from the resulting outputs. The power
of this technique (often called “rewinding”) is in that it treats the adversary as a black-box without knowing
anything regarding its “internals”. However, as a number of impossibility results for black-box reductions
and simulation show, this technique is also quite limited. One main limitation of rewinding-based extraction
is that it requires multiple rounds of interaction with the adversary. Indeed, proving security of candidate
3-message zero-knowledge protocols, succinct non-interactive arguments (SNARGs), and other tasks are
out of the technique’s reach [GK96,IGW11]].

Starting with the work of Barak et al. [BarOll], a handful of extraction techniques that go beyond the
limitations of black-box extraction have been developed. These techniques use the actual adversarial pro-
gram in an essential way, rather than only the adversary’s input-output functionality. However, these too
require several rounds of protocol interaction, thus they do not work in the above contexts.

Knowledge assumptions and extractable functions. Damgard [Dam92|| proposes an alternative approach
to knowledge extraction in the form of the knowledge of exponent assumption (KEA). The assumption es-
sentially states that it is possible to extract the secret value x from any program that, given two random
generators g, h of an appropriate group G, outputs a pair of group elements of the form ¢g*, h”. This ap-
proach was then abstracted by Canetti and Dakdouk [CDOS|, [CD09] who formulated a notion of extractable
functions. These are function families { f. } where, in addition to standard hardness properties, such as one-
wayness or collision-resistance, any (possibly adversarial) program .A that given e outputs ¥ in the image of
fe has an “extractor” £ that given e and the code of A, outputs a preimage of y.

Extractable functions provide an alternative (albeit non-explicit) “extraction method” that does not rely
on interaction with the adversary. As an expression of the method’s power, KEA [H198| IBPO4al], or even
general extractable one-way functions [CD09, BCC™13], are known to suffice for constructing 3-message
zero-knowledge protocols, and extractable collision-resistant hash functions are known to suffice for con-
structing succinct non-interactive arguments (SNARGs) [BCCT12]. KEA had also led to relatively efficient
CCA constructions [Dam92, [ BPO4al|.

The black-box impossibility of some of the above applications imply that it is impossible to obtain
extractable functions where the extractor uses the adversary’s program .4 only as a black box. Coming up
with the suitable non-black-box techniques has been the main obstacle in constructing extractable functions,
and to date, no construction with an explicit extraction procedure is known. Instead, for all the existing
candidate constructions of extractable functions (e.g., [Dam92, |CD09, BCCT12, BC12]), the existence of
such an extractor is merely assumed. Such assumptions are arguably not satisfying. For one, they do not
qualify as “efficiently falsifiable” [NaoO3]; that is, unlike standard assumptions, here it may not be possible



to algorithmically test whether a given adversary breaks the assumption. In addition, the impossibility of
extractable functions with black-box extraction only further decreases our confidence in such assumptions,
as our current understanding of non-black-box techniques and their limitations is quite partial.

Thus, a natural question arises:

Can we construct extractable functions from standard hardness assumptions?
Alternatively, Can we show that extractable functions cannot exist?

On the role of auxiliary input. It turns out that the question is more nuanced. Specifically, we show that the
answer crucially depends on how we model the “auxiliary information” available to the evaluator A and the
extractor £. Let us elaborate. One straightforward formulation of extractable functions requires that, for any
possible adversary (modeled as a uniform algorithm) there exists an extractor (again, modeled as a uniform
algorithm) that successfully extracts as described above given the adversary’s coin tosses. An alternative is
to model both the adversary and the extractor as non-uniform families of deterministic polysize circuits.

However, it turns out that in many applications neither formulation suffices. Indeed, when using ex-
tractable functions with other components in a larger cryptographic scheme or protocol, an adversary A
may gather information z from other components and use it as additional auxiliary input when evaluating
the extractable function. To be useful in these cases, the extractor needs to be able to deal with auxiliary
information that’s determined after the extractor has been fixed. That is, we require that for any adversary A
there exists an extractor £ such that for any polysize z, and for a randomly chosen key e, whenever A(z, e)
outputs an image y, £(z, e) output a corresponding preimage of y. In the above, we can either model both
the adversary A and the extractor £ as uniform polytime machines, or as non-uniform machines with poly-
nomial size advice. We call z the common auxiliary input, and if A and £ are non-uniform we refer to their
advice as individual auxiliary input.

We note that the concept of common auxiliary input appears elsewhere in cryptography. For instance, to
make sure that zero-knowledge protocols remain zero-knowledge under sequential composition, the verifier
and simulator get common auxiliary input. Indeed, to obtain this standard formulation of zero-knowledge
using extractable functions, extractability with common auxiliary input is needed. In other settings, the
definition can be relaxed to consider only the case where the common auxiliary input is taken from some
specific distribution that captures the “possible” auxiliary information in a given system, see e.g. [BCCT12].

1.1 Overview of Results

We give two quite different answers to the above question. On the negative side, following the common
belief (first expressed in [HT98])), we give formal evidence that extractable one-way functions with common
auxiliary input of unbounded length may not exist:

Theorem 1.1 (informal). If there exist indistinguishability obfuscators for a certain class of circuits, then
there do not exist extractable one-way functions with respect to common auxiliary-input of unbounded poly-
nomial length.

This seems to suggest that the concept of extractable one-way functions (and other concepts that imply
it, such as extractable collision-resistant hashing or SNARKSs) may be shaky overall, especially in light of
the recent candidate indistinguishability obfuscator for all circuits [GGH™ 13b].

Still, we show, for the first time, how to construct extractable one-way functions with an explicit extraction
procedure with respect to auxiliary-input of bounded polynomial length (common or individual), and in
particular, with respect to uniform adversaries. More specifically, we first give a construction of extractable
one-way functions based on publicly-verifiable P-delegation schemes:



Theorem 1.2 (informal). Assuming one-way functions and publicly-verifiable P-delegation, there exist
EOWFs with respect to (common or individual) auxiliary-input of bounded polynomial length.

While the existence of publicly-verifiable P-delegation schemes is perhaps not considered as a standard
assumption, it is a falsifiable assumption [Na003]E]With candidates such as CS proofs [Mic00] or SNARGs
[BCCT13|] (when restricted to P). We view this construction mainly as a proof of concept, showing that
ruling out such extractable functions may be a hard task.

Trying to head towards a construction from standard assumptions, we formulate a generalized variant of
extractable one-way functions (GEOWFs), capturing the properties which make EOWFs useful, and in-
deed construct bounded-auxiliary-input GEOWFs from relatively standard assumptions. Specifically, our
construction relies on the existence of privately-verifiable P-delegation, which was recently established by
[KRR14], based, for instance, on the Learning with Errors Assumption. We additionally show that the
limitation given by Theorem|1.1|also holds for GEOWFs.

Relying on GEOWFs, we give the first constructions from standard assumptions of 2-message zero-
knowledge arguments and 3-message zero-knowledge arguments of knowledge, against verifiers with bounded-
auxiliary-input.

Theorem 1.3 (informal).

1. Assuming (even privately-verifiable) P-delegation, there exist GEOWF's with respect to (common or
individual) auxiliary-input of bounded polynomial length.

2. Assuming GEOWFs, ZAPs [DNO7|], and (even 1-hop [GHVI10]) homomorphic encryption, there exists
a 3-message ZK argument of knowledge against bounded-auxiliary-input verifiers. Assuming the
GEOWFs are one-way against subexponential adversaries, there exists a 2-message ZK argument
against bounded-auxiliary-input verifiers.

We now elaborate on each of the results.

1.2 Impossibility with respect to Unbounded Auxiliary-Input

To introduce the negative result regarding EOWFs with unbounded (common) auxiliary-input, we first recall
the notion of obfuscation, and explain their contrast with auxiliary-input extractability.

Obfuscation. Program obfuscation is aimed at making code unintelligible while preserving its functionality,
and has been long considered to be a holy grail of cryptography, with diverse and far reaching applications.
Barak et al. [BGI01] initiated the rigourous treatment of obfuscation, formulating a number of definitions
of security for the task. However, until recently, we only knew how to obfuscate a number of restricted
classes of programs under any of these definitions. Furthermore, Barak et al. demonstrated a class of
programs that are unobfuscatable according the natural virtual black-box (VBB) definition, guaranteeing
that access to the obfuscated program gives no more power than access to an impenetrable black box with
the same input-output functionality.

This state of affairs changed with the work by Garg et al. [GGH™13b] who proposed a candidate con-
struction of general-purpose obfuscators. They show that, under algebraic assumptions closely related to
multilinear maps [GGH13al (CLT13]], their construction satisfies the relaxed notion of indistinguishability
obfuscation (10) [BGIT01], for which no impossibility results are known. The IO notion only requires that

ISee discussion in [CP13]] on the equivalent concept of 2-message P-certificates.



it is hard to distinguish an obfuscation of Cy from an obfuscation of (', for any two circuits Cyy and C'; of
the same size that compute the exact same function.

Since the emergence of the Garg et al. candidate, IO has been shown to have variety of powerful
positive applications, such as functional encryption, public-key encryption from one way functions, deniable
encryption, 2-message multi-party computation, and more [GGH™13b, [SW14, HSW13, GGHR13| BZ13,
KRW13].

The tension between obfuscation and extractable functions. As noted already in the work of Hada and
Tanaka [HT98]], extractability with respect to common auxiliary-input is a strong requirement. Indeed, the
common auxiliary-input z may potentially encode an arbitrary circuit to be executed by the adversary in
order to produce an image y. The extractor should, thus, be able to efficiently “reverse engineer” such a
circuit, in order to figure out a preimage of y. This reveals a clear tension with obfuscation: if z contains
obfuscated code that chooses a preimage in some complicated way, it may be impossible to extract from.

The question is how to turn this intuition into a formal impossibility. While VBB obfuscation may be
the natural choice, we do not have any evidence that there exist VBB obfuscators for a complicated task
such as the one described above (in fact, there is evidence that they do not [GK03, BCC ™ 14]. We show that
general 10O suffices to make this intuition rigorous.

Proof idea. We focus on the ‘hardest scenario’, where the auxiliary input z may represent an arbitrary
malicious and potentially obfuscated code. Specifically, we consider the following folklore case (sketched
for example in [BCCT12]) where z is an obfuscation of a circuit C}, that, given key e for an extractable
function f,, chooses its preimage in an unpredictable way: it applies a pseudo-random function PRFj, to the
key, and outputs the result fo(PRF(e)).

An adversary, given such an obfuscated circuit as auxiliary input z, can run it on the key e for the
extractable function and always obtain a proper image. The question is whether the extractor, given the
same (e, z), can output a preimage. Intuitively, had we given the extractor black-box access to the circuit
Cy, instead of an obfuscation of CY, it would have to invert the one-way function to obtain such a preimage.
Indeed, since the oracle C}, answers any query e’ with f./(PRFy(e’)), it follows from pseudo-randomness
that finding a preimage of f.(PRF(e)) is as hard as finding a preimage of f.(u), for a uniformly random w.

Can the above intuition be translated to a proof using I0? Indeed, when z is an 1O obfuscation iO(C})
of the circuit CY, it is not clear what kind of information leaks on the PRF key k:EINevertheless, we show
that the above intuition can still be fulfilled. The idea is to consider an alternative to the the circuit C}, that
computes the same function, but without actually “knowing” the preimage PRF(e). This is achieved using
the puncturing technique of Sahai and Waters [SW14]].

Specifically, instead of using any PRF family, we use a puncturable PRF. In such PRFs it is possible
to puncture a given key k at an arbitrary point z* in the domain of the function. The punctured function
PRFy, ., with punctured key k,«, preserves functionality at any other point, but hides any information on
the point PRF(z*); namely, the value PRF(z*) is pseudo-random, even given (x*, ky+). As shown in
several recent works [BW 13| [BGI13, [KPTZ13l], such puncturable PRFs follow from the GGM construction
[GGM&6I.

Using a puncturable PRF in the implementation of C', we can now show that if the extractor succeeds
in finding a preimage of y = f.(PRF(e)), it would also succeed had we provided it with an obfuscation of
the alternative circuit C, . The circuit C}, , computes the same function as Cf, but in a different way: it
only has the punctured key k., and has the value y = f.(PRF(e)) directly hardwired into it, so that it does

*In fact, formalizing the above intuition is tricky even with VBB, because one has to reduce extraction of one of, perhaps many,
arbitrary pre-images to the task of predicting some deterministic predicate of the PRF key k.



not have to evaluate the PRF in order to compute it. Thus, the fact that the extractor still succeeds follows
by the guarantee of indistinguishability obfuscation. However, now by the pseudo-randomness guarantee at
the punctured point e, we know that PRF(e) is pseudo random, even given the circuit Cy, ,, and thus the
extractor can be used to invert the one-way function f. from scratch.

Finally, we note that since puncturable PRFs can be constructed from one-way functions, and any EOWF
is in particular a OWF, it follows that the impossibility of EOWFs is implied by indistinguishability obfus-
cation without any further assumptions. We also note that the result naturally extends to the notion of
generalized EOWFs (presented in more detail in the following subsection).

So, is the knowledge of exponent assumption wrong? In its original formulation [Dam92] and in subse-
quent formulations [HT98, [BP04a, BP04bl|, the knowledge of exponent assumption (KEA) was not stated
with respect to common auxiliary-input, but rather only for individual auxiliary-input (or completely uni-
form machines), where any .4 with advice z4 has an extractor £ with its own advice zg¢, and the only
common extra information is the adversary’s coin tosses and key for the function. In particular, given a
non-uniform adversary .4 with an obfuscated code as advice z 4, the extractor is allowed to have a differ-
ent advice zg, representing the “deobfuscated” code. Indeed, our result does not rule out such a notion of
extraction (even assuming IO for all circuits).

Our result does not disvalidate the intuition that “the only way” to compute (g%, h*), given (g, h) is by
“knowing” x. As we saw, our adversary and auxiliary-input are devised so that x is actually known, but only
by an underlying obfuscated computation, and thus cannot be figured out efficiently by an external extractor.

We also note that our result does not rule out extractable functions with respect to common auxiliary
input that is taken from specific distributions that may be conjectured to be “benign”, e.g. the uniform
distribution, required in [BCCT12].

Subsequent work. The negative result presented above, in fact, shows that for any candidate EOWF family
F, there exists a distribution Zx, and an adversary 4, such that any extractor £ for A, would fail with
respect to common auxiliary-input sampled from Zx. As noted by Boyle and Pass [BP13b], our result can
be generalized so that Z does not depend on F, but only on some upper bound 7'r on its running time (by
having Z encode a proper universal circuit). Boyle and Pass further show that, assuming a strengthening of
10 called extractable obfuscation (a.k.a. differing inputs obfuscation), Z can be made independent of T’
and only depend on its output length ¢ r; in particular, elements sampled from Z can be longer than £r. We
note that their result does not clash with our positive result for bounded auxiliary-input, in which £ is made
longer than the bound on auxiliary inputs. We also note that both ours and Boyle and Pass’ impossibility
apply for a specific and rather contrived distribution. No impossibility is yet known for distributions that
may be considered “benign”, such as the uniform distribution.

1.3 Constructions with respect to Bounded Auxiliary-Input

We first formulate a generalized version of EOWFs (GEOWFs), and show how GEOWFs can be constructed
from standard assumptions. Then, we shall see that, under appropriate conditions, we can leverage the same
ideas in order to get standard EOWFs.

Generalized EOWFs. The essence of EOWFs, and what makes them useful, is the asymmetry between a
black-box inverter and a non-black-box extractor: an inverter, which only gets a random image y = f.(x)
of an EOWF, cannot find a corresponding preimage x’, whereas a non-black-box extractor, which is given a
code that produces such an image, can find a preimage x’. GEOWFs allow to express this asymmetry in a
more flexible way. Concretely, a function family F is now associated with a “hard” binary relation R on
image-witness pairs (fe(z),z'). Given y = f.(x) for a random , it is infeasible to find a witness 2/, such



that R} (y, «') = 1. In contrast, a non-black-box extractor that is given a code that produces such an image
can find such a witness z’.

It is natural to require that the relation Rf is efficiently testable, in this case we say that the GEOWF
is publicly-verifiable. However, we shall see that GEOWFs are useful, even for hard relations that are not
publicly-verifiable. Specifically, we will consider privately-verifiable GEOWFs where R (y, 2') is not
efficiently testable given only (y = fe(z), z’), but can be efficiently tested given z in addition.

The main idea behind the construction. To convey the basic idea behind our constructions of GEOWFs
with respect to bounded auxiliary-input, consider the following first attempt. The GEOWF f is key-less,
it is simply a pseudorandom generator stretching inputs of length n to outputs of length 2n. The relation
R7 contains pairs (i, M) such that the witness M is a description of a machine of length at most n, and
M(1™) outputs y. The fact that the relation R (y, -) is hard to satisfy for y = f(z) and a random z, follows
from the pseudo-randomness of the output y. Indeed, a truly random output that is indistinguishable from y
would have high Kolmogorov complexity. However, given any adversarial program M 4 whose description
size is bounded by n and that outputs some y € {0,1}?", the description of the program M 4 itself is a
witness that satisfies the relation R” (y, M 4), and thus extraction is trivial.

The main problem is that the time required to test the relation R (even given some preimage of %) is
not bounded by any particular polynomial; indeed, the running time of M 4 may be an arbitrary polynomial.
One can try to fix this by padding the witness M 4 with 1! where ¢ is the running time of M 4. However,
now the length of the extracted witness depends on the running time of the adversarial program M 4 and is
not bounded by any particular polynomial in the length of the image. Such generalized extractable functions
do not seem to be as powerful though; in particular, we do not know how to use them for constructing
2-message and 3-message ZK protocols.

A similar problem is encountered in Barak’s zero-knowledge protocol [BarQ1l], where the entire com-
putation of a malicious verifier is used as the simulation trapdoor. As in the protocol of Barak, Lindell, and
Vadhan [BLV06], we get around this problem using a non-interactive proof system that allows for quick ver-
ification of (possibly long) computations. Instead of computing the output y of the witness program M 4,
R7 will (quickly) verify a proof for the fact that M_4(1") outputs y. That is, (y, (M, 7)) € R’ only if
is a convincing proof that M (1™) = y. Intuitively, the soundness of the proof guarantees that the relation is
still hard to satisfy. Extraction from a bounded-auxiliary-input adversary M 4 is done by simply computing
a proof for its computation.

P-delegation. The proof system required in our constructions is a non-interactive computationally sound
proof for deterministic polytime statements, from hereon referred to as a P-delegation scheme. More pre-
cisely, in a P-delegation scheme, the verifier generates, once and for all, an “offline message” o together
with a private verification state 7 and sends o to the prover. Then, the prover can compute a non-interactive
proof 7 for any adaptively chosen statement of the sort: “machine M outputs v within ¢ steps”. We require
that the verifier runs in time polynomial in the security parameter 7, but only polylogarithmic in ¢, and the
prover runs in time polynomial in (£,7). We say that a delegation scheme is publicly-verifiable if the ver-
ification state 7 can be published without compromising soundness. Otherwise we say that the scheme is
privately-verifiable.

As mentioned in Section [1.1] while we do have candidates for publicly-verifiable P-delegation, their
security is not based on standard assumptions. In a recent breakthrough result, Kalai, Raz and Rothblum
[KRR14] construct a privately verifiable P-delegation scheme based on any private information retrieval
scheme with sub-exponential security. While the scheme of [KRR14] only has non-adaptive soundness, we
use standard techniques to get soundness for a statement that is adaptively chosen from a relatively small set
of possible statements. This is indeed what is required for our construction (see the body for more details).



GEOWEF from P-delegation. We now sketch how P-delegation is used in our constructions. We obtain
publicly-verifiable (respectively, privately-verifiable) GEOWFs based on publicly-verifiable (respectively,
privately-verifiable) delegation. In both cases, the GEOWF f is key-less, it is given as input a seed s and
a random string . f applies a pseudo-random generator on s and obtains an image v. f then uses the
randomness r to sample an offline message o together with a verification state 7 for a P-delegation scheme.
Finally, f outputs (v, o). We assume that if the delegation scheme is publicly-verifiable, the offline message
o includes the verification state 7. Also, if the delegation scheme is privately-verifiable, we assume that 7
can be inefficiently computed from o. (Both assumption are WLOG.)

The relation R contains pairs consisting of an image (v, ) and witness (M, ), such that the length
of M is much shorter then the length of v and 7 is an accepting proof for the statement “M (1™) outputs
v”, with respect to the verification state 7 corresponding to the offline message o. Indeed, if the delegation
scheme is publicly-verifiable, T can be efficiently computed from &, and therefore the relation R” is effi-
ciently testable. And if the delegation scheme is privately-verifiable, 7 can be efficiently computed given a
primage of (v, o) that contains the randomness used to sample o and 7.

Constructing standard EOWFs. We show how to construct a standard (not generalized) EOWF ¢ from
a publicly-verifiable GEOWF f. The basic high-level idea is to embed the structure of the GEOWF f and
the relation R” into the standard EOWF g. For this purpose, g will get as input a string i € {0, 1}", which
intuitively picks one of two branches for computing the function. If ¢ # 0™ (which is almost always the case
for a random input) the output is computed in the “normal branch”, where g takes an input x for the GEOWF
f and outputs f(z). If i # 0", the output is computed in the “trapdoor branch”, which is is almost never
taken for a random input, but is used by the extractor. In the trapdoor branch, g takes as input a candidate
output y for f and a witness x’ for R (y,-). g verifies that (y,2’) € R’ and if so, it outputs 3. Given
an adversarial program M 4 that outputs y in the image of f, the extractor for g can invoke the extractor
for f, obtain a witness =’ such that (y, z") € R’ , and from this witness construct a valid (trapdoor branch)
primage (i = 0™, y, z’) for y.

The above transformation cannot start from a privately-verifiable GEOWF; indeed public-verification is
required so to allow the function to efficiently evaluate the relation R” in the trapdoor branch. We also note
that the above transformation is oversimplified and implicitly assumes that an adversarial evaluator cannot
use the trapdoor branch of the function to produce an output that is in the image of g but not in the image
of f, in which case extraction may fail. In the body, we show how to avoid this problem by relying on
the specific construction of publicly-verifiable GEOWFs from publicly-verifiable P-delegation with an extra
property (satisfied by existing candidates).

1.4 Zero Knowledge against Verifiers with Bounded Auxiliary-Input

We start by describing how to construct 2-message and 3-message zero-knowledge protocols from standard
(non-generalized) EOWFs, and then explain how to replace the EOWFs with GEOWFs.

From EOWF to 3-message zero knowledge. The protocol follows the Feige-Lapidot-Shamir trapdoor
paradigm [FLS99]. Given, say a key-less, EOWF f, the basic idea is to have the verifier send the prover
an image y = f(x) of a random element x, which will serve as the trapdoor. The prover would then give
a witness-indistinguishable proof-of-knowledge attesting that it either knows a witness w for the proven
statement, or it knows a preimage x’ of y. Intuitively, soundness (and actually proof of knowledge) follow
from the one-wayness of f and the proof of knowledge property of the WI system. Zero knowledge follows
from the extractability of f. Indeed, the simulator, given the code of the verifier, can run the extractor of the
EOWEF, obtain z, and use it in the WI proof.



Following through on this intuition encounters several difficulties. First, a WI proof of knowledge
requires three messages, and thus a first WI prover message must be sent in the first message of the protocol.
Furthermore, the WI statement is only determined when the verifier sends y in the second protocol message.
Therefore, we must make sure to use a WI proof of knowledge where the first prover message does not
depend on the statement. Another basic problem concerns the length of the first WI message. Recall that, in
our construction of EOWFs against bounded auxiliary-input adversaries, the function’s output is longer than
the adversary’s advice. Since a cheating verifier may compute y using the first WI message as an advice,
we must therefore use a WI system where the length of the first message is independent of the length of
the proven statement. We design a WI argument with the required properties based on ZAPs [DNO7|] and
extractable commitments [PW09.

An additional potential problem is that a malicious verifier may output an element ¢ outside of the
function’s image, an event which in general may not be efficiently recognizable, and cause the simulator to
fail. This can be solved in a couple of generic ways, below we outline one such solution, based on 1-hop
homomorphic encryption. A different approach to the problem, based on ZAPs is described in [BCC™13]].

From EOWFs to 2-message zero knowledge. In the 2-message protocol, we replace the 3-message W1
proof of knowledge with a 2-message WI proof (e.g. a ZAP). However, in the above 3-message protocol,
soundness is established by using the proof-of-knowledge property of the WI, whereas 2-message W1 proofs
of knowledge are not known. Instead, we prove soundness using complexity leveraging. The prover adds to
its message a statistically-binding commitment to junk, and proves that either “z € £, or “f(x) = y and
the commitment is to ©”’. We require that the commitment is invertible in some superpolynomial time 7',
whereas the one-wayness of f still holds against adversaries that run in time poly(7"). Now, an inverter of
f can run the cheating prover with a verifier message that contains its input image y, and brute-force break
the commitment to obtain a preimage of y.

Replacing EOWF with GEOWF. We would like to base our zero-knowledge protocols on privately-
verifiable GEOWFs (that can be constructed from standard assumptions) instead of on EOWFs. A natural
first attempt is to modify the protocol as follows: the verifier sends an image y = f(z), as before, and
the prover then gives a WI proof of knowledge attesting that it either knows a witness w for the proven
statement, or that it knows, not a preimage, but a witness 2’ such that R” (y,2') = 1. The main problem
with this first attempt is that the relation R” is not publicly-verifiable, and thus the simulator has no way of
proving the statement. Another possible problem is that a malicious verifier may output an element outside
of the function’s image, an event which in general may not be efficiently recognizable. In such a case there
is no extraction guarantee, and simulation may fail.

The solution for both problems is to test the relation R, and the validity of the verifier’s image, using
a two-message secure function evaluation protocol, based for example on a 1-hop homomorphic encryption
[GHV10]. More concretely, the verifier, in addition to the the function output y, sends an encryption c of
the input . The simulator then homomorphically evaluates a circuit that efficiently computes R” (y, z')
given z, as well as verifies that indeed y = f(x). The simulator then obtains an evaluated ciphertext ¢ that
decrypts to 1 (the honest prover will simply simulate an encryption ¢ of 1). Finally, the prover (or simulator)
sends back ¢, and gives a WI proof of knowledge attesting that it either knows a witness w for the proven
statement, or that the ciphertext ¢ was generated as described. The verifier verifies the WI proof is accepting
and that ¢ decrypts to 1.

Limitations on two and three message ZK and related work. three-message zero-knowledge protocols
with black-box simulation exist only for trivial languages [GK96]. The impossibility extends to the case
of adversaries with bounded advice of size n**(1), where n is the security parameter )see Appendix |A|for



more details). Previous three-message zero-knowledge protocols were based either on the knowledge of
exponent assumption [HT98, [BP04al|, on extractable one-way functions[BCC™13]], or on other extractability
assumptions [[CDOS]|. In all, the simulator uses a non-black extractor that is only assumed to exist, but not
explicitly constructed.

Two-message zero-knowledge arguments against adversaries with unbounded polynomial advice exist
only for trivial languages (regardless of how simulation is done) [GO94]. In fact, impossibility extends even
to adversaries with bounded advice, provided that the advice string is longer than the verifier’s message.
Barak, Lindell, and Vadhan [BLVO06] construct a two-message argument that is zero-knowledge as long as
the verifier’s advice is shorter than the verifier message by super-logarithmic additive factor. Indeed, our
two-message protocol has the same skeleton. However, security of the Barak et al. protocol is only shown
assuming existence of P-delegation schemes (or universal arguments for non-deterministic languages) that
are publicly verifiable, which as discussed earlier is not considered to be a standard assumption.

1.5 Open Questions

This work leaves open several questions regarding the existence of extractable function. We next, highlight
some of these questions that we find mostly intriguing:

1. There is a gap between the positive and negative results in terms of the type and length of auxiliary
input. Specifically, we do not know if there exist EOWFs with respect to individual auxiliary-input of
unbounded polynomial length and no common auxiliary-input (or common auxiliary-input of bounded
polynomial length).

2. Another question regards the existence of extractable function (even with respect to completely uni-
form adversaries) that satisfy stronger one-wayness properties. Particularly interesting is the pos-
sibility of extractable functions where the adversary’s output computationally binds it to a specific
input. For example, extractable collision-resistant hash-functions and extractable injective one-way
functions.

3. Finally, we ask whether there exist EOWF’s with respect to common auxiliary input that is taken from
specific “benign” distribution, such as the uniform distribution.

Organization

In Section[2] we give the relevant definitions for EOWF and GEOWF. In Section[3] we present the limitation
on unbounded auxiliary-input EOWFs based on indistinguishability obfuscation. In Section 4] we present
the constructions of bounded-auxiliary-input EOWFs and GEOWFs. In Section [5.4] we present the zero-
knowledge protocols constructed from GEOWFs. In Section |A] we discuss relevant black-box lower for
EOWFs, and ZK.

2 Extractable One-Way Functions

In this section, we define auxiliary-input extractable one-way functions (EOWFs), bounded-auxiliary-input
EOWFs, and generalized extractable one-way functions (GEOWFs).



Definition 2.1 (Auxiliary-input EOWFs [CDOS8|)). Let ¢,¢',m be polynomially bounded length functions.
An efficiently computable family of functions

F= {fe . {0,114 s {0, 1}¢™

ee{0,1}""™ ne N} ,

associated with an efficient (probabilistic) key sampler Kz, is an auxiliary-input EOWF if it is:

1. One-way: For any PPT A, polynomial b, large enough security parameter n € N, and z € {0, 1}b(”) :

' A(e, fe(x)§ Z)
R rn [ fola') = Fo(a) } = neglin) -
{0,114

2. Extractable: For any PPT adversary A, there exists a PPT extractor € such that, for any polynomial
b, large enough security parameter n. € N, and z € {0,1}("):

y < Ale; 2) '+ E(e;z)

ee,?;"m[ax:fe(x):y fo(@') £y ]fnegl(”)'

Bounded auxiliary input. We now define bounded-auxiliary-input EOWFs. Unlike the definition above,
where extraction is guaranteed with respect to auxiliary input of any polynomial size b, here b is fixed in
advance and the function is designed accordingly. That is, extraction is only guaranteed against adversaries
whose advice is bounded by b, whereas their running time may still be an arbitrary polynomial; this, in
particular, captures the class of uniform polytime adversaries.

For b-bounded auxiliary input, we also define key-less families. While for unbounded auxiliary input,
extraction is impossible for key-less families (the adversary may get as auxiliary input a random image,
thus forcing the extractor to break one-wayness), for b-bounded auxiliary input, it may be possible, since
the output length ¢’ can be larger than the bound b on the auxiliary input. Our constructions will yield such
key-less functions.

Definition 2.2 (b-bounded-auxiliary-input EOWFs). Let b, ¢, ¢, m be polynomially bounded length func-
tions (where £, {', m may depend on b). An efficiently computable family of functions

F= {fe {0,114 - 10,1}¢® | e € {0,1)™™) n € N} ,
associated with an efficient (probabilistic) key sampler K r, is a b-bounded auxiliary-input EOWF if it is:
1. One-way: As in Definition[2.1]

2. Extractable against b-bounded adversaries: For any PPT adversary A, there exists a PPT extractor
E such that, for any large enough security parameter n € N, and z € {0, 1}b("):

Y+ Ale; 2) z' — E(e;z)

ccitin | e L@ =y N @) £y | S negl(n) .

We say that the function is Key-less if in all the above definitions the key is always set to be the security
parameter; namely, e = 1™. In this case, the extraction guarantee always holds (rather than only for a
random key).

10



Remark 2.1 (Bounded randomness). Throughout, we treat any randomness used by the adversary as part
of its advice z; in particular, in the case of bounded advice, we assume that the randomness is bounded
accordingly. For many applications, this is sufficient as we can transform any adversary that uses arbitrary
polynomial randomness to one that uses bounded randomness, by having it stretch its randomness with
a PRG. This approach is applicable, for example, for ZK against b-bounded auxiliary-input verifiers (see
Section [3)),as well as for any application where testing if the adversary breaks the scheme can be done
efficiently.

11



Remark 2.2 (Other forms of auxiliary-input).

1. Individual vs. common auxiliary-input: In the above formulation of extractability, the adversary A
(producing an image) and the extractor £ are modeled as uniform PPT machines that obtain the same
common auxiliary-input z. This formulation is aligned with the treatment of auxiliary-input in other
settings such as zero-knowledge or obfuscation and, as explained in the intro, is instrumental when
arguing about extractable functions in the context of a larger system. As also mentioned in the intro, in
certain contexts it may be sufficient to consider individual auxiliary-input, where we only require that
for any A with auxiliary-input z 4, there exists an extractor £ with auxiliary-input z¢. The extractor’s
z¢ may arbitrarily and inefficiently depend on z 4, and could be of an arbitrary polynomial size. This
weaker notion may be useful in cases where the adversary’s auxiliary inputs do not depend on com-
putations that may have taken place in the system before the extractable function is used. Examples
include CCA and plaintext-aware encryption with non-uniform security reductions [Dam92| BPO4b|.
(We may also consider a definition that allows both individual and common auxiliary-input.)

2. Common but “benign” auxiliary-input: In the above formulation, it is required that extraction
works for a worst-case choice of the common auxiliary-input z. In certain contexts, however, it is suf-
ficient to consider a definition where the common auxiliary input 2 is drawn from a specific distribu-
tion that is conjectured to be ‘benign’, in the sense that it is unlikely to encode a malicious obfuscation.
For instance, the distribution can be uniform or an encryption of a random string. Examples where
this is sufficient includes essentially all the works on succinct non-interactive arguments (SNARGS),
succinct NIZKs, and targeted malleability, that rely on extractable primitives [DCLOS| Mie08, |Gro10,
GLR11, BSW12,[BCCT12, BC12, DFH12, [Lip12, BCCT13, BCI"13,/GGPR13, Lip13].

2.1 Generalized Extractable One-Way Functions

The essence of EOWFs, and what makes them useful, is the asymmetry between an inverter and a non-black-
box extractor: a black-box inverter that only gets a random image y = f(z) cannot find a corresponding
preimage z’, whereas a non-black-box extractor, which is given a code that produces such an image, can find
a preimage x’. Generalized EOWFs (GEOWFs) allows to express this asymmetry in a more flexible way.
Concretely, a function family F is now associated with a “hard” relation R (f.(x), z’) on image-witness
pairs (f.(z),z') € {0,1}¥ x {0,1}*. Giveny = f.(z) for a random z, it is infeasible to find a witness ”,
such that R/ (y, ') = 1. In contrast, a non-black-box extractor that is given a code that produces such an
image can find such a witness z’.

We consider two variants of GEOWFs: The first is publicly-verifiable GEOWFs, where for (y =
fe(z),2"), the relation R (y, '), can be efficiently tested given y and ' only (and the key e if the func-
tion is keyed). The second is privately-verifiable GEOWFs, where the relation R (y, 2'), might not be
efficiently testable given only (y = f.(x),2’), but it is possible to efficiently test the relation given z in
addition.

We note that standard EOWFs, as given in Definition fall under the category of publicly-verifiable
GEOWFs, where the relation R (y, z) simply tests whether y = f.(z).

Definition 2.3 (GEOWFs). An efficiently computable family of functions

F={fe 0,1 — {0,170

ee{0,1}"" ne N} ,

associated with an efficient (probabilistic) key sampler Kr, is a GEOWF, with respect to a relation
Ref(y,w) on triples (e,y, x) € {0, 1}m(")+f’(n)+f(n), if it is:

12



1. RF-Hard: For any PPT A, polynomial b, large enough security parameter n € N, and z €

{0, 1}t

' Ale, fe(z); 2)
e<—1<1:3;(1n [ RZ (f.(z),2)) = 1 } < negl(n) .

z+{0,1}¢(")

2. R -Extractable: For any PPT adversary A, there exists a PPT extractor £ such that, for any poly-
nomial b, large enough security parameter n € N, and z € {0, 1}b(") :

Pr

6(—’C]:(1n)

[ y « Ale; 2) '+ E(e;2)

W fl@) =y " RE(fula),a)) £1 ] < negl(n) -

We further say that the function is
e Publicly-verifiable if R (f.(z), 2") can always be efficiently computed by a tester T (e, fo(x), z").

e Privately-verifiable if R (f.(x), ') can be efficiently computed by a tester a tester T (e, z,z").

Bounded auxiliary input GEOWFs (b-bounded auxiliary-input GEOWFs) are defined analogously to b-
bounded auxiliary-input-EOWFs. That is, R” -hardness is defined exactly as in Definition whereas
R7 -hardness is only against adversaries with auxiliary input of an apriori fixed polynomial size b(n).

Remark 2.3 (Does R” -hardness imply one-wayness). In principle, R” -hardness may not imply one-wayness
of F. Although this is not needed for our purposes, we may further require that the relation R7 includes all
pairs (f.(), ), and thus ensure that R” -hardness does imply one-wayness.

Remark 2.4 (GEOWFs vs. Proximity EOWFs). In [BCCT12], a different variant of EOWFs called proximity
EOWF:s is defined. There a proximity relation ~ is defined on the range of the function. One-wayness is
strengthened to require that not only is inverting f.(x) is hard, but also finding 2’ such that f(z) ~ f.(2)
is hard. Extractability is weakened so that the extractor is allowed to output 2’ as above, rather than an
actual preimage. GEOWF simply allow the relation to be even more general. In particular, any proximity
EOWF with relation ~ implies a GEOWF with relation R, such that R(fe(z),z’) = 1iff fe(z) ~ fe(2').
In particular, the limitations we show in Section [3jon GEOWFs apply to proximity EOWFs as well.

3 From IO to Impossibility of Unbounded-Auxiliary-Input EOWF's

We show that if there exists indistinguishability obfuscation (IO), there do not exist (generalized) auxiliary-
input extractable one-way functions. We start by defining O and puncturable PRFs.
3.1 Indistinguishability Obfuscation

Indistinguishability obfuscation was introduced in [BGI"01] and given a candidate construction in [GGH™13b]],
and subsequently in [BR13, BGTK ™ 13].

Definition 3.1 (Indistinguishability obfuscation [BGIT01]). A PPT algorithm iO is said to be an indistin-
guishability obfuscator (INDO) for C, if it satisfies:

13



1. Functionality: For any C € C,
POr Vz :iO(C)(zx) =C(x)] =1 .

2. Indistinguishability: For any class of circuit pairs {(07(11), 07(12)) € C X C}pen, where the two circuits
in each pair are of the same size and functionality, it holds that:

{ioc} =~ {ioc?)}

Remark 3.1 (Efficiently-falsifiable ¢0). The assumption that ¢{O obfuscators exist according to the above
(standard) formulation is not efficiently falsifiable in the language of [NaoO3]]. Specifically, it can be formu-
lated as a cryptographic game [DOPOS, [HHO9] between a challenger and an attacker: the attacker submits
two circuits Cp, C1, gets an obfuscation i (Cp) for a random b, and has to guess b. However, the challenger
cannot efficiently check whether the adversarially chosen circuits indeed compute the same function. Thus,
it is not efficiently falsifiable.

We note, however, that for our specific application, we can settle for a restriction of ¢O that is falsifiable:
we only require that, for some fixed efficiently samplable distribution D on pairs of circuits with the same
functionality, ¢O holds for an honestly sampled pair. That is, instead of letting the attacker adversarially
choose the circuits, the challenger samples a pair of circuits Cp,C; from D and hands them to attacker
together with :O(Cy).

neN neN

3.2 Puncturable PRFs

We next define puncturable PRFs. We consider a simple case of the puncturable PRFs where any PRF might
be punctured at a single point. The definition is formulated as in [SW14].

Definition 3.2 (Puncturable PRFs). Let £, m be polynomially bounded length functions. An efficiently com-
putable family of functions
PRF = {PRFk 10,13 5 10,1} | k€ {0,1}",n € N} ,

associated with an efficient (probabilistic) key sampler Kprr, is a puncturable PRF if there exists a punc-
turing algorithm Punc that takes as input a key k € {0,1}", and a point x*, and outputs a punctured key
k=, so that the following conditions are satisfied:

1. Functionality is preserved under puncturing: For every z* € {0, 1}“”),

Pr [Va # 2* : PRFi(z) = PRFy . (@) | kg = Punc(k,2%)] =1 .

k+Kprr (1)

2. Indistinguishability at punctured points: The following ensembles are computationally indistin-
guishable:

i {JI*, Kz, PRFk(x*) ’ k ICPR}—(ln)v kye = Punc(k:, x*)}x*e{o,l}m("),nEN

o {a% kur,u | k & Kprr(1"), ko = Punc(k, 2*),u < {0, 1}V } v en

To be explicit, we include z* in the distribution; throughout, we shall assume for simplicity that a
punctured key k.~ includes x* in the clear. As shown in [BGI13, BW13] [KPTZ13], the GGM [GGMS6]
PRF yield puncturable PRFs as defined above.

14



3.3 The Impossibility Result

We now show that if indistinguishability obfuscators exist, there do not exist auxiliary-input EOWFs or
generalized EOWFs (GEOWFs) according to Definitions [2.1][2.3]

Theorem 3.1. Assuming indistinguishability obfuscation for all circuits, neither EOWFs nor GEOWFss exist,
with respect to common auxiliary-input of unbounded polynomial length.

Before proving the theorem two remarks are in place:

Remark 3.2 (Implications for other extractable primitives). GEOWFs are a minimal extractable crypto-
graphic primitive, in the sense that other extractable primitives such as extractable collision-resistance hash
functions (ECRHs), or succinct non-interactive arguments of knowledge (SNARKSs) imply them. (For ex-
ample, in [BCCT12], it is shown that SNARKSs imply proximity ECRHs, which in turn imply proximity
EOWFs, which as noted in Remark [2.4] imply GEOWFs.) These implications are invariant with respect
to auxiliary-input, and thus our limitation on common auxiliary input also holds with respect to these ex-
tractable primitives.

Remark 3.3 (Auxiliary-input notions that are not ruled out). The limitation we prove relies critically on
the adversary and extractor having common auxiliary-input, and does not if we only require extractability
with respect to individual auxiliary-input, as defined in Remark [2.2] The result does hold if we allow both
individual and common auxiliary-input.

Also, our result does not apply for any distribution on common auxiliary-inputs, but rather shows that
some specific auxiliary-input distribution fails extractability. In particular, we do not rule out natural distri-
butions that may be conjectured to be “benign” (see Remark [2.2)), such as the uniform distribution.

To prove the Theorem [3.1] for any EOWF (respectively, GEOWF) family F, we shall describe an adversary
A and a distribution Z on auxiliary inputs, such that any extractor fails, for auxiliary inputs sampled from
Z. For simplicity of exposition, we first concentrate on the case of plain EOWFs, and then show how it
directly extends to the case of GEOWFs.

3.3.1 The Universal Adversary

We consider a universal PPT adversary A that given (e, z) € {0, 1} x {0,1}P°Y (™) parses z as a circuit
and returns z(e).

3.3.2 The Auxiliary Input Distribution

Let F be a family of extractable one-way functions and let PR be a puncturable pseudo-random function
family. We start by defining two families of circuits

¢ = {Ci: {0,13"™ = {0,1}

ke{O,l}”,neN} ,

C* = { e {0,110 — {0,1}7)

ke (0,1} e € {0,1)"M y* € {0,1} ,n € N}

The circuit CY, given a key e for an EOWF, applies PRFy; to e, obtains an input «, and returns the result
of applying the EOWF f, to x.
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Ck
Hardwired: a PRF key k € {0,1}".
Input: an EOWF key e € {0,1}™("),

1. Compute z = PRFg(e).
2. Return y = fe(x).

Figure 1: The circuit Cj.

Choe e

Hardwired: a punctured PRF key ke« = Punc(k,e*) and y* € {0,1}¢().
Input: an EOWF key e € {0,1}™("),

1. If e # e, compute x = PRF;, . (), and return y = f(x).

2. If e = e*, return y*.

Figure 2: The circuit Cj,_, .

The circuit Cy,_, ,+, has a hardwired PRF key ke« that was derived from k by puncturing it at the point
e*. In addition, it has hardwired an output y* to replace the punctured result. In particular, when y* =
fex(PRF(e*)) the circuit Cy,_. ,~ computes the same function as C,.

We are now ready to define our auxiliary input distribution 2 = {Z,}, .. Let s = s(n) be the
maximal size of circuits in either C or C*, corresponding to security parameter n, and denote by [C], a
circuit C' padded with zeros to size s. Let ¢O be an indistinguishability obfuscator. The distribution Z,
simply consists of an obfuscated (padded) circuit C.

Zn

1. Sample k < Kprr(1").
2. Sample an obfuscation z + iO([Cy]s).

3. Output 2.

Figure 3: The auxiliary input distribution Z,,.
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3.3.3 A Does Not Have an Extractor

We next show that A cannot have any extractor £ satisfying Definition In fact, we show a stronger
claim; namely, that for the auxiliary input distribution Z, any extractor fails with overwhelming probability.

Proposition 3.1. Let £ be any PPT candidate extractor for A then

Pr [ y  Ale; 2) A '+ E(e; z)
eekKz(m) | Fz: fe(z) =y fe(@') #y

24 Zn

] > 1 - negl(n) .

We note that, since the key e is sampled above independently of the auxiliary input z, the above indeed
disproves extractability.

Proof of Proposition First, we note that
e [ e 1oy
ez | v fe(z) =y

2Zn

indeed, by the definition of A and Z,,, and the correctness of O,
Ale, z) = z(e) = Ck(e) = fe(PRFy(e))

where Cj; € C is the circuit obfuscated in z, i.e. z = iO([Ck]s).
Now, assume towards contradiction that, for infinitely many n € N, the extractor £ successfully outputs
a preimage with noticeable probability £(n), i.e.

'+ E(e;2)
eH?Z(l") L&) = 2(e) = f.(PRFx(e)) | =50

where as before, z = iO([Cy]s).

Next, for every e* we consider an alternative distribution Z,,(e*, y*) that, instead of sampling a circuit
Cy, samples a circuit C,_, .+, by first sampling k as usual, and then computing y* = fe-(PRF(e*)), and
the punctured key k.. (Note that Z,,(e*, y*) is actually only parameterized by e*, we add y* to the notation,
to be more explicit.) We claim that the extractor still succeeds in finding a preimage, i.e.,

Pr x «— E(e*;2%)
e kr1m) | fer(z') = 2%(e*) = y* = fer (PRFy(e”))

25 Zn(e*,y*)

> e(n) —negl(n) .

This follows from the fact that, for any e¢* and k, C}, and C}, . ,~ compute the same function, and the :O
indistinguishability guarantee.

Next, we consider another experiment where Z,(e*, y*) is altered to a new distribution Z,,(e*, u) that,
instead of sampling y* = fex(PRFy(e*)) in Cy, . 4+, samples y* = fe«(r), for an independent random
r < {0, 1}*. We claim that

> &(n) — negl(n) ;

17



indeed, this follows from the fact that PRF(e*) is pseudo-random, even given the punctured key kex.

This means that £ can be used to break the one-wayness of F. Indeed, given a random key e*, and
a challenge y* = fe+(r), an inverter can simply sample a punctured ke« on its own, construct the circuit
Ck,. y+» With its challenge y* hardwired in, and sample an obfuscation z* < iO(C},, ,+). Finally, it runs
E(e*, z*) to invert y*, with the same probability €(n) — negl(n). O

Extending the result to GEOWFs. The result directly extends to show that no F can even be a generalized
EOWF (GEOWF) with respect to auxiliary input, and any relation R”. Concretely, we would consider
the exact same universal adversary and auxiliary-input distribution Z. The proof goes along the same lines:
instead of an extractor that finds a pre-image  of y = z(e), we start from an extractor that finds € R ().
Then, instead of obtaining an inverter that breaks the one-wayness of F, we obtain an inverter that breaks
the R” -hardness of F. The proofs follows the exact same arguments. The only thing that should be noted is
that when invoking the indistinguishability given by <O, in the first hybrid, and then the indistinguishability
given by pseudo-randomness at punctured points, in the second, it can indeed be efficiently tested whether
the extractor successfully obtained a witness = € RZ (y). This is clear in the case that R” is publicly-
verifiable and also true in the case that it is privately-verifiable, as in both cases y is computed directly from
a pre-image (PRF(e*), in the first, and r, in the second) that is known to the distinguisher, and which allows
testing the relation.

Finally, to deduce Theorem [3.1] we note that puncturable PRFs can be constructed from one-way functions.
Furthermore, EOWF is already a OWF, and any GEOWF with R” -hardness implies that NP # coRP,
which in conjunction with 4O implies OWFs [MR13]]. Thus, the impossibility of auxiliary-input EOWFs
and GEOWFs is implied by indistinguishability obfuscation without any further assumptions.

4 Bounded-Auxiliary-Input Extractable One-Way Functions

In this section, we construct bounded-auxiliary-input extractable one-way functions (EOWFs) and bounded auxiliary-input-
generalized EOWFs (GEOWFs). Before presenting the construction, we define non-interactive universal

arguments for deterministic computations, which is the main tool we rely on, and discuss an instantiation

based on the delegation scheme of Kalai, Raz, and Rothblum [KRR14]].

4.1 Non-Interactive Universal Arguments for Deterministic Computations & Delegation

In what follows, we denote by £, the universal language consisting of all tuples (M, z,t) such that M
accepts = within ¢ steps. We denote by Ly, (7T') all pairs (M, x) such that (M, z,T) € Ly.

Let T(n) € (2v(ogn) 9roly(n)) pe a computable superpolynomial function. An NIUA system for
Dtime(T") consists of three algorithms (G, P, V) that work as follows. The (probabilistic) generator G,
given a security parameter 1", outputs a reference string o and a corresponding verification state T; in par-
ticular, G is independent of any statement to be proven later. The honest prover P (M, x; o) produces a
certificate 7 for the fact that (M, x) € Ly(T(n)). The verifier V (M, x;m, ) verifies the validity of 7.
Formally, an NIUA system is defined as follows.

Definition 4.1 (NIUA). A triple (G, P, V) is a non-interactive universal argument system for for Dtime(T')
if it satisfies:
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1. Perfect Completeness: For any n € N and (M, z) € Ly/(T(n)):

(0,7) « G(1")

Pr|V(M,z;m,7)=1 e P (M.zi0)

=1.

2. Adaptive soundness for a bounded number of statements: There is a polynomial b, such that

for any polysize prover P*, large enough n € N, and set of at most 2™ false statements S C
{0, 13PN\ £y (T(n)):

(0,7) < G(1")
Pr (VY M,z;m,7)=1| (M,z,m) « P*(0) | <negl(n) .
(M,z)e S

3. Fast verification and relative prover efficiency: There exists a polynomial p such that for every
neN, t <T(n), and (M,x) € Ly(t):

e the generator G runs in time p(n) ;

);
e the prover P runs in time p(n + | M| + |z| + t).

e the verifier V runs in time p(n + | M| + |z

The system is said to be publicly-verifiable if soundness is maintained when the malicious prover is also
given the verification state T. In this case, we will assume WLOG that the verification state T appears in the
clear in the reference string o.

Existence and connection to delegation of computation. There are two differences between the notion of
delegation for deterministic computations (See, e.g., [KRR14l]) and the NIUA notion defined above. The
first is that a delegation system is associated with a given language £(M) for a fixed deterministic machine
M, and the corresponding efficiency parameters depend on the worst-case running time 74 of M. In
particular, the generator G depends on Ty as an extra parameter, and the prover’s efficiency is polynomial
in the worst-case running time 7'y. The second difference is that only non-adaptive soundness is guaranteed;
in particular, the generator’s message o may, in principle, depend on the input x.

Kalai, Raz, and Rothblum [KRR14]] show how to construct such a privately verifiable delegation scheme
for every language in Dtime(7") C EXP, assuming subexponentially secure private information retrieval
schemes, which can in turn be constructed based the subexponential Learning with Errors assumption
[BV11].

In order to get a (privately verifiable) NIUA for Dtime(7"), we could potentially use their result with
respect to a universal machine and worst-case running time O(7"). However, this solution would lack the
required prover efficiency, as the prover will always run in time poly(7"), even for machines M with running
time typq << 7. This is undesired in our case, as we will be interested in 7' that is super-polynomial.
Fortunately, a rather standard transformation does allow to get the required efficiency from their result.
Specifically, we could run the generator in their solution to generate a reference string and verification state
(o, 7) for computations of size ¢ for all ¢ € {1, 2,22 ..., QIOgT}, and have the prover and verifier use the
right (o, 7) according to the concrete running time ¢ < 7', guaranteeing that the prover’s running time is
at most poly(2t,) as required.

As for adaptivity, in their scheme, the generator does work independently of the input z, but only non-
adaptive soundness is shown; namely, soundness is only guaranteed when o is generated independently of
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x. To guarantee soundness for adaptively chosen inputs « from a set S of size at most 2" we may repeat
the above argument O(b(n)) times. Assuming that the underlying delegation scheme is secure against
provers that run in time 20(b(n)) (by choosing the security parameter in the [KRR14] scheme appropriately),
the parallel repetition exponentially reduces the soundness error (see e.g., [BIN97]). Then, we can take a
union bound over all 2°(") adaptive choices of = and get the required soundness. The O(b(n))-factor hit in
succinctness and verification time are still tolerable for our purposes (and still satisfy the above definition).

Theorem 4.1 (Following from [KRR14l). Assuming the Learning with Errors Problem is sub-exponentially
hard, for any b(n) = poly(n), and T(n) € (2#(087) 2poly(")) there exists a (privately-verifiable) NIUA
with adaptive soundness for 20(") statements.

4.2 Constructions

We now present our constructions of bounded-auxiliary-input EOWFs and GEOWFs. We start with the
construction of GEOWFs, based on any NIUA. We then give a construction of the standard (rather than gen-
eralized) EOWFs based on publicly-verifiable NIUAs with an additional key validation property (satisfied
by existing candidates).

4.2.1 The generalized extractable one-way function

Let b(n) be a polynomial. Let (G, P, V) be an NIUA system for Dtime(7'(n)) for some function 7'(n) €
(2“(10g n) gpoly(n) ), with adaptive soundness for 2b(n) statements. We assume that the system handles state-
ments of the form (M, v) € {0,1}°(") x {0, 1}2(M+" asserting that “M (1) outputs v in T'(n) steps”.
Assume that, G(1™; r) uses randomness of size n to output a reference string of polynomial size m(n), and
a verification state 7 (if the system is publicly-verifiable, then T appears in o). Assume that ‘P outputs certifi-
cates 7 of size p(n). Let PRG be a pseudo random generator stretching n bits to b(n) + n bits. We construct
a key-less family of functions 7 = {f,,},,cx. consisting of one function f,, : {0,1}*™ — {0, 134 for
each security parameter n, where ¢(n) = max(2n, b(n) 4+ p(n)) and ¢'(n) = m(n) + b(n) + n.
The function is given in Figure 4| and is followed by the corresponding relation R

Inputs: (s, r, pad) of respective lengths (n,n, £(n) — 2n).
1. Compute v = PRG(s).
2. Sample NIUA reference string and verification state (o, 7) < G(1";r).

3. Output (o, v).

Figure 4: The function f,,.

We now define the corresponding relation R7 = {72,]1E }n N in Figure [5, which will be publicly-
verifiable (respectively, privately-verifiable) if the NIUA is publicly (respectively, privately verifiable). For
simplicity, we assume that the NIUA is such that for every valid reference string o produced by G, there is
a single possible verification state 7 (this can always be achieved by adding a commitment to 7 inside o).
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Inputs:
y = fo(z) = (0, v) of respective lengths (m(n),b(n) + n),
z' = (M, 7, pad) of respective lengths (b(n), p(n), {(n) — b(n) — p(n)).

[a—

. Compute the (unique) verification state 7 corresponding to the reference string o:

2. Run V(M, v, m,7) to verify the statement “M (1™) outputs v in T'(n) steps”.

W

. Return 1 iff verification passes.

Figure 5: The relation R (f,,(z),2").

Claim 4.1. R is publicly-verifiable (respectively privately-verifiable), if (G, P,V) is publicly-verifiable
(respectively privately-verifiable).

Proof. First, by definition, when (G, P, V) is publicly-verifiable, 7 can be obtained from o, NIUA verifica-
tion can be done efficiently, and thus the relation R; can be efficiently tested.

Next, assume that (G, P, V) is privately-verifiable. Recall that showing that R is privately-verifiable,
means that given any preimage = such that y = f,, (), we can efficiently test R/ (y,2’). Indeed, given
such a preimage = = (s, 7, pad), we can obtain the generator randomness r, and run G(1"; ) to obtain the
(unique) verification state 7 corresponding to o, and efficiently test R . U

Remark 4.1 (One-wayness vs. R” -hardness of F). The relation R” defined above is such that (f,,(z), z)
may not satisfy the relation. In particular, this means that R -hardness may not imply one-wayness of
F. While this is not needed for our purposes, the relation R7 can be augmented to also include all pairs
(fn(z), ), and R” -hardness will still be preserved; that is, the function we define is one-way in the usual
sense.

We now turn to show that F is a GEOWF with respect to R

Theorem 4.2. The function family F = {fn},cn. given in Figure d|is a GEOWF, with respect to R,
against (b(n) — w(1))-bounded auxiliary-input.

High-level idea behind the proof. To see that F is R -hard, note that to break R” -hardness, an adversary
given a random image (o, v), where v = PRG(s) is of length b(n) + n, has to come up with a “small”
machine M, whose description length is at most b(n), and a proof that M outputs v (within a T'(n) steps).
However, in an indistinguishable world where v is a truly random string, v would almost surely have high
Kolomogorov complexity, and a short machine M that outputs v would not exist. Thus, in this case, the
breaker has to produce an accepting proof for a false statement, and violate the soundness of the NIUA.

As for extraction, given a poly-time machine M, with short advice z that outputs (o, v), where o is a
valid reference string for the NIUA system, the extractor simply computes a proof 7 for the fact that M,
outputs v, and outputs the witness (M, 7; pad). By the completeness of the NIUA system, the proof 7 is
indeed accepting, and the witness satisfies R” . Furthermore, by the relative prover efficiency of the NTUA,
the extractor runs in time that is polynomial in the running time of the adversary M.

Proof of Theorem We first show R -hardness, and then show R” -extractability.
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R7 -hardness. Assume there exists a breaker B that, given y = (0,v), where o + G(1"), and v <
PRG(U,), finds x = (M, 7, pad) such that R; (3, z) = 1 with noticeable probability £(n). We construct
a prover P* that breaks the adaptive soundness of the NIUA (for 2b(") statements), with probability £(n) —
negl(n). P*, given o, first samples on its own ¥ ¢~ Up(y)4, (independently of o), and then runs B(a, 9) to
obtain a machine M of size b(n), and a proof 7.

We first claim that with probability e(n) — negl(n), 7 is an accepting proof for the statement (M, v)
asserting that “M(1™) outputs ¥ in T'(n) steps”. Indeed, the view of B in the above experiment is identical
to its real view, except that it gets a truly random v, rather than a pseudo-random v that was generated using
PRG. Thus, the claim follows by the PRG guarantee.

Next, we note that since © is a (b(n) + n)-long random string, except with negligible probability 27",
there does not exist M of size b(n) that outputs @. Thus, P* produces an accepting proof for one of 20(")
false statements given by the adaptive choice of M € {0, 1}b(”), and violates the soundness of the NIUA.

R7 -extractability. We now show R” -extractability. We, in fact, show that there is one universal PPT
extractor £ that can handle and PPT adversary M with advice of size at most b(n) —w(1). For an adversarial
code M and advice z € {0,1}*( <) denote by M, the machine that, on input 17, runs runs M(1%; z).
The extractor £ is given (M, z), where M, has description size at most b(n) and running time at most
tpm < T(n), and M,(1") = y = (0,v) € Image(f,,). To compute a witness 2 € R” (y), € computes a
certificate 7 for the fact that “M,(1") = v”, and then outputs 2’ = (M, 7, pad). The fact that 2’ is indeed
a valid witness follows directly from the perfect completeness of the scheme. Finally, we note that by the
relative prover efficiency of the NIUA the extractor runs in time that is polynomial in the running time
of the adversary . O

Remark 4.2 (R” -hardness against superpolynomial adversaries). In Section we shall require GEOWFs
that are R -hard even against adversaries of size poly(7(n)), for some superpolynomial function T'(n).
Such GEOWFs can be obtained from the above construction, by using a PRG that is secure against poly(7'(n))
adversaries, and an NIUA that is sound against such adversaries (such an NIUA can be obtained from
[KRR14]], based on an appropriately strong private information retrieval scheme).

4.2.2 The standard extractable one-way function

We construct a standard extractable one-way function based on publicly-verifiable NIUAs that have an
additional property that says that, in addition to perfect completeness for an honestly chosen reference string
o (which in the publicly-verifiable case is also the verification state), it is also possible to check whether
any given o is valid, or more generally admits perfect completeness. We note that exiting candidates for
publicly-verifiable NIUAs indeed have this property

Definition 4.2 (NIUA with key validation). A publicly-verifiable NIUA system is said to have key validation
if there exists an efficient algorithm Valid, such that for any o € {0,1}™™), if Valid(c) = 1, then the system
has perfect completeness with respect to o. That is, proofs for true statements, generated and verified using
o, are always accepted.

We now turn to describe the construction, which at a very high-level attempts to embed the structure of the
previous GEOWF function and relation into a standard EOWF.

3Indeed, in Micali’s CS proofs, perfect completeness holds with respect to all possible keys for a hash function. In the publicly-
veriable instantiations of the SNARKSs from [BCCT13] it is possible to verify the validity of ¢ using a bilinear map.
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Let b(n) be a polynomial. Let (G, P, V) be an NIUA system with the same parameters as in the above
GEOWEF construction, and with the additional key-validation property. Let PRG be a pseudo random gen-
erator stretching n bits to b(n) + n bits.

We construct a key-less family of functions F = { f,. },,cn. consisting of one function f;, : {0, 1}
{0,1}¥' (), for each security parameter n, where £(n) = 4n + 2b(n) + m(n) + p(n) and £'(n) = m(n) +
b(n) + n. The function is given in Figure[6]

Inputs: (3, (s,7), (0, M, v, 7)) of respective lengths (n, (n,n), (m(n),b(n),b(n) + n,p(n)))
o Ifi ¢ {07, 1"}:
1. Compute v* = PRG(s).
2. Sample a reference string o* < G(1™; 7).
3. Output (v*,0™).
o Ifi=0m
1. Perform the following tests:
— Run Valid(o) to check the validity of o,
— Run V(M, v, ,0) to verify the statement “M (1") outputs v in T'(n) steps”,
If both accept, output (v, o).
2. Otherwise, output L.

o If7 = 1", output L.

Figure 6: The function f,,.

‘We now turn to show that F is an EOWF.

Theorem 4.3. The function family F = { f},cn. given in Figure @ is an EOWF, against (b(n) — w(1))-
bounded auxiliary-input.

High-level idea behind the proof. To see that F is one-way, note that, except with negligible probability,
a random image comes from the “normal branch of the function”, where i ¢ {0™,1"} and includes an
honestly sampled o and a pseudorandom string v = PRG(s). To invert it, an adversary must either invert
PRG(s), allowing it to produce a “normal branch” preimage, or obtain a short machine M and an accepting
proof 7, that M outputs v, allowing it to produce a “trapdoor branch” preimage. In the first case, the inverter
violates the one-wayness of PRG. In the second case, the inverter can be used to break the soundness of
the NIUA as in the proof of Theorem [4.2] (leveraging the fact that a truly random ¢ almost surely cannot be
computed by a short machine).

As for extraction, given a poly-time machine M, with short advice z that outputs (o,v) # L, by the
definition of f,, o is a valid reference string for the NIUA system (indeed, | is an image that indicates
an improper reference string o, or a non-accepting proof 7). In this case, the extractor simply computes
a proof m for the fact that M outputs v, and outputs the preimage (0", (0",0"), (o, M, v,7)). By the
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completeness of the NIUA system, for a valid o, the proof 7 is indeed accepting. By the relative prover
efficiency of the NIUA, the extractor runs in time that is polynomial in the running time of the adversary
M.,. The only other case to consider is where M, outputs L, in which case producing a preimage is easily
done by setting 7 = 1™.

Proof of Theorem We first show R -hardness, and then show R” -extractability.

One-wayness. Assume there exists an inverter 7 that, given y = f,,(x), where x < Uy, finds a preimage
=, (s,r"), (¢!, M’ v, ') with noticeable probability £(n). We construct a prover P* that breaks the
adaptive soundness of the NIUA (for 2°(") statements), with probability £(n) — negl(n). P* is defined as in
the proof of Theorem given o, it first samples on its own ¥ <— Up(y,)4, (independently of o), and then
runs Z(o, ) to obtain 2’ = (¢, (s', 1), (¢!, M, v, 7).

Claim 4.2. With probability (n) — negl(n), 7’ is an accepting proof, with respect to o, for the statement
(M, v), attesting that “M’(1™) outputs v in T'(n) steps”.

The claim will conclude the proof of one-wayness since, as in the proof of Theorem except with
negligible probability, there does not exist a machine M’ of size b(n) that outputs © which is a (b(n) + n)-
long random string. This means that Z outputs an accepting proof for one of 2°(") false statements (given
different M’ € {0, 1}%("), and violates the soundness of the NTUA.

Proof. To prove the claim, we first consider an hybrid experiment where Z samples a pseudorandom v <
PRG(U,,) instead of a truly random v. By the PRG guarantee, we know that the probability of outputting
(M’ 1) as required by the claim changes at most by a neglible amount negl(n). Next we note that the view
of 7 in the hybrid experiment is identical to its view in the real world where it receives a random image
y = (o,v). Furthermore, whenever Z finds a preimage ' = (¢, (s',7"), (o', M', v/, 7)) of y such that
i’ = 0", by the definition of f,, (¢/,v") = (o,v), and 7’ must be an accepting proof for the statement
(M, v" =), with respect to o’ = 0.

Since we know that Z inverts the function with probability (n), it thus suffices to show that the preimage
it finds is such that 7 = 0™, except with negligible probability. Indeed, whenever 7 finds a preimage such
that ' ¢ {0™, 1"}, by the definition of f,,, it inverts v = PRG(s), contradicting the one-wayness of PRG.
Also, a preimage of (o, v) cannot have ' = 1™, assuming (o, v) # L, which is the case with overwhelming
probability. This concludes the proof of the claim. O

Extractability. We show that there is one universal PPT extractor £ that can handle and PPT adversary M
with advice of size at most b(n) — w(1). The proof is similar to the extractability proof of Theorem 4.2
For an adversarial code M and advice z € {0, 1}b(")_“’(1), we denote by M, the machine that, on input
1™, runs runs M (1™; z). The extractor & is given (M, z), where M, has description size at most b(n) and
running time at most t\q < 7'(n), and M. (1") = (o, v) € Image(fn).

If (o,v) # (0™, 0¥ (M+7) we know that o must be valid, in which case £ computes a certificate 7 for
the fact that “M (1) = v”, and then outputs the preimage =’ = (0™, (0™,0"), (o, M, v, 7)). The fact that
2’ is indeed a valid preimage follows directly from the perfect completeness of the scheme, for a valid o. If
(o,v) = (0™ 0b(M+7) the extractor outputs the preimage =’ = (17, (0™, 0™), (0™(™), 0b(7) b(m)+n op(n))),

Finally, we note that by the relative prover efficiency of the NIUA the extractor runs in time that is
polynomial in the running time ¢4 of the adversary . O
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5 2-Message and 3-Message Zero Knowledge
against Bounded-Auxiliary-Input Verifiers

In this section, we define and construct two and three message ZK arguments against verifiers with bounded
auxiliary input, based on GEOWFs. We start by presenting the definition of such ZK arguments, and two
tools which will be of use. Then, we move on to describe our constructions.

5.1 Definition

The standard definition of zero knowledge [GMR&9,Gol04] considers adversarial verifiers with non-uniform
auxiliary input of arbitrary polynomial size. We consider a relaxed notion of zero knowledge against veri-
fiers that have bounded non-uniform advice, but arbitrary polynomial running time. This relaxed notion, in
particular, includes zero knowledge against uniform verifiers (sometimes referred to as plain zero knowledge
[BLVO6).

Concretely, we shall focus on PPT verifiers V* having advice z of size at most b(n), and using an
arbitrary polynomial number of random coins.

Definition 5.1. An argument system (P, V') for an NP relation R (¢, w) is zero knowledge against verifiers
with b-bounded advice if for every PPT verifier V*, there exists a PPT simulator S such that:

{<P(w) S V*(Z»(SO)} (pw)eR, e {S(Z790)} (pyw)ER,
z€{0,1}b(eD 2€{0,13b(¢D

where computational indistinguishability is with respect to arbitrary non-uniform distinguishers.

Remark 5.1 (universal simulator). In the above definition, each PPT V* is required to have a designated
PPT simulator Sy;. Our constructions will, in fact, guarantee the existence of one universal simulator S that,
in addition to (z, ), is also given the code of V* and a bound 1'v on the running time of V*(i; z), and
simulates V*’s view. Moreover, the running time of S is bounded by some (universal) polynomial poly (¢},)
in the running time of V*. We note that, in ZK with unbounded polynomial auxiliary input, such universality
follows automatically by considering the universal machine and auxiliary input (V*,1%). In our context,
however, this does not hold since ¢y« is unbounded and can be larger than the bound b on the size of the
advice.

5.2  'WI Proof of Knowledge with an Instance-Independent First Message

In this section, we define and construct 3-message WI proofs of knowledge with an instance-independent
first message, which will be used in our construction of a 3-message ZK argument of knowledge. In such
proof systems, the prover’s first message is completely independent of the statement and witness (¢, w) €
‘R to be proven; in particular, it is of fixed polynomial length in a security parameter n, independently of
|, wl.

Classical WIPOK protocols do not satisfy this requirement. For example, in the classical Hamiltonicity
protocol [Blu86], the first message is independent of the witness w, but does depend on the statement . In
Lapidot and Shamir’s Hamiltonicity variant [LS90], the first message is independent of (¢, w) themselves,
but does depend on |, w| (see details in [OV12]). ZAPs do satisfy the independence requirement (as there
is no first prover message at all), but they do not constitute a proof of knowledge.

We show that, using ZAPs, and 3-message extractable commitments, we can obtain a WIPOK where the
first (prover) message is completely independent of (¢, w), even of their length, and the second (verifier)
message only depends on |¢|.
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Definition 5.2 (WIPOK with instance-independent first message). Let (P <= V') be a 3-message proof
system for L with messages («, 3,7); we say it is a WIPOK with instance-independent first message, if it
satisfies:

1. Completeness with first message independence: For any o € LN {0,1}, w € R(¢), n € N:

a <+ P(1™r)
Pr |V(p,a,B,v;7") =1 B+ V({la;r) | =1,
v < P(p,w,a, B;7)

where r, 1" < {0,1}P°Y(") are the randomness used by P and V.

The honest prover’s first message « is of length n, independently of the length of the statement and
witness (o, w).

2. Adaptive witness-indistinguishability: for any deterministic polysize verifier V* and all large enough
n € N:

a <+ P(1™r)
Pr V*(¢7a7577) =b Soaw()vwhﬁ < V*(Oé) <
v« P(p,wp, v, B57)

+negl(n) ,

| =

where b < {0,1}, < {0, 1}*°Y(") s the randomness used by P, and wo, w; € Rz ().

3. Adaptive proof of knowledge: there is a PPT extractor &, such that, for any polynomial { = {(n),
all large enough n € N, and any deterministic prover P*:

o+ P*
ifPr| Vig,a,B,v:1") =1 B+ V(n),a;r) | >e,
@,7  P*(a, B)
o+ P*
w(—é’P*(ll/g,g@,a,B,’y) B V(ln),a;r")
w ¢ Re(p) .7 P(a, B)
Vip,a,B,vr") =1

then Pr < negl(n) ,

where ¢ € {0,1Y"™), and v’ < {0,1}PY™) is the randomness used by V.

Construction from ZAPs. We now show how to use ZAPs and extractable commitments to construct a
WIPOK with the required properties. As mentioned above, ZAPs already have the required independence,
but they do not provide POK. The high-level idea is to add the POK feature to ZAPs, while maintaining the
required instance-independence. This can be done by having the prover commit to a random string 7 using a
3-message extractable commitment (e.g., as formalized in [PW09]), and then sending, as the third message,
the padded witness w & r along with a ZAP proof that it was computed correctly. While the first message is
independent of ¢, w it does depend on the length |w/; this is naturally solved by committing to a seed s of
fixed length and later deriving r using a PRG.

Intuitively, extraction of the witness is now possible by extracting r (or s) from the committing prover.
To ensure WI we use the idea of turning a single witness statement into a two independent-witnesses state-
ment as done in [FS90,|COSV 12, BP13al.
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In what follows, we denote by (C,R) the committer and receiver algorithms of a perfectly-binding 3-
message extractable commitment protocol, and we denote by C' = (C1),C2), C®)) its three messages.
We further require that extraction is possible given any two valid transcripts c , (" that share the same first
message. Such an extractable commitment can be constructed from any perfectly-binding non-interactive
commitment, see e.g. [PWQ9].

Protocol 7]

Common Input: security parameter n, and ¢ € £ N {0, l}g(").

Auxiliary Input to P: w € Rz (p).

1. P samples seeds sq, 51 < {0,1}V", and a bit b < {0, 1}, and sends the first commitment mes-
sage to each of the three (CS", CY, (V) « (C(s0),C(s1),C (b)), where |(C{, cV cW)| =
nfl

2.V, given the length of the statement { = |¢|, samples randomness < {0, 1}P°¥(") for a
ZAP, and receiver messages (062),052),0(2)) — (R(C(()l)),R(CF)),R(C(D)), and sends
(r,c?,c® c®) w0 P.

3. P, given (¢, w), now performs the following:
e computes the third committer messages
(G5, €Y. C0) = (Cs0. ). €51, 7). (b, CP)).
e computes ag = w G PRG(sg), a1 = w & PRG(sy).
e computes a ZAP proof 7 for the statement:
C_;o = C(So, 0(52))

{C=c0.c™)fv< a=wePRe(so) ¢ 3 A
w € Re(p)

. C_:l = C(Sl,cl(Q))
{C:C(1,C<2>)} v{ a1 = w® PRG(s1)
w € Re(p)

e sends C’(()?’), Cfg), Cc® ag,ar, .

4. V verifies the ZAP proof 7, the validity of the commitments transcripts, and decides whether to
accept accordingly.

“The commitment to b does not have to be extractable; however, we use the same commitment scheme to avoid extra
notation.

Figure 7: A 3-message WIPOK with instance-independent first message

Lemma 5.1. Protocol[]|is a 3-message WIPOK with instance-independent first message.
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hyb | zapw, | Gy Th ap®ry | zapwy_y, | Cip T1_b ai—p ®ri-p
S1-b PRG(Sl_b)
S1-b PRG(Sl_b)
S1-b PRG( ) wo
S1-b PRG(Sl_b) wo
(s1-p)
(s1-p)
(s1-5)

Wo

wo

S1-b PRG S1-b
S1-b PRG S1-b
S1—b PRG S1—b

wo

Wo

S1-p PRG(Slfb) w1

Table 1: The sequence of hybrids; the bit b corresponds to the bit commitment C; the gray cells indicate the
difference from the previous hybrid.

We next prove the lemma. The proof is an adaptation of a proof from [BP13al.

Proof. We start by showing that the protocol is WI. Let

(()57 wo,ﬂ}l) = {(907w07w1) : ((P,w()), ((pa wl) € RE}

be any infinite sequence of instances in £ and corresponding witness pairs. We next consider a sequence
of hybrids starting with an hybrid describing an interaction with a prover that uses wy € wp, and ending
with an hybrid describing an interaction with a prover that uses w; € w;, where both wy, wy, are witnesses
for some ¢ € @. We shall prove that no efficient verifier can distinguish between any two hybrids in the
sequence. The list of hybrids is given in Table [l We think of the hybrids as two symmetric sequences:
one 0.1-6, starts from witness wg, and the other 1.1-6 starts at witness wi. We will show that within these
sequences the hybrids are indistinguishable, and then we will show that 0.6 is indistinguishable from 1.6.

Hybrid 0.1: This hybrid describes a true interaction of a malicious verifier V* with an honest prover P
that uses wy as a witness for the statement = € L. In particular, the ZAP uses the witness ((sg, wp), ($1,wo));
formally, the witness also includes the randomness for the commitments C_”o and C_"l, but for notational
brevity, we shall omit it. In Table ([T} the witness used in part 0 of the ZAP is referred to as zapwy, and the
one corresponding to 1 in zapw;.

Hybrid 0.2: This hybrid differs from the previous one only in the witness used in the ZAP. Specifically,
for the bit b given by C, the witness for the ZAP is set to be (b, (s1—p,wp)), instead of ((sp, wo), (S1-p, wo)).
(Again the witness should include the randomness for the commitment C_” and C_"l b, but is omitted from
our notation.) Since the ZAP is W1, this hybrid is computatlonally indistinguishable from the previous one.

Hybrid 0.3: In this hybrid, the commitment C), is for the plaintext 0l*¢!, instead of the plaintext s;. This
hybrid is computationally indistinguishable from the previous one due to the computational hiding of the
commitment scheme C.

Hybrid 0.4: In this hybrid, instead of padding with PRG(s;), padding is done with a random independent
string u + {0, 1}‘PRG(sb)‘. Computational indistinguishability of this hybrid and the previous one, follows
pseudorandomness.

Hybrid 0.5: In this hybrid, the padded value ay is taken to be wi @ 1y, instead of wg @ . Since 7y, is
now uniform and independent of all other elements, this hybrid induces the exact same distribution as the
previous hybrid.
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Hybrid 0.6: This hybrid now backtracks, returning to the same experiment as in hybrid 0.1 with the
exception that the ZAP witness is now ((sp, w1), (S1_p, wq)) instead of ((sp, wo), (S1_p, wo)). This indis-
tinguishability follows exactly as when moving from 0.1 to 0.5 (only backwards).

Hybrids 1.1 to 1.6: These hybrids are symmetric to the above hybrids, only that they start from w;
instead of wy. This means that they end in 1.6 which uses an ZAP witness ((sy, wo), ($1—p, w1)), which is
the same as 0.6, only in reverse order.

Hybrids 0.6 and 1.6 are computationally indistinguishable. This follows directly from the computational
hiding of the commitment C' to b. Indeed, assume towards contradiction that V distinguishes the two hybrids.
Concretely, denote the probability it outputs 1 on 0.6 by pg, and the probability it outputs 1 on 1.6 by p1,
and assume WLOG that pg — p; > £(n), for some noticeable £(n). We can construct a predictor that given
a commitment C' = C(b) to a random bit b < {0, 1}, guesses b with probability H%(n) The predictor,
samples a random b <+ {0,1} as a candidate guess for b, and performs the experiment corresponding to
0.6, only that it locates wq and w; according to ¥, rather than the unknown b. If the distinguisher outputs 1,
the predictor guesses b = b’ and otherwise it guesses b =1 — b'.

Conditioned on b = b/, V is experiencing 0.6, and thus the guess will be correct with probability po;
conditioned on b = 1 — ¥/, V is experiencing 1.6, an((i ghe guess will be right with probability 1 — p;. So

g(n

overall the guessing probability is & + 1*% > % + =5~. This completes the proof that the protocol is WI.

It is left to show that the protocol is an argument of knowledge. Indeed, let P* be any prover that
convinces the honest verifier of accepting with noticeable probability (n), then with probability at least
£(n)/2 over its first message, it holds with probability at least €(n)/2 over the rest of the protocol that P*
convinces V. Let us call such a prefix good. Now for any good prefix, we can consider the perfectly binding
induced commitment to the bit b, and from the soundness of the ZAP, we get a circuit that with probability
at least €(n)/2 — negl(n) produces an accepting commitment transcript for the plaintext s;_p, and gives a
valid witness w € R, padded with PRG(s1_p). This in particular, means that we can first sample a prefix
(hope it is good), and then use the extraction guarantee of the commitment to learn s;_; and PRG(s1_p),
and thus also the witness w. This completes the proof of Lemma5.1] O

2-message WI with instance-independent first message. We shall also make use of 2-message WI with
instance-independent first message. Here, there are two verifier and prover messages. Like in the three
message definition the verifier message does not depend on the instance, but is allowed to depend on its
length. In such a protocol, we only require soundness. ZAPs, for instance, satisfy this requirement, but we
can also do with a privately verifiable protocol rather than a ZAP. (In fact, also in the above construction of
3-message WIPOKSs with instance-independent first message, the ZAPs can be replaced with any 2-message
WI with instance-independent first message.)

5.3 1-Hop Homomorphic Encryption

A I-hop homomorphic encryption scheme [GHV10] allows a pair of parties to securely evaluate a function
as follows: the first party encrypts an input, the second party homomorphically evaluates a function on the
ciphertext, and the first party decrypts the evaluation result. Such a scheme can be instantiated based on
garbled-circuits and an appropriate 2-message oblivious transfer protocol, based on either Decision Diffie-
Hellman or Quadratic Residuosity [Yao86,|(GHV 10, INPO1, IAIRO1, HK12].

Definition 5.3. A scheme (Gen, Enc, Eval, Dec), where Gen, Eval are probabilistic and Enc, Dec are deter-
ministic, is a semantically-secure, circuit-private, 1-hop homomorphic encryption scheme if it satisfies the
following properties:
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o Perfect correctness: Foranyn € N, z € {0,1}" and circuit C:

¢ « Evalg(c,C)

P .
skeGelr;(l”) Decs (¢) = C(x)
c=Encg(z)

Eval

=1.

e Semantic security: For any polysize A, large enoughn € N, and any pair of inputs xq,z1 € {0,1}"

1
bef{’al} [A(Encg(zp)) = b] < 5t negl(n) .
sk«—Gen(1™)

e Circuit privacy: A randomized evaluation should not leak information on the input circuit C. This
should hold even for malformed ciphertexts. Formally, let £(x) = Supp(Enc(z)) be the set of all
legal encryptions of x, let £, = Ugzeqo,13n€ (x) be the set legal encryptions for strings of length n,
and let C,, be the set of all circuits on n input bits. There exists a (possibly unbounded) simulator S
such that:

{C7 EVBI(C, C)} neN,CeC, e {07 S(Cv C(x)a ’CD} neN,CeC,

z€{0,1}",ce€(x) z€{0,1}",ce€(x)
{07 Eval(cv C)} neN e {C’ S(C, J—, |C|)} neN
CeCn,ctén CeCn,ctén

5.4 Constructions

In this section, we construct zero-knowledge protocols against verifiers with bounded advice from gener-
alized extractable one-way functions against adversaries with bounded auxiliary input (GEOWFs against
bounded auxiliary-input adversaries). We start by describing a construction of a 3-message argument of
knowledge from any GEOWF, 1-hop homomorphic encryption, and 3-message WIPOK with instance-
independent first message. We then show a 2-message argument, assuming (non-interactive) commitments
that can be inverted in super-poly time 7'(n), GEOWFs that are hard against poly(7'(n))-size adversaries,
and any 2-message WI with instance-independent verifier message (in particular, ZAPs).

5.4.1 A 3-message zero-knowledge argument of knowledge

Let (Gen, Enc, Eval, Dec) be a semantically-secure, circuit-private, 1-hop homomorphic encryption scheme.
Let (wi, wig, wiz) denote the messages of 3-message WIPOK with an instance-independent first message
(as in Definition [5.2). Let 7 = {fy},cn be a key-less GEOWF, against (b(n) + 2n)-bounded-auxiliary-
input adversaries, with respect to a privately-verifiable relation R = {Rf }n ene Let T (x,2") be the
efficient tester for Ry (f,(z),z’). We further denote by 7, /() a circuit that, given input z, verifies that
“y # fn(z) or T(x,2') = 17; that is, either “x is not a valid preimage of y, or R, (f.(x),2’) = 1”. Also,
let 1 be a circuit of the same size as 7, .+ that always returns 1. The protocol is given in Figure @

Theorem 5.1. Protocol |8|is a zero-knowledge argument of knowledge against b-bounded-auxiliary-input
verifiers.

High-level idea behind the proof. For simplicity let us explain why the protocol is sound, showing it
is an argument of knowledge follows a similar reasoning. Assuming that ¢ ¢ L, in order to pass the
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Protocol 8
Common Input: ¢ € LN {0,1}".
Auxiliary Input to P: a witness w for .

1. P sends the first message wi; € {0, 1}" of the instance-dependent WIPOK.

2. V samples z + {0,1}*(™) and sk <— Gen(1"), computes y = f,,(x), ¢, = Encg ()
and sends (y, c;) , as well as the second WIPOK message wis.

3. P samples ¢ < Eval(1, c,), and sends ¢, together with the WIPOK message wis stating that:

{peLt\/ {32 e=Eval(Tyo,c0)}
using the witness w € Rz(p).

4. V verifies the proof and that Decg(¢) = 1.

Figure 8: A 3-message ZK argument of knowledge against verifiers with b-bounded auxiliary-input.

WIPOK, with respect to an evaluated cipher ¢ that decrypts to 1, the prover must know a witness z’ such
that 7, ,+(x) = 1. This, by definition, and the fact that the verifier indeed sends an image y together with
its encrypted preimage x, means that 2’ must be such that 2’ satisfies R (f,,(),z’) = 1, and thus the
prover actually violates R -hardness (formally, we also need to invoke semantic security to claim that the
encryption of x does not help in producing such a witness.)

To show ZK, we use the fact that if the verifier sends y together with an encryption of a true preimage
x, the the simulator can invoke the extractor and extract a witness 2’ from its code and auxiliary input,
and use it to complete the WIPOK. Here we use the bound on the first WI prover message, to claim that
the overall auxiliary-input is appropriately bounded. In case, the verifier diverges from the protocol, and
doesn’t send proper y and encrypted preimage, the definition of 7, ,» guarantees that the circuit will also
accept in this case. Thus in either case, the circuit privacy of homomorphic evaluation would guarantee
indistinguishability from a real proof, where the prover actually evaluates the constant 1 circuit.

A more detailed proof follows.

Proof. We first show that the protocol is an argument of knowledge.

Claim 5.1. Protocol|8|is an argument of knowledge against against arbitrary polysize provers.

Proof. Let P* be any polysize prover that convinces V' of accepting with noticeable probability £(n). The
witness extractor would derive from P* a new prover for P, that emulates P* in the WIPOK; in particular,
it would honestly sample (y, c;) as part of the second verifier message that P* gets. The extractor would
then choose the random coins r for P, sample a transcript tr of an execution with the honest WIPOK
verifier V,;, and apply the WIPOK extractor on the transcript tr, with oracle access to F.. The WIPOK
extractor then hopefully obtains a witness for the WI statement

{pely\/ {3 e =Eval(Ty o, c0)}
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where (y, c;) are those honestly sampled by P, and ¢ is output by P*.

We claim that, with noticeable probability (n)?/2 — negl(n), we find a witness w for the first part of
the statement € £. Otherwise, we can use P* to break the R” -hardness of F. To prove this claim, we
first note that the emulated transcript tr in this experiment is distributed identically to the transcript in a
real execution of P* with the honest verifier. Thus, we know that such a transcript tr is accepted by V' with
probability at least £(n). Now, let us call random coins  for P good if they are such that with probability at
least £(n) /2 over the coins of the WIPOK verifier V,;, it accepts the proof given by P.'.. Since we know that
overall V,; accepts with probability at least £(n), then by a standard averaging argument, at least an €(n)/2
fraction of the coins r for P, are good. Furthermore, conditioned on a transcript tr that is accepted by V/,
the probability that the corresponding coins 7 are good increases. Thus, it follows that the probability that tr
is accepting and the corresponding coins r are good is at least £(n) - £(n) /2. Now, recall that, whenever this
occurs, the extractor for the WIPOK would also output a witness for the corresponding statement (except
with negligible probability).

We would like to show that the extracted witness is the one for the ¢ € L statement. Indeed, assume
that, with noticeable probability 7(n) , it holds that tr is accepting, the extractor outputs a witness, but the
witness is for the second statement. This, in particular, means that the witness extractor outputs z’ such that
¢ = Eval(7,,4, c.), where ¢ is the output of P*. Moreover, since the transcript is accepted by V', we know
that Dec(¢) = 1. By correctness of decryption, this means that 7, ,(x) = 1, which in turn implies that
T (z,2") = 1, since y = f,(x). In other words, 2’ is a valid witness satisfying R, (f,(z),2") = 1.

We can now construct a breaker for the R”-hardness of F. The breaker, given y = f,(z), would
simply emulate all of the experiment above on its own, where P,,; would use y, and an encryption of zero
co = Encg(0) to emulate the second verifier message, instead of sampling (y = f,(x),c,) on its own.
We claim that it would obtain the desired witness x’ with noticeable probability (n) — negl(n). Indeed,
had we used an encryption ¢, of the preimage of y, instead of a zero-encryption, we know that it would
produce a valid witness x with probability n(n). Thus, the claim follows by the semantic security of Enc.
This completes the proof of Claim[5.1] O

We next show that the protocol is ZK. We note that, since the ZK simulator is allowed to simulate the
(apriori unbounded) randomness of the verifier VV*, we can restrict attention to verifiers V* that only have
bounded randomness. Indeed (assuming there exist OWFs), we can always consider a new verifier V* that
first stretches its bounded randomness using a PRG and then emulates V' *. Then to simulate the view of V'*,
we can first apply the simulator S for V*, and then apply the PRG on the simulated randomness to obtain a
full simulated view for V*. In particular, from hereon we we can simply focus on deterministic verifiers V*
that get their bounded randomness as part of their bounded advice.

Claim 5.2. Protocol|8\is ZK against any polytime verifier V* with auxiliary-input of size at most b(n).

Proof. We describe a universal ZK simulator S and show its validity (universality is in the sense of Re-
mark . Let ¢ € £ and let V* be the code of any malicious verifier, and let 2’ be any advice of length
at most b(n). S starts by honestly computing the first message wi; € {0, 1}" of the WIPOK with instance-
independent first message. It then feeds wiy to V*(¢; 2’) who returns (y, ¢, wiz) that are (allegedly) an image
under the function f,, an encryption of a corresponding preimage, and the second message of the WIPOK.

S now constructs from the code of V* a machine My« that, given 1" and z = (2, , wiy) as input,
outputs some y, and whose running time is linear in the running time ¢y« of V*. Note that |z| < 2| + |p| +
lwii| < b(n) + 2n, and thus, if y = f,,(x) for some x, applying the extractor £ on My~ would result in a
witness 2/, such that R” (y, ') = 1, in time poly(t},). S does not test whether y is a valid image directly,
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it applies the extractor regardless to obtain a candidate z’, and then computes ¢ = Eval(7, ,/,c). Then it
sends ¢ to V*, and completes the WIPOK using the trapdoor x as a witness.

The validity of the simulator now follows by witness indistinguishability, as well as by the circuit privacy
guarantee given by Eval. Specifically, we first move to a hybrid simulator S’ that proves the WIPOK
statement using the actual witness w. The view generated by S’ is indistinguishable from the one generated
by S due to the WI property.

Now, we claim that the view generated by S’ is indistinguishable from that generated by honest prover
P. First, note that the only difference between the two is that P sends ¢ < Eval(1, c), whereas S’ sends
¢ < Eval(7y 4, ), for the extracted input 2’. Now, note that if c is a valid ciphertext, then 7, ,/(Dec(c)) =
1(Dec(c)) = 1; indeed, if y = f,(x) where © = Dec(c), then the extracted ' is such that 7 (z,2’) = 1,
and the above follows by the definition of 7, ,+(x). Thus, in this case, the distribution of ¢ induced by P is
indistinguishable from that induced by &', by circuit privacy. In fact, circuit privacy says that this is also the
case if ¢ is an invalid cipher. d

This completes the proof of Theorem|[5.1] O

5.4.2 A 2-message zero-knowledge argument.

In this section, we show that, using complexity leveraging (and superpolynomial hardness assumptions), we
can augment the protocol from the previous section to a 2-message argument.

Let (Gen, Enc, Eval, Dec) be a semantically-secure, circuit-private, 1-hop homomorphic encryption scheme.
Let (wiy, wiz) denote the messages of 2-message W1 with an instance-independent first message (as in Def-
inition |5.2). Let 7 = {fn}, cx be a key-less GEOWF, against (b(n) + n)-bounded-auxiliary-input adver-
saries, with respect to a privately-verifiable relation R = {Rf }n cn- Further assume that F is one-way
against adversaries of size poly(7T') (see Remark. Let 7 (x, 2') be the efficient tester for R (f,,(2), 2').
We further denote by 7, ,+(x) a circuit that, given input x, verifies that “y # f,(x) or T (z,2’) = 17;
that is, either “z is not a valid preimage of ¥, or R, (f(z),2') = 1”. Also, let 1 be a circuit of the same
size as 7, - that always returns 1. Let C be a perfectly binding commitment that is hiding against polysize
adversaries, and can be completely inverted in time 7'(n), for some computable super-polynomial function
T(n) = n*("). The protocol is given in Figure

Theorem 5.2. Protocol[Jis a zero-knowledge argument against b-bounded-auxiliary-input verifiers.

High-level idea behind the proof. Proving ZK against verifiers with bounded advice is essentially the same
as in the 3-message protocol, only that now the simulator also commits to the input that it extracts from the
verifier (and by the hiding of the commitment ZK is maintained). The proof of soundness is essentially the
same as showing POK in the 3-message protocol, only that now, the W1 does not provide witness extraction,
instead we will extract a witness in time poly(7'(n)), by inverting the prover’s commitment with brute-force.
Since one-wayness holds even against poly(7'(n))-adversaries, soundness follows.

A more detailed proof follows.

Proof sketch. We first show that the protocol is a sound against polysize adversaries.

Claim 5.3. Protocol[9is an argument.

Proof sketch. Let P* be any polysize prover, and assume towards contradiction that for infinitely many
@ ¢ L, P* convinces V of accepting with noticeable probability £(n). We show to break the R” -hardness
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Protocol 9
Common Input: ¢ € LN {0,1}".
Auxiliary Input to P: a witness w for .

1. V samples z < {0, 1}*"") and sk < Gen(1™), computes y = f, (), ¢, = Encgc(x)
and sends (y, c;) , as well as the first WI message wij.

2. P samples a commitment to zero C' + C(0°), ¢ < Eval(1,c,), and sends (C, ¢), together with
the second WI message wis stating that:

{SOEE}\/{H:L“': é:gvil(g%;j')’cx) } :

using the witness w € Rz (p).

3. V verifies the proof and that Decg(¢) = 1.

Figure 9: A 2-message ZK argument against verifiers with b-bounded auxiliary input.

of F. The breaker, given y would sample a first WI message wij, and encryption of zero cg, and feed
(y, co, wiy) to P*, who outputs a commitment C, an alleged image y, and a proof wis for the statement

{weﬁ}\/{ax’: é:gvil(c?ﬁl)’cm) }

By the semantic security of the 1-hop encryption, the above is indistinguishable from an experiment in which
the breaker uses ¢, for an actual preimage of y, and thus we know that with probability £(n) — negl(n the
proof is convincing. By the soundness of the WI system, and since ¢ ¢ L, it follows that C' is a commitment
to a proper witness x’. The inverter can now break C'in time 7'(n) and thus break R” -hardness of F. [

We next show that the protocol is ZK. As noted in the previous section, we can restrict attention to
deterministic verifiers V* that get their bounded randomness as part of their bounded advice.

Claim 5.4. Protocol @] is ZK against any polytime verifier V* with advice of size at most b(n).

Proof sketch. We describe a universal ZK simulator S and show its validity (universality is in the sense of
Remark . Let p € £ and let V* be the code of any malicious verifier, and let 2z’ be any advice of length
at most b(n). S starts by running V*(¢; 2’) who returns (y, ¢, wiy) that are (allegedly) an image of the of
the function f;,, an encryption of its preimage, and the verifier message of the WI protocol.

S now constructs from the code of V* a machine My - that, given 1" and 2z = (2/, ) as input, outputs
some y, and whose running time is linear in the running time ¢y~ of V*. In particular, |z| < [2/| + |¢| <
b(n) + n. S then applies the extractor £ on My, and obtains a candidate witness =’ € {0,1}¢ in time
poly (7).

S now computes ¢ = Eval(7, ., c), as well as a commitment C' to 2/, and completes the WI using the
trapdoor x’ as a witness. It sends (C, ¢, wiz) to complete the simulation.
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The validity of the simulator now follows by witness indistinguishability, as well as the circuit privacy
guarantee. Specifically, we can first move to a hybrid simulator S’ that proves the WI statement using
the witness w. The view generated by S’ is indistinguishable from the one generated by S due to the WI
property. Now, we can claim that the view generated by S’ is indistinguishable from that generated by the
honest prover P. Indeed, the only difference between the two is that P commits to 0¢ instead of z’, and
sends ¢ < Eval(1,c), whereas S’ sends ¢ < Eval(7, ., c), for the extracted input z’. The two views
are indistinguishable by the hiding of the commitment and by the function privacy guarantee of the 1-hop

evaluation (this is argued exactly as in the proof of Claim[5.2)). U
This completes the proof of Theorem[5.2] O
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A Black-Box Lower Bounds

In our construction of EOWFs (or GEOWFs) against bounded-auxiliary-input adversaries, the extractor
is non-black-box, i.e., it makes explicit use of the adversary’s code. In particular, the simulation of our
2-message and 3-message ZK protocols, which invokes this extractor, makes a non-black-box use of the
adversarial verifier. In this section, we show that this is inherent by extending known results for adversaries
with unbounded polynomial advice to the case of bounded-advice adversaries. We also observe that such
black-box impossibilities do not hold for totally uniform adversaries (having no advice at all, on top of their
constant size description).

EOWEF with black-box extractors. We sketch why there do not exist EOWFs against b—bounded auxiliary-input
adversaries where b = n?(1)| for security parameter n, and where the extractor only uses the adversary as

a black-box (a similar implication can be shown for the case of generalized EOWFs). Specifically, we
show that given a function family F that satisfies one-wayness, there does not exist a PPT black-box ex-
tractor £ such that for any PPT adversary M, any large enough security parameter n € N, and any advice

z € {0, 1}b™m;

y e Mlez) @ EMEE(e) ]
eel?]f(ln) Jz: fe(z) =y fola) #y < negl(n)

This essentially follows the same idea behind the impossibility presented in Section |3} only that now
some of the computation done there by the obfuscated auxiliary-input can be shifted from the auxiliary-
input to the adversary itself, as it is anyhow accessed as a black-box. Concretely, consider the adversary M
that interprets its auxiliary input z as a seed k of a pseudo-random function that maps the keys of F to inputs
of F. On input (e; z), M computes an input z = PRF.(e) and outputs y = fc(x). Using the guarantee
of the pseudo-random function, it is not hard to see that any black-box extractor £ can be used to break the
one-wayness property of F (using a much simplified version of the proof in Section [3).

Note that the above does not hold when b(n) = O(log(n)), since then the advice cannot contain a
seed for a secure pseudo-random function. In fact, when b(n) = O(log(n)), any family that is EOWF
against b-bounded auxiliary-input adversaries also has a black-box extractor. The extractability property of
the EOWF guarantees the existence of an extractor for every adversary M and advice z. Since there are
only polynomially many different pairs (M, z), a black-box extractor can run the (possibly non-black-box)
extractor for every such (M, z), and is guaranteed that one of these executions outputs a valid preimage.
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3-round ZK with black-box simulation. Goldreich and Krawczyk [GK96] show that a 3-message protocol
for a language £ ¢ BPP that is zero-knowledge against non-uniform verifiers cannot have a black-box
simulator. That is, there is no simulator that only uses the verifier as a black-box. To show this, they first
construct a specific family V of non-uniform verifiers, and then prove that any black-box simulator that can
simulate verifiers in )V can be used to decide L efficiently. This proof, however, does not directly rule out
black-box simulation for bounded auxiliary-input verifiers. The reason is that, in the proof of [GK96]], the
advice given to verifiers in ) encodes a key for a p-wise independent hash function where p bounds the
running time of the simulator. Now, to rule out any polytime simulator, we must require simulation for
verifiers with advice of arbitrary polynomial length.

However, assuming one-way functions exist, we can replace the p-wise independent hash function in
the construction of V by a pseudo-random function with seed length that is independent of p. Then,
using the same argument as [[GK96|, we can show that black-box simulation is impossible even for b-
bounded auxiliary-input verifiers where b(n) = nf(1),

Similarly to the case EOWF, there is no impossibility for 3-message ZK against b-bounded auxiliary-input
verifiers where b(n) = O(log(n)). In fact, as explained above, in this case, the non-black-box extractor of
our GEOWF also implies a black-box extractor, which we can use to construct a black-box simulator in our
3-message ZK protocol.

2-round ZK. Goldreich and Oren [GO94] show that 2-message protocols for any language £ ¢ BPP that
are zero-knowledge against non-uniform verifiers do not exist (even with non-black-box simulation). Their
result crucially relies on the fact that the auxiliary-input of the verifier can encode the first message of
the protocol (and can in fact be extended to also rule out the case of bounded auxiliary-input verifiers, with
advice longer that the first message). Our construction of 2-message ZK does not contradict the impossibility
of [GO94] sice it is only ZK against b-bounded auxiliary-inputadversaries where b is smaller then the length
of the first protocol message.
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